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Abstract

This paper deals with the problem of a pipe conveying fluid of interest in several engineering
applications, such as micro-systems or drill-string dynamics. The deterministic stability analysis
developed by Paidoussis and Issid (1974) is extended to the case for which there are model
uncertainties induced by modeling errors in the computational model. The aim of this work
is twofold: (1) to propose a probabilistic model for the fluid-structure interaction considering
modeling errors and (2) to analyze the stability and reliability of the stochastic system. The
Euler-Bernoulli beam model is used to model the pipe and the plug flow model is used to take into
account the internal flow in the pipe. The resulting differential equation is discretized by means of
the finite element method and a reduced-order model is constructed from some eigenmodes of the
beam. A probabilistic approach is used to model uncertainties in the fluid-structure interaction.
The proposed strategy takes into account global uncertainties related to the noninertial coupled
fluid forces (related to damping and stiffness). The resulting random eigenvalue problem is
used to analyze flutter and divergence unstable modes of the system for different values of the
dimensionless flow speed. The numerical results show the random response of the system for
different levels of uncertainty, and the reliability of the system for different dimensionless speeds
and levels of uncertainty.

Key words: fluid-structure interaction, uncertainty quantification, stochastic dynamics,
stochastic stability analysis, reliability analysis

1. Introduction

This paper extends the deterministic stability analysis proposed by Paidoussis and Issid
(1974) of a pipe conveying fluid. The present work deals with a probabilistic model that takes
into account uncertainties induced by modeling errors that arise due to physical simplification
introduced in the deterministic model, as it will be explained latter. Slender flexible tubes with
internal flow or pipes conveying fluids are present in a number of applications, such as micro-
systems, biological devices, drill-strings and heat exchangers. See, for instance, Ritto et al.
(2009) for nonlinear dynamics of a drill-string, Rinaldi et al. (2010) for microscale resonators,
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Soltani et al. (2010) for nanotubes with viscous fluid/ Kelvin-Voigt model, and Gosselin and
Paidoussis (2014) for the dynamic stability of a hose to the sky.

Typically, the standard configuration is a straight tube mounted over supports carrying a
steady flow with a constant velocity. If the velocity is kept below a certain threshold, ambient
perturbations might entail low amplitude vibrations of the structure around a standard configu-
ration. Above the critical speed, the coupled system, constituted by the structure and the flow,
might undergo large vibrations and complex nonlinear dynamical responses. The understanding
of such an unstable behavior is required for improving the design of the system and mitigate
damage effects. In addition, the large diversity of the dynamical response renders this problem
quite attractive for theoretical and numerical studies.

Computer models are nowadays widely used in the design and analysis of standard engi-
neering systems. Many critical decisions are taken based on computational simulations. Despite
the consolidation of powerful and reliable methods leading to small numerical errors originated
by discretization techniques, the extension of this common practice to more critical systems is
hindered by the presence of inevitable uncertainties associated with the modeling. Statistical
fluctuations around nominal values of parameters, nonidealized initial and boundary conditions,
or production tolerances might entail a large variation on the output of the simulations. So, in or-
der to improve the reliability of predictions, those uncertainties must be taken into account. Here,
the consideration of the uncertainties is carried out within a probabilistic framework, hence, de-
sign criteria are based on failure probabilities and reliability analysis, such as done by Ghanem
and Spanos (1991) and Schueller et al. (2004). The problem of a pipe with internal flow
can be modeled using a tridimensional nonlinear elastic model for the structure together with
Navier-Stokes equations for the fluid; see Bathe et al. (1999) and Bathe and Zhang (2004). But,
usually, simplified physics is introduced. In Piet-Lahanier and Ohayon (1990), for instance, a
beam model is used for the pipe, and a compressible and viscous fluid is considered. The use of
simplified models, such as the one proposed by Paidoussis and Issid (1974) and reused in this
paper, makes feasible the analysis of a significant number of scenarios. However, it is clear that
the use of kinematic reductions introduces modeling errors.

The stability of dynamic systems has been extensively studied from a deterministic perspec-
tive; see, for instance, Guckenheimer and Holmes (1983) and Nayfeh and Balachandran (1995).
There are also some works in the literature dealing with the stochastic stability analysis. For ex-
ample, in Lin and Cai (1995), the concepts of almost-sure stability, stability in probability and
stability in themth moment are defined and used for analyzing stochastic dynamical systems
submitted to time-varying loads.

