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Abstract: This paper aims to reduce noise levels of two-aircraft landing simultaneously on approach.
Constraints related to stability, performance and flight safety are taken into account. The problem of optimal
control is described and solved by a Sequential Quadratic Programming numerical method 'SQP’ when globalized
by the trust region method. By using a merit function, a sequential quadratic programming method associated with
global trust regions bypasses the non-convex problem. This method used a nonlinear interior point trust region
optimization solver under AMPL. Among several possible solutions, it is shown that there is an optimal trajectory
leading to a reduction of noise levels on approach.
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1. Introduction. Considering the current trend in the field of air transport [1, 2, 3], economic and environmental
considerations related to the rising cost of oil and the need to preserve the environment impose more severe
constraints on the next generation of aircraft [4]. In sight of reaching one of the 2020 Advisory Council for
Aeronautics Reasearch in Europe "ACARE’ objectives [5], that consists of the reduction of the environmental
pollution and noise impact, ACARE requires a 50% reduction of perceived noise for 2020. This goal represents a
difficult scientific and engineering challenge as this requires aerodynamic models and mathematical optimization
[6, 7]. Some work addressing this problem has been carried out. The majority of this work addresses the problem
of minimization of aircraft noise around the airport by considering a single plane [8, 9]. The other work concerns
the stochastic conflict detection for air traffic management [10], the dynamics of flight [11] and the comprehensive
analysis of transport aircraft flight performance [4].

The aim of this work is the development of a theoretical model of noise optimization while maintaining a
reliable evolution of the flight procedures of two commercial aircraft on approach. These aircraft are supposed
to land successively on one runway without conflict [12]. It is all about the evolution of flight dynamics and
minimization of noise for two similar commercial aircraft landing taking into account the energy constraint.
This model is a non-linear and non-convex optimal control. It is governed by a system of ordinary non-linear
differential equations [13]. The 3-D movement of the two planes is described by a system depending on ordinary
non-linear differential equations with mixed constraints. The function to be minimized is the integral describing
the overall level of noise emitted by the two aircraft on approach and collected on the ground. We take into
account constraints related to joint stability, performance and flight safety.

The problem of optimal control is described and solved by a Trust Region Sequential Quadratic Programming
method "TRSQP’ [14, 15, 16, 17, 18]. By using a merit function, a sequential quadratic programming method
associated with global trust regions bypasses the non-convex problem. This method is established by following
a tangent quadratic problem obtained from the optimality conditions of Karush-Khun-Tucker applied to the
problem considering the objective function as the merit function.

The TRSQP methods are suggested as an option by a Nonlinear Interior point Trust Region Optimization
solver 'KNITRO’ [19, 20] under A Mathematical Programming Modeling Language ’AMPL’ [21, 22]. The global
convergence properties are analyzed under different assumptions on the approximate Hessian. Additional as-
sumptions on the feasibility perturbation technique are used to prove quadratic convergence to points satisfying
second-order sufficient conditions.



Details of the two-aircraft flight dynamic, the noise levels, the constraints, the mathematical model of the
two-aircraft acoustic optimal control problem and the trust region sequential quadratic programming method
processing are presented in section 2, 3 and 4 while the numerical experiments are presented in the last section.

2. Mathematical Modelization. The motion of each aircraft A;,7 := 1,2 is three dimensional analyzed
with 3 frames: the landmark (O, ?1, 71, ?1), the aircraft frame (G;, X gi, Y @i, Z i) and the aerodynamic one

(Giy X aiy Y aiy Z i) where ¢ := 1,2 [10]. The transition between these three frames is shown easily [11]. In general,
the equations of motion of each aircraft are summarized as:

— .
Zzerti - dgzl Vai imlitvai
= Meaio, = §llc, ) (1)
dxX° _ d
o = S + Q1o ¥

The index i = 1, 2 reflects the aircraft. In the system above, ?ezti represents the external forces acting on the
aircraft, m;(t) the mass of the aircraft, v; the airspeed of aircraft, My, the moments of each aircraft, J(Gi, A;)
the inertia matrix and €2; the angular rotation of the aircraft. After transformations and simplifications, the
system takes the following explicit form:

