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Abstract

A mixture model of Gaussian copulas is presented to cluster mixed
data (different kinds of variables simultaneously) where any kinds of vari-
ables are allowed if they admit a cumulative distribution function. This
approach allows to straightforwardly define simple multivariate intra-class
dependency models while preserving any one-dimensional margin distri-
butions of each component of interest for the statistician. Typically in this
work, the margin distributions of each component are classical paramet-
ric ones in order to facilitate the model interpretation. In addition, the
intra-class dependencies are taken into account by the Gaussian copulas
which provide one correlation coefficient, having robustness properties,
per couple of variables and per class. This model generalizes different
existing models defined for homogeneous and mixed variables. The infer-
ence is performed via a Metropolis-within-Gibbs sampler in a Bayesian
framework. Numerical experiments illustrate the model flexibility even if
the data are simulated according to another model. Finally, three appli-
cations on real data sets strengthen the idea that the proposed model is
of interest, since it reduces the biases of the locally independent model
and since it provides a meaningful summary of the data.

Keywords. Clustering, Gaussian copula, Metropolis-within-Gibbs algorithm,
Mixed data, Mixture models.
MSC 62H30, 62F15, 62-07, 62F07.

1 Introduction

Multivariate data sets are increasingly complex because of the informatics ad-
vent. Thus, they need to be summarized in order to extract the embedded infor-
mation. Clustering provides an efficient solution of this challenge by grouping
the individuals in few characteristic classes. It can be performed by probabilis-
tic methods modelling the data generation whose the most popular and flexible
one approaches the data distribution with a finite mixture model of parametric
components [MP00]. In such a case, a class gathers together the individuals
drawn by the same distribution.

Obviously, the choice of the component distribution depends on the kind of
the variables at hand. For instance, one can use the Gaussian mixture model
[BR93] to cluster continuous data, while a mixture of Poisson distributions
[KT08] can be applied on integer data and a mixture of multinomial distribu-
tions [Goo74] can cluster ordinal data. However, many data sets contain mixed
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variables (variables of different kinds) but few multivariate distributions exist
for such data except three main models presented below. A more detailed survey
is available in [HJ11].

The simplest way to cluster mixed variables consists in approaching the data
distribution with a finite mixture model which assumes the independence con-
ditionally on the class membership of each variable. This model, called naive
Bayes or locally independent model, obtains good results in many real cluster-
ing problems [Lew98, HY01], especially when few individuals are described by
several variables. Indeed, when its one-dimensional margins of each component
follow classical distributions, it provides a meaningful summary of the data by
its margin parameters. However, this model leads to biases when this assump-
tion of conditional independence is violated (for instance, see the application
of [VHH09]). In such a case, two methods can be envisaged. The first one
performs a selection of the variables in order to cluster intra-class independent
variables [MCMM09b, MCMM09a]. However, the risk of losing information is
present, so it can be more efficient to use the second method which clusters the
data with models relaxing the local independence. We now detail the two main
models related to this second method.

The location mixture model [Krz93, WB99] concatenates the whole categori-
cal variables in a single one following a full multinomial distribution. Moreover,
it assumes that the continuous variables follow a multivariate Gaussian distribu-
tion conditionally on the class and on each modality crossing. More precisely, its
means depends on both the class and categorical variables while its covariance
matrix is only set by the class membership. Thus, the conditional dependency
between the whole variables is taken into account but this model needs too
many parameters to obtain great success on real clustering problems. So, Jor-
gensen and Hunt [JH96, HJ99] propose an extension of the location mixture
model. In their extension, the variables are split into conditionally independent
blocks as such that each block is composed by at most one categorical variable.
Moreover, each block of variables follows a location model. Indeed, for each
block, the categorical variable follows a full multinomial distribution while the
continuous variables follow a multivariate Gaussian distribution conditionally
on the categorical one. However, this model has two main drawbacks. The first
one is about the class interpretation, since the margin distribution of a compo-
nent is not a classical distribution when the variable is continuous. Indeed, in
such a case, it consists in a mixture of univariate Gaussian distributions. The
second one is about the model selection, since the repartition of the variables
into blocks is estimated by an ascendant method. Indeed, the estimation starts
with the conditional independence assumption, then many models are proposed
according to the correlation coefficients computed per class in order to improve
an information criterion. However, this approach can be sub-optimal to per-
form the model selection. Furthermore, the choice of the correlation coefficient
between a continuous variable and a categorical one is subjective but crucial
since it determines the candidates during the model estimation.

The third main alternative approach, proposed by Everitt [Eve88], is the
underlying variables mixture model which permits to cluster continuous and or-
dinal or binary variables. It is assumed that each discrete variable arises from
a latent continuous variable. The probability distribution function of the whole
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continuous variables (observed and unobserved) is a multivariate Gaussian mix-
ture model. Thus, the probability distribution function of the observed variables
is computed by integrating each Gaussian component on the unobserved con-
tinuous variable set. However, in practice, this computation is not doable when
there are more than two discrete variables. More recently, in order to be able
to cluster more numerous binary variables, Morlini [Mor12] has developed an
extension of this model by estimating the scores of the latent variables from
binary data. However, the class interpretation is more difficult since the param-
eters summarize the distributions of the scores and not the distribution of the
native binary variables.

The aim of this paper is to present a model-based clustering for mixed data
of any kinds of variables admitting a cumulative distribution function. This
model has a double objective: to preserve classical distributions for all its one-
dimensional margin distributions of each component and to parsimoniously and
meaningfully modelize the intra-class dependencies.

This objective can naturally be achieved by the use of copulas [Joe97, Nel99,
GF07]. Indeed, copulas build a multivariate model by setting, on the one hand,
the one-dimensional margins, and, on the other hand, the dependency model
between variables. More precisely, the data distribution is approached by a full
parametricmixture model of Gaussian copulas whose the margin distributions of
each component are classical and whose the Gaussian copulas [Hof07, HNW11]
modelize the intra-class dependencies. Note that [SK12, MDCL13] already use
one Gaussian copula to define a distribution of mixed variables. The proposed
model is also a generalization of this approach to the finite mixture model
framework.

The new mixture model is meaningful since each class is summarized by its
proportion, by the parameters of each marginal distributions and by the corre-
lation matrix of the Gaussian copula which provides one coefficient per couple
of variables measuring the intra-class dependency. In addition, a principal com-
ponent analysis (PCA) computed per class is a straightforward by-product of
the model. Indeed, it is directly computed from the correlation matrix of the
class. It can be used to summarize the main intra-class dependencies and to
provide a scatter-plot of the individuals according to the class parameters.

This paper is organized as follows. Section 2 presents the mixture model of
Gaussian copulas introduced to cluster, its links with the existing models and its
contribution to the visualization of mixed variables. Section 3 is devoted to the
parameter estimation in a Bayesian framework since the maximum likelihood
estimate is unattainable [PCK06]. Section 4 illustrates the behavior of the
algorithm performing the inference and also the model robustness on numerical
experiments. Section 5 presents three applications of the new mixture model by
clustering three real data sets. Section 6 concludes this work.
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2 Mixture model of Gaussian copulas

2.1 Finite mixture model

Data

The vector of e mixed variables is denoted by x = (x1, . . . , xe) ∈ R
c × X , with

e = c + d. Its first c elements are the set of the continuous variables, defined
on the space R

c and further denoted by xc. Its last d elements are the set of
the discrete variables (integer, ordinal or binary), defined on the space X and
further denoted by xd. Note that if xj is an ordinal variable with mj modalities,
then it uses a numeric coding {1, . . . ,mj}.

