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Matrix multiplication over word-size prime fields

using Bini’s approximate formula

Brice Boyer∗ Jean-Guillaume Dumas†

Abstract

Bini’s approximate formula (or border rank) for matrix multiplication
achieves a better complexity than Strassen’s matrix multiplication for-
mula. In this paper, we show a novel way to use the approximate formula
in the special case where the ring is Z/pZ. Besides, we show an implemen-
tation à la FFLAS–FFPACK, where p is a word-size prime number, that
improves on state-of-the-art Z/pZ matrix multiplication implementations.

1 Introduction

A fast reliable matrix multiplication implementation over Z/pZ is crucial in
exact linear algebra. Indeed, many algorithm rely on fast matrix multiplication
as a building block (computation of factorised forms, characteristic polynomial,
black box methods,. . . ). But also matrix multiplication on other rings such as
the integer ring Z, polynomials Z/pZ[X] or Galois fields Fq reduce to matrix
multiplication over Z/pZ.

In [DGP08], matrix product over Z/pZ is computed efficiently with Strassen–
Winograd’s subcubic matrix multiplication algorithm ([Str69, Win71]). A cas-
cade algorithm is used: first a few recursive steps of Strassen’s algorithm are
performed, second, below a threshold, numerical BLAS matrix multiplication
routines are called. The numerical routines are used in an exact manner and
reductions modulo p are delayed as much as possible.

We use similar techniques in this article. Our main contribution is the use of
an approximate algorithm to compute the exact matrix multiplication. We first
recall Bini’s algorithm ([BCLR79]) in Section 2. Then in Section 3, we show
two fashions for the application of Bini’s algorithm to get an exact matrix mul-
tiplication: first via rounding, second via p−adic expansion. We finally provide
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in Section 4 a new schedule for the algorithm minimizing memory usage and
compare in Section 5 with existing exact matrix multiplication implementations.

2 Bini’s formula

2.1 Algorithm.

We first recall Bini’s approximate formula. Let A ∈ K
m×k, B ∈ K

k×n, and let
C = A × B be the matrix product. We consider the special case (m, k, n) =
(3, 2, 2) and use a parameter ε. Bini’s approximate formula computes a matrix

Cε = A×B + εD(ε), (1)

where D is a polynomial on K
3×2(ε), with 10 multiplications only. We write a

bilinear formula for the multiplication C = A×B:

C =

µ
∑

r=1

〈A,Xr〉 〈B, Yr〉Zr (2)

where 〈·, ·〉 is the Frobenius (term-wise) product and X, Y and Z are given1 in
the Table 1.

We now write Bini’s (3, 2, 2)−algorithm (Table 2) using2 Table 1 and Equa-
tion (2). We use the following notations troughout the rest of the paper: we
divide the matrix A of size m×k into six submatrices Aij (or Aij) of equal size
m/3× k/2, where i and j correspond to row and column indices.

We stress that the formula (2) automatically yields (by duality, [HM73]) a
(2, 2, 3) formula by simply considering (Y ⊤

r , X⊤
r , Z⊤

r ), and a (2, 3, 2) formula
using (Z⊤

r , Xr, Y
⊤
r ). Actually, we use (εZ⊤

r , Xr, 1/εY
⊤
r ) in our algorithm so that

the pre-addition phase contain only scalings by ε, and divisions by ε only occur
in the post-addition phase, just like in Table 2. Combining those three formulae
yields a (12, 12, 12) square matrix algorithm via the (12, 12, 12) = (4·3, 6·2, 6·2),
then (4, 6, 6) = (2 · 2, 2 · 3, 3 · 2) and (2, 2, 3) variants. This algorithm has an
log12(1000) ≈ 2.780 exponent (smaller than Strassen’s log2(7) ≈ 2.807).

