
HAL Id: hal-00987808
https://hal.science/hal-00987808v1

Submitted on 6 May 2014 (v1), last revised 7 May 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heat transfer in the thermo-electro-hydrodynamic
convection under microgravity conditions

Mireille Tadie Fogaing, Harunori Yoshikawa, Olivier Crumeyrolle, Innocent
Mutabazi

To cite this version:
Mireille Tadie Fogaing, Harunori Yoshikawa, Olivier Crumeyrolle, Innocent Mutabazi. Heat transfer
in the thermo-electro-hydrodynamic convection under microgravity conditions. European Physical
Journal E: Soft matter and biological physics, 2014, 37, pp.35. �10.1140/epje/i2014-14035-0�. �hal-
00987808v1�

https://hal.science/hal-00987808v1
https://hal.archives-ouvertes.fr


EPJ manuscript No.
(will be inserted by the editor)

Heat transfer in the thermo-electro-hydrodynamic convection
under microgravity conditions

M. Tadie Fogaing1, H.N. Yoshikawa1a, O. Crumeyrolle1, and I. Mutabazi1b

Laboratoire Ondes et Milieux Complexes, UMR 6294 CNRS, Université du Havre
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Abstract. This article deals with the thermal convection in a dielectric fluid confined in a finite-length
capacitor with a temperature gradient under microgravity conditions. The dielectrophoretic force resulting
from differential polarization of the fluid plays the role of buoyancy force associated with an electric effective
gravity. It induces the convection when the Rayleigh number based on this electric gravity exceeds a critical
value. Two-dimensional numerical simulation for a geometry with a large aspect ratio is used to determine
the convective flow in the saturated state. The Nusselt number Nu is computed for a wide range of Prandtl
number (0.01 ≤ Pr ≤ 103) and its dependence on the distance from the critical condition is determined.
A correlation between Nu and Pr in the vicinity of the criticality is obtained and compared with that of
the Rayleigh-Bénard convection. The behavior of the convection is analyzed in detail from an energetic
viewpoint: electrostatic energy, power inputs by different components of the electric gravity and viscous
and thermal dissipations are computed.

PACS. 44.24.+f Natural convection – 47.65.-d Magnetohydrodynamics and electrohydrodynamics

1 Introduction

Rayleigh-Bénard (RB) convection in a fluid layer confined
between two horizontal plates with a vertical temperature
gradient along the gravitational acceleration has become
the prototype of modern nonlinear physics [1–3]. Simi-
lar thermal convections can be induced by external fields
other than the gravity by using specific properties of flu-
ids. A magnetic field applied to ferrofluids [4] or an elec-
tric field applied to dielectric fluids [5] allow to generate
a ponderomotive force which can be regarded as thermal
buoyancy in an artificial gravity. The resulting convection
intensifies the heat transfer, even in the absence of the
Earth’s gravity. Use of these artificial gravity is therefore
of particular interest in applications in microgravity con-
ditions, e.g., in orbital systems, in space factories.

In the present work, we are interested in the thermal
convection induced by an electric field and a temperature
gradient, both applied to a dielectric fluid. This convec-
tion is often referred to as thermo-electro-hydrodynamic
(TEHD) convection [6]. It has been the subject of many in-
vestigations since few decades, particularly for the case of
a dielectric fluid confined between two horizontal parallel
plane electrodes [6–10]. The driving force of the convection
is the dielectrophoretic (DEP) force. Its density is given
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by FDEP = − 1

2
E

2
∇ǫ, where E is the electric field and ǫ

is the electric permittivity of the fluid. The DEP force is
a consequence of differential polarization of the fluid. It
is a component of the electrohydrodynamic (EHD) force
[11,12] and dominates over the other components when
the accumulation of free charges in the fluid is negligible
and when the fluid is incompressible and has no mobile
boundaries [10,13]. The charge accumulation occurs over
a time scale of the charge relaxation time τe = ǫ/σ (σ: the
electric conductivity of the fluid) [13]. When the electric
field is alternating with a frequency high compared with
τ−1
e , the fluid is free from the charge accumulation and
the DEP force is the dominant EHD force component.