The stability of pipes with internal flow was deeply investigated by Paidoussis (1998). In
Paidoussis and Issid (1974), some historical review of the subject up to the time the article was
written is done, and the instabilities due to divergence and flutter phenomena are discussed for
steady-state flows and harmonically perturbed flows. This was the first time that the coupled-
mode flutter (simply called flutter) was noticed for this kind of coupled system. In Ariaratnam
and Namachchivaya (1986), an analytical method (devoted to the stability of pipes with per-
turbed internal flow) is proposed by using the method of averaging and the Floquet-Lyapunov
theory. In Ibrahim (1986), a more recent review of the mechanics of pipes conveying fluid can
be found in which more than four hundred references are given.

There are few investigations related to uncertainty for stability of a pipe with internal flow.
In Ariaratnam and Namachchivaya (1996b), random velocity fluctuations were considered; the
authors used the averaging method and the Floquet theory. In Ganesan and Anantha (1995),
system-parameter uncertainties are taken into account. Some statistics of the critical flow ve-
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locity are analyzed for a stochastic modeling of the elasticity modulus and of the mass per unit
length of the structure. In Yigit (2008), the flutter stability of a cantilever pipe conveying fluid
is considered, where active control is used to suppress the structural vibration. The present pa-
per aims to analyze the dynamic stability of a pipe conveying fluid including uncertainty in the
fluid-structure interaction model, as explained in the sequence.

The fluid-structure interaction phenomena are responsible for the existence of unstable modes
of the dynamical system and, therefore, play a central role in the present analysis. In order to
endow the model with an improved capacity of describing the fluid-structure coupling, a proba-
bilistic approach which has the capability to take into account modeling errors should be used.
In this paper, we propose to use the nonparametric probabilistic approach introduced by Soize
(2000, 2012), which is a method to take into account model uncertainties induced by modeling
errors.

In computational dynamics and in computational fluid-structure interaction such as aeroelas-
ticity and vibroacoustics, the nonparametric probabilistic approach is an alternative method to
the output-prediction-error method which allows modeling errors to be taken into account at the
operators level of the computational model by introducing random operators and not at the model
output level by introducing an additive noise. It should be noted that such an approach allows a
prior probability model of uncertainties to be constructed even if no experimental data are avail-
able. The nonparametric probabilistic approach is based on the use of a reduced-order model and
the random matrix theory. It consists in directly constructing the stochastic modeling of the op-
erators of the mean computational model. The random matrix theory and its developments in the
context of dynamics, vibration and acoustics is used to construct the prior probability distribution
of the random matrices modeling the uncertain operators of the mean computational model. This
prior probability distribution is constructed by using the Maximum Entropy Principle introduced
by Shannon (1948); Jaynes (1957, 2003), in the context of Information Theory, for which the
constraints are defined by the available information. Section 4 is devoted to the nonparametric
probabilistic model, where the statistically dependent random matrices which are derived from
the fluid coupling model are generated thanks to the introduction of an adapted scheme. Conse-
quently, with the aid of the nonparametric probabilistic approach, the uncertainties are globally
modeled and modeling errors are taken into account. The nonparametric probabilistic approach
of uncertainties has been applied in numerous different areas to cope with uncertainties arising
from different sources along the modeling process; see, for instance, Chen et al. (2006); Durand
et al. (2008); Ritto et al. (2009). This probabilistic approach was also used by Ritto et al.
(2011) to model uncertainties in the stiffness of a piping conveying fluid but no stability analysis
was done. Since the present work has its particularities, a novel idea is proposed to adapt the
procedure of the nonparametric probabilistic approach.

Considering the randomness of the computational model, the stability analysis relies on solv-
ing a stochastic eigenvalue problem, Croquet (2012). A number of results are presented with
emphasis on the statistical characterization of the eigenvalues. (1) A sensitivity analysis is carried
out as follows. For different values of the dimensionless fluid speed and for different levels of un-
certainty, the confidence regions of the eigenvalues and of the stochastic response are constructed
using the Monte Carlo method, Rubinstein (2007), as stochastic solver. (2) A reliability analysis
is then performed. The probability of being in the divergence region or in the flutter instability
region is computed. In addition, a control surface is drawn showing, for different values of the di-
mensionless fluid speed and of the levels of uncertainty (u, δ), how severe is the flutter instability.
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This paper is organized as follows. The deterministic system is depicted in Sections 2 and
3, where the equations, the reduced-order model and the stability analysis are presented. The
probabilistic model is developed in Section 4. Finally, the numerical results are analyzed in
Section 5 and the concluding remarks are made in Section 6.

