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Abstract. This article deals with the thermal convection in a dielectric liquid confined in an infinite-length
capacitor with a temperature gradient under microgravity conditions. The dielectrophoretic force resulting
from differential polarization of the liquid plays the role of buoyancy force with an effective electric gravity.
It induces the convection when the Rayleigh number based on this electric gravity exceeds a critical value.
Two-dimensional numerical simulation for a geometry with a large aspect ratio is used to determine the
developed convective flow. The Nusselt number is computed for different values of Prandtl number and its
dependence on the distance from the critical condition is determined. The viscous and thermal dissipations
are found to be identical to those in the Rayleigh-Bénard convection which yields the same heat transfer.

PACS. 44.24.+f Natural convection – 47.65.-d Magnetohydrodynamics and electrohydrodynamics

1 Introduction

Rayleigh-Bénard convection in a fluid layer confined be-
tween two horizontal plates with a vertical temperature
gradient along the gravitational acceleration g has be-
come the prototype of modern nonlinear physics [1–3].
Similar thermal convections can be induced by using ex-
ternal fields and specific properties of fluids even under
microgravity. A magnetic field applied to ferrofluids [4]
or an electric field applied to dielectric fluids [5] allow to
generate a ponderomotive force which can be regarded as
thermal buoyancy in an artificial gravity. In the present
work, we are interested in the thermal convection induced
by an electric field and a temperature gradient applied
to dielectric fluids. The latter convection is often referred
to as thermo-electro-hydrodynamic (TEHD) convection.
It has been the subject of many investigations since few
decades, particularly for the case of dielectric fluids con-
fined between two horizontal parallel plane electrodes [6–
10]. The driving force of the convection arises from the
dielectrophoretic (DEP) force density FDEP = − 1

2
E2

∇ǫ,
where E is the magnitude of the electric field E and ǫ
is the electric permittivity of the fluid. The DEP force is
a consequence of differential polarization of the fluid. It
is a component of the electrohydrodynamic force [11,12]
and dominates over the other components when the ap-
plied electric field is alternating with a high frequency f
and when the fluid is incompressible and has no mobile
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boundaries [10]. Under a temperature gradient, the DEP
force can be generated through the thermal variation of ǫ:

FDEP = −1

2
E2

∇ǫ (T ) = −αρθge +∇

(

eθE2

2

)

, (1)

where θ is the deviation from the reference temperature T0:
θ = T − T0. The introduced electric gravity ge is propor-
tional to the gradient of the electric energy stored in the
fluid:

ge =
e

ρα
∇

(

ǫ1E
2

2

)

. (2)

In eq. (1), the thermal variation of the permittivity has
been modeled by a linear relationship ǫ = ǫ1(1− eθ) with
the reference permittivity ǫ1 at T = T0. The coefficient e
is positive and of the order of 10−3–10−2 K−1 for most di-
electric fluids. The first term in eq. (1) is the analogue of
the Archimedian buoyancy so that a thermal convection
will be induced when the Rayleigh number based on the
electric gravity ge exceeds a certain critical value. The sec-
ond term in eq. (1) can be lumped with the hydrodynamic
pressure term in the momentum equation.

The DEP force can induce convection even in a sta-
ble thermal stratification against the Earth’s gravity g,
i.e., the configuration where the temperature gradient is
directed opposite to g, as shown in the linear stability the-
ories [6–8]. The nonlinear behavior of the convection just
above the critical state has been discussed by Stiles [8] and
Yoshikawa et al. [10] by using a weakly nonlinear analysis
and DNS, respectively.

Yoshikawa et al. [10] highlighted the role of the per-
turbation component of the electric gravity. In the unper-
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turbed state (fig. 1a), the thermoelectric buoyancy exerted
on a fluid parcel is completely balanced by the pressure. A
small perturbation δθ of the temperature of the parcel re-
sults in the buoyancy −αρδθḡeV, where ḡe is the electric
gravity in the unperturbed state and V is the volume of the
parcel. It can be directed to the lower temperature zone
to destabilize the base state. The temperature perturba-
tion also results in a perturbation electric field δE through
the thermal variation of ǫ, which is given by δE ∼ eδθĒ,
according to Gauss’s law of electricity. The gradient of
the electric energy is varied due to δE by −ǫ1ĒδE/D
and ǫ1ĒδE/D at the upper and lower part of the parcel,
where D is the diameter of the parcel: V = πD3/6. The
thermoelectric buoyancy due to δE can then be estimated
as −e