We represent in Figure 1 the dependency graph for Bini’s (3, 2, 2) algorithm.
In this figure, we show scalar division by ε with dotted lines while we draw
dashed lines for scalar multiplication by ε. We notice that similarly to Bo-
drato’s algorithm for the Strassen multiplication ([Bod10]), Bini’s algorithm has
symmetries. These symmetries can be used in the scheduling of the algorithm,
taking for instance advantage of independent pre-additions for parallelization,
or for possibly saving operations for the squaring in the (12, 12, 12) algorithm.

1This table corrects some typos in the matrix w
(s)
r (ε) in [Bin80, eq. (5.2)] (namely signs

in Z4, Z7 and Z9).
2We have actually permuted the indices r = 0, . . . , 9 in Zr for the products Pr.
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Table 1: Bini’s approximate (3, 2, 2) formula.

X0 =

[

1 0
0 1
0 0

]

Y0 =
[

ε 0
0 1

]

Z0 =

[

1/ε 0
0 1
0 0

]

X1 =

[

0 0
0 1
0 0

]

Y1 =
[

0 0
−1 −1

]

Z1 =

[

1/ε 0
0 0
0 0

]

X2 =

[

1 0
0 0
0 0

]

Y2 =
[

0 0
0 1

]

Z2 =

[

−1/ε −1/ε
0 0
0 0

]

X3 =

[

0 ε
0 1
0 0

]

Y3 =
[

−ε 0
1 0

]

Z3 =

[

1/ε 0
1 0
0 0

]

X4 =

[

1 ε
0 0
0 0

]

Y4 =
[

0 ε
0 1

]

Z4 =

[

0 1/ε
0 −1
0 0

]

X5 =

[

0 0
1 0
0 1

]

Y5 =
[

1 0
0 ε

]

Z5 =

[

0 0
1 0
0 1/ε

]

X6 =

[

0 0
1 0
0 0

]

Y6 =
[

−1 −1
0 0

]

Z6 =

[

0 0
0 0
0 1/ε

]

X7 =

[

0 0
0 0
0 1

]

Y7 =
[

1 0
0 0

]

Z7 =

[

0 0
0 0
−1/ε −1/ε

]

X8 =

[

0 0
1 0
ε 0

]

Y8 =
[

0 1
0 −ε

]

Z8 =

[

0 0
0 1
0 1/ε

]

X9 =

[

0 0
0 0
ε 1

]

Y9 =
[

1 0
ε 0

]

Z9 =

[

0 0
−1 0
1/ε 0

]

Figure 1: Bini’s algorithm dependencies
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Table 2: Bini’s algorithm

S1 ← A11 +A22 T1 ← B22 + ε ·B11

T2 ← B21 +B22

S3 ← A32 + ε ·A31 T3 ← B11 + ε ·B21

S4 ← A22 + ε ·A12 T4 ← B21 − ε ·B11

S5 ← A11 + ε ·A12 T5 ← B22 + ε ·B12

S6 ← A21 +A32 T6 ← B11 + ε ·B22

T7 ← B11 +B12

S9 ← A21 + ε ·A31 T9 ← B12 − ε ·B22

B

P0 ← A11 ×B22 P1 ← S1 × T1

P2 ← A22 × T2 P3 ← S3 × T3

P4 ← S4 × T4 P5 ← S5 × T5

P6 ← S6 × T6 P7 ← A21 × T7

P8 ← A32 ×B11 P9 ← S9 × T9

B

C11 ← (P1 − P2 + P4 − P0)/ε C12 ← (P5 − P0)/ε

C21 ← P4 − P3 + P6 C22 ← P1 − P5 + P9

C31 ← (P3 − P8)/ε C32 ← (P6 − P7 + P9 − P8)/ε

2.2 Complexity.

We give an idea of the number of operations in Strassen–Winograd’s and Bini’s
algorithm for one level of recursion only. On the one hand, we have W (m, k, n) =
7W (m/2, k/2, n/2) + 4m/2k/2 + 4k/2n/2 + 7m/2n/2, that is 7 multiplications, 4 pre-
additions on each side, and 7 post-additions, see [Win71] and [BDPZ09, Alg.
1]). On the other hand, one has B(m, k, n) = 10W (m/3, k/2, n/2) + 10m/3k/2 +
14k/2n/2 + 16m/3n/2, that is 10 multiplications, 10 additions or scalings on the
left side, 14 additions or scalings on the right, and 16 final additions or scalings
by ε.

