
HAL Id: hal-00987805
https://hal.science/hal-00987805

Preprint submitted on 6 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exit-time of an inhomogeneous diffusion
Julian Tugaut

To cite this version:

Julian Tugaut. Exit-time of an inhomogeneous diffusion. 2014. �hal-00987805�

https://hal.science/hal-00987805
https://hal.archives-ouvertes.fr


Exit-time of an inhomogeneous diffusion

Julian Tugaut∗

Institut Camille Jordan
Université Jean Monnet

25, rue du Docteur Rémy Annino
Saint-Étienne

France
Email: tugaut@math.cnrs.fr

Abstract

We investigate the exit problem for a diffusion which drift is not time-
homogeneous. More precisely, we study this problem for a McKean-Vlasov
diffusion, that corresponds to the probabilistic interpretation of the gran-
ular media equation. This problem has already been solved in previous
articles when the confining potential is uniformly strictly convex. Two
different methods have been used. However, these two methods do not
extend to the non-convex case. Consequently, here, we proceed in another
way: by making a coupling with another McKean-Vlasov diffusion with a
uniformly strictly convex confining potential. We present the result in a
simple case, the one in which the interacting potential is linear. However,
the result can be extended in a more general setting.
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1 Introduction

We study the exit problem of the diffusion Xσ defined by

Xσ
t = x0 + σBt −

∫ t

0

∇V (Xσ
s ) ds− α

∫ t

0

(Xσ
s − E [Xσ

s ]) ds . (1)

Here, σ is a positive constant which is arbitrarily small, x0 is a real, B is a
Brownian motion and α is a real - non necessarily positive. The exact hypotheses
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on V and F will be given subsequently in the introduction. For instance, we
assume that V and F are C2-continuous.

Equation (1) corresponds to a McKean-Vlasov diffusion in which the confining
potential is V and the interacting potential is F (x) := α

2 x
2. The diffusion can

be written like so
{
Xσ

t = x0 + σBt −
∫ t

0
∇V (Xσ

s ) ds−
∫ t

0
∇F ∗ µσ

s (X
σ
s ) ds

µσ
t = L (Xσ

t )
. (2)

Here, ∗ denotes the convolution. Since the own law of the process intervenes in
the drift, this equation is nonlinear - in the sense of McKean.

The motion of the process is generated by three concurrent forces. The first one
is the derivative of the confining potential. The second influence is a Brownian
motion (Bt)t∈R+

. It allows the particle to move upwards the potential V . The
third term - the so-called self-stabilizing term - represents the attraction with
all the others trajectories. Indeed, we remark:

F ′ ∗ µσ
s (Xs(ω0)) =

∫

ω∈Ω

F ′ (Xs(ω0)−Xs(ω)) dP (ω)

where (Ω,F ,P) is the underlying measurable space.

This diffusion corresponds to the probabilistic interpretation of a nonlinear par-
tial differential equation, the granular media equation:

∂u

∂t
= ∇.

{
σ2

2
∇u+ (∇V +∇F ∗ u)u

}
. (3)

Indeed, due to [McK66, McK67], the measure of probability L (Xσ
t ) is absolutely

continuous with respect to the Lebesgue measure whenever t is positive. By
uσ (t, x), we denote its density. Then, {uσ(t, x); t > 0, x ∈ R} satisfies Equation
(3).

The existence and the uniqueness of a strong solution on R+ for Equation (2)
has been proved in [HIP08] (Theorem 2.13). The asymptotic behaviour of the
law has been studied in [CGM08, BRV98] (for the convex case) and in [Tug13a,
Tug13b] for the non-convex case by using the results in [HT10a, HT10b, HT12]
about the non-uniqueness of the invariant probabilities and their small-noise
behaviour.

The nonlinear diffusion (2) is obtained as the hydrodynamical limit of a mean-
field system of interacting particles:

Xi,N,σ
t = x0 + σBi

t −

∫ t

0

∇V
(
Xi,N,σ

s

)
ds−

∫ t

0

1

N

N∑

j=1

∇F
(
Xi,N,σ

s −Xj,N,σ
s

)
ds .