(

θ̄ + ∂z θ̄ D/2
) (

−ǫ1ĒδE/D
)

V/2 for the upper half

of the parcel and as −e
(

θ̄ − ∂z θ̄ D/2
) (

ǫ1ĒδE/D
)

V/2 for
the lower half of the parcel. In the total, the force due to
the electric field perturbation is

eǫ1ĒδE
∂θ̄

∂z

V
2
= e2ǫ1Ē

2δθ
∂θ̄

∂z

V
2

(3)

The parcel is, in other words, subjected to a gravity g′e =
−e2ǫ1(∂z θ̄)Ē

2/αρ. This perturbation gravity is directed
opposite to the temperature gradient so that it has a sta-
bilizing effect. This was confirmed in the linear stability
theory and the analysis of the DNS results [10,13].

The present study is the continuation of the latter work
and aims to develop, using DNS, the nonlinear properties
of the TEHD convection in a two dimensional capacitor
with an alternating electric tension and a temperature
gradient. The paper is organized as follows: in the next
section, we present the flow equations and the numerical
solution procedure. The results are given and discussed
in sect. 3. The last section is concerned with the conclu-
sion.

2 Flow equations

We consider a dielectric fluid confined in a capacitor with
a temperature gradient and an alternating voltage V (t) =√
2V0 sin(2πft) imposed over the gap between the elec-

trodes. (fig. 2). Characteristic scales can be used to in-
troduce non-dimensional control parameters: the viscous
relaxation time τν for the time, the gap d between the
electrodes for the length and ∆θ for the temperature. The

Fig. 1. Electric field perturbation induced by a small temper-
ature perturbation δθ of a parcel of dielectric fluid.
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Fig. 2. Geometrical configuration of the problem

velocity is scaled by the diffusion velocity ν/d. The result-
ing control parameters are the Prandtl number Pr = ν/κ,
the electric Rayleigh number L = α∆θge,0d

3/κν, the ther-
moelectric parameter B = e∆θ. The electric gravity at the
middle of the gap, ge,0, has been chosen as characteristic
electric gravity. It is given by ge,0 = eǫ1V

2
0 B

3/ραd3[log{(1−
B/2)/(1+B/2)}]2. Table 1 shows some values of ge,0 eval-
uated for different dielectric liquids.

In the electrohydrodynamic Boussinesq approximation,
the equations for TEHD convection read:

∇ · u = 0, (4)

∂u

∂t
+ u ·∇u = −∇H +∇2u− L

Pr
θge, (5)

∂θ

∂t
+ u ·∇θ =

1

Pr
∇2θ, (6)

∇ · [(1−Bθ)∇φ] = 0. (7)

where H is the dimensionless Bernoulli function. In the
heat conduction equation (6), the viscous dissipation and
Joule heating have been neglected, following the argu-
ments developed by Yavorskaya et al. [14]. These equa-
tions must be solved together with boundary conditions
at the electrodes (x = ±1/2) and at the adiabatic walls
(z = ±Γ/2):

u = 0, θ = − 1

2
, φ = 1 at x = − 1

2
, (8)

u = 0, θ = 1

2
, φ = 0 at x = 1

2
, (9)

u = 0, ∂zθ = 0, ∂zφ = 0 at z = ±Γ
2
. (10)

When the electric Rayleigh number L is smaller than a
critical value, the homogeneous stationary state (u, θ, φ) =
(0, θ̄(x), φ̄(x)) is established, where

θ̄ = −x, φ̄ = log
(

1+Bx
1+B/2

)/

log
(

1−B/2
1+B/2

)

. (11)
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Table 1. Electric gravity in some dielectric liquids in a capacitor with d = 10 mm under an electric voltage V0 = 10 kV and a
temperature difference 1 K. The working temperature is 25 ◦C.