We write the relative change B(6m,6k,6n)−W (6m,6k,6n)
W (6m,6k,6n) ≈ − 1

21 . For 6m =

6k = 6n = 3000, and one level of recursion, one would get ≈ −4.6%. We will
not consider two levels of recursions of Bini’s algorithm, for reasons that will
appear later, so the second level will be a call to Strassen–Winograd’s algorithm.
In that case, the relative change will be ≈ −4.5%.

3 Application to exact matrix multiplication

We first recall the transformation in [Bin80] from an approximate formula
(Equation (1)) to and exact algorithm C = A × B: it consists in finding a
special set of d + 1 scalars αi, where d = degε (εD (ε)), and d + 1 pair-wise
distinct scalars εi. Then it is possible (invertible Vandermonde matrix in εji ) to

make sure that
∑d+1

i=1 αi = 1 and for j = 1, . . . , d that
∑d+1

i=1 αiε
j
i = 0. Then
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∑d+1
i=1 αiCεi breaks into

∑d+1
i=1 αiA×B+

∑d+1
i=1 αiεiD(εi). The first part reduces

to A×B, while the second one gives 0 (after switching the summation operand

between
∑d+1

i=1 and εiD(εi) =
∑d

j=1 djε
j
i ).

It is not practicable, at least for the size of matrices we consider, to per-
form three ε−approximate multiplication while competing against Strassen–
Winograd’s algorithm implementation, as exemplified in our experiments of Ta-
ble 6: we get only 5-10% speed-up for one call to the approximate algorithm
compared to one call of Strassen–Winograd’s. However, we apply a different
method requiring only one call to the approximate multiplication, for the spe-
cial case where the field is Z/pZ.

We have used this approximate algorithm in the following two cases, both
for a storage on double floating point machine words. First, we consider the
case ε = 2−27 (Section 3.1), where the idea is to store two exact integers in
one double as x+ εy. Then any term in ε2 will be neglected, as ε2 approaches
the machine precision, and a final rounding will remove the ε−approximations.
Then in Section 3.2, we take ε = p within the numerical routines and the
p−approximations are removed by a final reduction modulo p.

3.1 Case ε = 2−27.

We recover the correct result by rounding to the nearest integer, but we need to
make sure that the error is not too large and that no exact digit is lost during
the approximate computations. We consider one level of recursion.

We need to loose no digit in the computation of the exact part C. In the
upper and lower band of of matrix C (i.e. submatrices C1* and C3*) in Table 2,
we need that the ε part of the Pi’s product is correct. In the central band, we
need the integral part to be correct. More precisely, we need to make sure that:

• No digit is lost in the ε part of the computation of P3 = (A32 + ε ·A31)×
(B11 + ε ·B21) (from examination of all the products one can see that P3

is the worst case);

• No digit is lost during the post addition phase

• The residual errors vanish when rounded to the nearest.