Remark 2.1 (Notations). In this paper, we use the generic notation P (.; .)
for the cumulative distribution functions (cdf) and p(.; .) for the probability
distribution function (pdf).

Probability distribution function

Definition 2.2 (Finite mixture model of parametric distributions). Data x are
supposed to be drawn by the mixture model of g parametric distributions whose
the pdf is written as follows

p(x;θ) =

g
∑

k=1

πkp(x;αk), (1)

where θ = (π,α) denotes the whole parameters. The vector π = (π1, . . . , πg)
groups the proportions of each class k denoted by πk, and respecting the follow-
ing constraints 0 < πk ≤ 1 and

∑g
k=1 πk = 1, while the vector α = (α1, . . . ,αg)

groups the parameters of each class k denoted by αk.

Property 2.3 (Latent variable). A finite mixture model can be expressed by
using the latent variable z ∈ {1, . . . , g}. This categorical variable indicates
the class membership by using a condensed coding and follows the multino-
mial distribution Mg(π1, . . . , πg). Thus, (1) can be interpreted as the marginal
distribution of x based on the distribution of the couple (x, z).

2.2 Gaussian copula for mixed data

Component distributions following Gaussian copulas

Copulas allow to build a multivariate model by setting, on the one hand, the one-
dimensional margins, and, on the other hand, the dependency model between
variables. We now present the margin distribution of the components then
we focus on the Gaussian copula which is of interest for us since it provides
one correlation coefficient per couple of variables and since it allows an easy
parameter estimation.

One-dimensional margins of the components

For each component, we assume that the margin distributions of each component
belongs to the exponential family, in order to provide meaningful classes.
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Definition 2.4 (One-dimensional margins of the components). The margin
distribution of the variable xj , for the component k, belongs to the exponential
family and has p(xj ;βkj) for pdf and P (xj ;βkj) as cdf. More precisely,

• If xj is continuous, its margin of the component k follows a Gaussian
distribution with mean µkj and variance σ2

kj , i.e. x
j |z = k ∼ N1(µkj , σ

2
kj)

and βkj = (µkj , σ
2
kj) ∈ R× R

+∗.

• If xj is integer, its margin of the component k follows a Poisson distribu-
tion, i.e. xj |z = k ∼ P(βkj) and βkj ∈ R

+∗.

• If xj is ordinal, its margin of the component k follows a multinomial dis-
tribution, i.e. xj |z = k ∼ Mmj

(βkj), βkj being defined on the simplex of
size mj .

Dependency model of the components

The mixture model of Gaussian copulas assumes that each component k follows
a Gaussian copula whose the correlation matrix of size e× e is denoted by Γk.
We note Φe(.;Γk) the cdf of the e-variate centred Gaussian distribution with
correlation matrix Γk, and Φ−1

1 (.) the inverse cumulative distribution function
of N1(0, 1). Thus, we obtain the following definition of the component cdf.

Definition 2.5 (Cumulative distribution function of the components). For the
mixture model of Gaussian copulas, the cdf of the component k is written as

P (x;αk) = Φe(Φ
−1
1 (u1

k), . . . ,Φ
−1
1 (ue

k);0,Γk), (2)

where uj
k = P (xj ;βkj) and where αk = (βk,Γk) denotes the whole parameters

of the component k with βk = (βk1, . . . ,βke).

Property 2.6 (Standardized coefficient of correlation per class). The Gaussian
copula provides a robust coefficient of correlation per couple of variables. In-
deed, when both variables are continuous, it is equal to the upper bound of the
coefficient of correlation obtained by all the monotonic transformations of the
variables [KW97]. Furthermore, when both variables are discrete, it is equal to
the polychoric coefficient of correlation [Ols79].

Property 2.7 (Second latent variable). The mixture model of Gaussian cop-
ulas involves a second latent variable (added to the class membership) which
consists in an e-variate continuous variable denoted by y = (y1, . . . , ye) ∈ R

e.
Conditionally on the class membership, this variable follows an e-variate centred
Gaussian distribution. Indeed, if y|z = k ∼ Ne(0,Γk) and if

xj = P−1(Φ1(y
j);βkj), ∀j = 1, . . . , e, (3)

then the component k is a Gaussian copula whose the cdf is P (x;αk).

Mixture model of Gaussian copulas for mixed data

We introduce the function Ψ(xc;αk) =
(xj−µkj

σkj
; j = 1, . . . , c

)

and the space of

the antecedents of xd for the class k noted Sk(x
d) = Sc+1

k (xc+1)× . . .×Se
k(x

e).
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The interval Sj
k(x

j) =]b⊖k (x
j), b⊕k (x

j)] is defined for j = c + 1, . . . , e and its
bounds are b⊖k (x

j) = Φ−1
1 (P (xj − 1;βkj)) and b⊕k (x

j) = Φ−1
1 (P (xj ;βkj)). We

now define the pdf of the components according to (2) as proposed by [SK12].

Definition 2.8 (Mixture model of Gaussian copulas). Data x follows a mixture
model of Gaussian copulas if its pdf is the finite mixture model defined in (1)
whose the pdf of the component k is written as

p(x;αk) = p(xc;αk)p(x
d|xc;αk) (4)

=
φc(Ψ(xc;αk);0,Γkcc)

∏c
j=1 σkj

∫

Sk(xd)

φd(u;µ
d

k,Σ
d

k)du, (5)

where Γk =

[

Γkcc Γkcd

Γkdc Γkdd

]

is decomposed into sub-matrices, for instance Γkcc

is the sub-matrix of Γk composed by the rows and the columns related to the
observed continuous variables. Moreover, µd

k is the conditional mean of yd

defined by µd

k = ΓkdcΓ
−1
kccΨ(xc;αk) and Σd

k is its conditional covariance matrix
defined by Σd

k = Γkdd − ΓkdcΓ
−1
kccΓkcd.

Property 2.9 (Generative model). The mixture model of Gaussian copulas
involves finally the generative model split into the following three steps:

• Class membership sampling : z ∼ Mg(π1, . . . , πg)

• Gaussian copula sampling : y|z = k ∼ Ne(0,Γk)

• Observed data deterministic computation: x is obtained from (3).

2.2.1 Remarks

• Homoscedastic models. When the sample size is small, the trade off be-
tween the bias and the variance of the estimate may be better if some
constraints on the parameter space are added. Thus, we propose a par-
simonious version of the mixture model of Gaussian copulas by assuming
the equality between the correlation matrices, so

Γ1 = . . . = Γg. (6)

Note that this model is named homoscedastic since the covariance matrices
of the latent Gaussian variables are equal between classes.

• Number of parameters. The heteroscedastic (respectively homoscedastic)
mixture model of Gaussian copulas needs νHe (respectively νHo) parame-
ters where

νHe = (g−1)+g





e(e− 1)

2
+

d
∑

j=1

νj



 and νHo = (g−1)+
e(e− 1)

2
+g

d
∑

j=1

νj ,

(7)
where νj denotes the number of parameters of the margin distribution of
the variable j for one component. More precisely, with the specific margin
distribution of the components, νj is equal to

νj =







2 if xj is numeric
1 if xj is discrete

mj − 1 if xj is ordinal.
(8)

6



• Model identifiability. The mixture model of Gaussian copulas is identifi-
able (in the sense of [Tei63, YS+68]) if, at least, one variable is continuous
or integer. The proof is given in Appendix A.