(4)
Indeed, the previous equation can be written like so:

Xi,N,σ
t = x0 + σBi

t −

∫ t

0

∇V
(
Xi,N,σ

s

)
ds−

∫ t

0

∇F ∗ ηN,σ
s

(
Xi,N,σ

s

)
ds ,
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ηN,σ
s being the empirical measure of the system: ηN,σ

s := 1
N

∑N
j=1 δXj,N,σ

s
. The

particles are exchangeables and propagation of chaos implies that the diffusions((
Xi,N,σ

t

)

t≥0

)

1≤i≤N

become independent as N goes to infinity. So, intuitively,

the empirical measure ηN,σ
t converges to a measure η∞,σ

t so that the drift in
Equation (4) converges toward ∇V + ∇F ∗ η∞,σ

t . Moreover, we have η∞,σ
t =

L
(
X1,∞,σ

t

)
= · · · = L

(
Xi,∞,σ

t

)
(for any i ∈ N

∗). We deduce that Equation

(4) converges to

Xi,∞,σ
t = x0 + σBi

t −

∫ t

0

∇V
(
Xi,∞,σ

s

)
ds−

∫ t

0

∇F ∗ L
(
Xi,∞,σ

s

) (
Xi,∞,σ

s

)
ds .

This is exactly Equation (2).

In the setting of this paper, the mean-field system of interacting particles is

Xi,σ
t = x0 + σBi

t −

∫ t

0

∇V
(
Xi,σ

s

)
ds− α

∫ t

0


Xi,σ

s −
1

N

N∑

j=1

Xj,σ
s


 ds . (5)

Let us present what we denote by exit problem. We consider a domain D ⊂ R
d

and we introduce
SX,D := inf {t ≥ 0 | Xσ

t ∈ D}

the first hitting time of Xσ to the domain D. Then, we define

TX,D := inf {t ≥ SX,D | Xσ
t /∈ D}

the first exit-time of Xσ from the domain D. The exit problem consists of two
questions. What is the exit-time? What is the exit-location?
In the small-noise limit, the questions become:

1. What is the exit-time TX,D for σ going to 0?

2. What is the exit-location Xσ
TX,D

for σ going to 0?

The subject of this article is to study these questions. In fact, we will only
investigate the first one. Indeed, we can solve the exit-location question like in
[Tug12], by using the results on the exit-time.

The natural framework is the one of the large deviations. Freidlin and Wentzell
theory solves the exit problem for the time-homogeneous diffusions. Let us
briefly present this theory. We refer the reader to [FW98, DZ98] for a complete
review. We look at the diffusion

xσt = x0 + σβt −

∫ t

0

∇U (xσs ) ds .

U is a C∞-continuous function from R
k (k ≥ 1) to R and β is a Brownian motion

in R
k. Let a0 be a minimizer of U and G be a domain which contains a0.
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We also consider the deterministic path Ψ(x0):

Ψt(x0) = x0 −

∫ t

0

∇U (Ψs(x0)) .

Then:

lim
σ→0

P

{
sup

t∈[0;T ]

||xσt −Ψt(x0)|| > δ

}
= 0 ,

for any T, δ > 0.

Moreover, under easily checked assumptions, for any δ > 0, the following
Kramers’ type law holds:

lim
σ→0

P

{
exp

[
2

σ2
(H − δ)

]
< Tx,G < exp

[
2

σ2
(H + δ)

]}
= 1 .

Here, the exit cost is H := inf
z∈∂G

[U(z)− U(a0)]. We immediately remark that

H = lim
σ→0

σ2

2
log {E [Tx,G(σ)]} .

Moreover, the exit-location is near the points of the boundary minimizing U .
Indeed,

lim
σ→0

P

{
xσTx,G

∈ N
}
= 0

if N ⊂ ∂G is such that inf
z∈N

U(z) > H.

Let us now present the previous works on the exit problem of McKean-Vlasov
diffusions.

