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Abstract

A mixture model of Gaussian copulas is introduced to cluster mixed-

type data (data set composed by different natures of variables). Thus,

the analyze can be performed on data sets composed by any kinds of

variables admitting a cumulative distribution function. Copulas are

used to modelize the intra-class dependencies and to preserve any distri-

butions for the one-dimensional margins of each component. Typically

in this work, each component follows a Gaussian copula which provides

one correlation coefficient per couple of variables and per class. More-

over, the one-dimensional margins of each component follow classical

parametric distributions in order to facilitate the model interpretation.

This model generalizes many well-known models and allows meaningful

data visualization as a straightforward by-product issue. A Metropolis-

within-Gibbs sampler performs the Bayesian inference by avoiding the

difficulties related to the parameter estimation of the copulas with dis-

crete margins. Experiments on simulated and real data illustrate the
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model advantages: flexible parameters (one-dimensional margins and

correlation matrices) associated to visualization aspects.

Keywords. Clustering, Gaussian copula, Metropolis-within-Gibbs algorithm,

Mixed data, Mixture models, Visualization.

MSC 62H30, 62F15, 62-07, 62F07.

1 Introduction

Clustering is an efficient tool to manage large data sets since it divides the indi-

viduals into few specific classes. When it is used in the probabilistic framework,

a class gathers together the individuals arisen from the same distribution. In

this context, the most popular approaches modelize the data distribution with

finite mixture models of parametric distributions [MP00]. The bibliography

specific to homogeneous data (same nature of variables) is prolific. Among it,

the Gaussian mixture models [BR93], the Poisson mixture models [KT08] and

the multinomial mixture models [Goo74] are the standard models to analyze

such data. Their success is due to the use of classical distributions for the

mixture components. Indeed, the practitioner can easily interpret the classes.

However, even if many data sets contain mixed variables (variables of different

natures), there are few multivariate distributions devoted for such data. More-

over, these distributions can be scarcely any interpretable. We now present

the main three models used to cluster mixed data. Note that a more detailed

overview is available in [HJ11].

The locally independent mixture model analyzes the data by assuming that
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the variables are independent given the class. It can provide meaningful results

(see the applications of [Lew98, HY01]) especially when the one-dimensional

margins of the components follow classical distributions. However, this model

leads to severe biases when its main assumption is violated (see the application

of [VHH09]). In such a case, two methods can be envisaged. The first one

consists in selecting a subset of intra-class independent variables [MCMM09],

but some informations contained in the data can be lost. The second method

consists in using models relaxing the conditional independence assumption.

We now present two of them.

The location mixture model [Krz93, WB99] assumes that the continuous

variables follow a multivariate Gaussian distribution conditionally on both

the class and the categorical variables. More precisely, its means depends on

both the class and the categorical variables while its covariance matrix is only

set by the class membership. This model takes into account the intra-class

dependencies but it requires too many parameters. So, it was expanded by

Jorgensen and Hunt [JH96, HJ99] by splitting the variables into conditionally

independent blocks. Each block is composed by at most one categorical vari-

able and follows a location model. Indeed, in a block, the categorical variable

follows a full multinomial distribution and the continuous variables follow a

multivariate Gaussian distribution conditionally on the categorical variable.

Note that the interpretation of the classes can be complex. Indeed, for one

component, the distribution of the one-dimensional margin of a continuous

variable is itself a Gaussian mixture model (and not a classical distribution!).

Finally, the estimation of the variable allocation into blocks is complex. The

authors achieved it by an ascendant method which is sub-optimal.
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The underlying variables mixture model [Eve88] analyzes data sets with

continuous and ordinal variables. It assumes that each discrete variable arises

from a latent continuous variable and that the whole continuous variables

(observed and unobserved) follow a Gaussian mixture model. Thus, the dis-

tribution of the observed variables is obtained by integrating each Gaussian

component on the subset of the latent variables. However, in practice, this

computation is not feasible when there are more than two discrete variables.

To study data sets with numerous binary variables, Morlini [Mor12] has ex-

panded this model by estimating the scores of the latent variables from the

binary variables. However, the class interpretation is done throughout the

parameters related to the scores (and not related to the observed variables).

The mixture model of Gaussian copulas is introduced by this paper to an-

alyze mixed data sets. Note that [SK12, MDCL13] already modelized the

distribution of mixed variables by using one Gaussian copula. The proposed

model expands this approach to the mixture models in order to perform the

cluster analysis. Copulas [Joe97, Nel99] allow to build a multivariate model

by setting, on the one hand, the distributions of the one-dimensional mar-

gins, and, on the other hand, the dependency model. Therefore, the mixture

model of copulas provides classical distributions for all the one-dimensional

margins for each components. Moreover, as each component follows a Gaus-

sian copula [Hof07, HNW11] which modelizes its dependencies, the intra-class

dependencies are meaningfully taken into account. Thus, a three-level schema

allows a friendly interpretation: the proportions indicate the class weights, the

one-dimensional margin parameters of each components roughly describe the
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classes while the correlation matrices refine this description. Finally, by using

the continuous latent structure of the Gaussian copulas, a PCA-type visual-

ization per class allows to summarize the main intra-class dependencies and

provides a scatterplot of the individuals according to the class parameters.

This paper is organized as follows. Section 2 introduces the mixture

model of Gaussian copulas and its links with well-known models. Section 3

presents the Metropolis-within-Gibbs algorithm performing the Bayesian in-

ference. Section 4 illustrates the behavior of this algorithm and the model

robustness on numerical experiments. Section 5 presents two applications of

the new mixture model by clustering two real data sets. Section 6 concludes

this work.

2 Mixture model of Gaussian copulas

2.1 Finite mixture model

The vector x = (x1, . . . , xe) ∈ R
c×X denotes the e = c+d observed variables.

Its first c elements are denoted by xc and correspond to the subset of the

continuous variables defined on the space R
c. Its last d elements are denoted

by xd and correspond the subset of the discrete variables (integer, ordinal or

binary) defined on the space X . Note that if xj is an ordinal variable with mj

modalities, then it uses a numeric coding {1, . . . ,mj}.