2.3 Strengths of the mixture model

Related models

The Gaussian copula mixture model allows to generalize many classical model-
based clusterings, among them one can cite the following four.

• Obviously, if the correlation matrices are diagonal (i.e. Γk = I, ∀k =
1, . . . , g), then the mixture model of Gaussian copulas is equivalent to the
locally independent mixture model.

• If all the variables are continuous (i.e. c = e and d = 0), then the mix-
ture model of Gaussian copulas becomes a multivariate Gaussian mixture
model without constraint between the parameters [BR93].

• The mixture model of Gaussian copulas is linked to the binned Gaussian
mixture model. For instance, it is equivalent, when data are ordinal, to
the mixture model of [Gou06]. In such a case, this model is stable by
fusion of modalities.

• When the variables are both continuous and ordinal, the mixture model of
Gaussian copulas is a new parametrization of the mixture model proposed
by Everitt [Eve88]. However, Everitt estimates directly the space Sk(x

d)
containing the antecedents of xd and not the margin parameters. Thus,
the maximum likelihood inference is also performed via a simplex algo-
rithm dramatically limiting the number of ordinal variables. Note that our
approach for the inference avoids this drawback (see details in Section 3).

Data visualization per class: a by-product of Gaussian copulas

We can use the model parameters to obtain a visualization of the individuals per
class and to bring out the main intra-class dependencies. Thus, for the class k,
we firstly compute the coordinates equal to E[y|x, z = k;αk] and we secondly
project them on the principal component analysis space of the Gaussian copula
of the component k, obtained by the spectral decomposition of Γk.

The individuals drawn by the component k follow a centred Gaussian dis-
tribution in the factorial map, so they are close to the origin. Those drawn by
another component have an expectation different to zero, so they are farther to
the origin. Finally, the correlation circle summarizes the intra-class correlations.
The following example illustrates this phenomenon.

Example 2.10 (Mixture model of Gaussian copulas and visualization per class).
Let the bi-component mixture model of Gaussian copulas composed by three
variables (one continuous, one integer and one binary), in this order, with

π = (0.5, 0.5), β11 = (−2, 1), β12 = 5, β13 = (0.5, 0.5),β21 = (2, 1), β22 = 15,

β23 = (0.5, 0.5), Γ1 =





1 −0.4 0.4
−0.4 1 0.4
0.4 0.4 1



 and Γ2 =





1 0.8 0.1
0.8 1 0.1
0.1 0.1 1



 .

7



−4 −2 0 2 4

5
10

15
20

25

x1

x2

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

−6 −4 −2 0 2

−
2

−
1

0
1

2
3

first principal component axis

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

 a
xi

s

(b)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

inertia: 60.8 %

in
er

tia
: 3

2.
5 

%

continuous

integer

binary

(c)

Figure 1: Example of visualization: (a) scatter-plot of the individuals described
by three variables: one continuous (abscissa), one integer (ordinate) and one
binary (symbol); (b) individuals scatter-plot in the first component map of
class 2; (c) variables representation in the first component map of class 2. The
color indicates the class memberships.

The visualization of the class 2 is presented in Figure 1. Concerning the individ-
uals, the scatter-plot shows a centred class (the red one) and a second class (the
black one) located on the left side. Concerning the variables, the representation
points out by a strong intra-class correlation between the continuous and the
integer variables.

3 Bayesian inference

Aim We observe the sample x = (x1, . . . ,xn) composed by n independent
individuals xi ∈ R

c ×X assumed to be drawn by a mixture model of Gaussian
copulas. The aim is to infer the parameters according to the data.

Frequentist context The inference by maximum likelihood is a difficult prob-
lem for the full parametric copulas when the margin parameters are unknown.
So, it is often replaced by the Inference Function for Margins method perform-
ing the inference in two steps (see Chapter 10 of [Joe97]). The first step esti-
mates the margin parameters by maximizing each univariate likelihood while the
second step estimates the correlation parameters by maximizing the likelihood
conditionally on the margin parameters. However, the maximum likelihood es-
timate can be essentially obtained when the variables are continuous by using
the fixed-point algorithm proposed by [SFK05]. Indeed, this approach can not
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be extended to the mixed data setting. Thus, an EM algorithm can not be
implemented to obtain the maximum likelihood estimates of a mixture model
of Gaussian copulas in the mixed data case. Furthermore, even if the M step
would be explicit, the E step would be too much time consuming, if the discrete
variables are numerous, because of the computation of the integral of dimension
d defined in (5).

Bayesian context In order to avoid both previous problems, we prefer to
work in a Bayesian framework. We firstly define the prior distributions and we
secondly present the Gibbs sampler performing the inference.

3.1 Maximum a posteriori estimate

Prior distributions

Independence assumption A classical assumption is to suppose the inde-
pendence between the prior distributions, thus

p(θ) = p(π)

g
∏

k=1



p(Γk)

d
∏

j=1

p(βkj)



 . (9)

Proportions The classical conjugate prior distribution of the proportion vec-
tor is the Jeffreys non informative one which is a Dirichlet distribution whose
the parameters are equal to 1/2

π ∼ Dg

(

1

2
, . . . ,

1

2

)

. (10)

Margin parameters The prior distribution of the margin parameters are the
classical conjugate ones. More precisely,

• if xj is continuous, then βkj denotes the parameters of a univariate Gaus-
sian distribution so p(βkj) = p(µkj |σ2

kj)p(σ
2
kj) with

σ2
kj ∼ G−1(c0, C0) and µkj |σ2

kj ∼ N1(b0, σ
2
kj/N0), (11)

where G−1(., .) denotes the inverse gamma distribution. With an empiri-
cal Bayesian approach, the hyper-parameters (c0, C0, b0, N0) are fixed as
proposed by [Raf96], so c0 = 1.28, C0 = 0.36Var(xj), b0 = 1

n

∑n
i=1 x

j
i and

N0 = 2.6
argmax x

j−argmin x
j .

• if xj is integer, βkj denotes the parameter of a Poisson distribution and

βkj ∼ G(a0, A0). (12)

According to [FS06], the values of hyper-parameters a0 and A0 are empir-
ically fixed to a0 = 1 and A0 = a0n/

∑n
i=1 x

j
i .

• if xj is ordinal, βkj denotes the parameter of a multinomial distribution
and its Jeffreys non informative conjugate prior involves that

βkj ∼ Dmj

(

1

2
, . . . ,

1

2

)

. (13)
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Correlation matrices The conjugate prior of a covariance matrix is the In-
verse Wishart distribution denoted by W−1(., .). So, it is natural to define the
prior of the correlation matrix Γk from the prior of the correlation matrix Λk

since Γk|Λk is deterministic [Hof07]. So,

Λk ∼ W−1(s0, S0) and ∀1 ≤ h, ℓ ≤ e, Γk[h, ℓ] =
Λk[h, ℓ]

√

Λk[h, h]Λk[ℓ, ℓ]
, (14)

where (s0, S0) are two hyper-parameters. However, the classical approach con-
sisting in fitting the hyper-parameters through an empirical Bayesian approach
is not possible since y is not observed. We thus put s0 = e+ 1 and S0 equal to
the identity matrix, since in this case, the margin distribution of each correlation
coefficient is uniform on ]− 1, 1[ [BMM00].