We represent elements modulo p in the standard representation {0, . . . , p− 1}.
Let M = ⌊k/2⌋(p − 1)2 be the largest element that can occur in a product of
Aij by Bkl. This is a dot product between ⌊k/2⌋−long rows and columns of a
submatrix of A and B whose entries are bounded by p−1, in the case where k is
not even, we would take the floor of k/2 and apply pealing techniques. We then
consider the number λ = M + 2Mε + Mε2 that is the largest possible entry,
occurring for instance in P3, the number λ0 = M+2Mε which is of interest and
the error λ1 = Mε2. If M fills 27 bits, then λ0 will use all the bits in its double
representation. Indeed, for M = 227 − 1, one has λ0 = 227

(

1 + 2−27 − 2−53
)

,
which fills all the bits in the mantissa of a double). Then, λ1 cannot change any
bit (the exponent in λ0 is 27 so 2−54 is below precision). For any smaller value
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of M , the error term λ1 will of course not affect λ0. Now, all the digits in P3

that need to be correct are correct, and so is the middle band of C. The same
reasoning applies for the other entries. We now require that ⌊k/2⌋(p − 1)2 =
M < 227.

Now, we consider the approximation error. For one recursion level, the
components of the error polynomial is either of the form D1,1(ε) = −A12×B11,
or the form D2,1(ε) = −εA12 × B11 − εA31 × B21 + A12 × B21 + A21 × B22 −
A22 ×B11 −A31 ×B11 −A32 ×B21 +A32 ×B22.

In fact, the term in ε2 disappears as explained previously. We examine
carefully the coefficient of degree ε in the εD2,1 expression: the terms A12, A21

and B22 are only involved additively and the term B11 only appears with a −.
If we want to bound by above, we may assume the first ones are p− 1 and the
second one is 0. There remains −A32B21 +(A32 +B21)(p− 1)+ ε(p− 1)2. This
expression is maximum when A32 = B21 = (p − 1)/2. So the polynomial D(ε),
for ε > 0, is bounded: D(ε) 6

7
4⌊

k/2⌋(p − 1)2. The same arguments give a
similar bound from below: D(ε) > −3⌊k/2⌋(p− 1)2 For our rounding purposes,
we require that ‖εD(ε)‖∞ < 1

2 , so we require ⌊k/2⌋(p− 1)2 = M < 1
6ε = 1

62
27.

We have thus proved the following:

Proposition 1. For ε = 2−27 and an (m, k, n) matrix multiplication over a

ring Z/pZ, the rounding to the nearest integer of the output Cε in Equation (1)
of one call to Bini’s (3, 2, 2)−approximate algorithm with double floating point

arithmetic, gives the exact result C, provided that:

2⌊k/2⌋(p− 1)2 <
1

3
227.

Remark 2. These bounds are tight. Indeed, the proof gives explicit matrices
A and B, for instance A⊤ =

(

∗ ∗ p−1
0 p−1 p−1

)

and B =
(

p−1 ∗

p−1 0

)

, or in the balanced

representation, if we denote pm = p−1
2 , A⊤ =

(

∗ pm pm

−pm pm pm

)

and B =
( pm ∗

pm −pm

)

.

Remark 3. If we use a balanced representation (i.e. where an element modulo
an odd p is represented between 1−p

2 and p−1
2 ), we can prove that the bound is

reduced to ‖D(ε)‖∞ 6
3
2⌊

k/2⌋(p− 1)2, thus gaining in Proposition 1:

⌊k/2⌋(p− 1)2 <
1

3
227.

3.2 Case ε = p.

We consider again one level of recursion. The elements Si for all i and Ti for
i 6= 4, 9 are > 0 and 6 2(p − 1) or 6 (p − 1) + ε(p − 1) = (p − 1)(p + 1).
Elements T4 and T9 are > −p(p− 1) and 6 p− 1. A careful examination of the
coefficients in C, before any division by ε, shows that the elements are bounded
by ±⌊k/2⌋(p− 1)2(p+ 1)2.

Finally, our algorithm clearly computes an exact multiplication Cε = A×B
since the remainder is pD(p) ≡ 0 (mod p). We have then proved:

6



Proposition 4. For ε = p and an (m, k, n) matrix multiplication over a ring

Z/pZ, the reduction modulo p of the output Cε in Equation (1) of one call to

Bini’s (3, 2, 2)−approximate algorithm with double floating point arithmetic,

gives the exact result C, provided that:

⌊k/2⌋(p− 1)2(p+ 1)2 < 253.

