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Approximate expressions are obtained for the sensitivity of a GMI wire. The optimal conditions
for high sensitivity are discussed in terms of material and external parameters, such as dc field,
dc current bias, driving current amplitude and frequency. We show that the systematic reduction of
the anisotropy field is not necessarily the best approach to increasing the material sensitivity.
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1. INTRODUCTION

The design of highly sensitive magnetometers based on
the giant magnetoimpedance (GMI) effect requires reliable
models for the electrical impedance response of soft mag-
netic metals as a function of applied magnetic field and of
driving current (frequency and magnitude). Such models
are well-established for the linear regime, for which the
response is independent of the driving current magnitude.'
It also requires models for the noise of the device, which
ultimately limits the performance of the magnetometer.
Such models are now being developed.>?

The impedance ratio, AZ/Z, has been widely used as
a figure of merit, to highlight the potential of the GMI
effect for magnetometry and to compare the performance
of different GMI sensing elements. Upon its discovery in
the mid 90’s, the GMI effect was contrasted with the giant
magnetoresistance effect (GMR), showing a higher and
more sensitive impedance ratio than those of GMR ele-
ments. Indeed, for GMR elements, which are often used
in a bridge configuration, the resistance ratio, AR/R, is
directly relevant to the output of the sensors. However, this
is not necessarily the case for GMI, for which a bridge
configuration does not appear to be the best design. It is
also important to realize that a higher AZ/Z ratio does not
necessarily correspond to a higher sensitivity. This is illus-
trated in Figure 1, where we compare the GMI response of
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a magnetic wire for two sets of experimental parameters.
We believe that the value of the AZ/Z parameter, which
provides no direct information as to impedance variation
as a function of applied field, has been over-emphasized
as a meaningful metric for several GMI applications.
Here we consider what we believe to be the greatest
challenge in GMI magnetometry: the problem of making
highly sensitive magnetometers (measuring small fields or
changes in fields). We take the point of view that the sensi-
tivity is more relevant than the AZ/Z ratio, for such appli-
cations. A simplified approach is proposed for analysis of
the intrinsic sensitivity of a GMI wire, in units of V/T, as
will be defined in Eq. (1). This corresponds to the slope of
the GMI response, in units of /T (Fig. 1), multiplied by
the amplitude of the driving current. We assume that the
GMI element is operated in a field-locked loop configura-
tion, providing a bucking field which keeps the element in
a state of optimal sensitivity. Our goal is to highlight the
relevant combination of magnetic material parameters and
operating conditions which optimize the sensitivity.

2. MODEL OF GMI SENSITIVITY

Modeling of GMI response involves two steps: obtain-
ing the quasi-static magnetic structure of the element as
a function of the applied field, and then, simultaneously
solving Maxwell’s equations and the equation of motion
for the magnetization for the given magnetic structure.
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Fig. 1. Comparison between the modulus of the impedance as a func-

tion of the applied longitudinal field for a representative Co-rich amor-
phous wire operating at: (1) 30 MHz with a 10 mA dc bias current and
(2) 3 MHz with a 2 mA dc bias current.

The distinctions between different models reported in the
literature come essentially from the starting assumptions
as to the magnetic structure (e.g., presence or absence
of a domain structure) and the degree of approximation
used in the solution of the subsequent equations (e.g.,
quasi-static, local approximation, rigorous approach).* Our
model is based on a single domain structure, solved using
the rigorous approach in the linear regime.’> The jus-
tification for such a choice is presented below, in the
discussion.

Optimal conditions for GMI operation, in terms of
intrinsic signal-to-noise ratio, have been determined from
existing noise models in the linear regime.? The theo-
retical equivalent magnetic noise is estimated to be well
below what has been achieved experimentally, so far. In
order to reach these theoretical noise levels, the sensitivity
must be increased.® Figure 2 shows the typical, two peaks,
response of a GMI wire operating in the linear regime.
The maximum slope of the response, corresponding to the
solid straight line, may be roughly approximated by the
ratio Z,,/H,,, where Z, and H, are the impedance
maximum and its field position, or, alternatively, by the
ratio of impedance variation over field variation between
the origin and the peak, as illustrated by dotted lines in
the figure. Obviously, these approximations are imperfect.
Comparison, with a large ensemble of experimental data,
shows that the first approximation systematically overes-
timates the sensitivity whereas the second underestimates
it. Nevertheless, both approximations remain roughly pro-
portional to the real slope for a variety of experimental
conditions, thus providing meaningful approximate expres-
sions for the analysis of the sensitivity. In this work, we
adopt the first approximation, so that an average sensitivity
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Fig. 2. Modulus of the impedance of a representative Co-rich amor-
phous wire as a function of the applied longitudinal field. The
measurement has been performed at 10 MHz. The black solid straight
line represents the maximum slope. The dotted lines are two alternative
approximations for the slope. Note that Z = 0 is outside the figure.
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where H, is the longitudinal applied field, and 7, is the
amplitude of the driving current. As usual, in GMI studies,
the impedance in Eq. (1) is loosely defined as the ratio of
the voltage across the wire to the driving current amplitude
(this is not rigorously correct outside the linear regime).
Let us assume an ideal monodomain soft magnetic wire,
of length /, operating in the strong-skin-effect regime, with
a perfectly circumferential anisotropy within the skin depth
region. The maximum impedance is given by
aR 14
Pk ~ 28 * = (2)