2. Deterministic model

Although the deterministic formulation of a pipe conveying fluid is becoming relatively clas-
sical, Paidoussis (1998), for the sake of completeness, some details are presented in this section.
Consistently with the aim of studying the stability of the coupled system, the rectilinear config-
uration of the coupled system is sketched in Fig. 1. The Euler-Bernoulli beam theory for an
undamped simply supported beam is adopted. Therefore, the partial differential equation gov-
erning the dynamics of the structure is written as; see, for instance, Inman (2007):

m
∂2v(x, t)
∂t2

+ EI
∂4v(x, t)
∂x4

= f (x, t) , (1)

with appropriate boundary and initial conditions, wherev is the transversal displacement,L is the
length of the beam,m is the mass per unit length,E is the elasticity modulus,I is the area moment
of inertia, f is the external force per unit length,x andt are the position and time parameters that
are defined in the intervals [0, L] and [0,T]. To model the internal flow, the plug flow model,
Paidoussis (1998), is used. Letr = xi + yj be a point measured from the origin, where (i, j) is
fixed in an inertial reference frame, withj the unit vector in the transverse direction and where
i is the unit vector perpendicular to it, aligned with the axial direction. Due to the assumption
that the beam undergoes only small displacements, the velocity of a particle of the fluid can
approximately be expressed as

vf ≃ Ui + U
∂v
∂x

j +
∂v
∂t

j , (2)

whereU is the speed of the fluid with respect to the structure and where the rotation,∂v/∂x, of
the beam cross sectional area is assumed to be small. Hence, the fluid acceleration is given by

af =
Dvf

Dt
=
∂vf

∂t
+ (vf · ∇)vf . (3)

Considering a constant speedU (i.e. dU/dt=0) yields

af =

(

∂2v
∂t2
+ 2U

∂2v
∂x∂t

+ U2∂
2v
∂x2

)

j . (4)

The force per unit length is obtained multiplying the acceleration by the fluid mass per unit length
Mf ,

ff =

(

Mf
∂2v
∂t2
+ 2MfU

∂2v
∂x∂t

+ MfU
2∂

2v
∂x2

)

j . (5)
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Substituting this force in Eq. (1) yields,

(m+ Mf)
∂2v
∂t2
+ 2MfU

∂2v
∂x∂t

+ MfU
2∂

2v
∂x2
+ EI

∂4v
∂x4
= f . (6)

The above equation shows that the fluid contributes to the mass, damping and stiffness of the
system. Equation (6) is discretized by means of the finite element method. Introducing the local
coordinateξ = x/le of a finite element, Ee, in which le is the element length, forx in Ee, the
finite element approximation of the displacement fieldv(x, t) is written asv(e)(ξ, t) = N(ξ)u(e)(t)
in which N is the shape Hermitian function and whereu (e) = [v1 ∂v1/∂ξ v2 ∂v2/∂ξ] is
the element displacement vector. The corresponding mass, fluid damping, fluid stiffness and

bending stiffness element matrices are then given byM (e) = (m + Mf)
∫ 1

0
NTNledξ, Cf

(e) =

2MfU
∫ 1

0
NTN′dξ, Kf

(e) = −MfU2
∫ 1

0
N′TN′ 1

le
dξ andKb

(e) = EI
∫ 1

0
N′′TN′′ 1

l3e
dξ. The assembly

of the finite element matrices yields the following computational model,

M ü(t) + Cf(U) u̇(t) + (Kb +Kf(U)) u(t) = f(t) , (7)

whereM is the positive-definite (m×m) mass matrix,Kb is the positive-definite (m×m) bending
matrix andKf(U) is the negative-definite (m× m) fluid stiffness matrix (forU � 0), u(t) is the
response vector andf(t) is the load vector. In general, the (m × m) real matrixC f(U) is not
symmetric and, hence, can be written as the sum of a symmetric positive-definite matrix with a
skew-symmetric one. Due to the boundary conditions of the present application, which is simply
supported,Cf(U) is skew-symmetric. However, we still call it damping matrix, even though it
does not entail energy dissipation. In the frequency domain, Eq. (7) can be written as

(−ω2M + iωCf(U) +Kb +Kf(U)) û(ω) = f̂(ω) , (8)

whereû(ω) is them-complex response vector,f̂(ω) is them-complex load vector,ω is the circular
frequency and i=

√
−1. It should be noted that the applicationf̂ �→ û(U, ω) is linear, but the

mappingU �→ û(U, ω) is nonlinear. Indeed, for the main goal here consisting on carrying out the
stability analysis of the coupled system based on the numerical model, the mapping of interest
is implicitly defined by Eq. (8) relating the speedU to the eigenvalues, that isU �→ λ i(U)
(i = 1, 2, ..).

3. Reduced-order computational model and stability analysis

A reduced-order computational model, Holmes et al. (1996); Kerschen et al. (2005); Murthy
et al. (2012), is going to be constructed for the system given by Eq.(8). In structural dynamics
and coupled systems, the construction of a reduced-order computational model is very useful
(1) to get a model adapted to the prediction of the physical phenomena under consideration, (2)
to facilitate the analysis of the predictions (in particular for stability analysis), (3) to reduce the
numerical cost (in particular, in the context of stochastic dynamics for which a Monte Carlo
method is used as stochastic solver) and (4) to make feasible the nonparametric probabilistic
approach explained in details in the next Section.