Posterior distribution

The Bayesian inference is performed by sampling a sequence of parameters from
their posterior distribution. In practice, we use a Gibbs sampler which is the
most popular approach to perform a Bayesian inference of mixture model since
it uses the latent structure of the data. Indeed, it alternatively samples the
class memberships conditionally on the parameters and on the data, and the
parameters conditionally on the class memberships and on the data. Since its
stationary distribution is p(θ, z|x), the sequence of the generated parameters
is drawn by the marginal posterior distribution p(θ|x). This algorithm relies
on two instrumental variables: the class membership of the individuals of x

denoted by z = (z1, . . . , zn) and the Gaussian vector of the individuals denoted
by y = (y1, . . . ,yn).

3.2 Gibbs sampler

Algorithm 3.1 (The Gibbs sampler). Starting from an initial value θ(0), its
iteration (r) is written as

z(r),y(r−1/2) ∼ z,y|x,θ(r−1) (15)

β
(r)
kj ,y

j(r)
[rk] ∼ βkj ,y

j
[rk]|x,y

̄(r)
[rk] , z

(r),β
(r)
k̄ ,Γ

(r−1)
k (16)

π(r) ∼ π|z(r) (17)

Γ
(r)
k ∼ Γk|y(r), z(r), (18)

where y[rk] = y
{i:z

(r)
i

=k}
, y

̄(r)
i = (y

1(r)
i , . . . , y

j−1(r)
i , y

j+1(r−1/2)
i , . . . , y

e(r−1/2)
i )

and β
(r)
k̄ = (β

(r)
k1 , . . . ,β

(r)
kj−1,β

(r−1)
kj+1 , . . . ,β

(r−1)
ke ).

Remark 3.2 (Twice sampling of the Gaussian variable). The Gaussian variable
y is twice generated during one iteration of the Gibbs sampler but, obviously,
its stationary distribution stays unchanged. This twice sampling is mandatory
because of the strong dependency between y and z, and between y

j
[rk] and βkj .

We now detail the four steps of the Gibbs sampler and we point out the
difficulties to sample from (15) and (16). Thus, both steps are modified to
obtain the Metropolis-within-Gibbs sampler detailed in the next section.
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Class membership and Gaussian vector sampling

The aim is to sample from (15). By using the independence between the individ-

uals, the vectors (z,y) are easily sampled conditionally on (x,θ(r−1)) according
to

p(z,y|x,θ(r−1)) =
n
∏

i=1

p(zi|xi,θ
(r−1))p(yi|xi, zi,θ

(r−1)). (19)

We now detail both distributions of the right side of the above equation.

• Each z
(r)
i is independently sampled from the following multinomial distri-

bution
zi|xi,θ

(r−1) ∼ Mg(ti1(θ
(r−1)), . . . , tig(θ

(r−1))), (20)

where tik(θ
(r−1)) =

π
(r−1)
k

p(xi;α
(r−1)
k

)

p(xi;θ(r−1))
is the posterior probability that xi

has been drawn by the component k with the parameters θ(r−1).

• Each y
(r−1/2)
i is independently sampled by remarking that the first c ele-

ments of yi, denoted by yc

i , are deterministic for a fix triplet (xi, zi,θ
(r−1))

as such yc

i = Ψ(xc

i ;α
(r−1)
zi ) while its last d elements, denoted by yd

i , are

sampled according to a d-variate Gaussian distributionNd(0,Γ
(r−1)
zi ) trun-

cated on the space Szi(x
d

i )

p(yd

i |xi, zi,θ
(r−1)) ∝ φd(y

d

i ;µ
d(r−1)
zi ,Σd(r−1)

zi )1{yd

i
∈Szi

(xd

i
)}, (21)

where µ
d(r−1)
zi = Γ

(r−1)
zidc Γ

−1(r−1)
zicc Ψ(xc

i ;α
(r−1)
zi ).

Remark 3.3 (Difficulties to compute tik(θ
(r−1))). Note that the computation

of tik(θ
(r−1)) involves to compute the integral defined in (5) which can be too

much time consuming if d is large (d > 6). Thus, the sampling according to (19)
is also performed by one iteration of a Metropolis-Hastings algorithm avoiding
this difficulty and detailed in the next section.

Margin parameter and Gaussian vector sampling

The aim is the sampling from (16) which can be decomposed as follows

p(βkj ,y
j
[rk]|x,y

̄(r)
[rk] , z

(r),β
(r)
k̄ ,Γ

(r−1)
k ) = p(βkj |x,ȳ(r)

[rk] , z
(r),β

(r)
k̄ ,Γ

(r−1)
k )

× p(yj
[rk]|x,y

̄(r)
[rk] , z

(r),β
(r)
k̄ ,βkj ,Γ

(r−1)
k ). (22)

We now detail both distributions of the right side of the above equation.

• The full conditional distribution of βkj is defined with an unknown inter-
cept as such

p(βkj |x,y
̄(r)

[rk] , z
(r),β

(r)
k̄ ,Γ

(r−1)
k ) ∝ p(βkj)

∏

{i:z
(r)
i

=k}

p(xj
i |y

↑j(r)
i , z

(r)
i ,Γ

(r−1)
k ,βkj).

(23)
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The conditional distribution of xj
i |y

↑j(r)
i , z

(r)
i ,Γ

(r−1)
k with z

(r)
i = k used

on the right side of the above equation is defined by

p(xj
i |y

↑j(r)
i , z

(r)
i ,Γ

(r−1)
k ,βkj) =







φ1(
x
j
i
−µkj

σkj
; µ̃i, σ̃

2
i )/σkj if 1 ≤ j ≤ c

Φ1(
b⊕(x

j
i
)−µ̃i

σ̃i
)− Φ1(

b⊖(x
j
i
)−µ̃i

σ̃i
) otherwise,

(24)

where the real µ̃i = Γ
(r−1)
k [j, ̄]Γ

(r−1)
k [̄, ̄]−1y

↑j(r)
i is the full conditional

mean of yji , Γk[j, ̄] being the row j of Γk deprived of the element j
and Γk[̄, ̄] being the matrix Γk deprived of the row and the column
j, and where σ̃2

i is the full conditional variance of yji defined by σ̃2
i =

1− Γ
(r−1)
k [j, ̄]Γ

(r−1)
k [̄, ̄]−1Γ

(r−1)
k [̄, j].