Vi, = ani[—migsin'yai — 1pSV2Cp + (cosaq,cosBa, + sinfa, + sinaq,cosBa,) Fay, — Liu; — m; AAYL]

Ba, = ﬁ[migcos%ismﬂai + 2pSV2Cy, + [—cosay, sinfe, + cosBa, — sinaq, sinfa,|Fy, — v, — m;AAL

— 1 4 1 2 ; dm; A A
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(2)
where j means the engine index, the expressions A = I, B = Iy, C = I.,, E = I, are the inertia moments of the
aircraft, p is the air density, S is the aircraft reference area, 1 is the aircraft reference length, g is the acceleration

due to gravity, Cp = Cpo + kC% is the drag coefficient, Cy; = Cyg8 + Cyp%l + CWTVZ + Cys,01 + Cys,0n
b
is the lateral forces coefficient, Cr; = Cra(ag — @a0) + CrLs, 0m + CouM + C’quval is the lift coefficient,

Cy = Clgﬁ—kClple —|—Cl,,.TVl +Cls,61+ Cls, 6y, is the rolling moment coefficient, Cp,i = Cpo + Cra( —ag) + Chns,, Om
is the pitching moment coeflicient, C,; = C,38+ Cnp%l +C’m%l +Chs,01+Chs, 0 is the yawing moment coefficient,
(%4> @54i5>254i;) is the position of the engine in the body frame, F = (Fyi, Fy;, Fz;) is the propulsive force,
Vi = (ui,v;,w;) is the aerodynamic speed, (AA!L, AA! AA?) is the complementary acceleration, (U, Uy, Wy)
is the wind velocity, Bms; is the yaw setting of the engine and oy, is the pitch setting of the engine. The
expressions ;i (t), Bai(t), 0;(t), i (t), ¢i(t), Vu, (t), X¢, (t), Yo, (t), Za, (t), pi(t), ¢i(t), ri(t), m;(t) are respectively
the attack angle, the aerodynamic sideslip angle, the inclination angle, the cup, the roll angle, the airspeed, the
position vectors, the roll velocity of the aircraft relative to the earth, the pitch velocity of the aircraft relative to
the earth, the yaw velocity of the aircraft relative to the earth and the aircraft mass.

Transforming the system (2) in state function, one has:

B — f0.u(0)i = 1.2 ®
where the state vector is:
yi(t) « [to, ts] — RI? (4)
Yi (t) = (aai (t)v ﬁai (t)v Oui (t)v ¢a7§ (t)a ¢2 (t)v Vai (t)v XGi (t)v YGi (t)v ZGi (t)v b (t)v qi (t)7 T (t)v my (t))



The control vector is
u;(t) : [toytf] — R? (5)
t—>ui(t) = (61, (1), O () O (1) 0, (1))

where the expressions 6y, (t), 0y, (1), On, (t), 0z, (t) are respectively the roll control, the pitch control, the yaw control
and the thrust one. The dynamics relationship can be written as:

9i(t) = filyi(t), wi(t), 1), vt € [0,T],4:(0) = yio (6)

The angles 7, (t), Xa,; (t), pta, (t) corresponding respectively to the aerodynamic climb angle (air-path inclination
angle), the aerodynamic azimuth (air-path track angle) and the air-path bank angle (aerodynamic bank angle)
are not taken as state in this model.

To simplify the model, the atmosphere standards conditions are considered. The engine angles, the comple-
mentary acceleration and the aerodynamic sideslip angle are negligible because the wind is constant and there is
no engine failure. With some complex mathematical transformations, the dynamic system (2) becomes:

Vi, = 2 [~migsinya, — 1pSVZCp + (cosa, + sinag,)Fy,

m;

_ dmy

dt
. 1 . 1 2 - dm; ..
Yoy = Vi cosBa [Mmigcosya,cospta, — 5pSVy OL, + [cosaa, — sinag, | F., — “gtw;]

ui]

Pi = 5oegz{riqi(B — C) — Epiq; + 3pSIV2C,} + 5Em= {piqi(A — B) — Eriq; + $pSIVZECy;

i = oz {16 (B — C) + Epigi + 5pSIV2Ci, + 55252 {piti(A — B) — Erigi + 5pSIV;2 Cyi}