Herrmann, Imkeller and Peithmann solve the problem when V is uniformly
strictly convex. They adapt the Freidlin and Wentzell theory to the inhomoge-
neous diffusion. However, to establish their result, they need the diffusion Y σ,∞

to be an exponentially good approximation of the diffusion Xσ where Y σ,∞ is
defined by

Y σ,∞
t = x0 + σBt −

∫ t

0

∇V (Y σ,∞
s ) ds−

∫ t

0

∇F (Y σ,∞
s − a) ds ,

a being the unique wells of the potentiql V in the domain G. To do so, they need
the uniform convergence of bσ(t, x) := ∇V (x) + ∇F ∗ µσ

t (x) toward b(t, x) :=
∇V (x) +∇F (x−Ψt(x0)). And, this result requires the strict convexity of the
potential V albeit the authors present it only under strict uniform convexity.

The problem in the previous method is linked to the long-time behaviour (the
behaviour of bσ(t, x) when t is large). Thus, an idea is to study the long-
time convergence of the drift bσ(t, x) toward a limit bσ(x) and the rate of this
convergence. Indeed, if this rate of convergence does not depend on σ, one can
solve the problem if moreover bσ converges to b with b(x) := lim

t→∞
b(t, x).
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The convergence has been obtained in the convex case (see [BRV98, CMV03,
CGM08, BCCP98]) and also in the non-convex case (see [Tug13a, Tug13b] albeit
without the rate of convergence). Bolley, Gentil and Guillin has established the
rate of convergence in [BGG12] in the convex case by using WJ-inequality. And,
in the non-convex case, the rate of convergence has been obtained in [DMT13]
by the same method. However, this result occurs only for the large values of σ.

In fact, when the confining potential V has multiple wells, we may have, under
easy to check assumptions:

bσ(t, x) −→ b1(t, x) −→ b1(x)

and
bσ(t, x) −→ bσ2 (x) −→ b2(x)

with b1 ̸= b2. We deduce that under these assumptions, we can not get the
uniform convergence of bσ(t, x) to b(t, x).

This method thus seems inapplicable when the potentiel V is not convex. Let
us briefly present the method in [Tug12]. We first solve the exit problem for the
mean-field system of particles (5). More precisely, we establish result about the
first exit-time of the first particle of this system. Then, we use a propagation of
chaos of the form

lim
N→∞
σ→0

E

{
sup

0≤t≤T N (σ)

∣∣∣
∣∣∣Xσ

t −X1,σ,N
t

∣∣∣
∣∣∣
2
}

= 0 ,

where T N (σ) is a stopping time which depends on the system of particles and
on the McKean-Vlasov diffusion. However, to get this limit, we need µσ

t - the
law of the inhomogeneous diffusion at time t - to be confined in a small ball
around δa. This requires the convexity of the potential V . Consequently, we
need to use another method.

In this paper, we simply make a coupling between the diffusion Xσ and another
McKean-Vlasov diffusion,

Y σ
t = x0 + σBt −

∫ t

0

∇V0 (Y
σ
s ) ds− α

∫ t

0

(Y σ
s − E [Y σ

s ]) ds

where the confining potential V0 is uniformly strictly convex and is equal to the
potential V except on a compact domain K. In the following, the domain from
which we study the exit-time is D ⊂ Kc.

If the two diffusions were time-homogeneous, we could write

∇V (Xσ
s )1s≤TX,D

= ∇V0 (Y
σ
s )1s≤TX,D

so that TX,D = TY,D. However, the two diffusions are inhomogeneous and it is
a bit more difficult.

Before ending the introduction, we present the hypotheses. We say that the
confining potential V satisfies the set of assumptions (A) if it satisfies the five
next hypotheses:
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(V-1) The potential V is C2-continuous.

(V-2) For any λ > 0, there exists Rλ such that ∇2V (x) ≥ λ whenever x ∈ R

satisfies ||x|| ≥ Rλ.

Immediately, we deduce that there exists a potential Ṽ which is strictly convex
and such that V = Ṽ except on a compact domain. We assume also that this
potential is uniformly strictly convex.

(V-3) There exists a uniformly strictly convex potential V0 (∇2V0 ≥ θ > 0)
and a compact domain K such that V (x) = V0(x) for any x /∈ K.

(V-4) There exists m ∈ N
∗ and C > 0 such that ||∇V (x)|| ≤ C

(
1 + ||x||2m−1

)

for any x ∈ R.

This assumption implies the existence of a solution to Equation (1) according
to Proposition 2.13 in [HIP08].

(V-5) α+ θ > 0, where θ is introduced in the hypothesis (V-3).