Under a temperature gradient, the DEP force is gen-
erated through the thermal variation of ǫ = ǫ(T ):

FDEP = −1

2
E2

∇ǫ (T ) = −αρθge +∇

(

eθǫ1E
2

2

)

, (1)

where ǫ(T ) has been modeled by a linear relationship ǫ(T )
= ǫ1(1−eθ) with the permittivity ǫ1 at a reference temper-
ature T = T0 and the temperature deviation θ = T − T0.
The coefficient e is positive and of the order of 10−3–
10−2 K−1 for most dielectric fluids. The density and the
thermal expansion coefficient of the fluid are denoted by ρ
and α, respectively. In eq. (1), the electric gravity ge has
been introduced, which is proportional to the gradient of
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the electric energy stored in the fluid:

ge =
e

ρα
∇

(

ǫ1E
2

2

)

. (2)

The first term in the right-hand-side of eq. (1) is the
thermoelectric buoyancy associated with ge, which is the
analogue of the Archimedean buoyancy. It can drive con-
vective flow even in a thermal stratification stable against
the Earth’s gravity g, i.e., in the configuration where the
temperature gradient is directed opposite to g [6–8]. The
second term in eq. (1) can be lumped with the hydrody-
namic pressure term in the momentum equation.

One can find a qualitative similarity between the TEHD
convection and the RB convection. Indeed, the TEHD
convection develops, when the thermal buoyancy force
overcomes viscous and thermal diffusion effects [6–8,14],
as in the RB convection. The control parameter is the
Rayleigh number L based on the electric effective grav-
ity ge, as is the Rayleigh number R in the RB convec-
tion. However, the behavior of these convective flows is
different from each other quantitatively. The critical state
of the TEHD convection is characterized by the critical
values of the electric Rayleigh number and wavenumber,
(Lc, kc) = (2128.7, 3.226) [6,8,10,14], while the critical
Rayleigh number and wavenumber of the RB convection
are (Rc, kc) = (1708, 3.117) [15]. Stiles et al. [16] and
Yoshikawa et al. [10] have examined the nonlinear behav-
ior of the TEHD convection in the vicinity of the criti-
cal state by a weakly nonlinear analysis and by a two-
dimensional direct numerical simulation (DNS), respec-
tively. Their results have shown quantitative differences
from the RB convection in saturated states. In partic-
ular, the heat transfer increases with the supercritical-
ity (L−Lc)/Lc more slowly in the TEHD convection than
it does in the RB convection with (R−Rc)/Rc. The origin
of these quantitative differences is attributed to the fact
that, in the TEHD convection, the electric gravity is not
constant but has a perturbative component g′

e resulting
from the perturbation in electric fields. This perturbation
electric gravity stabilizes the conductive state of the fluid
and impedes the convection [10,17].

The scope of the present study is the extension of
our recent work [10] and the development of the non-
linear properties of the TEHD convection in a two di-
mensional capacitor. A detailed analysis is performed on
perturbation fields obtained by DNS from an energetic
viewpoint. We discuss the aspects related to the electro-
static energy stored in the fluid, the viscous and ther-
mal dissipations. Visualizations of the corresponding fields
are also carried out. The heat transfer intensification by
convection is examined over a range of the Prandtl num-
ber (0.01 ≤ Pr ≤ 103) wider than in the previous work
(1 ≤ Pr ≤ 103). A correlation between the Nusselt num-
ber and the Prandtl number is determined and compared
with the correlation for the RB convection.

The paper is organized as follows: in the next section,
we present the flow equations and the numerical solution
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Fig. 1. Geometrical configuration of the problem

procedure. The results of the DNS are given and ana-
lyzed in sect. 3. The heat transfer enhancement is dis-
cussed in sect. 4. The last section is concerned with the
conclusion.

2 Flow equations

We consider a dielectric fluid confined in a capacitor with
a temperature gradient and an alternating voltage V (t) =√
2V0 sin(2πft) imposed over the gap between the elec-

trodes (fig. 1). The frequency f is assumed high enough
to neglect charge accumulation, but low enough for the
electrostatic approximation: τ−1

e ≪ f ≪ ℓ/c, where ℓ is
the size of the capacitor and c is the speed of light. We
also assume that the frequency is high compared to the in-
verse of the viscous relaxation time τν = d2/ν. Then, the
high frequency alternating component of the DEP force is
filtered out by the viscous relaxation and only the static
component of the DEP force should be taken into account
in the flow calculation. The static component is deter-
mined from effective electric field E0, which is associated
with the actual alternating field by

√
2E0 sin(2πft). This

time-averaged description has been used in the theoretical
works on the TEHD convection [7–10,18]. A recent the-
oretical investigation showed that the description is valid
when 2πfτν & 100 [19].

In the EHD Boussinesq approximation [7], the govern-
ing equations are the following continuity, momentum and
heat conduction equations:

∇ ·u = 0, (3)

∂u

∂t
+ u ·∇u = −∇H +∇2u− L

Pr
θge, (4)

∂θ

∂t
+ u ·∇θ =

1

Pr
∇2θ, (5)



M. Tadie Fogaing et al.: Heat transfer in the thermo-electro-hydrodynamic convection under microgravity conditions 3

Table 1. Electric gravity in some dielectric liquids in a capacitor with d = 10 mm under an electric voltage V0 = 1 kV and a
temperature difference 1 K. The working temperature is 25 ◦C.