XGi = VaiCOSWaVLCOSXai

YGi = VaiCOSPYaiSinXai (7)
Za, = —Va, 81,

q.ﬁi = p; + q;sing;tand; + ricosp;tanb;

0; = qicosd; — rising;

i = 22+ 2
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By the combination of this system with the aircraft control, one has the two-aircraft dynamic flight model as
shown in (6). The state vector is

yi(t) : [to, ty] — R*? (8)
Yi (t) = (aai (t)7 Oai (t)7 Yai (t)7 Gai (t)7 Va, (t)a Xa, (ﬁ)7 Ya, (t)a Za, (t)>pi(t)a Qi(t)’ T (t)a mg (t))

This will be added to the cost function and constraint function for the aircraft optimal control problem as shown
in the following paragraphs.

The objective function model. Many noise indices (LAmax, Leq, EPNL, ...) exist and are presented in the
open literature [8, 23]. In this paper, the Sound Exposure Level 'SEL’ is considered. It provides a comprehensive
way to describe noise events in modeling and analyzing noise environment impacts [24]:

1
SEL =10log | — [ 1001Eara® gy (9)
to Ju

o

where t, is the time reference taken equal to 1 s and ¢’ the noise event interval. [t10,%17] and [tao, t2s] are the
respective approach intervals for the first and the second aircraft, the objective function is calculated as:

SEL, = 10log [ti fffo‘) 100-1LA1=dt<t>dt} ,t € [t10,t20]
SELis = SELi1 ® SELy = 1010g[% fttglof 100-1La1.a(t) gt + % ftilof 100.1LA2,dt(t)dt],t e [tzo,t1f]

SEL2 — 10 log [% fttfff 100.1LA2.dt(t)dt:| ,t S [tlfath]

(tao—t10)SEL1®(t15—t20)SEL12@(tay—t15)SEL>
SEL; = 1 tm) S =

=10 log{tw%tm[(tzo —t10) fttlzoo 100-1Lar(t) g 4 (tlf — t30) ftlof 100-1Lax(t) g¢ 4 (tlf — t90) fttlf 100-1La2(t) gt

to 20
+(t2y —ta1y) fttfff 100142 g 1} ¢ € [t1o, tay]

(10)
where SELq is the cumulated two-aircraft noise and the operator & means the convoluted addition of noises.
Expressions L a1 (t), Laa(t) are equivalent and reflect the aircraft jet noise given by the formula [8, 25]:

w Vv 7.5 2
L1 (¢) = 141 + 10log (,Op1> + 10log (Ce) + 10logs; + 3log (dl

.
2+0.5) + Slog = +
Tay T2
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jet speed at the entrance of the nozzle, vy the jet speed at the nozzle exit, 7 the inlet temperature of the
nozzle, 7o the temperature at the nozzle exit, p the density of air, p; the atmospheric density at the entrance
of the nozzle, prsa the atmospheric density at ground, s; the entrance area of the nozzle hydraulic engine,
so the emitting surface of the nozzle hydraulic engine, d; the inlet diameter of the nozzle hydraulic engine,
Vo = v1[1 — (V/v1) cos(a,)]?/? the effective speed (o, is the angle between the axis of the motor and the axis of
3(Ve/c)*?
0.6 + (Ve/c)35

sound velocity (m/s), m the exhibiting variable depending on the type of aircraft: me = 1.1, /2; %2 29.7,

the aircraft), R the source observer distance, w the exponent variable defined by: w = — 1, c the

S1 S1
me = 6.0; 2 29.7, the term AV = —15log(Cp (M., 0)) — 10log(1 — Mcosf), means the Doppler convection
S1
when Cp(M,,0) = [(1 + M.cos0)? + 0.04M?], M the aircraft Mac Number, M, the convection Mac Number:
M. =0.62(v1 — Veos(ayp)),c, 0 is the Beam angle.
Formula above leads to the objective function Jg12(y(t), u(t),? = [, 9( ), t,i=1,2)dt.