Data x are assumed to arise from the mixture model of g parametric distri-
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butions whose the probability distribution function (pdf) is written as follows

p(x;θ) =

g
∑

k=1

πkp(x;αk), (1)

where θ = (π,α) denotes the whole parameters. The vector π = (π1, . . . , πg)

is defined on the simplex of size g and groups the class proportions, where πk is

the proportion of class k. The vector α = (α1, . . . ,αg) groups the component

parameters, where αk denotes the parameters of class k.

The categorical variable z ∈ {1, . . . , g} indicates the class membership

of the individual but is unobserved. Moreover, it follows the multinomial

distribution Mg(π1, . . . , πg). Therefore, (1) can be interpreted as the marginal

distribution of x based on the distribution of the couple (x, z).

2.2 Gaussian copula for mixed data

The mixture model of Gaussian copulas assumes that each component k follows

a Gaussian copula. Therefore, the cumulative distribution function (cdf) of

component k is written as follows

P (x;αk) = Φe(Φ
−1
1 (u1

k), . . . ,Φ
−1
1 (ue

k);0,Γk), (2)

where αk = (Γk,βk), where Γk is a correlation matrix of size e × e, where

βk = (βk1, . . . ,βke) and where βkj denotes the parameters of one-dimensional

margin j. Moreover, uj
k = P (xj;βkj) is the value of the cdf of one-dimensional

margin j for the component k evaluated on xj. Finally, Φe(.;0,Γk) is the cdf

of the e-variate centred Gaussian distribution with correlation matrix Γk and
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Φ−1
1 (.) is the inverse cumulative distribution function of the standard Gaussian

N1(0, 1).

For each component, we assume also that the one-dimensional margins

follow classical distributions to facilitate the interpretation. More precisely,

• If xj is continuous, xj|z = k follows a Gaussian distribution N1(µkj, σ
2
kj)

of mean µkj and variance σ2
kj, so βkj = (µkj, σ

2
kj) ∈ R× R

+∗.

• If xj is integer, xj|z = k follows a Poisson distribution, so βkj ∈ R
+∗.

• If xj is ordinal, xj|z = k follows a multinomial distribution, so βkj is

defined on the simplex of size mj.

From (2) and from the specific one-dimensional margin distributions pre-

viously explained, the pdf of component k is written as follows

p(x;αk) = p(xc;αk)p(x
d|xc;αk) (3)

=
φc(Ψ(xc;αk);0,Γkcc)

∏c
j=1 σkj

∫

Sk(xd)

φd(u;µ
d

k ,Σ
d

k)du, (4)

where the function Ψ(xc;αk) =
(xj−µkj

σkj
; j = 1, . . . , c

)

and where Sk(x
d) =

Sc+1
k (xc+1) × . . . × Se

k(x
e) is the space of the antecedents of xd for class k

such as Sj
k(x

j) =]b⊖k (x
j), b⊕k (x

j)] is defined for j = c + 1, . . . , e with b⊖k (x
j) =

Φ−1
1 (P (xj − 1;βkj)) and b⊕k (x

j) = Φ−1
1 (P (xj;βkj)). Moreover the correlation

matrix Γk =







Γkcc Γkcd

Γkdc Γkdd






is decomposed into sub-matrices, for instance Γkcc

is the sub-matrix of Γk composed by the rows and the columns related to

the observed continuous variables. Finally, µd

k is the conditional mean of
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yd defined by µd

k = ΓkdcΓ
−1
kccΨ(xc;αk) and Σd

k is its conditional covariance

matrix defined by Σd

k = Γkdd − ΓkdcΓ
−1
kccΓkcd.

The mixture model of Gaussian copulas involves a second latent variable

y = (y1, . . . , ye) ∈ R
e such as y|z = k follows an e-variate centred Gaussian

distribution Ne(0,Γk). Conditionally on (y, z), x is defined by

xj = P−1(Φ1(y
j);βkj), ∀j = 1, . . . , e. (5)

Thus, the generative model of the mixture model of Gaussian copulas is

• Class membership sampling : z ∼ Mg(π1, . . . , πg)

• Gaussian copula sampling : y|z = k ∼ Ne(0,Γk)

• Observed data deterministic computation: x is obtained from (5).

For the small data sets, a better trade off between the bias and the variance

of the estimate may be obtained by constraining the parameter space. Thus,

we propose a parsimonious version of the mixture model of Gaussian copulas

by assuming the equality between the correlation matrices, so

Γ1 = . . . = Γg. (6)

Note that this model is named homoscedastic since the covariance matrices of

the latent Gaussian variables are equal between classes.

The heteroscedastic (respectively homoscedastic) mixture model of Gaus-
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sian copulas requires νHe (respectively νHo) parameters where

νHe = (g− 1)+ g

(

e(e− 1)

2
+

d
∑

j=1

νj

)

and νHo = (g− 1)+
e(e− 1)

2
+ g

d
∑

j=1

νj,

(7)

Note finally that the mixture model of Gaussian copulas is identifiable if, at

least, one variable is continuous or integer (see Appendix A).

2.3 Strengths of the mixture model of Gaussian copulas

Related models The mixture model of Gaussian copulas allows to gener-

alize many classical mixture models, among them one can cite the following

four.

• If the correlation matrices are diagonal (i.e. Γk = I, ∀k = 1, . . . , g),

then the model is equal to the locally independent mixture model.

• If all the variables are continuous (i.e. c = e and d = 0), then the model

is equal to a multivariate Gaussian mixture model without constraint

between the parameters [BR93].

• The model is linked to the binned Gaussian mixture model. For instance,

it is equivalent, when data are ordinal, to the mixture model of [Gou06].

In such a case, this model is stable by fusion of modalities.

• When the variables are both continuous and ordinal, the model is a

new parametrization of the mixture model proposed by Everitt [Eve88].

Note that Everitt directly estimates the space Sk(x
d) which contains the

antecedents of xd. Moreover, he uses a simplex algorithm to perform the
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maximum likelihood inference, but this method dramatically limits the

number of ordinal variables. By using the margin parameters βkj of the

components, our approach allows a Bayesian inference which avoids this

drawback (see details in Section 3).