Liquid ρ (103 kg/m3) α (10−3 K−1) Dielectric constant e (K−1) ge,0 (m2/s)

Acetonitrile 0.777 1.38 36 0.155 14.7
Nitrobenzene 1.198 0.830 34.9 0.188 32.2

Acetone 0.785 1.43 19.1 0.086 0.756
Chlorobenzene 1.101 0.985 5.61 0.0157 0.0003

Fig. 3. Saturated flow fields and related quantities at the central part of electrodes: (a) velocity vectors u
′ with vorticity

intensity |∇ × u
′|, (b) viscous dissipation function Φ, (c) isotherms θ′ = cst (solid and broken lines indicate positive and

negative θ′, respectively) with thermal dissipation |∇θ|2, (d) convective heat transfer Pr−1L 〈u′θ′〉, (e) equipotentials φ′ = cst
with electric field intensity |E′|, (f) power input by the basic electric gravity wBG, (g) power input by the perturbation electric
gravity wPG and . The basic electric gravity is directed from right to left.

The electric gravity in this base state, ḡe, is given by

ḡe = ḡeex with ḡe = − 1

(1 +Bx)
3
. (12)

In the present work, we consider a two-dimensional
system with a large aspect ratio Γ = 114 for different val-
ues of Pr in order to simulate the nonlinear behavior of
the TEHD convection in an infinite-length capacitor. The
thermoelectric parameter will be set at a small value (B =
0.03). The set of partial differential equations (4)–(7) with
the boundary conditions (8)–(10) are solved by the finite
element method implemented in a commercial software
package (COMSOL Multiphysics 3.5, Comsol AB, Stock-
holm, Sweden). Numerical grids are made of identical rect-
angles with sides of ∆x = 0.1 and ∆z = 0.15 so that the
fluid domain is divided by 10 and 760 along the x and z
directions, respectively. The backward differentiation for-
mula is used for the time integration. The convergence of
computation was verified by grid refinements. The initial
fields are specified as null for the velocities, the temper-

ature, and the electric field: The solved problem corre-
sponds to a situation where the electric potential V0 and
the temperature difference θ are imposed instantaneously
on a steady isothermal fluid layer at t = 0.

3 Results

Velocity, temperature and electric fields have been com-
puted for a given set of parameter values (Pr,B, L). All
the obtained data exhibit a supercritical bifurcation from
the conductive state to a convective regime with a crit-
ical electric Rayleigh number Lc = 2130. As Yoshikawa
et al. [10] have shown, the value of Lc is independent
from Pr and coincides with its value determined by the
linear stability theory. The critical modes are stationary
and independent on Pr.

Hot and cold fluids are, respectively, convected to the
cold and hot plates by the thermal buoyancy due to the
electric gravity and form convection rolls (fig. 3 a,c). Hot
and cold regions are not symmetric with respect to the
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Fig. 4. Perturbation in electrostatic energy ∆UE = (ǫE2 −
ǭĒ2)/2 (Pr = 100, B = 0.03).

center line (x = 0) and yield a net enhancement of heat
transfer by the convection, similar to the Rayleigh-Bénard
convection. Perturbative electric fields are concentrated on
the electrodes, where the store of the electrostatic energy
can be intensified (fig. 3 e). This intensification is actually
found but only by a tiny quantity (fig. 4). This means that
the convection does not require much energy supply to be
stored in the fluid.

In fig. 3, different quantities computed from the fields
are also shown (b,d,f,g). To gain a better insight into the
TEHD convection, we have used the equations of kinetic
energy and temperature variance averaged over the flow
domain:

d

dt

〈

1

2
u′2

〉

= 〈wBG〉+ 〈wPG〉 − 〈Φ〉 , (13)

d

dt

〈

θ′2

2

〉

= 〈u′θ′〉 − 1

Pr

〈

|∇θ′|2
〉

, (14)

where 〈 〉 means the average over the whole fluid domain:
〈 〉 = Γ−1

∫ ∫

dxdz, and the primes indicate perturbation
components. Different terms wBG, wPG and Φ in the en-
ergy equation (13) are the power input by the basic elec-
tric gravity, the power input by the perturbation electric
gravity and the viscous dissipation function, respectively:

wBG = − L

Pr
θ′u′ ·ḡe, wPG = − L

Pr

(

θ̄ + θ′
)

u′ ·g′

e (15)

Φ = 2

(

∂u′

∂x

)2

+

(

∂u′

∂z
+

∂w′

∂x

)2

+ 2

(

∂w′

∂z

)2

. (16)

The power input by the basic electric gravity is concen-
trated at hot and cold cores (fig. 3 f). The power input
by the perturbation electric gravity is positive near the
electrodes, while it takes negative values over large zones
inside the gap (fig. 3 g). The viscous dissipation is primar-
ily due to the shear at the electrodes (fig. 3 b).