Constraints. The two-aircraft optimal control problem which minimizes noise and provides optimal tra-
jectory must be done in realistic flight domains. Operational procedures are performed while respecting dynamic
limits related to the safety of flight and operational modes of the aircraft. This concerns aircraft airspeed, alti-
tude, attack angle, aerodynamic sideslip angle, inclination angle, roll angle, throttle control position, roll control
position, pitch control position, yaw control position, energy constraint, vertical, longitudinal and lateral aircrafts
separation, roll velocity of aircraft relative to the earth, pitch velocity of aircraft relative to the earth, yaw velocity
of aircraft relative to the earth and the aircraft mass.

1. The vertical separation given by Zg,, = Zg, — Za, where Zg,, Zq, are respectively the altitude of the first
and the second aircraft and Zg,, the altitude separation.

2. The horizontal separation Xq,, = X, — Xq, [26, 27, 28] where Xq,, X, are horizontal positions of the
first and the second aircraft and their separation distance.

3. The aircraft speed V,, must be bounded as follows 1.3V, < V,, < Vy where V; is the stall speed,V; is the
maximum speed and V, the minimum speed of the aircraft A; [29, 30], the roll velocity of the aircraft relative
to the earth p; € [po,py], the pitch velocity of the aircraft relative to the earth ¢; € [qo,qf] and the yaw
velocity of the aircraft relative to the earth r; € [ro,7¢] .

4. On the approach, the ICAO standards and aircraft manufacturers require flight angle evolution as follows:
attack angle oy, € [a,, ay], the inclination angle 6; € [0y, 0] and the roll angle ¢; € (¢, d7].

5. The aircraft control 0(t) = (91, (t), Om, (), On, (t), 6z, (t)) keeps still between the position d;0 and d;y for the roll
control, 0,0 and d,, 5 for the pitch control, d,0 and 6,5 for the yaw control and d5, and .5 for the thrust.

6. The mass m; of the aircraft A; is variable: m, < m; < my,i = 1,2. This constraint results in energy
consumption of the aircraft [31, 32].

On the whole, the constraints come together under the relationship:

Clyi(t), ui(t), 1) <0 (11)
where C(t) : R'2 x R* x R — R, (y;(t), ui(t),t) — C(yi(t),u;(t),t), with
Ci(8) = (s(t), 0:(0), 3 (8), 84(0), Vs (), X, (D). Y, (1), Zis, (£, PLE), q(t).(8), 8, (2), S, (), D (), 8, (1), s (2, ).

The following values reflect the dlgltal applications con31dered for the two-aircraft [8, 11, 30, 31].



Table of limit digital values for the two-aircraft in approach phase
Constraint denomination maximum value minimum value
The Aircraft speed Va1 = Vae =180 m/s Va1 = Voo =73.45 m/s
The A1 Aircraft altitude 7y =35%x10°m Zi=0m
The A2 Aircraft altitude Zy =41 x 102 m Zo=0m
The aircraft roll control 051 = ;2 = 0.0174 0 = 02 = —0.0174
The pitch control Om1 = Oma2 = 0.087 Om1 = 0m2 =0
The yaw control On1 = dp2 = 0.314 Op1 = 0p2 = —0.035
The thrust control Op1 = 049 = 0.6 Op1 = 0z = 0.2
The attack angle Qg1 = Qg9 = 12° Qg1 = Qo = 2°
The inclination angle Ou1 = Oq0 = T° Og1 = Ogo = —T7°
The air-path inclination angle Yal = Va2 = 0° Yal = Ya2 = —5°
The aerodynamic bank angle a1l = a2 = 3° Pal = Jhaa = —2°
The air-path azimuth angle Xal = Xa2 = H° Xal = Xa2 = —5°
The roll angle ha1 = Qa2 = 1° Pa1l = Paz = —1°
The cup wal = waZ =3° wal = waQ =-3°
The limits of time tif =600 s,tof =645 s | t10=0s5,10 =45 s
The mass of the A1 Aircraft mio ~ 1.1 x 10° kg, mis ~ 1.09055 x 10° kg,
The mass of the A2 Aircraft Mmoo ~ 1.10071 x 10° kg mayr ~ 1.09126 x 10° kg
The A300 inertia moments [31] A =5.555x10° kg m* | B =29.72 x 10° kg m?
C =14.51 x 105 kg m? | E = —3.3 x 10* kg m?
The Aircraft vertical separation Z13 =2x10% ft ~6 x 102 m
The Aircraft longitudinal separation X6, =5 NM~9x103>m
The Aircraft roll velocity relative to the earth p1=po = 1°57 1 pL=po = —1°571
The Aircraft pitch velocity relative to the earth | ¢; = g = 3.6°57! g1 =q = 3°s71
The Aircraft yaw velocity relative to the earth | r; = ry = 12°s7! ry =19 = —12°s71