Since the dynamical system is linear, the family of eigenmodes is generally considered the
most efficient basis for the construction of a reduced-order computational model. When the dy-
namical system is nonlinear, a reduced-order model can always be constructed using an adapted
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basis. The efficiency of such a basis will then be quantified by the numerical cost of its con-
struction and by the speed of convergence with respect to the dimension of the reduced-order
computational model. In this context, the family of eigenmodes related to a linear dynamical
system associated with the nonlinear one can still be efficient. In that way, the projection ba-
sis is independent of the external forces applied to the dynamical system. In other cases, it can
be interested to use proper orthogonal decomposition (POD) to construct the basis, but such a
method requires to prior solve the problem in the physical coordinates and, in addition, the con-
structed basis depends on the external forces applied to the dynamical system. Introducing the
homogeneous equation associated with Eq.(8):

(−ω2M + iωCf(U) +Kf(U) +Kb) û(ω) = 0 . (9)

The following generalized eigenvalue problem, corresponding to Eq. (9) forU = 0, is introduced
to construct the reduction basis:

(−ω2M +Kb)φ = 0 . (10)

Forn < m, letΦ = [φ1 φ2 ... φn] be the (m× n) real matrix composed by the firstn eigenmodes.
With this choice, (1) we guarantee an appropriate basis (M andK b are positive-definite matrices)
and (2) it is not necessary to recompute the basis for each value ofU. The displacement is then
written asû(ω)≃Φ q̂(ω) and the reduced-order computational model is given by

(−ω2Mr + iωCr(U) +Kr(U)) q̂(ω) = f̂r(ω) , (11)

wheref̂r(ω) = ΦTf̂(ω) and the reduced matrices are given by

Mr = Φ
TMΦ , Kr(U) = Kfr(U) +Kbr ,

Kfr(U) = ΦTKf(U)Φ , Kbr = Φ
TKbΦ ,

Cr(U) = ΦTCf(U)Φ ,

(12)

The normalization of the eigenmodes is chosen such thatM r = I (whereI is the (n× n) identity
matrix) and, consequently, [ΦTKbΦ] i j = δi j ω

2
i , in which δi j is the Kronecker symbol. The

stability of the system is analyzed solving an eigenvalue problem constructed as follows. The
size of the system is doubled (state space in the frequency domain) and Eq. (11) is rewritten as

[

0 I
−Kr(U) −Cr(U)

]

︸�����������������������︷︷�����������������������︸

Br(U)

(

q̂
iω q̂

)

︸����︷︷����︸

y

= iω

[

I 0
0 Mr

]

︸�������︷︷�������︸

Dr

(

q̂
iω q̂

)

(13)

SinceMr = I and introducingλ = iω, the eigenvalue problem associated with Eq.(13) assumes
the conventional form:

Br(U) y = λ y , (14)

wherey is the eigenmode associated with the eigenvalueλ = Re(λ) + i Im(λ) in which Re(·)
and Im(·) refer respectively to real and imaginary components. IfRe(λ) > 0, then the system
is unstable. IfRe(λ) = 0, then the system is unstable if the corresponding eigenvalues are not
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simple roots of the characteristic polynomial.

4. Probabilistic model of uncertainties

As mentioned in Section 1, the nonparametric probabilistic approach, Soize (2000, 2005), is
used to take into account model uncertainties induced by modeling errors in this fluid-structure
interaction problem. This probabilistic strategy is chosen because it is a way to cope with model
uncertainties introduced by the different sources like, for instance, simplifications on the kine-
matics used in the present model; which reduce its predictive ability. The nonparametric prob-
abilistic approach couples eigenmodes coordinates, which seems well suited to this problem,
since coupling is involved. In this coupled problem, the sources of uncertainties are the follow-
ing: structural uncertainties (use of Euler-Bernoulli beam theory, boundary conditions, material
properties) and fluid-structure coupling uncertainties (velocity field approximation, fluid proper-
ties). In the present paper, only fluid-structure coupling uncertainties are the subject of analysis.
Therefore, uncertainties related specifically to the structure and uncertainties in the mass proper-
ties or external forces are not taken into account.

In this context, uncertainties in the noninertial fluid forces, which are related to the fluid
damping and stiffness matrices, are globally taken into account. Since these forces come from
the same coupled model, they are statistically dependent from each other, therefore, we propose
a probabilistic model that considers this fact and, more importantly find a way to generate their
joint distribution.