Standardized coefficient of correlation per class The Gaussian copula

provides a friendly coefficient of correlation per couple of variables. Indeed,

when both variables are continuous, it is equal to the upper bound of the

coefficient of correlation obtained by all the monotonic transformations of the

variables [KW97]. Furthermore, when both variables are discrete, it is equal

to the polychoric coefficient of correlation [Ols79].

Data visualization per class: a by-product of Gaussian copulas By

using the latent vectors of the Gaussian copulas y|z, a PCA-type method

allows a visualization of the individuals per class and brings out the main intra-

class dependencies. Thus, the visualization of class k consists in computing

the coordinates E[y|x, z = k;αk] then in projecting them on the PCA space

related to the Gaussian copula of component k. This space is directly obtained

by the spectral decomposition of Γk. The individuals arisen from component

k follow a centred Gaussian distribution on the factorial map. Those arisen

from another component have an expectation different to zero. So, if they

are farther from the origin, they arise from a distribution strongly different

to the distribution of class k. Finally, the correlation circle summarizes the

intra-class correlations and avoids the direct interpretation of the correlation

matrix which can be fastidious if e is large. The following example illustrates
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these properties.

Example. Let one continuous, one integer and one binary arisen, in this order,

from the bi-component mixture model of Gaussian copulas parametrized by

π = (0.5, 0.5), β11 = (−2, 1), β12 = 5, β13 = (0.5, 0.5),β21 = (2, 1), β22 =

15, β23 = (0.5, 0.5), Γ1 =













1 −0.4 0.4

−0.4 1 0.4

0.4 0.4 1













and Γ2 =













1 0.8 0.1

0.8 1 0.1

0.1 0.1 1
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Figure 1: (a) scatterplot of the individuals described by three variables: one
continuous (abscissa), one integer (ordinate) and one binary (symbol); (b)
scatterplot of the individuals in the first component map of class 2; (c) variable
representation in the first component map of class 2. The color indicates the
class memberships.

The visualization of class 2 is presented in Figure 1. Concerning the indi-

viduals, the scatterplot shows a centred class (the red one) and a second class

(the black one) located on the left side. Concerning the variables, the rep-
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resentation points-out a strong intra-class correlation between the continuous

variable and the integer variable.

3 Bayesian inference

We observe the sample x = (x1, . . . ,xn) composed by n independent individ-

uals xi ∈ R
c×X assumed to arise from a mixture model of Gaussian copulas.

As pointed-out in [PCK06], the maximum likelihood inference is very diffi-

cult for a Gaussian copula with discrete margins. So, it is often replaced by the

Inference Function for Margins method performing the inference in two steps

(see Chapter 10 of [Joe97]) but which is sub-optimal. When all the variables

are continuous, the fixed-point-based algorithm proposed by [SFK05] achieves

the maximum likelihood estimation, but this approach is not doable for mixed

data. Therefore, an EM algorithm can not be implemented because its M step

would not be feasible. Moreover, if the discrete variables are numerous, its E

step would be too much time consuming because it would require the difficult

calculation of the integral defined in (4).

As pointed-out by [SK12], the Bayesian framework considerably simplifies

the inference since it uses the latent structure of the model (y, z).

3.1 Prior distributions

We assume independence between the prior distributions, so

p(θ) = p(π)

g
∏

k=1

(

p(Γk)
d
∏

j=1

p(βkj)

)

. (8)
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The classical conjugate prior distribution of the proportion vector is the Jef-

freys non informative one which is the following Dirichlet distribution

π ∼ Dg

(

1

2
, . . . ,

1

2

)

. (9)

The parameters of the one-dimensional margin of each components βkj follows

the classical conjugate prior distributions. These distributions are detailed in

Appendix B. The conjugate prior of a covariance matrix is the Inverse Wishart

distribution denoted by W−1(., .). So, it is natural to define the prior of the

correlation matrix Γk from the prior of the correlation matrix Λk. Indeed,

Γk|Λk is deterministic [Hof07]. So,

Λk ∼ W−1(s0, S0) and ∀1 ≤ h, ℓ ≤ e, Γk[h, ℓ] =
Λk[h, ℓ]

√

Λk[h, h]Λk[ℓ, ℓ]
, (10)

where (s0, S0) are two hyper-parameters. However, these parameters can not

be fitted by an empirical Bayesian approach since y is not observed. To obtain

uniform distribution on ]−1, 1[ for the margin distributions of each correlation

coefficient, we put s0 = e+ 1 and S0 equal to the identity matrix [BMM00].

3.2 Gibbs and Metropolis-within-Gibbs samplers

The Bayesian inference is performed via a Gibbs sampler which is the most

popular approach for the mixture models since it uses the latent structure

of the data. Its stationary distribution is p(θ,y, z|x) where z = (z1, . . . , zn)

denotes the class memberships of x and where y = (y1, . . . ,yn) denotes the

Gaussian vectors related to x. Thus, the sequence of the generated parameters
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is sampled from the marginal posterior distribution p(θ|x). When a step of

the Gibbs sampler is difficulty performed, it can be replaced by one iteration

of a Metropolis-Hastings algorithm without changing the stationary distribu-

tion. The obtained algorithm is a Metropolis-within-Gibbs sampler whose the

properties are detailed in [RC04].

Algorithm 3.1 (The Gibbs sampler). Starting from an initial value θ(0), its

iteration (r) performs the following four steps

z(r),y(r−1/2) ∼ z,y|x,θ(r−1) (11)

β
(r)
kj ,y

j(r)
[rk] ∼ βkj,y

j
[rk]|x,y

̄(r)
[rk], z

(r),β
(r)
k̄ ,Γ

(r−1)
k (12)

π(r) ∼ π|z(r) (13)

Γ
(r)
k ∼ Γk|y(r), z(r), (14)

where y[rk] = y
{i:z

(r)
i =k}

, y
̄(r)
i = (y

1(r)
i , . . . , y

j−1(r)
i , y

j+1(r−1/2)
i , . . . , y

e(r−1/2)
i ) and

β
(r)
k̄ = (β

(r)
k1 , . . . ,β

(r)
kj−1,β

(r−1)
kj+1 , . . . ,β

(r−1)
ke ). Note that the Gaussian variable y

is twice sampled during one iteration of the algorithm to manage the strong

dependency between y and z, and between y
j
[rk] and βkj. Obviously, the

stationary distribution stays unchanged. We now detail the four steps of the

Gibbs sampler. Note that the difficulties of steps (11) and (12) are avoided by

Metropolis-Hastings algorithms.