The two-aircraft acoustic optimal control problem. The combination of the aircraft dynamic equation
(3) and (7), the aircraft objective function from equations (10) and the the aircraft constraints function (11), the
two-aircraft acoustic optimal control problem is given as follows:

mln(y weyxu Jar2(y(t), u( ftlo g1 y1 uy (t),t)dt+
Jiad 912y (8), ua (t), o), w ( ), t)dt + [ 92 yz(t) 2(t), t)dt + ¢ (y(ty))
y(t) = f(u(f)»y(t))au(t) = (u1(t), u2(t)) (12)

y(t) = (y1 (1), ya(t
Cly(t),u(t)) <0

where g1 shows the aircraft coupling noise function and Jgi2 is the SEL of the two A300-aircraft.

), ¥t € [t10,taf], t10 = 0,9(0) = yo,u(0) = ug

3. The numerical processing. The problem as defined in the relation (12) is an optimal control problem with
instantaneous constraints. We aim to solve this problem with the Trust Region Sequential Quadratic Programming
method. Applying SQP methods [33] , we write the system (12) as:

min Jei2(x), © = (y(t), u(t))
y=f(z)

n;(z) =0,j € E

nj(z) >0,j €T

(13)

where the expressions = and T' are the sets of equality and inequality indices. The function Jgi2(x), f(x),n(z)
must be twice continuously differentiable. The Lagrangian of the system (13) is defined by the function L(z, \) =
Japi2(x) + AT [b(y, x) +n(z)] where the vector \ is the Lagrange multiplier and b(3, z) = ¢ — f(z) = 0. Considering
the feasible points of (12), one transforms the system (13) into a quadratic problem. A SQP method solves a
succession of quadratic problems. The mathematical formulation of sub-problems obtained at the k-th step Axy
is the following:

minAa,k[Kglg(l‘k)] vT Jorz(xg) Az + 2 (Al‘k)THkAij

V(s xp) Az + b(yk717k) =0

VTnz(zp)Azg + nz(zr) =

VTnp(xk)Axk + TL[‘((Ek) 2

(14)

The vector Az is a primal-dual descent direction, Hp = VQL(xk,)\k) is the Hessian matrix of Lagrangian L
from system ( 13) and Kgi2(xg) the quadratic model. The estimation of gradients is, in principle, calculated
by finite differences or the calculation of the adjoint systems for problems with many parameters and finally by
the sensitivity analysis. This last technique is very effective in the case of a large number of variables with few



parameters [16, 17]. The SQP method is a qualified local method. Its convergence is quadratic if the first iterate
is close to a solution ¢ satisfying the sufficient optimality conditions [34, 35, 36]. This algorithm above must be
transformed because the two-Aircraft problem is non-convex. For improving the robustness and global convergence
behavior of this SQP algorithm, it must be added with the trust radius of this form:

IDAz][, < A,p € [1,00] (15)

where D is uniformly bounded. The relations (14) and (15) form a quadratic program when p = co. So, the trust-
region constraint is restated as —Ae < Dz < Ae,e = (1,1,1,...,1)7. If p = 2, one has the quadratic constraint
Az DT DAz, < A2 In the following, we develop the convergence theory for any choice of p just to show the
equivalence between the ||.||, and ||.||2. By the combination of some relation of (13) and the relation (14), all the
components of the step are controlled by the trust region. The two-aircraft problem takes the following form

minAa:k[KGm(xk)] = VTJG12(a:k)Axk + %(AIL‘/C)TH]CAQ:/C
VTb(gp, vx) Azy + b(Jg, 1) = 0

VTnz(zp)Azy, + nz(xy) =0
VTnp(xk)Axk +nr(zk) >0
DAz, < A,p € [1,59]

(16)

In some situations, all of the components of the step are not controlled by the trust region because of some
hypotheses on D. There is an other alternative which allows the practical SQP methods by using the merit
function or the penalty function to measure the worth of each point x.