Remark 5. With a balanced representation and an odd prime, a careful exami-
nation of the bounds then gives:

1/2⌊k/2⌋(p− 1)2p(p+ 1) < 253.

4 Memory usage and scheduling

In this section, we provide schedules for Bini’s approximate multiplication, in a
similar fashion to [BDPZ09]. These schedules are then implemented. We try to
require as little extra memory (temporaries) as possible.

4.1 Scheduling for the (3, 2, 2) multiplication.

We created the next schedule with only two temporaries (Table 3). In that table,
we write e for the parameter ε. A star (*) represents a matrix multiplication
while a dot (.) represents a scalar multiplication. The first column represents
the operation number, the third column the algorithmic variable (cf. Table 2).

The extra memory used by X is m/3 × k/2 and the extra memory occupied
by Y is k/2× n/2 except for the last but one (step 34) where actually m/3× n/2
is needed instead. But, at step 34, X is also usable so A32B11 can be stored in
a combination of X and Y if k/2× (m/3 + n/2) > m/3× n/2. We have proven:

Lemma 1. The extra memory used for one level of recursion in Table 3 is

max (m/3× n/2, (m/3 + n/2)× k/2).

This requirement is smaller than Strassen–Winograd’s (cf. [BDPZ09]) where
X is of size m/2 × max (k/2, n/2) and Y has size k/2 × n/2. For instance, for
m = n = k, we have 5

12m
2 for Bini’s and 1

2m
2 for Strassen–Winograd’s.

Lemma 2. Two temporaries are a minimum in Table 3.

algorithm (see [BDPZ09, HLJJ+96]). This can also be proven “by hand”,
considering a finished pebble game on Figure 1 and trying to use only one extra
pebble only for the previous moves until no ‘previous’ move is possible.

Remark 6. There is a priori no clear reason whether we should put more effort
into reducing the number of operations, the number of allocations or a balance
between the two. For instance, in the (2, 3, 2) algorithm, elements A12 and A22,
are only involved with a product with ε, and three times each; the same happens
for B. One could save operations by creating a temporary eA12 := e . A12

and reuse it three times. Our implementations show that recomputing does not
affect negatively the timings.
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Table 3: Schedule for Bini’s algorithm using only two temporaries

# operation var # operation var

1 C11 := A11 * B22 P0 19 Y := B12 - e . B22 T9

2 X := A11 + e . A12 S5 20 C32 := X * Y P9

3 Y := e . B12 + B22 T5 21 C22 := C22 + C32 C22

4 C22 := X * Y P5 22 X := A21 + A32 S6

5 C12 := (C22 - C11)/e C12 23 Y := B11 + e . B22 T6

6 Y := B21 + B22 T2 24 C31 := X * Y P6

7 C31 := A22 * Y P2 25 C21 := C21 + C31 C21

8 C11 := C11 + C31 C11 26 C32 := C32 + C31 C32

9 X := A11 + A22 S1 27 Y := B11 + B12 T7

10 Y := e . B11 + B22 T1 28 C31 := A21 * Y P7

11 C21 := X * Y P1 29 C32 := C32 - C31 C32

12 C22 := C21 - C22 C22 30 X := e . A31 + A32 S3

13 C11 := C21 - C11 C11 31 Y := B11 + e . B21 T3

14 X := e . A12 + A22 S4 32 C31 := X * Y P3

15 Y := B21 - e . B11 T4 33 C21 := C21 - C31 C21

16 C21 := X * Y P4 34 Y := A32 * B11 P8

17 C11 := (C21 + C11)/e C11 35 C31 := (C31 - Y)/e C31

18 X := A21 + e . A31 S9 36 C32 := (C32 - Y)/e C32

4.2 Schedules for other shapes and other properties

We have implemented schedules for the (2, 2, 3) shape (essentially the same as
Table 3 up to exchanging Aij with Bji, and Cij with Cji) and for the (2, 3, 2)
shape. In the later case, we created 4 temporaries in our implementation.