• By the independence between the individuals, the full conditional distri-
bution of yj

[rk] is explicitly defined as

p(yj
[rk]|x,y

̄(r)
[rk] , z

(r),β
(r)
k̄ ,βkj ,Γ

(r−1)
k ) =

∏

{i:z
(r)
i

=k}

p(yji |xj
i ,y

↑j(r)
i , z

(r)
i ,βkj ,Γ

(r−1)
k ). (25)

If xj is a continuous variable (i.e. 1 ≤ j ≤ c), when z
(r)
i = k, the full

conditional distribution of yji is deterministic as such

y
j(r)
i =

xj
i − µ

(r)
kj

σ
(r)
kj

. (26)

If xj is a discrete variable (i.e. c + 1 ≤ j ≤ e), when z
(r)
i = k, the full

conditional distribution of yji is a truncated Gaussian distribution as such,

p(yji |xj
i ,y

↑j(r)
i , z

(r)
i ,β

(r)
kj ,Γ

(r−1)
k ) =

φ1(y
j
i ; µ̃i, σ̃

2
i )

p(xj
i ;β

(r)
kj )

1
{yj

i
∈[b

⊖(r)
k

(xj

i
),b

⊕(r)
k

(xj

i
)]}
,

(27)

where b
⊖(r)
k (xj

i ) = P (xj
i − 1;β

(r)
kj ) and b

⊕(r)
k (xj

i ) = P (xj
i ;β

(r)
kj ).

Remark 3.4 (Difficulties to sample the margin parameters). The sampling of
βkj is not easily performed since the intercept defined in (23) is unknown. This
step is then replaced by one iteration of a Metropolis-Hastings algorithm as
detailed in the next section. However, note that the sampling of yj

[rk] from (27)

is easily performed.

Vector of proportions sampling

The aim is the sampling from (17) which is classical for the mixture model. The
conjugate Jeffreys non informative prior involves that

π|z(r) ∼ Dg

(

n
(r)
1 +

1

2
, . . . , n(r)

g +
1

2

)

, (28)

where n
(r)
k =

∑n
i=1 1{z

(r)
i

=k}
.

12



Correlation matrix sampling

The aim is the sampling from (18). We use the approach proposed by [Hof07]
in the case of semiparameteric Gaussian copula which is divided into two steps.
Firstly, a covariance matrix is generated by its explicit posterior distribution,
and secondly, the correlation matrix is deduced by normalizing the covariance
matrix. When (y, z) are known, we are in the well-known case of a multivariate
Gaussian mixture model with known means. Thus, the sampling according to
Γk|y(r), z(r) is performed by the two following steps

Λk|y(r), z(r) ∼ W−1






s0 + n

(r−1)
k , S0 +

∑

{i:z
(r)
i

=k}

y
(r)T
i y

(r)
i






(29)

∀1 ≤ h, ℓ ≤ e, Γk[h, ℓ] =
Λk[h, ℓ]

√

Λk[h, h]Λk[ℓ, ℓ]
. (30)

Remark 3.5 (Sampling of the correlation matrices for the homoscedastic model).
As the homoscedastic model assumes the equality between the correlation ma-
trices, in such a case we only sample one Λ so (29) is replaced by

Λ|y(r), z(r) ∼ W−1

(

s0 + n, S0 +

n
∑

i=1

y
(r)T
i y

(r)
i

)

, (31)

and we put Λk = Λ for k = 1, . . . , g.

According to both Remarks 3.3 and 3.4, the first two steps of the Gibbs
sampler involve difficulties avoided by the following hybrid MCMC algorithm.

3.3 Metropolis-within-Gibbs sampler

When some steps of a Gibbs sampler cannot be easily simulated, it may be
useful to perform the inference via a hybrid MCMC algorithm [RC04]. Thus,
we use the Metropolis-within-Gibbs sampler which replaces both sampling from

z,y|x,θ(r−1) and βkj |x,ȳ(r)
[rk] , z

(r),β
(r)
k̄ ,Γ

(r−1)
k (defined by (15) and (23)) by one

iteration of two Metropolis-Hastings steps that we now detail.

Class membership and Gaussian vector sampling

The step (15) is performed via one iteration of the Metropolis-Hastings algo-
rithm. This algorithm is independently performed to sample each couple (zi,yi)
since the individuals are independent. Its stationary distribution is

p(zi,yi|xi,θ
(r−1)) ∝ πzip(xi,yi|zi,θ(r−1)). (32)

Note that p(xi,yi|zi,θ(r−1)) = φe(yi;0,Γ
(r−1)
zi )1

{yc

i
=Ψ(xc

i
;α

(r−1)
zi

)}
1{yd

i
∈Szi

(xd

i
)}.

The Metropolis-Hastings algorithm samples a candidate (z⋆i ,y
⋆
i ) by the in-

strumental distribution q1(.|xi,θ
(r−1)) which uniformly samples z⋆i then which

samples y⋆
i |z⋆i as follows. Conditionally on z⋆i , this instrumental distribution

is deterministic for the first c elements of y⋆
i , denoted by y⋆c

i as such y⋆c
i =

13



Ψ(xc

i ;α
(r−1)
z⋆
i

), while it samples the last d elements of y⋆
i denoted by y⋆d

i accord-

ing to a multivariate independent Gaussian distribution truncated on Sz⋆
i
(xd

i ).
Thus,

q1(zi,yi|xi,θ
(r−1)) =

1

g

φd(y
d

i ;0, I)
∏e

j=c+1 p(x
j
i ;β

(r−1)
zij

)
1
{yc

i
=Ψ(xc

i
;α

(r−1)
zi

)}
1{yd

i
∈Szi

(xd

i
)}.

(33)
The candidate is accepted with the probability

ρ
(r)
1i = min







πz⋆
i
φe(y

⋆
i ;0,Γ

(r−1)
z⋆
i

)

π
z
(r−1)
i

φe(y
(r−1)
i ;0,Γ

(r−1)

z
(r−1)
i

)

q1(z
(r−1)
i ,y

(r−1)
i |xi)

q1(z⋆i ,y
⋆
i |xi)

; 1







. (34)

Thus, at the iteration (r) of the Algorithm 3.1, the sampling according to (15)
is performed via one iteration of the following Metropolis-Hastings algorithm.

Algorithm 3.6 (Metropolis-Hastings with p(zi,yi|xi,θ
(r−1)) as stationary dis-

tribution).

(z⋆i ,y
⋆
i ) ∼ q1(z,y|xi) (35)

(z
(r)
i ,y

(r−1/2)
i ) =

{

(z⋆i ,y
⋆
i ) with probability ρ

(r)
1i

(z
(r−1)
i ,y

(r−1)
i ) with probability 1− ρ

(r)
1i .

(36)

Margin parameter sampling

The step (16) is performed in two steps. Firstly the sampling of β
(r)
kj according

to (23) is performed via one iteration of the Metropolis-Hastings algorithm

whose the stationary distribution is p(βkj |x,ȳ(r)
[rk] , z

(r),β
(r)
k̄ ,Γk). Secondly, the

sampling of y
j(r)
[rk] is performed according to its conditional distribution given

by (27). The instrumental distribution of the Metropolis-Hastings algorithm
q2(.|x, z) samples a candidate β⋆

kj according to the posterior distribution of βkj

under the conditional independence assumption (this distribution is explicit
since the conjugate prior distributions are used). So,

q2(.|x, z) = p(βkj |x, z,Γk = I). (37)

Thus, according to (23), the candidate β⋆
kj is accepted with the probability

ρ
(r)
2 = min











p(β⋆
kj)q2(β

(r−1)
kj |x, z)

p(β
(r−1)
kj )q2(β

⋆
kj |x, z)

∏

{i:z
(r)
i

=k}

p(yj
i |x

j
i ,y

↑j(r)
i , zi,β

⋆
kj ,Γ

(r−1)
k )

p(yj
i |x

j
i ,y

↑j(r)
i , zi,β

(r−1)
kj ,Γ

(r−1)
k )

; 1











.