By D, we denote the domain about which we search the exit-time. We assume
D ⊂ Kc and a0 is the unique wells of V0 on D (so the unique one of V on D).

In the following, we put
ψ := V − V0 .

Since ψ is C2-continuous and equal to zero except on the compact K, its deriva-
tive is bounded:

sup
x∈R

|ψ′(x)| ≤M .

The paper is organized as follows. In a first section, we present the basical
results and definitions. Then, we provide an upperbound on the first hitting
time of the domain K. Finally, we give the main results.

2 Preliminaries

In this section, we present the definitions and the classical results that are used
in this article.

Definition 2.1. By Y σ, we denote the McKean-Vlasov diffusion defined with
the confining potential V0 and the interacting potential F (x) := α

2 x
2 starting

from x0:

Y σ
t = x0 + σBt −

∫ t

0

V ′
0 (Y

σ
s ) ds− α

∫ t

0

(Y σ
s − E [Y σ

s ]) ds .

We remind the reader that the potential V0 is equal to the potential V except
on the compact domain K. Moreover, V0 is uniformly strictly convex so we can
apply the results in [HIP08] and in [Tug12].
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Definition 2.2. From now on, for any diffusion xσ and for any domain D, by
Tx,D, we denote the first exit-time of the diffusion xσ from the domain D.

Let us write here Theorem 4.1 in [Tug12] concerning the exit-time TY,D.

Proposition 2.3. We assume that V satisfies the set of assumptions (A). Let
us consider a domain D which satisfies the following assumptions:

1. The domain D is into Kc.

2. For any t ≥ 0, we have ϕt(x0) ∈ D with ϕt(x0) = x0 −
∫ t

0
V ′ (ϕs(x0)) ds.

3. For any t ≥ 0, for any x ∈ D, we have ψt(x) ∈ D with ψt(x) = x −∫ t

0
[V ′ (ψs(x)) + F ′ (ψs(x)− a0)] ds.

Then, for any ξ > 0, we have

lim
σ→0

P

{
exp

[
2

σ2
(H − ξ)

]
≤ TY,D ≤ exp

[
2

σ2
(H + ξ)

]}
= 1 ,

with H := inf
z∈∂D

V (z) +
α

2
(z − a0)

2
= inf

z∈∂D
V0(z) +

α

2
(z − a0)

2.

We can apply this proposition to some particular domains, the level set
domains.

Definition 2.4. For any H > 0, we put

ΛH :=
{
z ∈ R : V (z) +

α

2
(z − a0)

2 ≤ V (a0) +H
}
.

This domain is not necessarily path-connected. By LH , we denote the path-
connected subset of ΛH which contains a0.

We now apply Proposition 2.3 to the level set domains.

Corollary 2.5. We assume that V satisfies the set of assumptions (A). Let H
be any positive real such that LH

∩
K = ∅. Then, for any ξ > 0, we have

lim
σ→0

P

{
exp

[
2

σ2
(H − ξ)

]
≤ TY,LH

≤ exp

[
2

σ2
(H + ξ)

]}
= 1 .

We give a last definition concerning the level set domains.

Definition 2.6. We put

dH := inf
z∈LH

inf
x∈K

|x− z| .

Intuitively, the diffusions Xσ and Y σ are close if X has not reached the
compact K. However, we can not write Xσ

t 1t≤TX,Kc = Y σ
t 1t≤TX,Kc . Indeed,

the expectation of Xσ
t intervenes in the drift and we have P (t ≤ TX,Kc) < 1

whenever t is positive.

Consequently, the hitting time of the diffusion Xσ to the domain K plays a big
role in this paper.
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Definition 2.7. By T0 := TX,Kc , we denote the first time that the McKean-
Vlasov diffusion Xσ hits the compact K.

According to Proposition 2.3, we can remark that:

P

{
exp

[
2

σ2
(H(Kc)− δ)

]
≤ TY,Kc ≤ exp

[
2

σ2
(H(Kc) + δ)

]}
−→ 1

as σ goes toward 0. This limit holds for any δ > 0. Here, H(Kc) is the infimum
of the potential z 7→ V0(z)+

α
2 (z−a0)

2 = V (z)+ α
2 (z−a0)

2. The infimum runs
over the boundary of the path-connected subset of Kc which contains a0.
We expect a similar Kramer’s type law for T0.