Let us first present a quick review of the concepts supporting nonparametric probabilistic
approach. Let matrixD be an operator of the dynamical problem under consideration. Matrix
D is assumed belonging to a setM of (n × n) real matrices. For instance,D could be the re-
duced stiffness matrixKbr which belongs to the setM = M+ of all the positive-definite (n× n)
real matrices. Assuming that the matrixD depends on a vector-valued parameter,p, and call-
ing it by D(p). If p is uncertain, in the context of the usual parametric probabilistic approach
of system-parameter uncertainties, it is modeled as a random vectorp for which its probability
distribution has to be constructed and which is defined on the admissible setS of parameterp.
In such a case, the probability distribution of the random matrixD par = D(p) is induced by the
probability distribution ofp. The family of deterministic matrices{D(p), p ∈ S} spans a subset
M0 of setM. Consequently, the probability distribution of random matrixD par is defined on
subsetM0 and not on the entire setM. This means that the parametric probabilistic approach
cannot reach any matrix in setM but only those matrices that are in subsetM 0. If there are no
modeling errors, but only system-parameter uncertainties, then the ”experimental” matrix,D exp,
corresponding toDpar, belongs to setM0, and the parametric probabilistic approach will be ef-
ficient because the probability distribution of random matrixD

par is defined onM0. If there are
modeling errors,Dexp is outside setM0 and consequently, the parametric probabilistic approach
has not the capability to reduce the distance betweenD par andDexp. In order to take into account
modeling errors, the nonparametric probabilistic approach consists in directly constructing the
probability distribution of the random matrixD which modelsD on the setM and consequently,
such a model allowsDexp to be reached byD. Figure 2 shows the Venn diagram that summarizes
this concept. Another key point is the construction of the probability distribution, also called the
stochastic structure, of random matrixD such that the properties of matrixD are respected.

The methodology of the nonparametric probabilistic approach consists in (i) constructing
a reduced-order model deduced from the nominal computational model (also called the mean
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computational model), (ii) replacing the deterministic matrices of this reduced-order model by
random matrices which allows the model uncertainties to be taken into account (this is the main
concept), (iii) introducing the sets of random matrices consistent with the mathematical prop-
erties of these matrices and including all the available information and (iv) constructing the
probability distribution of the random matrices belonging to each set of random matrices using
the Maximum Entropy Principle.

For instance, ifD is positive definite, it can be decomposed asD = LTI L, whereI is the
identity matrix andL is an upper triangular matrix. Then, the random matrixD is constructed
asD = LT

GL, with G being a random matrix with mean equals toI. The stochastic structure of
random matrixD is then defined by this construction and by the additional available information
relative toG which can be summarized as follows for a large class of problems:

• G is a positive-definite random matrix,

• E{G} = I ,

• E{||G−1||2F} = c1 , |c1| < +∞ ,

where||A||F = (trace{AT A})1/2 is the Frobenius norm andE{·} denotes the mathematical expec-
tation. The first information says that random matrixG (and, consequentlyD) has values in
the setM+, which is an important property to be respected. The second condition simply says
that the mean value of random matrixD is equal to the nominal value,D. The last condition
enforces the variance of the response to be finite, which must be true to ensure that the response
has a physical meaning. The probability distribution ofG is then constructed using the Max-
imum Entropy Principle under the constraints defined by the above available information. Its
expression and the corresponding generator of independent realizations can be found in Soize
(2000, 2005). This set of random matricesG is denoted by SG+. It should be noted that other
sets of random matrices, including additional available information, has also been constructed
for structural dynamics, Mignolet and Soize (2008b), and that a combination of the parametric
and the nonparametric probabilistic approaches (generalized probabilistic approach) is possible,
Soize (2010).

Going back to the problem analyzed in the present paper, a stochastic structure is proposed
for the noninertial forces related to the action of flowing fluid over the pipe in order to take into
account model uncertainties. It should be noted that this interaction encompasses two coupling
mechanisms (stiffness and damping) which have to be taken into account simultaneously, as both
are governed by the flow speed. In addition, the algebraic properties of both matrices implied
from the physics of the problem must be respected, and, in the present model, the deterministic
matrices are not frequency dependent. Therefore, we would like to enforce that the stochastic
models of these matrices should not depend on the frequency. Since we do not have enough
information to characterize the statistical dependence between the two matrices in line with their
strong dependency onU, we will use a single random germ for the two matrices, as will be
depicted in the sequence. For these conditions, we can gather the information of both damping
and stiffness matrices originated by the fluid motion in a single oneA(U) as follows

A(U) = iωr Cr(U) +Kfr(U) , (15)
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whereωr is a reference frequency. Then,A(U) is modeled by a random matrixA(U), with
construction carried out as explained in{Soize05 and Mbaye et al. (2012). The deterministic
matrix A(U), which is invertible for allU � 0 (sinceK fr is symmetric negative definite), is first
decomposed by the polar decomposition, Golub ad Van Loan (1996),