Several approaches like Byrd-Omojokun and Vardi approaches exist to solve the system (13) [37]. It can also be
solved with the KNITRO, the SNOPT and other methods [38]. In the latter case, we have an ordinary differential
system of non-linear and non-convex equations. The uniqueness of the solution of the quadratic sub-problem
is not guaranteed. It therefore combines the algorithm with a merit function for judging the quality of the
displacement. The merit function can therefore offer a way to measure all progress of iterations to the optimum
while weighing the importance of constraints on the objective function. It is chosen in I norm particularly the
increased Lagrangian L; because of its smooth character. So, in the equation above, one replaces L by L. Thus,
this transforms the SQP algorithm in sequential quadratic programming with trust region globalization "TRSQP’.
Its principle is that each new iteration must decrease the merit function of the problem for an eligible trust
radius. Otherwise, we reduce the trust radius Az g for computing the new displacement. A descent direction is
acceptable if its reduction is emotionally positive. The advantages of the method are that the merit function will
circumvent the non-convexity of the problem. This approach shows that only one point is sufficient to start the
whole iterative process [39, 40, 41].

Meanwhile, we use an algorithm called feasibility perturbed SQP in which all iterates x) are feasible and the
merit function is the cost function. Let us consider the perturbation Azy of the step Axy such that

1. The relation ~
x+ Az €F (17)

where F is the set of feasible points for (12),

2. The asymptotic exactness relation
1Az — Azyla < o(||Axk]]2)]| A2 (18)
is satisfied where ¢ : RT™ — R with ¢(0) = 0.

These two conditions are used to prove the convergence of the algorithm and the effectiveness of this method. The
advantages gained by maintaining feasible iterates for this method are:

e The trust region restriction (15) is added to the SQP problem (14) without concern that it will yield an
infeasible subproblem.

e The objective function Jgi2 is itself used as a merit function in deciding whether to take a step.

o If the algorithm is terminated early, we will be able to use the latest iterate =, as a feasible suboptimal
point, which in many applications is far preferable to an infeasible suboptimum.

Here are some considerations that are needed for the KKT optimality conditions.



o An inequality constraint n; is active at point T = (y*,u*) if n;(z) = 0.
['(Z) =T is the set of indices j corresponding to active constraints in T,

I+ = {j € I.(3); > 0}
10 = {j e .|\, = 0}

where the constraints of index U'S are highly active and those of T weakly active.

(19)

o An element & € T'* verifies the condition of qualifying for the constraints n if the gradients of active constraint
Vnz(Z),Vnr(Z) are linearly independent. This means that the Jacobian matrix of active constraints in T is
full.

o An element T € I'* satisfies the qualification condition of Mangasarian-Fromowitz for constraints n in T if
there exists a direction d such that

Vnz(z)'d = 0Vn;(z)'d < 0Vj € T'(z) (20)

where the gradients {Vn(Z)} are linearly independent.

The Karush-Kuhn-Tucker optimality conditions are obtained by considering that .J,n functions of C* class and
a solution of the problem (12) which satisfies a constraints qualification condition. So,there exists A* such that:

V,L(# X)) = 0,n=(Z) = 0,np(Z) < 0, Ak > 0, \anp(2) = 0 (21)

These equations are called the conditions of Karush-Kuhn-Tucker(KKT). The first equation reflects the optimal-
ity, the second and third the feasibility conditions. The others reflect the additional conditions and Lagrange
multipliers corresponding to inactive constraints nj(Z) are zero. The couple (Z, A*) such that the KKT conditions
are satisfied is called primal-dual solution of (19). So, Z is called a stationary point.