3 Upper-bound for T0 and coupling result

As we have seen in the previous section, the hitting time of the domain K for the
diffusion Xσ is important. The aim of this section is to provide an upper-bound
to this hitting time T0 and to obtain a coupling result between Xσ and Y σ.
We remind the reader that the function ψ is defined by ψ := V − V0 and its
derivative is bounded: M := sup

x∈K
|ψ′(x)| <∞.

The first result establishes a link between the time T0 and the coupling.

Lemma 3.1. Let us assume that V satisfies the set of assumptions (A). Then,
for any positive t, we have:

E

[
||Xσ

t − Y σ
t ||2

]
≤
M2

θ2
P (T0 ≤ t) . (6)

Proof. By using differential calculus, we have:

d (Xσ
t − Y σ

t )
2
=− 2 ⟨V ′ (Xσ

t )− V ′
0 (Y

σ
t ) ; Xσ

t − Y σ
t ⟩ dt

− 2α ⟨Xσ
t − Y σ

t ; Xσ
t − Y σ

t ⟩ dt

+ 2α ⟨E [Xσ
t − Y σ

t ] ; Xσ
t − Y σ

t ⟩ dt .

We now use the function ψ:

d (Xσ
t − Y σ

t )
2
=− 2 ⟨V ′

0 (X
σ
t )− V ′

0 (Y
σ
t ) ; Xσ

t − Y σ
t ⟩ dt

− 2α ⟨Xσ
t − Y σ

t ; Xσ
t − Y σ

t ⟩ dt

+ 2α ⟨E [Xσ
t − Y σ

t ] ; Xσ
t − Y σ

t ⟩ dt

− 2 ⟨ψ′ (Xσ
t ) ; X

σ
t − Y σ

t ⟩ dt .
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By integrating, we obtain:

(Xσ
t − Y σ

t )
2
=− 2

∫ t

0

⟨V ′
0 (X

σ
s )− V ′

0 (Y
σ
s ) ; Xσ

s − Y σ
s ⟩ ds

− 2α

∫ t

0

⟨Xσ
s − Y σ

s ; Xσ
s − Y σ

s ⟩ ds

+ 2α

∫ t

0

⟨E [Xσ
s − Y σ

s ] ; Xσ
s − Y σ

s ⟩ ds

− 2

∫ t

0

⟨ψ′ (Xσ
s ) ; X

σ
s − Y σ

s ⟩ ds .

We now take the expectation. The inequality

E

[
(Xσ

s − Y σ
s )

2
]
− (E [Xσ

s − Y σ
s ])

2 ≥ 0

leads us to:

d

dt
E

[
(Xσ

t − Y σ
t )

2
]
≤− 2E [⟨V ′

0 (X
σ
t )− V ′

0 (Y
σ
t ) ; Xσ

t − Y σ
t ⟩]

− 2E [⟨ψ′ (Xσ
t ) ; X

σ
t − Y σ

t ⟩] .

By definition of the potential V0, we can write ψ′ = ψ′
1K so that Cauchy-

Schwarz inequality implies

−2E [⟨ψ′ (Xσ
t ) ; X

σ
t − Y σ

t ⟩] ≤ 2M

√
E

[
(Xσ

t − Y σ
t )

2
]√

P (Xσ
t ∈ K)

≤ 2M

√
E

[
(Xσ

t − Y σ
t )

2
]√

P (T0 ≤ t) .

Since V ′′
0 ≥ θ > 0, we deduce

d

dt
E

[
(Xσ

t − Y σ
t )

2
]
≤ −2θE

[
(Xσ

t − Y σ
t )

2
]
+2M

√
E

[
(Xσ

t − Y σ
t )

2
]√

P (T0 ≤ t) .

By putting f(t) := E

[
(Xσ

t − Y σ
t )

2
]
, this means that

{t ≥ 0 : f ′(t) ≤ 0} ⊃

{
t ≥ 0 : f(t) ≥

M2

θ2
P (T0 ≤ t)

}
.

Recalling that f(0) = 0, this allows us to conclude that f is bounded by
M2

θ2 P (T0 ≤ t).