Class membership and Gaussian vector sampling The sampling from

(11) is performed in two steps by using independence between the individuals
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which involves that

p(z,y|x,θ(r−1)) =
n
∏

i=1

p(zi|xi,θ
(r−1))p(yi|xi, zi,θ

(r−1)). (15)

Firstly, each z
(r)
i is independently sampled from the multinomial distribution

zi|xi,θ
(r−1) ∼ Mg(ti1(θ

(r−1)), . . . , tig(θ
(r−1))), (16)

where tik(θ
(r−1)) =

π
(r−1)
k

p(xi;α
(r−1)
k

)

p(xi;θ
(r−1))

. Note that tik(θ
(r−1)) is the posterior prob-

ability that xi has been arisen from component k with the parameters θ(r−1).

Secondly, each y
(r−1/2)
i is independently sampled given (xi, z

(r)
i ,θ(r−1)).

Its first c elements, denoted by y
c(r−1/2)
i , are deterministically defined by

y
c(r−1/2)
i = Ψ(xc

i ;α
(r−1)

z
(r)
i

). Its last d elements, denoted by y
d(r−1/2)
i , are sam-

pled from the d-variate Gaussian distribution Nd(0,Γ
(r−1)

z
(r)
i

) truncated on the

space S
z
(r)
i

(xd

i )

p(yd

i |xi,y
c(r−1/2)
i , z

(r)
i ,θ(r−1)) ∝ φd(y

d

i ;µ
d(r−1)

z
(r)
i

,Σ
d(r−1)

z
(r)
i

)1{yd

i∈Sz
(r)
i

(xd

i )}
, (17)

where µ
d(r−1)

z
(r)
i

= Γ
(r−1)

z
(r)
i dc

Γ
−1(r−1)

z
(r)
i cc

y
c(r−1/2)
i .

Remark. The computation of tik(θ
(r−1)) involves to compute the integral

defined in (4) which can be time consuming if d is large (d > 6). In such a

case, the sampling from (11) is replaced by one iteration of the Metropolis-

Hastings algorithm detailed in Appendix C.1.
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Margin parameter and Gaussian vector sampling The sampling from

(12) is performed by using the following decomposition

p(βkj,y
j
[rk]|x,y

̄(r)
[rk], z

(r),β
(r)
k̄ ,Γ

(r−1)
k ) = p(βkj|x,ȳ(r)

[rk], z
(r),β

(r)
k̄ ,Γ

(r−1)
k )

× p(yj
[rk]|x,y

̄(r)
[rk], z

(r),β
(r)
k̄ ,βkj,Γ

(r−1)
k ). (18)

The parameter β
(r)
kj is firstly sampled. The full conditional distribution of

βkj is defined up to a normalizing constant such as

p(βkj|x,ȳ(r)
[rk], z

(r),β
(r)
k̄ ,Γ

(r−1)
k ) ∝ p(βkj)

∏

{i:z
(r)
i =k}

p(xj
i |ȳ(r)

i , z
(r)
i ,Γ

(r−1)
k ,βkj).

(19)

The distribution of xj
i |ȳ(r)

i , z
(r)
i ,Γ

(r−1)
k with z

(r)
i = k is defined by

p(xji |y
̄(r)
i , z

(r)
i ,Γ

(r−1)
k ,βkj) =











φ1(
xj
i−µkj

σkj
; µ̃i, σ̃

2
i )/σkj if 1 ≤ j ≤ c

Φ1(
b⊕(xj

i )−µ̃i

σ̃i
)− Φ1(

b⊖(xj
i )−µ̃i

σ̃i
) otherwise,

(20)

where the real µ̃i = Γ
(r−1)
k [j, ̄]Γ

(r−1)
k [̄, ̄]−1y

̄(r)
i is the full conditional mean of

yji , Γk[j, ̄] being the row j of Γk deprived of the element j and Γk[̄, ̄] being the

matrix Γk deprived of the row and the column j, and where σ̃2
i is the full condi-

tional variance of yji defined by σ̃2
i = 1−Γ

(r−1)
k [j, ̄]Γ

(r−1)
k [̄, ̄]−1Γ

(r−1)
k [̄, j]. As

the normalizing constant of (19) is unknown, β
(r)
kj cannot be directly sampled.

This problem is avoided by one iteration of the Metropolis-Hastings algorithm

detailed in Appendix C.2.

The vector y
j(r)
[rk] is easily sampled after β

(r)
kj . Indeed, by using independence

between the individuals, the full conditional distribution of yj
[rk] is explicitly

16



defined by

p(yj
[rk]|x,y

̄(r)
[rk], z

(r),β
(r)
k̄ ,βkj,Γ

(r−1)
k ) =

∏

{i:z
(r)
i =k}

p(yji |xj
i ,y

̄(r)
i , z

(r)
i ,βkj,Γ

(r−1)
k ). (21)

If xj is a continuous variable (i.e. 1 ≤ j ≤ c), when z
(r)
i = k, the full

conditional distribution of yji is a Dirac distribution in
xj
i−µ

(r)
kj

σ
(r)
kj

. If xj is a

discrete variable (i.e. c + 1 ≤ j ≤ e), when z
(r)
i = k, the full conditional

distribution of yji is a truncated Gaussian distribution as such,

p(yji |xj
i ,y

̄(r)
i , z

(r)
i ,β

(r)
kj ,Γ

(r−1)
k ) =

φ1(y
j
i ; µ̃i, σ̃

2
i )

p(xj
i ;β

(r)
kj )

1
{yji∈[b

⊖(r)
k

(xj
i ),b

⊕(r)
k

(xj
i )]}

, (22)

where b
⊖(r)
k (xj

i ) = P (xj
i − 1;β

(r)
kj ) and b

⊕(r)
k (xj

i ) = P (xj
i ;β

(r)
kj ).