Just as in [BDPZ09], we can allow the overwriting of (part of) A and/or
B. The following Table 4 shows how to perform the multiplication with no
extra memory, overwriting a third of matrix A (namely A11 and A12). A similar
in-place schedule overwriting B could be written up. The schedule in Table 4
has strong requirements on the sizes of the inputs, for instance, the size of a
submatrix of C needs to be equal to one of A (operation # 2 and # 34), larger
than one of B (# 3), and the size of a submatrix of A needs to be larger that
that of one of B (# 14). In order to relax these requirements, one can write an
in-place schedule that overwrites parts of A and B. This phenomenon is common
with [BDPZ09].

Finally, we could also imagine schedules for the product with accumulation
C ← αA×B+βC that require less memory than the naive approach, and may
save operations.

8



Table 4: Schedule for Bini’s algorithm, inplace, overwriting a third of A.

# operation var

1 C11 := A11 * B22 P0

2 C21 := A11 + e . A12 S5

3 C32 := e . B12 + B22 T5

4 C22 := X * Y P5

5 C12 := (C22 - C11)/e C12

6 C21 := B21 + B22 T2

7 C31 := A22 * Y P2

8 C11 := C11 + C31 C11

9 A11 := A11 + A22 S1

10 C32 := e . B11 + B22 T1

11 C21 := X * Y P1

12 C22 := C21 - C22 C22

13 C11 := C21 - C11 C11

14 A12 := e . A12 + A22 S4

15 C32 := B21 - e . B11 T4

16-36
Same as Table 3, replacing X:=

with A11:= and Y:= with A12:=.

5 Implementation

We implemented in the FFLAS–FFPACK3 (cf. [DGP08, BDPZ09]) library the
algorithm corresponding to the schedule in Table 3. Only one level of recursion
is performed, which means that the matrix multiplication within the algorithm
are calls to the implementation of Strassen–Winograd’s algorithm, that is the
fgemm routine of FFLAS.

5.1 Achievable size of p.

First of all, according to Propositions 1 and 4, we can take moduli as large as
those reported in the Table 5:

Table 5: Largest moduli for delayed reduction in Bini’s algorithm

ε = 2−27 ε = p

size Modular Balanced Modular Balanced

1 000 212 599 2 060 2 450

2 000 150 424 1 732 2 060

3 000 123 346 1 565 1 861

4 000 106 300 1 456 1 732

3See http://linalg.org/projects/fflas-ffpack/.
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Then, we want to compare against the implementation of Winograd’s algo-
rithm in the FFLAS–FFPACK library. Our implementation uses the double type
only, but we need to compete against the float and double implementation of
Winograd’s algorithm in FFLAS. Indeed, when changed form double to float,
our bounds in Propositions 1 and 4 would employ 212 instead of 227 and (resp.)
224 instead of 253, but the bounds linking k and p would be too restrictive.
Hence the implementation on double type only. However, the library FFLAS

provides a very efficient matrix multiplication implementation over Z/pZ for
small p taking advantage of a float representation, since BLAS sgemm routine
is close to twice faster than dgemm. Therefore, we compare to both the float

and double implementations of FFLAS.
One can find precise bounds linking the prime p, dimension k, the number of

recursive calls l, the floating point representation, and the field representation
in [DGP08]. For instance, with k = 3000 and one level of recursion on a float

type, one can perform no intermediate modular reduction for p < 39 (full delayed
reduction), which is rather small. When p is larger and modular reductions
cannot be delayed, FFLAS on float then uses smaller, more numerous, BLAS
blocks and performs more reductions. This can still prove to be faster than
FFLAS on double, because we get the benefit from faster BLAS on float type.
So there is a trade-off between more reductions and smaller blocking with faster
BLAS on float and fewer reductions and larger blocking with slower BLAS of
double.