Liquid ρ (103 kg/m3) α (10−3 K−1) Dielectric constant e (K−1) ge,0 (m/s2)

Acetonitrile 0.777 1.38 36 0.155 7.11
Nitrobenzene 1.198 0.830 34.9 0.188 10.9

Acetone 0.785 1.43 19.1 0.086 1.11
Chlorobenzene 1.101 0.985 5.61 0.0157 0.0113

coupled with Gauss’s law of electricity:

∇ · [(1−Bθ)E0] = 0 with E0 = −∇φ0. (6)

The Bernoulli function H in eq. (4) involves EHD terms
lumped with the hydrodynamic pressure. The viscous dis-
sipation and Joule heating have been neglected in the heat
equation (5), following the arguments developed by Ya-
vorskaya et al. [20]. The electric field variation in time
with sin(2πft) has been factorized out from the electro-
static law (6). The equation hence concerns only the ef-
fective field, which can be computed from the effective
electric potential φ0.

Equations (3)–(6) have been nondimensionalized with
the following scales: the gap d between the electrodes for
the length, the viscous relaxation time τν = d2/ν for the
time, the diffusion velocity ν/d for the velocity, ∆θ for the
temperature, and V0/d for the electric field. The Prandtl
number Pr = ν/κ, the thermoelectric parameterB = e∆θ
have been introduced.

The electric Rayleigh number L in eq. (4) is defined
by L = α∆θge,0d

3/κν, where ge,0 is the time-averaged
electric gravity at the middle of the gap:

ge,0 =
eǫ1V

2
0 B

3

ραd3

[

log

(

1−B/2

1 +B/2

)]

−2

. (7)

Table 1 shows some values of ge,0 evaluated for different
dielectric liquids. The electric gravity in the momentum
equation (4) has been scaled by this reference gravity ge,0
and is given by the dimensionless expression:

ge =
1

2B3

[

log

(

1−B/2

1 +B/2

)]2

∇ |∇φ0|2 . (8)

The boundary conditions at the electrodes (x = ±1/2)
and at the adiabatic walls (z = ±Γ/2) for the governing
equations (3)–(6) read in the time-averaged description:

u = 0, θ = 1

2
, φ0 = 1 at x = − 1

2
, (9)

u = 0, θ = − 1

2
, φ0 = 0 at x = 1

2
, (10)

u = 0, ∂zθ = 0, ∂zφ0 = 0 at z = ±Γ
2
. (11)

When the electric Rayleigh number L is smaller than a
critical value, the homogeneous stationary state (u, θ, φ0) =
(0, θ̄(x), φ̄0(x)) is established, where

θ̄ = −x, φ̄0 = log
(

1+Bx
1+B/2

)/

log
(

1−B/2
1+B/2

)

. (12)

The electric field Ē0 is computed by Ē0 = −(∂φ̄0/∂x)ex,
where ex is the unit vector in the transverse direction (x).
The electric gravity ḡe in this base state is nonuniform
and directed from the cold to hot electrodes, i.e., from
right to left in fig. 1:

ḡe = ḡeex with ḡe = − 1

(1 +Bx)
3
. (13)

In the present work, we consider a two-dimensional
system with a large aspect ratio, Γ = 114, for different val-
ues of Pr to simulate the nonlinear behavior of the TEHD
convection. The thermoelectric parameter will be set at
a small value (B = 0.03). The set of partial differential
equations (3)–(6) with the boundary conditions (9)–(11)
are solved by the finite element method implemented in
a commercial software package (COMSOL Multiphysics
3.5, Comsol AB, Stockholm, Sweden). Numerical grids
are made of identical rectangles with sides of ∆x = 0.1
and ∆z = 0.15 so that the fluid domain is divided by 10
and 760 along the x and z directions, respectively. The
backward differentiation formula is used for the time inte-
gration. The convergence of computation was verified by
grid refinements. The initial fields are specified as null for
the velocities, the temperature, and the electric field: The
solved problem corresponds to a situation where the elec-
tric potential V0 and the temperature difference ∆θ are
imposed at t = 0 instantaneously on a steady isothermal
fluid layer.