So, step (12) is performed in two steps. Firstly, β
(r)
kj is sampled via one iter-

ation of the Metropolis-Hastings algorithm whose the stationary distribution

is p(βkj|x,ȳ(r)
[rk], z

(r),β
(r)
k̄ ,Γk). Secondly, y

j(r)
[rk] is sampled from (22).

Vector of proportions sampling The sampling from (13) is classical. In-

deed, the conjugate Jeffreys non informative prior involves that

π|z(r) ∼ Dg

(

n
(r)
1 +

1

2
, . . . , n(r)

g +
1

2

)

, (23)

where n
(r)
k =

∑n
i=1 1{z

(r)
i =k}

.

Correlation matrix sampling To sample from (14), we use the approach

proposed by [Hof07] in the case of semiparameteric Gaussian copula. Firstly,

17



a covariance matrix is generated by its explicit posterior distribution, and sec-

ondly, the correlation matrix is deduced by normalizing the covariance matrix.

As (y, z) are known in this step, we are in the well-known case of a multivariate

Gaussian mixture model with known means. Thus, the sampling according to

Γk|y(r), z(r) is performed by the following two steps

Λk|y(r), z(r) ∼ W−1






s0 + n

(r−1)
k , S0 +

∑

{i:z
(r)
i =k}

y
(r)T
i y

(r)
i






, (24)

where ∀1 ≤ h, ℓ ≤ e, Γk[h, ℓ] =
Λk[h,ℓ]√

Λk[h,h]Λk[ℓ,ℓ]
. As the homoscedastic model

assumes the equality between the correlation matrices, in such a case we only

sample one Λ so (24) is replaced by

Λ|y(r), z(r) ∼ W−1

(

s0 + n, S0 +
n
∑

i=1

y
(r)T
i y

(r)
i

)

, (25)

and we put Λk = Λ for k = 1, . . . , g.

3.3 Label switching problem

The label switching problem is generally solved by specific procedures [Ste00].

However, based on the argument of [JB14], these techniques are principally

impacting when g is known.

When the model is used to cluster, the number of classes is unknown, and

the model selection is performed by the BIC criterion which simultaneously

avoids the label switching phenomenon. Indeed, on the one hand, this cri-

terion selects quite separated classes when the sample size is small, so the

18



label switching is not present with probability in practice because of the class

separability. On the other hand, even if it can select more classes when the

sample size increases, the label switching problem does not occurred since this

phenomenon vanishes asymptotically.

Obviously, when the number of classes is fixed and the size of sample is

small, the label switching problem can occur. In such a case, our advice is

naturally to use the procedures of [Ste00].

4 Simulations

Two simulations illustrate the new model. The first simulation illustrates the

relevance of the estimates by analyzing data which arise from the proposed

model. The second simulation shows the robustness of the proposed model by

analyzing data which arise from a mixture of Poisson distributions [KT08].

Experiment conditions The Gibbs sampler estimates the parameters on

100 samples for each situation. It is initialized with the maximum likelihood

estimator of the locally independent model (especially relevant when the intra-

class dependencies are small). Its burn-in lasts 100 iterations, then it is stopped

after 1000 iterations. The estimate is computed by averaging the parameters

sampled by the Gibbs algorithm. The Kullback-Leibler divergence is approxi-

mated via 10000 iterations of a Monte-Carlo method.
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4.1 Estimation efficiency

Data are composed of one continuous variable, one integer variable and one

binary variable. They are sampled from the example in Section 2.3. Accord-

ing to Figure 2, the estimated distribution converges to the true distribution

when the sample size increases. Indeed, the Kullback-Leibler divergence of

the estimated model from the true model is decreasing based on the sample

size. This simulation illustrates the convergence of the estimator computed by

averaging the parameters sampled by the algorithm.
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Figure 2: Decrease of the Kullback-Leibler divergence of the estimated model
from the true model based on the sample size.

4.2 Robustness

Data are sampled from the bivariate Poisson mixture model [KT08] with

π = (1/3, 2/3) and whose the one-dimensional margin parameters αk =

(λk1, λk2, λk3) takes the following values: λ1h = h and λ2h = 3 + h, for h =

1, 2, 3. Its error rate is equal to 9.5%. Figure 3 shows that the mixture model of

Gaussian copulas efficiently manages these data. Indeed, the Kullback-Leibler

divergence almost vanishes when the size of the sample increases. Furthermore,
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the error rate of the model converges to a value slightly larger than Bayes’ er-

ror. We note that the parameters (one-dimensional margin parameters and

correlation coefficients) are also well estimated.
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Figure 3: (a) Kullback-Leibler divergence of the estimated model from the
true model; (b) Error rate of the estimated model; (c) Value of the first
one-dimensional margin parameter for class 1; (d) Value of the correlation
coefficient between both variables for class 1.

5 Applications

The analysis of two real data sets are now performed by using the mixture

model of Gaussian copulas. The Gibbs sampler is used in the same conditions

as in the simulations. The model selection is performed by using two infor-
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mation criteria (BIC criterion [Sch78], ICL criterion [BCG00]) computed from

the estimator.

5.1 Wine data set

The data Data are composed of 6497 variants of the Portuguese “Vinho

Verde” wine (1599 red wines and 4898 white wines) described by eleven physic-

ochemical continuous variables (fixed acidity, volatile acidity, citric acidity,

residual sugar, chlorides, free sulphur dioxide, total density dioxide, density,

pH, sulphates, alcohol) and one integer variable (note of quality) [CCA+09].

We analyze the data by concealing the color of the wines and by excluding the

wine 4381 because it takes outliers.