5.2 Timings.

The timings presented in Table 6 were performed on a x86_64 Gentoo Linux lap-
top with a 2,3GHz Intel® Core™ i7 and 6Gb of RAM, using atlas-3.10.1 BLAS,
averaging on four runs (in seconds). The compilation was done with g++-4.8.2

enabling -Ofast and AVX extensions (support introduced in the latest SVN-
1.8.0 version of FFLAS–FFPACK). The first column represents the (m, k, n) di-
mensions of matrices, in thousands; or simply (n) when all dimensions are equal.
The entries are created randomly in the ring Z/pZ. The second column is the
modulo used for the multiplication (not necessarily prime). The third and fourth
column contain our matrix multiplication algorithm from Section 3.1 and (resp.)
Section 3.2. The symbol † signifies that the (2, 3, 2) variant was benchmarked.
Then, the following two columns are the reference implementation of Winograd
algorithm in FFLAS, using the double and float types. Finally, the relative
change (in percent) is computed as the ratio (tb − tw)/tw · 100 where tb is this
paper implementation’s timings and tw if the best of FFLAS reference imple-
mentations. The self optimised FFLAS threshold for double was 1 000, while
it was 1 640 for float. This threshold essentially determines when Strassen–
Winograd’s algorithm takes advantage over the naïve (BLAS) algorithm on a
given representation (float or double). We did exactly one recursive level for
Bini’s algorithm (hence no threshold there). The symbol “n/a” (not available)
corresponds entries in the table that cannot be filled, i.e. the corresponding
algorithm could not be implemented because the modulo p is too large. The
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columns titled ‘M’ correspond to a standard modular representation of a field,
while ‘MB’ refers to a balanced representation. The boldface for timings em-
phasizes the best time for a modular (M) and balanced (MB) representation
among all tested algorithms for a given row.

Table 6: Timings (s) of Bini’s algorithm vs. Winograd’s (fgemm) on Z/pZ
using Modular and ModularBalanced representation.

dimensions
(×1 000)

p

Sec. 3.1
ε = 2−27

Sec. 3.2
ε = p

FFLAS

double

FFLAS

float

rel. change
(%)

M MB M MB M MB M MB M MB

(1.5) 141 0.31 0.31 0.31 0.31 0.32 0.32 0.25 0.25 +21.4 +22.2
(1.5) 451 n/a 0.31 0.31 0.31 0.32 0.32 0.32 0.32 −2.99 −3.28

(1.5) 1 001 n/a n/a 0.31 0.31 0.32 0.32 0.41 0.43 −2.95 −2.92
(1.5) 1 501 n/a n/a 0.31 0.31 0.32 0.32 1.50 1.52 −2.76 −2.98
(2.1) 1 001 n/a n/a 0.81 0.82 0.85 0.85 1.07 1.10 −5.64 −4.60
(2.1) 1 501 n/a n/a 0.80 0.82 0.86 0.86 4.33 4.37 −5.77 −4.62
(2.7) 1 001 n/a n/a 1.70 1.72 2.03 2.02 2.42 2.43 −16.3 −15.0
(2.7) 1 501 n/a n/a 1.71 1.71 2.03 2.03 9.25 9.25 −15.9 −16.0
(3.3) 1 001 n/a n/a 3.08 3.08 3.47 3.47 4.48 4.47 −11.1 −11.0
(3.3) 1 501 n/a n/a 3.09 3.09 3.46 3.45 17.0 16.8 −10.7 −10.6
(3.9) 1 001 n/a n/a 4.94 4.97 5.39 5.54 6.89 6.96 −8.34 −10.5
(3.9) 1 501 n/a n/a n/a 4.94 5.39 5.51 27.8 28.1 n/a −10.4