In the average over the whole fluid domain, the ba-
sic electric gravity provide energy to the flow, while the
perturbation electric gravity impedes the convection. Fig-
ure 5 shows different terms in eq. (13) as a function of the
normalized distance δ from the critical electric Rayleigh
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Fig. 5. Different energy generation terms computed after the
saturation (Pr = 100, B = 0.03).
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Fig. 6. Relative importance of WPG to Dv computed for sat-
urated convection (B = 0.03).

number: δ = L/Lc − 1. The viscous dissipation balances
with the contributions from the different electric gravity
components. The relative importance of the three contri-
butions is independent of the Prandtl number except for
small Pr (< 1). Furthermore, it converges to the same
value as δ → 0 for all the examined values of Pr (fig. 6):

〈wPG〉 / 〈Φ〉 = −0.24 +O (δ) . (17)

The ratio of 〈wBG〉 to 〈Φ〉 is given by 〈wBG〉 / 〈Φ〉 =
−〈wPG〉 / 〈Φ〉+ 1 = 1.24 +O(δ).

4 Discussions

The heat transfer enhancement is given by the Nusselt
number Nu:

Nu = 1 +
1

Γ

∫ Γ/2

−Γ/2

(−∂xθ
′ + Pru′θ′) dz (18)

which compares the convective to conductive heat trans-
fers.
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Yoshikawa et al. [10] showed that the Nusselt number
in saturated TEHD convection is proportional to the dis-
tance as Nu − 1 = Cδ with the proportionality constant
C = 0.78 for Pr larger than 1. For small Pr, the con-
stant C varies with Pr as it does in the Rayleigh-Bénard
convection (fig. 7). Seeking a similar correlation to that
for the Rayleigh-Bénard convection [15], one can find

Nu− 1 =

(

1.28− 0.0273

Pr
+

0.0077

Pr2

)

−1

δ. (19)

For small Prandtl number, the difference in Nu between
these two convections is small.

In the saturated steady state, one can show that Nu
can be computed by

Nu− 1 = Pr 〈u′θ′〉 . (20)

Making use of eq. (14), one finds that the Nusselt number
is given by the averaged value of the thermal dissipation:
Nu − 1 =

〈

|∇θ′|2
〉

. The latter relationship is also found
in the Rayleigh-Bénard convection. For both convections
yielding the same heat transfer, the thermal dissipations
is identical to each other.

In the limit of small B, the basic electric gravity is
uniform: ḡe = −ex, so that wBG = Pr−1Lθ′u′. Indeed,
wBG and u′θ′ are identical in our simulation for B = 0.03
except the factor Pr−1L (fig. 3 d,f). The heat transfer can
then also be computed by

Nu− 1 =
Pr

L
〈wBG〉 =

Pr

L
(−〈wPG〉+ 〈Φ〉) . (21)

Since the ratio of 〈wPG〉 to 〈Φ〉 is given by eq. (17) in the
vicinity of the criticality, we haveNu−1 = 1.24 PrL−1

c 〈Φ〉 =
Pr 〈Φ〉 /1720. One can also derive the similar relationship
to eq. (21) for the Rayleigh-Bénard convection: Nu− 1 =
PrR−1 〈Φ〉 [16,17]. It reads in the vicinity of the critical-
ity Nu− 1 = Pr 〈Φ〉 /1708. For both convections yielding
the same heat transfer, the viscous dissipations is hence
also be identical to each other.

5 Conclusion

The thermo-electro-hydrodynamic convection in dielectric
fluids represents a simple way of realizing thermal convec-
tion under microgravity conditions. We have highlighted
the effect of the perturbative gravity against the destabi-
lization effect of the basic electric gravity. The heat trans-
fer by the TEHD convection has been quantified for dif-
ferent values of the Prandtl number. This effect becomes
important for large values of the thermoelectric coupling
parameter.
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