where o is the conductivity, ,,, is the minimum skin
depth and a is the wire radius, with a > §,,,. Below a
certain crossover frequency, the minimum skin depth is
fundamentally limited by the exchange-conductivity effect,
and depends upon the frequency, following the expression®

A 1/4
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where A is the exchange stiffness constant, M, the satu-
ration magnetization and w the angular frequency of the
driving current. Above the crossover, it is limited by the
phenomenological Gilbert damping parameter, «, and is
independent of frequency, that is Ref. [6]
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where vy is the gyromagnetic ratio. The crossover between
the two regimes occurs at an angular frequency
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which corresponds to a few hundreds of MHz for typical
wire parameters.

It is observed, from GMI measurements, that there is a
critical driving current above which the sensitivity starts
to decrease. In order to highlight the effect of material
parameters on the sensitivity, it is useful to express this
optimal driving current in terms of a critical surface mag-
netic field (discussed below), that is, (,.),, = 27aH,, the
sensitivity in V /T per unit length of the wire will now be

given by
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depending upon the driving current frequency. Note that
H, and H,, are frequency dependent. In the quasi-static
regime they are both equal to the anisotropy field H,,
so that the field ratio on the right hand side of Egs. (6)
and (7) is unity. At higher frequency, the peak position
H,, increases, in agreement with the Kittel ferromagnetic
resonance condition.* For typical microwire parameters,
a field shift, on the order of 1% or less is observed around
25 MHz or below, whereas at 250 MHz H,, is approxi-
mately double its quasi-static value. GMI experiments also
show that the value of H_ increases with driving current
frequency, but a formal expression for this dependence is
not available at present.

3. JUSTIFICATION OF THE MODEL

Let us first observe that a natural figure of merit for the
sensitivity is S// in V/T per unit length of the GMI ele-
ment. This clearly establishes the trade-off between sensi-
tivity and spatial resolution. It might seem surprising not
to see any explicit dependence of the sensitivity on the
wire radius. In fact, this dependence is hidden within the
assumption that we are operating in the strong skin effect
regime. Thus, the minimum conductivity which can be
considered in Egs. (6) and (7) is limited by the wire radius.

Before we draw any further conclusions based on
Egs. (6) and (7), we must critically review the assump-
tions used in their derivation. It is well-known that the
presence of domains in a magnetic sample can result in
a very high permeability in some circumstances.! In this
work, and previous work from our groups, we chose to
neglect the possible presence of any domain structure, for
several reasons. First, as has been shown by models and
experiments, a domain structure is not strictly required for
high GMI sensitivity.*” Second, at frequencies where we
usually operate our GMI element (above 10 MHz) the pos-
sible contribution of domain movement to the total perme-
ability is not likely to be significant. Further, in ultra-soft

magnetic structures, the domains are difficult to predict
or to control, yielding potential reliability, stability and
reproducibility problems. In fact, the presence of domains
is likely to lead to additional magnetic noise, as com-
pared with the single domain situation. Finally, we believe
that we can avoid most of the potential problems due to
domains, eliminating them, by applying sufficient DC bias
current.>3

Another important assumption is that the GMI element
operates in the linear regime (the model is based on the
linearized equation of motion for the magnetization). It
is not immediately obvious that the optimal driving cur-
rent is below the value at which significant non-linear
response appears. This issue is particularly important,
considering that all current dynamical models of GMI
response are linear, whereas a significant portion of the
measurements reported in the literature are performed in
highly non-linear conditions (for typical GMI wires oper-
ating below 10 MHz, only a few mA are required to
drive it into the non-linear regime.® Experimentally, it is
observed that as the current increases, the characteristic
double-peak response gradually evolves into a single peak
response, with a corresponding reduction of sensitivity in
the low-field regime. We have recently developed a numer-
ical calculation of the GMI response for the non-linear
regime sensitivity,® which reproduces this behavior. Both
the experiment and the calculation, for typical wires used
in GMI experiment, show that the driving current, above
which the sensitivity starts to decrease, is located not far
above the crossover at which non-linear behavior is first
observed. In this limit, the use of a linear model seems
reasonable.