A(U) = Q(U) P(U) . (16)

From now on, the dependence onU will be omitted to simplify the notation. In Eq. (16),Q
is a unitary matrix (Q∗Q = QQ∗ = I), in which ∗ denotes the conjugate transpose, andP is
a Hermitian positive-definite matrix. This decomposition will be computed using the singular
value decomposition, Golub ad Van Loan (1996):A = USV ∗, with P = VSV∗ andQ = UV∗.
The Cholesky decomposition can be applied to the Hermitian positive-definite matrixP = L ∗L.
The construction of the random matrixA consists in writing

A = Q L∗GL , (17)

whereG belongs to the set SG+ of the random matrices introduced above. For a given realization
of G, it is straightforward to compute the corresponding realizations ofA. The level of uncer-
tainty related to the fluid-structure interaction model is controlled by the dispersion parameterδ

of matrixG, which is defined as

δ =

{

1
n
E{||G − I]||2F}

} 1
2

. (18)

It should be noted that only one parameter,δ, controls the dispersion of the stochastic model,
which considerably simplifies the identification procedure when experimental data are available,
solving a statistical inverse problem, Soize et al. (2008); Soize (2012). With the stochastic
structure defined by Eq.(17), the uncertainties are globally taken into account in random matrix
A and uncertainties mainly connected to the flow (kinematic simplifications, non-uniformity,...).
The only requirements are that (1) the mean value ofA is equal to matrixA of the nominal model,
(2) that random matrixG belongs to SG+ which means thatG is a positive-definite random matrix
and that the random response of the stochastic reduced-order computational model will have a
finite variance. The random eigenvalue problem related to Eq.(13) is written as:

[

0 I
−Kr(U) −Cr(U)

]

︸�����������������������︷︷�����������������������︸

Br(U)

y = i Ω

[

I 0
0 Mr

]

︸�������︷︷�������︸

Dr

y (19)

in whichKr(U) = Re{A} +Kbr andCr(U) = Im{A}/ωr , for ωr > 0. The reference frequencyω r

could be, for instance, the mean value in the frequency band. IntroducingΛ = i Ω, Eq. (19) can
then be rewritten as

Br(U) y = Λy , (20)

where the complex-valued random eigenvalue is written asΛ = Re(Λ) + i Im(Λ). Finally, the
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stochastic reduced-order computational model associated with Eq. (11) is written as

û(ω) = Φ q̂(ω) , (21)

(−ω2Mr + iωCr(U) +Kr(U)) q̂(ω) = f̂r(ω) , (22)

in which û(ω) is the random response associated with the deterministic responseû(ω).

5. Numerical results

The structure is discretized with 40 finite elements (choice made after a convergence check)
and the first four eigenmodes are considered in the analysis. To be able to do a more general
analysis, some dimensionless quantities are introduced:ζ = x/L, η = v/L, β = M f/(m+ Mf),
u = UL(Mf/(EI))1/2, f = f L3/(EI),̟ = ωL2((m+ M f )/(EI))1/2, whereζ is the dimensionless
length, η is the dimensionless transverse displacement,β is the ratio of fluid mass,u is the
dimensionless speed,f is the dimensionless force, and̟ is the dimensionless frequency. The
dimensionless eigenvalues are written asλnd andΛnd. There are two important dimensionless
parameters which areβ (mass density relation) andu (dimensionless flow speed). In the stability
analysis, we setβ = 0.24 and the value of the dimensionless speedu varies. The frequency band
of analysis is̟ ∈ [0, 35]. For the frequency domain analysis, the value of the dimensionless
force applied to each degree of freedom of the beam is 1×10−4 and the response displayed is the
absolute value of the dimensionless displacement in the middle of the beam.

5.1. Deterministic analysis
This section deals with the deterministic analysis of the system, that will be compared with

the stochastic analysis of the next section. The results presented are in accordance with the ones
found in Paidoussis (1998).

Figure 3 shows the stability charts using the real component (Fig. 3(a)) and the imaginary
component (Fig. 3(b)) of the eigenvalues. Asu increases, the system becomes more unstable.
The first divergence mode occurs atu = π and the second one atu = 2π. The first flutter
instability occurs aroundu = 6.29 and the third divergence mode occurs aroundu = 3π, as
shown in the Figure. Figure 3(b) shows that, asu increases, the system becomes less stiff, which
is observed by the decreasing of the modulus of the imaginary parts of the eigenvalues considered
in the analysis. Figure 4 shows the amplitude of the displacement in the frequency domain for
u = {1.0, 2.5}. The response corresponding to the higher value ofu is displaced to the left (system
less stiff).