3 Results

Velocity u′ (= u′ex+w′ez), temperature θ (= θ̄+ θ′) and
electric field E0 (= Ē0 + E′

0) have been computed for a
given set of parameter values (Pr,B, L). All the obtained
data exhibit a supercritical bifurcation from the conduc-
tive state to a convective regime with a critical electric
Rayleigh number Lc = 2130. As Yoshikawa et al. [10] have
shown, this value is independent of Pr and very close to
Lc determined by the linear stability theory (2128.7). The
critical modes are stationary and independent of Pr.

Hot and cold fluids are, respectively, convected to the
cold and hot electrodes by the thermal buoyancy due to
the electric gravity and form convection rolls (fig. 2a,c).
The temperature perturbation θ′ and the transverse ve-
locity u′ are in phase. Perturbation electric fields E′ are
concentrated on the electrodes (fig. 2e), where the storage
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Fig. 2. Saturated flow fields and related quantities at the central part of electrodes (B = 0.03, P r = 100, L = 2200). The
basic electric gravity ḡe is directed from right to left. (a) Velocity vectors u′ with vorticity intensity |∇ × u′|, (b) viscous
dissipation function Φ, (c) isotherms θ′ = const (solid and broken lines indicate positive and negative θ′, respectively) with
thermal dissipation |∇θ′|2, (d) convective heat transfer 〈u′θ′〉, (e) electric field intensity |E′

0| with the perturbation electric
gravity vectors g′

e, (f) power input by the basic electric gravity wBG, (g) power input by the perturbation electric gravity wPG

with the buoyancy force vectors, −Pr−1L(θ̄ + θ′)g′

e, due to the perturbation electric gravity.

of electrostatic energy might be intensified. This intensifi-
cation is actually found but only by a tiny quantity com-
pared with the electrostatic energy stored in the base state
(fig. 3). This indicates that the convection does not require
much additional energy supply for its development.

The perturbation electric gravity g′

e = g′e,xex + g′e,zez
is calculated from the temperature and electric fields (fig. 2
e). The transverse components of the perturbation gravity
and velocity, g′e,x and u′, are in phase and in antiphase,
respectively, in the left and right halves of the fluid layer.
Their axial (z) components, g′e,z and w′, are in antiphase
and in phase, respectively, in the left and right halves of
the fluid layer.

In order to gain a better insight into the TEHD con-
vection, we have used the equations of kinetic energy and
temperature variance averaged over the flow domain:

d

dt

〈

1

2
u′2

〉

= 〈wBG〉+ 〈wPG〉 − 〈Φ〉 , (14)

d

dt

〈

θ′2

2

〉

= 〈u′θ′〉 − 1

Pr

〈

|∇θ′|2
〉

, (15)

where 〈 〉 means the average over the whole fluid domain:
〈 〉 = Γ−1

∫∫

dxdz. Different terms wBG, wPG and Φ in
the energy equation (14) are the power input by the ba-
sic electric gravity, the power input by the perturbation

electric gravity and the viscous dissipation function, re-
spectively:

wBG = − L

Pr
θ′u′ḡe, wPG = − L

Pr

(

θ̄ + θ′
)

u′·g′

e (16)

Φ = 2

(

∂u′

∂x

)2

+

(

∂u′

∂z
+

∂w′

∂x

)2

+ 2

(

∂w′

∂z

)2

. (17)

In the temperature variance equation (15), the first term
in the RHS represents the convective heat transfer. The
second term is the thermal dissipation.

The power input wBG by the basic electric gravity is
positive everywhere (fig. 2f), as u′ and θ′ are in phase
and ḡe < 0. The power is concentrated at hot and cold
cores. In contrast, the power input wPG by the perturba-
tion electric gravity is null at the middle of the gap (fig. 2
g). It is positive near the electrodes, while it takes negative
values inside the gap. In fact, the transverse component
of the thermoelectric buoyancy −Pr−1L(θ̄+ θ′)g′

e, which
produces wPG, is in antiphase with the transverse velocity
(fig. 2g). This yields negative wPG zones inside the gap. In
contrast, the axial component of the buoyancy is in phase
with the axial velocity, but significant only on the elec-
trodes, where the velocity is weak. This results in weak
positive power input zones on the electrodes. The viscous
dissipation is primarily due to the shear at the electrodes
(fig. 2b).
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The convective heat transfer u′θ′ is positive every-
where, since u′ and θ′ are in phase (fig. 2d). It is con-
centrated in the hot and cold cores. The thermal dissipa-
tion |∇θ′|2 occurs in the bulk as well as at the electrodes
(fig. 2c), where the convective transfer is weak (fig. 2d).