Consequently, if P (T0 ≤ t) is small, we have a coupling between the two
diffusions Xσ and Y σ. However, we want to use the exit times of Y σ to obtain
results on the ones of Xσ. Consequently, we need a coupling which is uniform
in time, the supremum being under the expectation. This is the aim of the
following lemma.
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Lemma 3.2. Let us assume that V satisfies the set of assumptions (A). Then,
for any positive t, we have:

E

{
sup
t≤T0

||Xσ
t − Y σ

t ||2 1
T0≤e

2Λ
σ2

}
≤

(
Mα

θ(α+ θ)

)2

P

(
T0 ≤ e

2Λ
σ2

)
, (7)

whenever Λ is positive.

Proof. Let t be a positive real such that t < T0. We deduce V ′ (Xσ
t ) =

V ′ (Xσ
t )1Xσ

t ∈K = V ′
0 (X

σ
t )1Xσ

t ∈K = V ′
0 (X

σ
t ). Differential calculus implies

d

dt
(Xσ

t − Y σ
t )

2
=− 2 (V ′

0 (X
σ
t )− V ′

0 (Y
σ
t )) (Xσ

t − Y σ
t )

− 2α (Xσ
t − Y σ

t )
2
+ 2αE [Xσ

t − Y σ
t ] (Xσ

t − Y σ
t )

≤ −2(α+ θ) (Xσ
t − Y σ

t )
2
+ 2α

√
E

[
(Xσ

t − Y σ
t )

2
]
|Xσ

t − Y σ
t | ,

after using Jensen inequality. By an argument similar to the one of the proof
of Lemma 3.1, we deduce the following boundedness:

(Xσ
t − Y σ

t )
2 ≤

(
α

α+ θ

)2

E

[
(Xσ

t − Y σ
t )

2
]
, (8)

for any t ≤ T0. We now take the supremum over [0; T0]:

sup
t≤T0

(Xσ
t − Y σ

t )
2 ≤

(
α

α+ θ

)2

sup
t≤T0

E

[
(Xσ

t − Y σ
t )

2
]
.

Multiplying by 1
T0≤e

2Λ
σ2

yields

1
T0≤e

2Λ
σ2

sup
t≤T0

(Xσ
t − Y σ

t )
2 ≤ 1

T0≤e
2Λ
σ2

(
α

α+ θ

)2

sup

t≤e
2Λ
σ2

E

[
(Xσ

t − Y σ
t )

2
]
.

Taking the expectation and applying Inequality (6) ends the proof of Inequality
(7).

Proposition 3.3. Let us assume that V satisfies the set of assumptions (A).
Let Λ be a positive real such that LΛ ⊂ Kc and such that the following inequality
holds:

M |α|

θ|α+ θ|dΛ
< 1 .

Then, we have the following upperbound for the hitting time T0:

lim
σ→0

P

(
T0 ≤ e

2Λ
σ2

)
= 0 . (9)
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Proof. For any positive real δ such that LΛ+δ ⊂ Kc, one has

P

(
T0 ≤ e

2Λ
σ2

)
=P

{
T0 ≤ e

2Λ
σ2 ; TY,LΛ+δ

≤ e
2Λ
σ2

}
+ P

{
T0 ≤ e

2Λ
σ2 ; TY,LΛ+δ

≥ e
2Λ
σ2

}

≤P

{
TY,LΛ+δ

≤ e
2Λ
σ2

}
+ P

{
T0 ≤ e

2Λ
σ2 ; TY,LΛ+δ

≥ e
2Λ
σ2

}
.

According to Corollary 2.5, the term P

{
TY,LΛ+δ

≤ e
2Λ
σ2

}
goes to 0 as σ goes to

0. We now deal with the second term. We take δ sufficiently small such that
dΛ+δ > 0.

P

{
T0 ≤ e

2Λ
σ2 ; TY,LΛ+δ

≥ e
2Λ
σ2

}
≤ P

{
sup
t≤T0

|Xσ
t − Y σ

t | ≥ dΛ+δ ; T0 ≤ e
2Λ
σ2

}
.