The results presented in this section brings no new information with respect to what has
been published in the literature. It simply reproduces known behaviors of a pipe conveying
fluid, Paidoussis (1998), but it is necessary to produce these results to validate the deterministic
computational model and to use it as a reference for the stochastic analysis. The next section
analyzes how these results are modified when the uncertainties are taken into account.

5.2. Uncertainty quantification
The Monte Carlo method is used as the solver of the resulting stochastic system, and 100, 000

deterministic simulations were performed, such that the mean-square convergence of the eigen-
values was achieved. Section 5.2.1 shows the confidence regions of the analysis and Section 5.2.2
presents the reliability analysis.
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5.2.1. Confidence regions
When uncertainties are taken into account, the graphic displayed in Fig. 3 (related to the

deterministic analysis) becomes Figs. 5 and 6 for the two values 0.05 and 0.10 ofδ, the parameter
that controls the level of uncertainty. Note that only one half of the eigenvalues are plotted in
order to get a better visualization. Figures 5 and 6 show the mean and the 95% confidence
region of the corresponding real and imaginary parts of the eigenvalues. Whenδ increases, the
confidence region also increases, as expected. Also expected is the fact that whenu = 0 there is
no uncertainty in the random eigenvalues, since foru = 0 the fluid model does not play any role.
However, one thing difficult to predict is how the robustness of the system varies with speedu.
For example, Fig. 6 shows that, foru between 7 and 8, the confidence region ofRe(Λ nd) and
Im(Λnd) is narrower and close tou = 12 it is broader.

An interesting aspect of the stochastic response for small values ofu. If we take a closer
look on the probabilistic envelopes of the real part of the eigenvalues depicted in Fig. 7. It can
be noted that for different values of the reference frequency, the real part of the eigenvalues are
different from zero, and the influence region depends on this frequency. For lower frequencies,
this region is smaller. Whenωr is higher, the entries of the nominal value of the stochastic
operator is higher; see Eq. (15). Since the sameδ is used, the dispersion of the matrix norm
will be different depending on the value ofω r . Consequently, it has a different impact on the
stochastic response. This means that the reference frequency is an additional hyperparameter
in the stochastic modeling, which can either be identified if experimental data are available or
be used as a sensitivity parameter in a robust analysis with respect to model uncertainties if
not. Either way, the conclusion is that this result is valuable to understand that modeling errors
might influence the real part of the eigenvalues in low speeds, which should be a concern when
analyzing stability.

In the frequency domain the response shown in Fig. 4 becomes random when uncertainties
are taken into account. Figure 8 shows the response foru = 2.5 andδ = 0.1, where the gray
region represents the 95% confidence region. To better visualize the uncertainties, Fig. 9 shows
how the coefficient of variation (standard deviation divided by the mean) changes with the fre-
quency. It is noted that the level of uncertainty is higher close to the natural frequencies. This
should be a concern for the designer of this system, depending on the excitation frequencies.

These results are valuable to investigate the propagation of uncertainty throughout the com-
putational model. It is not evident, a priori, how uncertainties related to the fluid-structure inter-
action will impact the eigenvalues of the system. With parameterβ fixed it is possible to analyze
the uncertainty of the response for different parameters ofδ andu. When the confidence limit is
small, the model is robust to global uncertainties related the fluid-structure interaction. On the
other hand, if the confidence limit is big, the model response is not reliable.

5.2.2. Reliability analysis
When the lines of the graphics cross each other (Fig. 6, for example), it is difficult to follow

the different confidence regions. Instead of analyzing these crossings, let us evaluate the proba-
bility of the occurrence of instability. This probability of occurrence of instability is the failure
probability of our system.

Two probabilities are defined: (1) one related to the occurrence of divergence instability
mode and (2) other related to the flutter instability mode. Figure 10(a) shows that until about
u = 2.5 the probability of divergence is close to zero, but foru > 4 it becomes almost 100%. At
the same time, Figure 10(b) shows that until aboutu = 5 the probability of flutter is close to zero,
but foru > 7.5 it becomes almost 100%.
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Figure 11 shows the estimation of the probability density function ofRe(Λ 2nd) for two dif-
ferent values ofu. In both cases there is an important probability thatRe(Λ 2nd) be in the neigh-
borhood of zero. However, for higher flow speeds, the probability that this random variable
be in a region greater than zero increases. An interesting fact to note is that random variable
Re(Λ2nd) follows a mixed probability density function, with a concentrated probability in the
neighborhood of zero (stable condition, if only flutter instability is considered) and a continuous
probability density function above zero (unstable condition related to flutter). The concentrated
probability mass near zero approaches the delta Dirac function as the number of Monte Carlo
simulations approaches infinity.