In the average taken over the whole fluid domain, the
basic electric gravity provides energy to the flow, while
the perturbation electric gravity impedes the convection.
Figure 4 shows different terms in eqs. (14) and (15) for
saturated convection as a function of the normalized dis-
tance δ from the criticality: δ = L/Lc − 1. A similar re-
sult was reported in the preceding work [10] for a differ-
ent Prandtl number (Pr = 10), but only for the terms
in the kinetic energy equation (14): the terms 〈u′θ′〉 and
−Pr−1

〈

|∇θ′|2
〉

are given for the first time. The latter two
terms are balanced with each other, since the convection
is in a saturated state.
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The viscous dissipation 〈Φ〉 balances with the contribu-
tions, 〈wBG〉 and 〈wPG〉, from the different electric gravity
components. The ratio of 〈wPG〉 to 〈Φ〉 is independent of
the Prandtl number larger than the unity (fig. 5). When
the distance from the criticality is small, i.e., as δ → 0,
the ratio converges to the same value for all the examined
Pr and can be correlated as:

〈wPG〉 / 〈Φ〉 = −0.24. (18)

The ratio of 〈wBG〉 to 〈Φ〉 is given by 〈wBG〉 / 〈Φ〉 =
−〈wPG〉 / 〈Φ〉+ 1 = 1.24, since 〈wBG〉+ 〈wPG〉 − 〈Φ〉 = 0
in a saturated state from eq. (14). These results will be
used later to derive the correlation between the Nusselt
number and the viscous dissipation.

4 Discussion

The heat transfer enhancement is given by the Nusselt
number Nu:

Nu = 1 +
1

Γ

∫ Γ/2

−Γ/2

(−∂xθ
′ + Pr u′θ′) dz, (19)

which compares the convective to conductive heat trans-
fers.

Yoshikawa et al. [10] showed that the Nusselt num-
ber in saturated TEHD convection is proportional to the
distance to the onset as Nu − 1 = Cδ with the propor-
tionality constant C = 0.78 for Pr larger than the unity.
For small Pr, the constant C varies with Pr (fig. 6), as it
does in the RB convection. Seeking a correlation similar
to that for the RB convection [21], one can find

Nu− 1 =

(

1.28− 0.0273

Pr
+

0.0077

Pr2

)

−1

δ, (20)

for the TEHD convection. For small Prandtl number, the
difference in Nu of these two convections is small (fig. 6).
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In a saturated steady convection, one can show that
the Nusselt number Nu can be computed [22] by

Nu− 1 = Pr 〈u′θ′〉 . (21)

Making use of eq. (15), one finds that Nu− 1 =
〈

|∇θ′|2
〉

,
i.e., the heat transfer enhancement is identical to the ther-
mal dissipation. This feature is common in the TEHD con-
vection and in the RB convection, as long as the Joule
heating can be neglected in the former one. So, the same
thermal dissipation is expected for the same heat transfer
in both types of convection.

We can find another similarity between the two types
of convection from our simulation results. In the limit of
small B, the basic electric gravity (13) is uniform: ḡe =
−ex, so that wBG = Pr−1Lθ′u′. Indeed, wBG and u′θ′

are identical in our simulation for B = 0.03 except the
factor Pr−1L (fig. 2 d,f). The heat transfer (21) can then
be computed by

Nu− 1 =
Pr

L
〈wBG〉 =

Pr

L
(−〈wPG〉+ 〈Φ〉) . (22)

Since the ratio of 〈wPG〉 to 〈Φ〉 is given by eq. (18) in the
vicinity of the criticality, we haveNu−1 = 1.24 PrL−1

c 〈Φ〉
= Pr 〈Φ〉 /1720. One can derive a similar relationship for
the RB convection: Nu − 1 = PrR−1 〈Φ〉 [22,23], which
yields Nu − 1 = Pr 〈Φ〉 /1708 in the vicinity of the criti-
cality. The same heat transfer in both types of convection
in a dielectric fluid is accompanied by the same viscous
dissipation.

These results obtained in the vicinity of the criticality
indicate that, despite of the difference in the convection
mechanism between TEHD and RB flows, the relation-
ships between the heat transfer and the viscous and ther-
mal dissipations are the same in both flows.

5 Conclusion

The thermo-electro-hydrodynamic convection in dielectric
fluids represents a simple way of realizing thermal convec-
tion under microgravity conditions. We have highlighted
the effect of the perturbation gravity against the desta-
bilization induced by the basic electric gravity. The heat
transfer by the TEHD convection has been quantified for
different values of the Prandtl number. The behavior of
the convection has been analyzed in detail from an ener-
getic viewpoint in the vicinity of the criticality and com-
pared with the RB convection to show further similarities
between them: the viscous and thermal dissipations are
the same in both convective systems to yield the same
heat transfer.
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