Indeed, if we have T0 ≤ e
2Λ
σ2 ≤ TY,LΛ+δ

, then Xσ
T0

∈ K and Y σ
T0

∈ LΛ+δ.
By using Inequality (7), we obtain

P

{
T0 ≤ e

2Λ
σ2 ; TY,LΛ+δ

≥ e
2Λ
σ2

}
≤

1

d2Λ+δ

(
Mα

θ(α+ θ)

)2

P

(
T0 ≤ e

2Λ
σ2

)
.

By taking δ sufficiently small, we have M |α|
θ(α+θ)dΛ+δ

< 1. This allows us to con-

clude that P

(
T0 ≤ e

2Λ
σ2

)
converges toward 0 as σ goes to 0.

We immediately deduce the following corollary.

Corollary 3.4. Let us assume that V satisfies the set of assumptions (A). Let
Λ be a positive real such that LΛ ⊂ Kc and such that the following inequality
holds:

M |α|

θ|α+ θ|dΛ
< 1 .

Then, we have the following coupling results:

E

{
sup
t≤T0

||Xσ
t − Y σ

t ||2 1
T0≤e

2Λ
σ2

}
−→ 0

and
sup

t≤e
2Λ
σ2

E

[
||Xσ

t − Y σ
t ||2

]
−→ 0 .

The proofs of the two inequalities are left to the reader. We also have the
following useful corollary.

Corollary 3.5. Let us assume that V satisfies the set of assumptions (A). Let
Λ be a positive real such that LΛ ⊂ Kc and such that the following inequality
holds:

M |α|

θ|α+ θ|dΛ
< 1 .
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Then, the following limit is true:

E





sup

t≤min

{

T0;e
2Λ
σ2

}

||Xσ
t − Y σ

t ||2





−→ 0 (10)

as σ goes to 0.

Proof. We remind the reader Inequality (8):

(Xσ
t − Y σ

t )
2 ≤

(
α

α+ θ

)2

E

[
(Xσ

t − Y σ
t )

2
]
,

for any t ≤ T0. We take the supremum over
[
0;min

{
T0; e

2Λ
σ2

}]
and we obtain

sup

t≤min

{

T0;e
2Λ
σ2

}

(Xσ
t − Y σ

t )
2 ≤

(
α

α+ θ

)2

sup

t≤min

{

T0;e
2Λ
σ2

}

E

[
(Xσ

t − Y σ
t )

2
]

≤

(
α

α+ θ

)2

sup

t≤e
2Λ
σ2

E

[
(Xσ

t − Y σ
t )

2
]
.

We take the expectation. Then, according to Corollary 3.4, this converges to-
ward 0 as σ goes to 0.

4 Main results

We now present the two main results of the paper concerning the exit time
of the diffusion Xσ from a domain D satisfying the usual conditions plus one
condition about its exit cost.

Definition 4.1. By Λ0, we denote the supremum of the positive Λ such that
M |α|

θ(α+θ)dΛ
< 1.

Let us remark that such positive Λ satisfies dΛ > 0 so that LΛ ⊂ Kc.

Immediately, we deduce that for any Λ < Λ0, we have the limit:

lim
σ→0

E





sup

t≤min

{

T0;e
2Λ
σ2

}

||Xσ
t − Y σ

t ||2





= 0 ,

thanks to Corollary 3.5.

Theorem 4.2. Let us assume that V satisfies the set of assumptions (A). Let
D be an open domain satisfying the following assumptions:

12



• The domain D is into the domain Kc.

• For any t ≥ 0, we have ϕt(x0) ∈ D with ϕt(x0) = x0 −
∫ t

0
V ′ (ϕs(x0)) ds.

• For any t ≥ 0, for any x ∈ D, we have ψt(x) ∈ D with ψt(x) = x −∫ t

0
[V ′ (ψs(x)) + F ′ (ψs(x)− a0)] ds.

We also assume that its exit cost

H := inf
z∈∂D

[V (z)− V (a0)] = inf
z∈∂D

[V0(z)− V0(a0)]

satisfies H < Λ0.
Then, we have a Kramer’s type law. In other words, for any δ > 0, we have the
following limit as σ goes to 0:

P

{
exp

[
2(H − δ)

σ2

]
≤ TX,D ≤ exp

[
2(H + δ)

σ2

]}
−→ 1 (11)

Proof. Let δ be any positive real.