Model selection Three mixture models (locally independent, heteroscedas-

tic and homoscedastic mixture of Gaussian copulas) are fitted with different

numbers of classes. Table 1 presents the values of the BIC and the ICL crite-

ria. Both criteria distinctly select the bi-component mixture model of Gaussian

copulas with free correlation matrices.

g 1 2 3 4 5 6
BIC loc. indpt. -63516 -61069 -61010 -55967 -60250 -57163

hetero. -44675 -34520 -39724 -44692 -44484 -48349
homo. -44675 -39372 -38289 -45209 -43217 -42417

ICL loc. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero. -44675 -34688 -40176 -44933 -44758 -48959
homo. -44675 -39607 -38791 -45380 -43345 -42667

Table 1: Values of the BIC and ICL criteria obtained on the wine data set.
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Partition study Table 2 presents the adjusted Rand indices and the con-

fusion matrices which compare the estimated partitions and the color of the

wines. The partition of the bi-component mixture model of Gaussian copu-

las with free correlation matrices is the closest to the partition of the color

of the wines. These results confirm that this model best manages this data

set. Moreover, this model provides well-separated classes as shown by Figure 4

which presents its PCA-type visualization per class.

white red
c1 4359 9
c2 538 1590
(a) Adj. Rand.: 0.68

white red
c1 2441 12
c2 1911 7
c3 545 1580
(b) Adj. Rand.: 0.30

white red
c1 2547 1561
c2 2007 35
c3 275 3
c4 68 0
(c) Adj. Rand.: 0.00

Table 2: Adjusted Rand indices and the confusion matrices between the
color of the wines and the estimated partition by: (a) the bi-component het-
eroscedastic mixture of Gaussian copulas; (b) the tri-component homoscedas-
tic mixture of Gaussian copulas; (c) the four-component locally independent
mixture.
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(b) PCA of the class 2, map(1,2)

Figure 4: Visualization of the partition obtained by bi-component mixture
model of Gaussian copulas with free correlation matrices for the wine data set
(Class 1 is drawn by black circles and Class 2 by red triangles).
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Interpretation of the best model A three-level interpretation (propor-

tions, one dimensional margins and intra-class dependencies) is feasible by us-

ing the parameters summarized by Figure 5. The majority class (π1 = 0.59),

consisting primarily of white wines, is characterized by lower levels of acidity,

pH, chlorides and sulphites. This class is characterized by a strong correla-

tion between both sulphur measures opposite to a strong correlation between

the density and acidity measures. The minority class (π2 = 0.41), consisting

primarily of red wines, takes larger values for both sulphur dioxide measures

and the alcoholic rate. In this class, the wine quality is correlated with a

large alcoholic measure and small values for the chlorides and acidity mea-

sures. Note that the wine quality of both classes is similar (β1quality = 5.96

and β2quality = 5.58).
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Figure 5: Summary of bi-component mixture model of Gaussian copulas with
free correlation matrices. Class 1 is drawn in black and Class 2 in red.
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Conclusion On this data, the mixture model of Gaussian copulas reduces

the drawbacks of the locally independent model. By reducing the number

of classes, it provides a more interpretable model which better fits the data

(information criteria) and which provides a pertinent partition (adjusted Rand

Index, confusion matrices, class well-separated). Finally, the estimation of the

main intra-class dependencies, based on the outputs of the PCA per class, is

an efficient tool to refine the interpretation.

5.2 Forest fire data set

The data Data are composed of 517 forest fires [CM07] that have occured in

the northeast region of Portugal. These forest fires are described by the follow-

ing meteorological variables: seven continuous variables (four about the FWI

system: FFMC, DMC, DC, ISI and two about the meteorology: temperature

and relative humidity), two integer variables relating to spatial coordinates

and three binary ones indicating the presence of rain, the season (summer or

not summer) and the day (weekend or not weekend).

Model selection Table 3 presents the values of the BIC and the ICL criteria

obtained by the three competing models. Both criteria distinctly select the tri-

component mixture model of Gaussian copulas with equal correlation matrices.

Partition study Model selection is a crucial step since the three competing

models lead different partitions. Indeed, these differences are highlighted in

Table 4 which presents the confusing matrices.
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g 1 2 3 4 5 6
BIC loc. indpt. -16559 -16296 -16473 -17370 -17379 -17454

hetero -16559 -16002 -16171 -16410 -16666 -16791
homo. -16559 -15899 -15824 -16300 -15946 -16034

ICL loc. indpt. -16559 -16301 -16494 -17401 -17400 -17527
hetero -16559 -16014 -16205 -16471 -16721 -16871
homo. –16559 -15907 -15893 -16352 -16020 -16137

Table 3: Values of the BIC and ICL criteria obtained on the forest fire data
set.

hetero.
c1 c2

c1-homo. 244 23
c2-homo. 1 127
c3-homo. 122 0

(a)

loc. indpt.
c1 c2

c1-homo. 265 2
c2-homo. 7 121
c3-homo. 111 11

(b)

Table 4: Confusion matrices between the partition obtained by the ho-
moscedastic tri-component model and the partition obtained by: (a) the het-
eroscedastic bi-component model; (b) the locally independent model.

Interpretation of the best model The three-step interpretation of the tri-

component mixture model of Gaussian copulas with equal correlation matrices

is presented by using the parameters summarized by Figure 6. The majority

class (π1 = 0.57) groups the fires which occured when a high temperature was

coupled to a small relative humidity. Moreover, the measures of FMC, DMC

and ISI are high. The second class (π2 = 0.26) includes winter fires. These

lights are developed through a strong wind and no rain. Moreover, all MFI

measures take small values. The minority class (π3 = 0.17) groups the summer

fires developed with few values of FWI measures except the DC value. These

fires occured when the temperature was median but when the relative humid-

ity was high. The intra-class correlation matrix underlines the dependencies

between the summer period and the high temperatures and between the values
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of FFMC and DMC. Finally, note that the space coordinates roughly follow

the same distribution in the three classes.
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Figure 6: Summary of the homoscedastic tri-component mixture of Gaussian
copulas. Class 1 is displayed in green, Class 2 in red and Class 3 in black.

Conclusion The cluster analysis performed by the mixture of Gaussian cop-

ulas is more precise than the analysis of the locally independent model which

roughly separates the summer fires from the other ones. The restrictions on the

correlation matrices allows to better fit the data according to both criteria.

Therefore, the homoscedastic mixture model of Gaussian copulas highlights

two kinds of summer fires.

6 Conclusion and future extensions

The mixture model of Gaussian copulas is introduced to cluster mixed data.