Thus, at the iteration (r) of the Algorithm 3.1, the sampling according to (16)
is performed via one iteration of the following Metropolis-Hastings algorithm.

Algorithm 3.7 (Metropolis-Hastings with p(βkj |x[rk],y
̄(r)
[rk] , z,β

(r)
k̄ ,Γk) as sta-

tionary distribution).

β⋆
kj ∼ q2(βkj |x, z) (38)

β
(r)
kj =

{

β⋆
kj with probability ρ

(r)
2

β
(r−1)
kj with probability 1− ρ

(r)
2 .

(39)
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Remark 3.8 (Instrumental distributions). Note that, the smaller are the intra-
class dependencies of the variable x, the closer of the stationary distributions
are the instrumental distributions of both Metropolis-Hastings algorithms.

3.4 Label switching problem

The label switching problem is generally solved by specific procedures [Ste00].
However, based on the argument of [JB14], these techniques are principally
impacting when g is known.

When the model is used to cluster, the number of classes is unknown, and the
model selection is performed by the BIC criterion which simultaneously avoids
the label switching phenomenon. Indeed, on the one hand, this criterion selects
quite separated classes when the sample size is small, so the label switching is
not present in practice because of the class separability. On the other hand, even
if it can select more classes when the sample size increases, the label switching
problem is dealing since this phenomenon vanishes asymptotically.

Obviously, when the number of classes is fixed and the size of sample is small,
the label switching problem can occur. In such a case, our advice is naturally
to use the procedures of [Ste00].

4 Simulations

In order to illustrate the properties of the model, two numerical experiments are
performed. The first one consists in simulating data according to the proposed
model and to study the convergence of the estimates. The second one consists in
simulating data according to a mixture of Poisson distributions [KT08] to show
the robustness of the proposed model. The estimate is computed by averaging
the parameters sampled by the Gibbs algorithm.

Experiment conditions

For each situation, 100 samples are generated, the algorithm is initialized with
the maximum likelihood estimate of the locally independent model. A burn-in is
performed during 1000 iterations even if the parameter initialization is relevant
when the intra-class dependencies are small. The algorithm is stopped after 1000
iterations. The maximum a posteriori estimate is approximated by the mean of
the sampled parameters. The Kullback-Leibler divergence is approximated via
10000 iterations of a Monte-Carlo method.

Simulation 4.1 (Mixed variables: one continuous, one integer and one binary).
We consider the mixture model of Gaussian copulas detailed in Example 2.10
and composed by one continuous variable, one integer variable and one binary
variable. Figure 2 illustrates the decreasing behavior of the Kullback-Leibler di-
vergence of the model with the maximum a posteriori estimate from the model
with the true parameters according to the size of sample in the mixed case.
This simulation illustrates the good behavior of the Metropolis-within-Gibbs
algorithm. Furthermore, the approximation of the maximum a posteriori esti-
mate by the mean of the parameters sampled by this algorithm is efficient.

Simulation 4.2 (Robustness of the mixture model of Gaussian copulas). Dur-
ing these experiments, data are sampled according to a bivariate Poisson mixture

15
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Figure 2: Decrease of the Kullback-Leibler divergence of the model with the
maximum a posteriori estimate from the model with the true parameter.

model [KT08] whose the margin parameter are denoted by αk = (λk1, λk2, λk3).
The simulation is performed with the following values of the parameters

π = (1/3, 2/3), λ1h = h and λ2h = 3 + h, for h = 1, 2, 3. (40)

The error rate of this model computed with the Bayes’ rule is equal to 9.5%.
Results show that the flexibility of the mixture model of Gaussian copulas allows
to efficiently fit these simulated data. Indeed, the Kullback-Leibler divergence
becomes very small when the size of the sample increases. Furthermore, the
error rate of the model seems to converge to a value just a little bit larger
than the theoretical one (9.5%). We also note that the margin parameters of
both components and the correlation coefficients seem to converge to their true
values.

5 Applications

We now cluster three real data sets by using the mixture model of Gaussian cop-
ulas. The parameters are estimated via the Metropolis-with-Gibbs algorithm
initialized on the maximum likelihood estimate of the locally independent model.
A burn-in is performed during 1000 iterations even if the parameter initializa-
tion is relevant when the intra-class dependencies are small. The algorithm is
stopped after 1000 iterations and he estimate is obtained by taking the mean
of the sampled parameters. The model selection is performed by using two in-
formation criteria (BIC criterion [Sch78], ICL criterion [BCG00]) computed on
the maximum a posteriori estimate.

5.1 Liver disorder data set

The data

This data set [For90] describes 345 individuals by five blood tests which are
thought to be sensitive to liver disorders that might arise from excessive alco-
hol consumption (five continuous variables) and by the number of quart-pint
equivalents of alcoholic beverages drunk per day (one integer variable).
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Figure 3: Results of Simulation 4.2: (a) Kullback-Leibler divergence of the
estimated model from the true one; (b) Error rate of the estimated model; (c)
Value of the first margin parameter for the class 1; (d) Value of the correlation
coefficient between both variables for the class 1.

Model selection

We estimate the three mixture models (locally independent one, heteroscedas-
tic Gaussian copula mixture and homoscedastic Gaussian copula mixture) for
different numbers of classes. Table 1 presents the values of both used infor-
mation criteria. The values of both criteria obtained with the bi-component
homoscedastic mixture model of Gaussian copulas are the best ones. However,
note that the three models select two components.

Interpretation of the best model

We now describe the best model according to both criteria (the homoscedastic
bi-component mixture model of Gaussian copulas) by using the margin param-
eters and the intra-class dependencies summarized by Figure 4. The model
considers two classes whose the majority one (π1 = 0.60) groups the individuals
having a strong alcoholic consumption (β1drinks = 10.6) and large values of the
five blood tests especially for the tests Sogt and Gammagt. The miniority class
groups the individuals having a small alcoholic consumption (β2drinks = 1.36)
and smaller values of the blood tests. For both classes, the three following blood
tests are positively correlated with Sgpt, Sopt and Gammagt while the test Mcv
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g 1 2 3 4 5 6
BIC loc. indpt. -8690 -8017 -8039 -8092 -8130 -8235

hetero. -8551 -7935 -8103 -8157 -8277 -8287
homo. -8551 -7898 -7999 -8032 -8050 -8123

ICL loc. indpt. -8690 -8026 -8060 -8117 -8208 -8341
hetero. -8551 -7943 -8120 -8171 -8322 -8306
homo. -8551 -7907 -8032 -8043 -8088 -8205

Table 1: Values of the BIC and ICL criteria for the three mixture models
estimated on the liver disorder data set.

is positively correlated with the number of alcoholic drinks.

Gammagt
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Figure 4: Summary of the homoscedastic bi-component mixture model of Gaus-
sian copulas for the liver disorder data set. Class 1 is displayed in black and
Class 2 in red.

Partition study

As all the variables are numerical, Figure 5a can display the individuals and
their class memberships in the first classical PCA map. However, as classes are
not well separated in this map, the structure of the data is not brought out.
Thus, Figure 5b displays the individuals in the first PCA map of the class 1.
In this map, classes are better separated since the first class (black circles) is
centred while the second class (red triangles) is on the top part of the graphic.
So, the second axis is discriminant. This summary is in agreement with the class
interpretation since this axis is built by the variables Mcv and drinks which are
themselves discriminant according to their margin parameters.