(3.0, 2.7, 2.7) 1 001 n/a n/a 1.88 1.89 2.00 2.00 2.75 2.71 −6.02 −5.62
(2.7, 3.0, 2.7) 1 001 n/a n/a 1.83 1.85 2.16 2.16 2.69 2.73 −15.4 −14.7
(2.7, 2.7, 3.0) 1 001 n/a n/a 1.86†

1.87† 2.26 2.25 2.73 2.76 −17.4 −16.9
(3.6, 2.7, 2.7) 1 001 n/a n/a 2.26 2.28 2.39 2.38 3.18 3.15 −5.34 −4.43
(2.7, 3.6, 2.7) 1 001 n/a n/a 2.20 2.20 2.55 2.55 3.16 3.18 −14.0 −13.6
(2.7, 2.7, 3.6) 1 001 n/a n/a 2.23†

2.22† 2.65 2.65 3.15 3.14 −16.0 −16.2
(4.2, 2.7, 2.7) 1 001 n/a n/a 2.62 2.63 2.76 2.76 3.68 3.64 −5.11 −4.65
(2.7, 4.2, 2.7) 1 001 n/a n/a 2.54 2.59 2.98 2.98 3.79 3.68 −14.4 −13.6
(2.7, 2.7, 4.2) 1 001 n/a n/a 2.58†

2.59† 3.08 3.09 3.71 3.70 −16.1 −16.1
(2.7, 3.0, 3.0) 1 001 n/a n/a 2.04 2.05 2.39 2.39 2.97 3.01 −14.5 −14.2
(3.0, 2.7, 3.0) 1 001 n/a n/a 2.04†

2.06† 2.17 2.17 2.98 3.01 −5.72 −5.03
(3.0, 3.0, 2.7) 1 001 n/a n/a 2.04 2.05 2.09 2.09 2.95 2.99 −2.43 −2.31
(2.7, 3.6, 3.6) 1 001 n/a n/a 2.44 2.44 2.80 2.81 3.55 3.56 −12.8 −13.1
(3.0, 2.7, 3.6) 1 001 n/a n/a 2.46†

2.44† 2.60 2.60 3.52 3.48 −5.13 −5.89
(3.6, 3.6, 2.7) 1 001 n/a n/a 2.42 2.44 2.50 2.50 3.47 3.47 −2.79 −2.16

6 Discussion

The timings show that our implementation is competitive with Winograd’s al-
gorithm implementation, usually providing an ≈ 5% speed-up, and it is always
faster than FFLAS using a double representation. As expected, for small primes,
the float representation performs better, but this phenomenon is only relevant
for small moduli (≈ 400 and less). A general fast efficient implementation of
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matrix multiplication needs to consider a threshold (via automatic benchmark-
ing, cf. [BDG+14]) below which switch to float representation is preferable (if
memory allows). This is not done yet in FFLAS. The balanced representation
allows to gain an ≈ 10% speed-up on size 3 900 where the standard representa-
tion could not be used. The best speed-up of ≈ 15% around sizes 2 700 to 3300
could be explained by optimal size BLAS block calls.

The ability to adapt to the sizes for the recursion (one may choose to di-
vide m or n or k by 3 instead of 2) makes it possible to always perform
better than fgemm; that would not be the case had we not implemented the
(2, 3, 2) shape. We notice that timings are almost identical for a constant
product mnk, which is not the case for fgemm. Therefore, our “triple cas-
cading” (Bini+Winograd+BLAS) improves on the standard cascading (Wino-
grad+BLAS) in a generic fashion: we automatically get better speed-up by
pluging in a new algorithm that performs better on some domain of its param-
eters, and that can plug-in (recursively) the best available routines.

We may also gain speed-ups for larger k and p than those described in Table 5
by first doing a few recursive levels of Winograd’s algorithm and finishing by the
algorithm discussed in this paper, when the dimension k becomes small enough
in a recursive step. This would be a (Winograd+Bini+(Winograd+BLAS))
cascade.
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