By using the Gaussian copulas, the one-dimensional margins of each compo-

27



nent follow classical distributions and the intra-class dependencies are mod-

elized. Thus, the model can be interpreted in three steps like for the models

developed for the data sets composed of one type of variable. By using the con-

tinuous latent variables of the Gaussian copulas, a PCA-type method allows

a visualization of the individuals per class. Moreover, this approach provides

a summary of the intra-class dependencies which can avoid the fastidious in-

terpretation of the correlation matrices.

During the numerical experiments and during the applications, we pointed-

out that this model is sufficiently robust to fit data arisen from another model.

Furthermore, it can reduce the biases of the locally independent model (for

instance the reduction of the number of classes).

The number of parameters increases with the numbers of classes and of

variables especially because of the correlation matrices of the Gaussian copu-

las. To avoid this drawback, we propose a homoscedastic version of the model

assuming the equality between the correlation matrices. However, the number

of parameters required by this model can stay large when the number of vari-

ables increases. So, more parsimonious correlation matrices could be proposed

to avoid this drawback in future works.

Finally, the model can not cluster non-ordinal categorical variables having

more than two modalities. Indeed, in such case, the cumulative distribution

function is not defined. An artificial order between the modalities could be

added to define a cumulative distribution function but this method has three

potential difficulties for which attention has to be paid: it assumes regular

dependencies between the modalities of two variables, its estimation would

slow down the estimation algorithm and its stability would have to be studied.
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R-packageMixCluster (downloadable on https://r-forge.r-project.org/R/?group id=1939)

contains code to perform the cluster analysis method described in the article.

The package also contains all data sets used as examples in the article.
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A Proof of the model identifiability

The model identifiability is proved by two propositions. The first proposition

proves the model identifiability when the variables are continuous and/or inte-

ger. This proposition presents the reasoning in a simple case since it does not

consider the ordinal variables. The second proposition proves that the model

requires at least one continuous or integer variable to be identifiable.

Proposition A.1 (Identifiability with continuous and integer variables). The

mixture model of Gaussian copulas is weakly identifiable [Tei63] if the vari-

ables are continuous and integer ones ( i.e. the margin distributions of the

components are Gaussian or Poisson distributions). Thus,

∀x ∈ R
c × N

d,

g
∑

k=1

πkp(x;αk) =

g′
∑

k=1

π′
kp(x;α

′
k) (26)

⇒ g = g′, π = π′, α = α′. (27)

Proof. The identifiability of the multivariate Gaussian mixture models and of

the univariate Poisson mixture model [Tei63, YS+68] involves that (26) implies

g = g′, π = π′, βkj = β′
kj and Γkcc = Γ′

kcc. (28)

We now show that Γkcd = Γ′
kcd and Γkdd = Γ′

kdd.

Let j ∈ {1, . . . , c} and h ∈ {c + 1, . . . , e}. We denote by ρk = Γk(j, h),

ρ′k = Γ′
k(j, h), vk = Φ−1

1 (P (xj;βkj)), εk(x
j) = πk

φ1(vk)
σkj

, ak =
b⊕
k
(xj)−ρkvk√

1−ρ2
k

and

a′k =
b⊕
k
(xj)−ρ′

k
vk√

1−ρ′2
k

. Without loss of generality, we order the components as such
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σkj > σk+1j and if σkj = σk+1j then µkj > µk+1j, then (26) implies that

1 +

g
∑

k=2

(εk(x
j)Φ(ak))/(ε1(x

j)Φ(a1)) =

g
∑

k=1

εk(x
j)Φ(a′k)/(ε1(x

j)Φ(a1)).

Let γt = {(xj, xh) ∈ R × N : a1 = t}. Then, letting xh → ∞ as such

(xj, xh) ∈ γt,

∀t,
∫ a′1
t

φ(u)du

Φ(t)
= 0. (29)

Thus a′1 = a1, so ρ′1 = ρ1. Repeating this argument for k = 2, . . . , g and for

all the couples (j, h), we conclude that Γkcd = Γ′
kcd.

When both variables are integer, we use the same argument with γ(t,ξ) =

{(xj, xh) ∈ N × N : a1 ∈ B(t, ξ)}. Note that if ρ1 6= ρ′1 then ∃n0 as such

∀xj > n0 a′1 > t + ξ. Letting xh → ∞ as such (xj, xh) ∈ γ(t,ξ), we obtain

the following contradiction
∫ a′1
t+ξ

φ(u)du

Φ(t−ξ)
= 0 and

∫ a′1
t+ξ

φ(u)du

Φ(t−ξ)
> 0. So, a′1 = a1 then

ρ1 = ρ′1. Repeating this argument for k = 2, . . . , g and for all the couples

(j, h), we conclude that Γkdd = Γ′
kdd.

Proposition A.2 (Identifiability of the mixture model of Gaussian copulas).

The mixture model of Gaussian copulas is weakly identifiable [Tei63] if at least

one variable is continuous or integer.

Proof. In this proof, we consider only one continuous variable and two binary

variables. Obviously, the same reasoning can be extend to the other cases. We

now show that Γkcd = Γ′
kcd and Γkdd = Γ′

kdd.

Let j = 1 and let h ∈ {2, 3}. We note ρk = Γk(j, h), ρ
′
k = Γ′

k(j, h), vk =

Φ−1
1 (P (xj;βkj)), εk(x

j) = πk
φ(vk;0,1)

σkj
, ak =

b⊕
k
(xj)−ρkvk√

1−ρ2
k

and a′k =
b′⊕
k

(xj)−ρ′
k
vk√

1−ρ′2
k

.

Without loss of generality, we order the components as such σkj > σ[k+1]j and
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if σkj = σ[k+1]j then µkj > µ[k+1]j. Note that (26) implies that

1 +

g
∑

k=2

(εk(x
j)Φ(ak))/(ε1(x

j)Φ(a1)) =

g
∑

k=1

εk(x
j)Φ(a′k)/(ε1(x

j)Φ(a1)).