Note that the partitions obtained by the three bi-component models are
similar but not identical as shown by Table 2.
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(b) First PCA of the class 1

Figure 5: Visualization of the partition by the homoscedastic bicomponent mix-
ture model of Gaussian copulas for the liver disorder data set (Class 1 is drawn
by black circles and Class 2 by red triangles).

hetero.
c1 c2

c1-homo. 190 0
c2-homo. 5 150

(a)

loc. indpt.
c1 c2

c1-homo. 190 0
c2-homo. 7 148

(b)

Table 2: Confusion matrices between the partition obtained by the homoscedas-
tic bi-component model and the partition obtained by: (a) the heteroscedastic
bi-component model; (b) the locally independent model.

Conclusion

On this data set, the mixture model of Gaussian copulas better fits the data
according to the information criteria than the locally independent model, even
if both models select the same number of classes. The PCA per class allows to
summarize the intra-class dependencies and to bring out the separation of both
classes hidden by a classical PCA.

5.2 Wine data set

The data

The data set [CCA+09] contains 6497 variants of the Portuguese “Vinho Verde”
wine (1599 red wines and 4898 white wines) described by eleven physiochemical
continuous variables (fixed acidity, volatile acidity, citric acidity, residual sugar,
chlorides, free sulfur dioxide, total density dioxide, density, pH, sulphates, alco-
hol) and one integer variable (quality of the wine evaluated by experts). The
kinds of the wines (red or white) are hidden and we cluster the data set with
three different mixture models. Note that one white wine (number 4381) is
excluded of the study since it is an outlier.
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Model selection

We estimate the three mixture models (locally independent one, heteroscedas-
tic Gaussian copula mixture and homoscedastic Gaussian copula mixture) for
different numbers of classes and we present the values of both used information
criteria in Table 3. Both criteria distinctly select the bi-component heteroscedas-
tic mixture model of Gaussian copulas. We now show that this model allows
to well separate the white wines from the red ones then we give the model
interpretation.

g 1 2 3 4 5 6
BIC loc. indpt. -63516 -61069 -61010 -55967 -60250 -57163

hetero. -44675 -34520 -39724 -44692 -44484 -48349
homo. -44675 -39372 -38289 -45209 -43217 -42417

ICL loc. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero. -44675 -34688 -40176 -44933 -44758 -48959
homo. -44675 -39607 -38791 -45380 -43345 -42667

Table 3: Values of the BIC and ICL criteria for the three mixture models
estimated on the wine data set.

Partition study

Table 4 presents the confusion matrices in order to compare the relevance of
the estimated partitions according to the true one (wine color). These results
strengthen the idea that the model best fitting the data is the bi-component
heteroscedastic Gaussian copula mixture models. Indeed, its partition is the
closest to the true one.

white red
c1 4359 9
c2 538 1590

(a)

white red
c1 2441 12
c2 1911 7
c3 545 1580

(b)

white red
c1 2547 1561
c2 2007 35
c3 275 3
c4 68 0

(c)

Table 4: Confusion matrices between the true partition and the estimated parti-
tion by: (a) the bi-component heteroscedastic Gaussian copula mixture; (b) the
tri-component homoscedastic Gaussian copula mixture; (c) the four-component
locally independent mixture.

Figure 6 displays the individuals in a PCA map of both classes estimated
by the bi-component heteroscedastic mixture model of Gaussian copulas. Ac-
cording to these scatter-plots, classes are well-separated. We now detail its
parameters.

Interpretation of the best model

The following interpretation is based on the margin parameters and on the
intra-class correlation matrices summarized by Figure 7. The majority class
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Figure 6: Visualization of the partition by the homoscedastic bicomponent mix-
ture model of Gaussian copulas for the wine data set (Class 1 is drawn by black
circles and Class 2 by red triangles).

(π1 = 0.59) is principally composed by white wines. This class is characterized
by lower rates of acidity, pH, chlorides and sulphites than them of the minority
class (π2 = 0.41) which is principally composed by red wines. The majority class
has larger values for both sulfur dioxide measures and the alcoholic rate. Note
that the wine quality of both classes is similar (β1quality = 5.96 and β2quality =
5.58). The majority class is characterized by a strong correlation between both
sulfur measures opposite to a strong correlation between the density and acidity
measures. The minority class underlines that the wine quality is dependent with
a larger alcoholic rate and small values for the chlorides and acidity measures.
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Figure 7: Summary of the homoscedastic bi-component Gaussian copula mix-
ture model for the wine data set. Class 1 is drawn in black and Class 2 in
red.
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Conclusion

On this data set, the Gaussian copula mixture models allows to reduce the
number of classes and to better fit the data. Furthermore, its impact on the
estimated partition is significant. Based on the individual scatter-plots in the
model PCA, the estimated classes are relevant since they are well-separated.
Finally, the estimation of the intra-class dependencies helps the interpretation
since its underlines the link between the wine quality of the minority class and
its physiochemical properties.

5.3 Forest fire data set

The data

This data set describes 517 forest fires [CM07] in the north-east region of Por-
tugal by using meteorological variables: seven continuous variables (four about
the FWI system: FFMC, DMC, DC, ISI and two about the meteorology: tem-
perature and relative humidity), two integer variables relative to the spatial
coordinates and three binary ones indicating the presence of rain, the season
(summer or not summer) and the day (week-end or not week-end).

Model selection

Table 5 presents the values of both used information criteria for the three mix-
ture models. According to both criteria, the model better fitting the data is the
homoscedastic mixture model of Gaussian copulas with three components.

g 1 2 3 4 5 6
BIC loc. indpt. -16559 -16296 -16473 -17370 -17379 -17454

hetero -16559 - 16002 -16171 -16410 -16666 -16791
homo. -16559 -15899 -15824 -16300 -15946 -16034

ICL loc. indpt. -16559 -16301 -16494 -17401 -17400 -17527
hetero -16559 -16014 -16205 -16471 -16721 -16871
homo. –16559 -15907 -15893 -16352 -16020 -16137

Table 5: Values of the BIC and ICL criteria for the three mixture models
estimated on the forest fire data set.

Interpretation of the best model

The following interpretation is based on the margin parameters on the intra-class
correlation matrices summarized in Figure 8. The majority class (π1 = 0.57)
groups the fires developed with high temperature and small relative humidity.
The measures of FMC, DMC and ISI are high. The second class (π2 = 0.26)
groups the winter fires. These fires are developed with a strong wind and no
rain. All the FWI measures take small values. The minority class (π3 = 0.17)
groups the summer fires developed with few values of FWI measures except the
DC one. The temperature is median but the relative humidity is high. The
intra-class correlation matrix underlines the dependencies between the summer
and high temperature and values of FFMC and DMC. Finally, note that the
space coordinates roughly follow the same distribution in the three classes.
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Figure 8: Summary of the homoscedastic bi-component mixture model of Gaus-
sian copulas for the forest fire data set. Class 1 is displayed in green, Class 2 in
red and Class 3 in black.