Finally, one might question the relevance of treating an
ideal wire with a perfect circumferential anisotropy. As
was shown by Kraus,® slight deviations of the anisotropy,
from the ideal circumferential case, result in a significant
decrease of the GMI amplitude. In such conditions, an w'/?
dependence of the GMI amplitude is expected, rather than
the w!'/* predicted by Eq. (6).° Nevertheless, the general
trend remains the same, that is, both the amplitude and
the peak position increase with frequency, at least up to
a frequency, above which the amplitude remains approx-
imately constant and, therefore, the sensitivity starts to
decrease.

An important factor in determining the optimal fre-
quency for the highest sensitivity is the frequency depen-
dence of the driving-current-related critical field H,.
Experiment shows that H., which is approximately equal
to the anisotropy field H, at low frequency, eventually
increases with w, faster than H,,k. The non-linear model,
which also reproduces both these trends,® allows us to
anticipate that, for relatively high frequency (typically sev-
eral tens of MHz) H_ corresponds to unrealistic driving
current amplitudes at which the GMI element would be
damaged. Practically, we do not approach that limit, so that



the optimal driving current will correspond to the onset of
non-linear behavior at lower frequency or be limited by
the power of the source at higher frequency.

4. PERSPECTIVES FOR HIGH SENSITIVITY

In terms of material parameters, provided that driving cur-
rent and frequencies are optimized, both Egs. (6) and (7)
point towards the use of a M,/o ratio as high as possible.
It is not easy to significantly increase M, as we are usually
working with relatively strong ferromagnets. The conduc-
tivity can be decreased more easily, yet it must remain
large enough in order for the sample to be in the strong
skin effect regime. The above considerations also point
towards the use of frequencies as high as possible, at the
crossover frequency w, or at the frequency at which H
begins to increase rapidly, if it is lower than w,. However,
the lower conductivity also implies a lower crossover fre-
quency, given by Eq. (5), which means that the optimum
is likely to be at w,, with a sensitivity given by Eq. (7).
Decreasing the conductivity will also have adverse effects
on electronic noise or on impedance matching, which have
not been considered here.

Assuming that we have an optimal combination M,
o, a, and that we are working at the optimal conditions
of field and frequency, the limiting factor is «, which
is related to the magnetic losses. Although « is conven-
tionally a material constant related to the intrinsic mag-
netic damping, here we may consider it loosely as a field
and frequency dependent phenomenological damping term
which may also include the inhomogeneous damping due
to the imperfections of the material. The inhomogeneity of
the anisotropy (direction and intensity), which is related to
fluctuations of internal stresses, defects and chemical com-
position and to surface roughness, among others, appears
to be the main limiting factor preventing us from achieving
higher sensitivity.

The above simplified analysis is based on the realisation
that the sensitivity of current state-of-the-art GMI sensors
are limited by the sensitivity of their GMI elements.® It is
meant to suggest design rules and directions of improve-
ment. Some aspects of the problem have been neglected.
Other constraints on the driving current amplitude and fre-
quency, and on the material parameters imposed by the
conditioning electronics, will be considered elsewhere.

5. CONCLUSIONS

Approximate expressions have been obtained for the sen-
sitivity of a GMI wire in units of volt per tesla per unit
length of the wire. Based on the proposed analysis, the
optimal conditions for a highly sensitive GMI element are
as follows. A monodomain wire, properly biased by a dc
field and dc current, will have an optimal driving current
amplitude and frequency which maximize the sensitivity.
The material should have a magnetization to conductivity
ratio (M,/o) as high as possible, limited by the radius of
the wire. The homogeneity of the wire, particularly the
quality of the surface, is extremely important to achieve
a highly homogeneous well-defined anisotropy, which is
crucial for a high sensitivity.

Another important conclusion to draw from the analysis
is that the systematic reduction of the anisotropy field is
not necessarily the best approach to increasing the mate-
rial sensitivity. A very small anisotropy field will limit the
amplitude of the driving current above which the sensitiv-
ity (in V/T) starts to decrease. It is also likely to produce
an inhomogeneous magnetic structure, thus decreasing the
GMI amplitude. In the best possible condition, the optimal
frequency will generally be the crossover frequency, given
by Eq. (5), which should be high enough that it does not
impose any limitations on the driving current amplitude.
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