We first prove the lower-bound. We have immediately

P

(
TX,D ≤ e

2
σ2 (H−δ)

)
=P

{
TX,D ≤ e

2
σ2 (H−δ) ; TY,L

H− δ
2

≤ e
2
σ2 (H−δ)

}

+ P

{
TX,D ≤ e

2
σ2 (H−δ) ; TY,L

H− δ
2

≥ e
2
σ2 (H−δ)

}

≤P

{
TY,L

H− δ
2

≤ e
2
σ2 (H−δ)

}

+ P

{
TX,D ≤ e

2
σ2 (H−δ) ; TY,L

H− δ
2

≥ e
2
σ2 (H−δ)

}
.

According to Corollary 2.5, the first term goes to 0 as σ goes to 0.

We now deal with the second term. Due to the definition of H, we deduce that

the domain LH− δ
2

is into the domain D. We put ρ(δ) := d
(
LH+ δ

2
; Dc

)
> 0.

We deduce

P

{
TX,D ≤ e

2
σ2 (H−δ) ; TY,L

H− δ
2

≥ e
2
σ2 (H−δ)

}

≤ P

{
sup

t≤TX,D

|Xσ
t − Y σ

t | ≥ ρ(δ) ; TX,D ≤ e
2
σ2 (H−δ)

}
.

Indeed, if we have TX,D ≤ e
2
σ2 (H−δ) ≤ TY,L

H− δ
2

, then Xσ
TX,D

∈ D and Y σ
TX,D

∈

LH− δ
2
. However, the domain D is included into the domain Kc. Consequently,

we have:

P

{
sup

t≤TX,D

|Xσ
t − Y σ

t | ≥ ρ(δ) ; TX,D ≤ e
2
σ2 (H−δ)

}

≤
1

ρ(δ)2
E



 sup

t≤e
2
σ2 (H−δ)

|Xσ
t − Y σ

t |2
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which converges toward 0 as σ goes to 0.

To prove the upper-bound, we can not consider the domain LH+ δ
2

because this

domain does not contain D in its interior. Instead, let us consider an open
domain Dκ which contains D in its interior and which satisfies the five following
properties

• The domain Dκ is into the domain Kc.

• For any t ≥ 0, we have ϕt(x0) ∈ Dκ.

• For any t ≥ 0, for any x ∈ Dκ, we have ψt(x) ∈ Dκ.

• The distance between D and Dc
κ is κ > 0.

• Its exit cost inf
z∈Dκ

[V (z)− V (a0)] is equal to H + δ
2 .

The existence of such a domain is ensured by Section 2 in [Tug12]. We thus
proceed like for the proof of the lower-bound which achieves the proof of the
theorem.

We deduce the following corollary.

Corollary 4.3. Let us assume that V satisfies the set of assumptions (A). Let
D be an open domain satisfying the following assumptions:

• The domain D is into the domain Kc.

• For any t ≥ 0, we have ϕt(x0) ∈ D with ϕt(x0) = x0 −
∫ t

0
V ′ (ϕs(x0)) ds.

• For any t ≥ 0, for any x ∈ D, we have ψt(x) ∈ D with ψt(x) = x −∫ t

0
[V ′ (ψs(x)) + F ′ (ψs(x)− a0)] ds.

Then, there exist α− < 0 < α+ such that whenever α is between α− and α+, we
have a Kramer’s type law. In other words, for any δ > 0, we have Limit (11).

Remark 4.4. We can solve the exit-location question by proceeding exactly like
in [Tug12]. This is why we do not give it here. Typically, if N is a subset of
D (where D satisfies the assumptions of Theorem 4.2) such that inf

z∈N
V (z) >

inf
z∈∂D

V (z), the probability to exit D by the domain N goes to zero as σ goes to
zero.

Remark 4.5. We have obtained a Kramer’s type law for the hydrodynamical
limit. And, the coupling result of Section 2 gives a uniform control of the mo-
ments of the diffusion Xσ. Consequently, by using the method developed in
[Tug12], one can solve - under the same hypotheses - the exit-time question of
the first particle in the mean-field system of particles.

Acknowledgements: Velika hvala Marini za sve. Également, un très grand
merci à Manue et à Sandra pour tout.
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