Letting x1 → ∞ and assuming that ρk > 0 then
Φ(a′

k
)

Φ(ak)
= 1. So, sign(ρk) =

sign(ρ′k). By denoting κ = lim
a→∞

φ(a)
Φ(a)

and letting x1 → ∞ κ 1
κ

φ(a′
k
)

φ(ak)
= 1. Thus

a′1 = a1, so ρ′1 = ρ1 and b⊕k (x
j) = b′⊕k (xj) so βkh = β′

kh.

Note that the same result can be obtain by tending x1 to −∞ is ρk < 0.

Repeating this argument for k = 2, . . . , g and for all the couples (j, h), we

conclude that Γkcd = Γ′
kcd then Γkdd = Γ′

kdd.

B Prior distributions of βk

If xj is continuous, then βkj denotes the parameters of a univariate Gaussian

distribution so p(βkj) = p(µkj|σ2
kj)p(σ

2
kj) with

σ2
kj ∼ G−1(c0, C0) and µkj|σ2

kj ∼ N1(b0, σ
2
kj/N0), (30)

where G−1(., .) denotes the inverse gamma distribution. With an empiri-

cal Bayesian approach, the hyper-parameters (c0, C0, b0, N0) are fixed as pro-

posed by [Raf96], so c0 = 1.28, C0 = 0.36Var(xj), b0 = 1
n

∑n
i=1 x

j
i and

N0 =
2.6

argmax xj−argmin xj .

If xj is integer, βkj denotes the parameter of a Poisson distribution and

βkj ∼ G(a0, A0). (31)
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According to [FS06], the values of hyper-parameters a0 and A0 are empirically

fixed to a0 = 1 and A0 = a0n/
∑n

i=1 x
j
i .

If xj is ordinal, βkj denotes the parameter of a multinomial distribution

and its Jeffreys non informative conjugate prior involves that

βkj ∼ Dmj

(

1

2
, . . . ,

1

2

)

. (32)

C Metropolis-within-Gibbs sampler

The sampling from z,y|x,θ(r−1) and βkj|x,ȳ(r)
[rk], z

(r),β
(r)
k̄ ,Γ

(r−1)
k (defined by

(11) and (19)) can be performed by one iteration of following Metropolis-

Hastings algorithms. For both algorithms, the instrumental distributions as-

sume conditional independences. So, the smaller are the intra-class depen-

dencies of the variable x, the closer of the stationary distributions are the

instrumental distributions of both algorithms.

C.1 Class membership and Gaussian vector sampling

Step (11) is performed via one iteration of the Metropolis-Hastings algorithm

which independently samples each couple (zi,yi). Its stationary distribution

is

p(zi,yi|xi,θ
(r−1)) ∝ πzip(xi,yi|zi,θ(r−1)). (33)

Note that p(xi,yi|zi,θ(r−1)) = φe(yi;0,Γ
(r−1)
zi

)1
{yc

i=Ψ(xc

i ;α
(r−1)
zi

)}
1{yd

i∈Szi
(xd

i )}
.

The Metropolis-Hastings algorithm samples a candidate (z⋆i ,y
⋆
i ) by the in-

strumental distribution q1(.|xi,θ
(r−1)) which uniformly samples z⋆i then which
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samples y⋆
i |z⋆i as follows. Its first c elements, denoted by y⋆c

i , are equal to

y⋆c
i = Ψ(xc

i ;α
(r−1)
z⋆i

). Its last d elements, denoted by y⋆d
i , follows a multivari-

ate independent Gaussian distribution truncated on Sz⋆i
(xd

i ). Thus,

q1(zi,yi|xi,θ
(r−1)) =

1

g

φd(y
d

i ;0, I)
∏e

j=c+1 p(x
j
i ;β

(r−1)
zij

)
1
{yc

i=Ψ(xc

i ;α
(r−1)
zi

)}
1{yd

i∈Szi
(xd

i )}
.

(34)

The candidate is accepted with the probability

ρ
(r)
1i = min







πz⋆i
φe(y

⋆
i ;0,Γ

(r−1)
z⋆i

)

π
z
(r−1)
i

φe(y
(r−1)
i ;0,Γ

(r−1)

z
(r−1)
i

)

q1(z
(r−1)
i ,y

(r−1)
i |xi)

q1(z⋆i ,y
⋆
i |xi)

; 1







. (35)

Thus, at the iteration (r) of the Algorithm 3.1, the sampling according to (11)

is performed via one iteration of the following Metropolis-Hastings algorithm

having p(zi,yi|xi,θ
(r−1)) as stationary distribution.

Algorithm C.1.

(z⋆i ,y
⋆
i ) ∼ q1(z,y|xi) (36)

(z
(r)
i ,y

(r−1/2)
i ) =











(z⋆i ,y
⋆
i ) with probability ρ

(r)
1i

(z
(r−1)
i ,y

(r−1)
i ) with probability 1− ρ

(r)
1i .

(37)

C.2 Margin parameter sampling

The instrumental distribution of the Metropolis-Hastings algorithm q2(.|x, z)
samples a candidate β⋆

kj according to the posterior distribution of βkj under

the conditional independence assumption (this distribution is explicit since the

conjugate prior distributions are used). So, q2(.|x, z) = p(βkj|x, z,Γk = I).
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Thus, according to (19), the candidate β⋆
kj is accepted with the probability

ρ
(r)
2 = min











p(β⋆
kj)q2(β

(r−1)
kj |x, z)

p(β
(r−1)
kj )q2(β

⋆
kj |x, z)

∏

{i:z
(r)
i =k}

p(yj
i |x

j
i ,y

̄(r)
i , zi,β

⋆
kj ,Γ

(r−1)
k )

p(yj
i |x

j
i ,y

̄(r)
i , zi,β

(r−1)
kj ,Γ

(r−1)
k )

; 1











.

Thus, at the iteration (r) of the Algorithm 3.1, step (12) is performed via one

iteration of the following Metropolis-Hastings algorithm whose the stationary

distribution is p(βkj|x[rk],y
̄(r)
[rk], z,β

(r)
k̄ ,Γk).

Algorithm C.2.

β⋆
kj ∼ q2(βkj|x, z) (38)

β
(r)
kj =











β⋆
kj with probability ρ

(r)
2

β
(r−1)
kj with probability 1− ρ

(r)
2 .

(39)
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