Partition study

Note that the partitions obtained by the three models are similar but not iden-
tical as shown by Table 6.

hetero.
c1 c2

c1-homo. 244 23
c2-homo. 1 127
c3-homo. 122 0

(a)

loc. indpt.
c1 c2

c1-homo. 265 2
c2-homo. 7 121
c3-homo. 111 11

(b)

Table 6: Confusion matrices between the partition obtained by the homoscedas-
tic tri-component model and the partition obtained by: (a) the heteroscedastic
bi-component model; (b) the locally independent model.

Conclusion

The model points out three classes of forest fires. It is more precise than the
locally independent model which roughly separates the summer fires from the
other ones. Indeed, the homoscedastic mixture model of Gaussian copulas con-
siders two kinds of summer fires. The restrictions done on the parameters spaces
allows to better fit the data than the heteroscedastic Gaussian copula mixture
model according to both criteria. Its impact is significant since the numbers of
classes selected by both models are different.
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6 Conclusion and future extensions

The mixture model of Gaussian copulas uses the properties of copulas: indepen-
dent choice of the margin distributions and of the dependency relations. Thus,
this mixture allows to fix classical distributions belonging to the exponential
family for the one-dimensional margin distribution of each component. More-
over, it takes into account the intra-class dependencies. An approach based
on a PCA per class of the Gaussian latent variable allows also to summarize
the main intra-class dependencies and to visualize the data by using the model
parameters.

During both numerical experiments and applications, we pointed out that
this model is sufficiently flexible to fit data drawn by an other one. Furthermore,
it can reduce the biases of the locally independent model (for instance the
reduction of the number of classes).

The number of parameters increases with the numbers of classes and vari-
ables especially because of the correlation matrices of the Gaussian copulas. To
avoid this drawback, we propose a homoscedastic version of the model assum-
ing the equality between the correlation matrices. This model may better fit
the data than the heteroscedastic Gaussian copula mixture model. However, it
can be large when the number of variables increases. So, more parsimonious
correlation matrices could be proposed to avoid this drawback in future works.

Finally, the model can not cluster non-ordinal categorical variables having
more than two modalities. Indeed, in such case, the cumulative distribution
function is not defined. An artificial order between the modalities could be
added to define a cumulative distribution function but this method has three
potential difficulties for which attention has to be paid: it assumes regular
dependencies between the modalities of two variables, its estimation would slow
down the estimation algorithm and its stability would have to be study.
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A Proof of the model identifiability

The model identifiability is proved by two propositions. The first proposition
proves the model identifiability when the variables are continuous and/or inte-
ger. This proposition presents the reasoning in a simple case since it does not
consider the ordinal variables. The second proposition proves that the model
requires at least one continuous or integer variable to be identifiable.

Proposition A.1 (Identifiability with continuous and integer variables). The
mixture model of Gaussian copulas is weakly identifiable [Tei63] if the variables
are continuous and integer ones ( i.e. the margin distributions of the components
are Gaussian or Poisson distributions). Thus,

∀x ∈ R
c × N

d,

g
∑

k=1

πkp(x;αk) =

g′

∑

k=1

π′
kp(x;α

′
k) (41)

⇒ g = g′, π = π′, α = α′. (42)

Proof. The identifiability of the multivariate Gaussian mixture models and of
the univariate Poisson mixture model [Tei63, YS+68] involves that (41) implies

g = g′, π = π′, βkj = β′
kj and Γkcc = Γ′

kcc. (43)

We now show that Γkcd = Γ′
kcd and Γkdd = Γ′

kdd.
Let j ∈ {1, . . . , c} and h ∈ {c + 1, . . . , e}. We denote by ρk = Γk(j, h),

ρ′k = Γ′
k(j, h), vk = Φ−1

1 (P (xj ;βkj)), εk(x
j) = πk

φ1(vk)
σkj

, ak =
b⊕
k
(xj)−ρkvk√

1−ρ2
k

and

a′k =
b⊕
k
(xj)−ρ′

kvk√
1−ρ′2

k

. Without loss of generality, we order the components as such

σkj > σk+1j and if σkj = σk+1j then µkj > µk+1j , then (41) implies that

1 +

g
∑

k=2

(εk(x
j)Φ(ak))/(ε1(x

j)Φ(a1)) =

g
∑

k=1

εk(x
j)Φ(a′k)/(ε1(x

j)Φ(a1)).
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Let γt = {(xj , xh) ∈ R × N : a1 = t}. Then, letting xh → ∞ as such
(xj , xh) ∈ γt,

∀t,
∫ a′

1

t
φ(u)du

Φ(t)
= 0. (44)

Thus a′1 = a1, so ρ′1 = ρ1. Repeating this argument for k = 2, . . . , g and for all
the couples (j, h), we conclude that Γkcd = Γ′

kcd.
When both variables are integer, we use the same argument with γ(t,ξ) =

{(xj , xh) ∈ N × N : a1 ∈ B(t, ξ)}. Note that if ρ1 6= ρ′1 then ∃n0 as such
∀xj > n0 a′1 > t + ξ. Letting xh → ∞ as such (xj , xh) ∈ γ(t,ξ), we obtain the
following contradiction

∫ a′
1

t+ξ
φ(u)du

Φ(t− ξ)
= 0 and

∫ a′
1

t+ξ
φ(u)du

Φ(t− ξ)
> 0. (45)

So, a′1 = a1 then ρ1 = ρ′1. Repeating this argument for k = 2, . . . , g and for all
the couples (j, h), we conclude that Γkdd = Γ′

kdd.

Proposition A.2 (Identifiability of the mixture model of Gaussian copulas).
The mixture model of Gaussian copulas is weakly identifiable [Tei63] if at least
one variable is continuous or integer.

Proof. In this proof, we consider only one continuous variable and two binary
variables. Obviously, the same reasoning can be extend to the other cases. We
now show that Γkcd = Γ′

kcd and Γkdd = Γ′
kdd.

Let j = 1 and let h ∈ {2, 3}. We note ρk = Γk(j, h), ρ
′
k = Γ′

k(j, h), vk =

Φ−1
1 (P (xj ;βkj)), εk(x

j) = πk
φ(vk;0,1)

σkj
, ak =

b⊕
k
(xj)−ρkvk√

1−ρ2
k

and a′k =
b′⊕
k

(xj)−ρ′
kvk√

1−ρ′2
k

.

Without loss of generality, we order the components as such σkj > σ[k+1]j and
if σkj = σ[k+1]j then µkj > µ[k+1]j . Note that (41) implies that

1 +

g
∑

k=2

(εk(x
j)Φ(ak))/(ε1(x

j)Φ(a1)) =

g
∑

k=1

εk(x
j)Φ(a′k)/(ε1(x

j)Φ(a1)).

Letting x1 → ∞ and assuming that ρk > 0 then
Φ(a′

k)
Φ(ak)

= 1. So, sign(ρk) =

sign(ρ′k). By denoting κ = lim
a→∞

φ(a)
Φ(a) and letting x1 → ∞ κ 1

κ
φ(a′

k)
φ(ak)

= 1. Thus

a′1 = a1, so ρ′1 = ρ1 and b⊕k (x
j) = b′⊕k (xj) so βkh = β′

kh.
Note that the same result can be obtain by tending x1 to −∞ is ρk < 0.

Repeating this argument for k = 2, . . . , g and for all the couples (j, h), we
conclude that Γkcd = Γ′

kcd then Γkdd = Γ′
kdd.
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