For the necessary optimality conditions of second order|15]|, taking # a local solution of (19) and
satisfying a qualification condition, then there exist multipliers (A*) such that the KKT conditions
are verified . So we have V2 L(Z,A\*)dd > OVh € C, where C, is a critical cone defined by
C. ={h € YXU: Vnj@.h=0Vj e ZUl,Vn;(z).h < 0Vj € I'%}. The elements of C* are called
critical directions.

For the sufficient optimality conditions of second order[15], suppose that there exists (A\*) which satisfy the
KKT conditions and such that V2, L(Z, A\*)d.d > 0Vh € C,\{0}. So 7 is a local minimum of(12).

4 The TRSQP algorithm and convergence analysis. Assume that for a given SQP step Azy and its
perturbation Axy, the ratio to predict decrease is

J —J Aa
= c12(zk) G12(~xk + Axy) (22)
—Kgia(Azy)
The two-aircraft acoustic optimal control TRSQP algorithm is written as:

1. Let o a given starting point, A > 1 the trust region upper bound, Aq € (0, A) an initial radius, € € [eg, €)
and p € [1, o0]

2. Calculate Az, by solving the system

minAa:k[KGIQ(:Ek)] = VTJGlQ(SCk)AfL'k + %(ASL’]@)TH;CASL’]C
VTb(yk,wk)Amk + b(gg, ) =0

VTnz(zrp)Azg + nz(rr) =0
VTnr(zr)Azy + nr(zg) >0
DAz} < A,p € 1,59

Seek also Ay, by using the system
Az — Azkll2 < ¢(||Azk|l2)[|Azk|]2

3. If no such for the perturbed counterpart Az, is found, the following affectations are considered.

Azpyr + (5)||DeAxyll,
Tpq1 < Ti; Dpr1 < Dy



JG12($k)—JG12(~Ik+AZFk) .
—Kgi2(Azy) ’

if 7, < €5, Apyr < (3)]|DrAgl]y;

else if 7, > ag X €9 and || D Azg||, = Ag
Agt1 < min(2Ag, A);

else Apy1 Ay

4. Otherwise, calculate r; =

5. If r > € k41 < xp + Axy; Choose the new matrix Dyy1;
else x41 < xg; Diy1 + Dy;

6. end.

At each major iteration a positive definite quasi-Newton approximation of the Hessian of the Lagrangian function,
H, is calculated using the BFGS method, where \;,i = 1,...,m, is an estimate of the Lagrange multipliers.

akqy  Hisi s Hy,

Hk:+1 - Hk: +
Qi Sk st Hysp

where

Sk = Thy1 — T,
qr = (VJgia(xp41 + Z?:l A Vn(zgps1) + b(@g41)) — (Vdgia(zr + Z?:l Aj.Vn(xy) + b(ag))

A positive definite Hessian is maintained providing g7 s, is positive at each update and that H is initialized with
a positive definite matrix. This algorithm is implemented by AMPL language programming and the KNITRO
solver [19, 20].

Analysis of the algorithm and its convergence. Let us define the set Fg as follows:
Fo = {a|VTb(y,2) Az + b(y,x) = 0, VI nz(2)Az + nz(z) = 0, Vinr(z)Az + nr(z) > 0, Jai2(2) < Jei2(z0)} € F
The trust-region bound ||[DAzg||, < A, p € [1, 0] specifies the following assumption.

1. There exists a constant 8 such that for all points z € Fg and all matrix D used in the algorithm, we have
for any Az satisfying the following equations

VTb(y, x)Ax + b(y,z) =0, VTnE(x)A:L’ + ng(z) =0, VTnF(a:)Ax +nr(x) >0

that
BHAz]y < [|DAz||, < Bl|Az|| (23)

2. The level set Fg is bounded and the functions Jgi2,b,m are twice continuously differentiable in an open
neighborhood M(Fy) of this set.

Under certain assumptions as shown in [14], this algorithm is well defined.

In this paragraph, one wants to prove that the algorithm has a convergence to stationary point of (13). If we
consider that all assumptions hold for each feasible point & for (12), the Mangasarian-Fromowitz are satisfied for
constraints. After all, the KKT optimality conditions are specified and that shows that there is at least a local
convergence. With other added conditions as shown in [14], the global convergence is held.