Now we will detail the analysis of the probability of being in a flutter condition for different
levels of uncertainties. Figure 12 shows the probability of flutter as a function of the flow speed
u for different levels of uncertainty (delta values). The solid arrows show that if the determin-
istic (δ = 0) limit speed is considered, the probability of occurrence of instability (or failure
probability) would be about 50%, which means that uncertainties should be taken into account.

On the other hand, the dashed-dot arrow shows that if we define a failure probability, say
1%, depending on the level of uncertainty, then there will be a limit flow speed for each value
of δ: u ≃ 5.85 for δ = 0.1, u ≃ 6.06 for δ = 0.05 andu ≃ 6.24 for δ = 0.01. As expected, ifδ
increases, the limitu should decrease because the scenario is getting worse.

Finally, we construct a control surface that might help a designer to make a decision based
on the values of the fluid speedu and on the levelδ of uncertainty. This surface, Fig. 13,
shows the probability of being in a flutter region for different values ofu andδ: u ∈ [5.6, 7.0]
and δ ∈ [0.0, 0.1]. Note that fixing the value ofδ, asu increases, the probability of flutter
always increases. On the other hand, it is interesting to note that fixing the value ofu, asδ
increases the probability of flutter might increase or decrease. Either way, depending on the level
of uncertainty and on the value of the fluid speed, one knows the probability of being unstable.

Although the results of the previous section are valuable to investigate the propagation of
uncertainty, we would like to use the computation model for design. In this sense, we are interest
in avoiding failures, which are related to instabilities in the present analysis. Instead of setting a
safety factor, a more refined analysis (reliability analysis) is done with the stochastic computa-
tional model, where the probability of failure is computed. For a fixedβ, the surface constructed
in Fig. 13 is the tool needed by the designer to visualize the level of risk he is taking for each
pair (δ,u).

6. Conclusions

The stability problem of a pipe conveying fluid, Paidoussis and Issid (1974), has been ex-
tended to the case for which uncertainties are taken into account in the computational model.
A simple Euler-Bernoulli beam and a plug flow model are considered to model the dynamical
system, which is discretized by means of the finite element methods and reduced using eigen-
modes of the beam. Two analyzes are done: (1) construction of the confidence regions for the
eigenvalues and for the stochastic response and (2) reliability analysis related to the probability
of being in a divergence region or in a flutter region. Both analyzes have been done varying
the dimensionless speed of the fluid and the level of uncertainty of the probabilistic model. An
interesting result is that a mixed distribution has been obtained for the real part of one random
eigenvalue.

A stochastic structure based on the nonparametric probabilistic approach of model uncer-
tainties has been proposed for the operator related to the noninertial fluid forces. Therefore, the
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proposed stochastic model considers globally uncertainties in the noninertial fluid forces, but
other uncertainties, such as the ones related to the mass properties, to the structure, or to the
forces acting on the system are not taken into account. This approach is built upon the introduc-
tion of a stochastic structure modifying directly the operators that underline the physics of the
model, in clear contrast with the parametric alternatives, in which uncertain parameters are mod-
eled as random variables. This nonparametric formulation, which easily can be combined with
parametric ones, is employed to capture structural model discrepancies, and, therefore, enhances
the ability of making reliable predictions.

It is the first time such a stochastic structure is proposed, therefore, more analysis must be
pursued. For example, the prediction model should be compared with sophisticated models or
high fidelity models and experimental data.
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Figure 1: Sketch of the system considered in the analysis (the arrow represents the internal fluid flow).

Figure 2: Venn diagram to illustrate the difference between parametric and nonparametric probabilistic approaches.
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Figure 3: Stability charts. Real (a) and imaginary components (b) ofλnd.
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Figure 4: Frequency response amplitude atη = 0.5 for two different values ofu.
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Figure 5: Mean and 95% confidence interval of one half ofΛnd’s for δ = 0.05. (a) real and (b) imaginary components.
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Figure 6: Mean and 95% confidence interval of one half ofΛnd’s for δ = 0.1. (a) real and (b) imaginary components.
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Figure 7: For small values ofu andδ = 0.1, 95% confidence limits of the real part of the eigenvalues.
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Figure 8: Frequency response amplitude atη = 0.5 for u = 2.5 andδ = 0.1.
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Figure 9: Coefficient of variation of the frequency response amplitude atη = 0.5 for u = 2.5 andδ = 0.1.
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Figure 10: For different values ofu andδ = 0.1, (a) probability of occurrence of divergence instability and (b) probability
of occurrence of flutter instability .
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Figure 11: Approximation of the probability density function ofRe(Λ2nd) for two different values ofu.
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Figure 12: For different values ofu andδ, probability of occurrence of flutter instability .
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Figure 13: Surface showing the probability of occurrence of flutter instability for different values ofu andδ.
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