5. Numerical Results. For this result, one considers the 20 km radius for the first aircraft around the airport
when its maximum altitude is 1 km and 1.5 km for the second on 29 km radius. Figures 1, 2, 3 and 4 show noise
levels around the airport when the optimization is applied or not. This explains the importance of optimizing the
acoustics in aircraft approach and the gains brought by this model when compared to what is done daily.

Hypothesis: The observation points are taken on the ground under the path of the aircraft and are independent
of each other.

The observation positions are: (—20000 m, —20000 m,0 m), (—19800 m, —19800 m,0 m), ..., (0 m,0 m,0 m),
for a space step of 200 m for x and y. The touching point on the ground is (0 m,0 m,0 m) while the temporal
separation of aircraft varies from 45 s to 90 s . At each point of view, it is a vector of N noise levels as shown in the
discretization. It is very important to consider the maximum value among the N values, which value corresponded
to the shortest distance between the noise source and the observation point.
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Figure 1: Aircraft noise at the indicated reception point

Figure 1 shows the noise levels when the optimization is applied or not. The observation positions
are (—20000 m,—20000 m,0 m) for NO; and WOy, (—18200 m,—18200 m,0 m) for NOjy and WOy,
(—16200 m, —16200 m,0 m) for NOyy and WOsqo. In all figures, the legend NO means without optimization
and the legend WO means with optimization. As specified by this figure, the noise level increases and is maximum
when the observation point lies below the aircraft. After all, noise level decreases gradually as the aircraft departs
increasingly from the observation point.
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Figure 2: Aircraft noise at the indicated reception point

Figure 2 shows the noise levels when the optimization is applied or not, but for the observation posi-
tions (—14200 m, —14200 m,0 m) for NOsg and WOsg, (—12200 m,—12200 m,0 m) for NOyy and WOy,
(—10200 m,—10200 m,0 m) for NOso and WOs5p. The legend NO means without optimization and the leg-
end WO means with optimization. As specified by this figure, the noise level increases and is maximum when
the observation point lies below the aircraft. After all, noise level decreases gradually as the aircraft departs
increasingly from the observation point. The noise levels increase comparing with the result of the first figure
because aircraft altitudes decrease.
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Figure 3: Aircraft noise at the indicated reception point

Figure 3 shows the noise levels when the optimization is applied or not, but for the observation po-
sitions (—8200 m,—8200 m,0 m) for NOgy and WOgy, (—6200 m,—6200 m,0 m) for NOzy and WOx,
(—4200 m, —4200 m,0 m) for NOgy and WOsgp. The legend meaning arises the same as shown for figure 1
and 2. As specified by this figure, the noise level increases and is maximum when the observation point lies below
the aircraft. After all, noise level decreases gradually as the aircraft departs increasingly from the observation
point.The noise levels increase comparing with the result of the second figure because aircraft altitudes decrease.
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Figure 4: Aircraft noise at the indicated reception point

Figure 4 shows the noise levels when the optimization is applied or not, but for the observation positions
(—2200 m, —2200 m,0 m) for NOgg and W Ogg, (—200 m,—200 m,0 m) for NO1go. As specified by this figure,
the noise level increases and is maximum when the observation point lies below the aircraft. After all, noise level
decreases gradually as the aircraft departs increasingly from the observation point.

The general remark on figure 1, 2, 3 and 4 is that all noise levels evolution keeps the same behavior. By
comparison, this result is close to standard values of jet noise on approach as shown by Harvey [42].
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Figure 5: Aircraft optimal flight paths

Figure 5 shows the evolution of the trajectories which reflect a continuous descent. The aircrafts’ landing
procedures are sufficiently separated. It is obvious that each aircraft follows its optimal trajectory when considering
the separation distance. The same constraints on speed are considered, allowing a subsequent landing on the same
track. Thus, as recommended by ICAQO, the security conditions are met and flight procedures are good as shown

by the following results.

The maximum altitude considered are 3500 m and 4100 m for the first and second

aircraft. The duration approach considered is 600 s for the first aircraft and 645 s for the second. Our suggestion
is an optimal trajectory for the two-aircraft , not necessarily optimal for each of them , but resulting from the two

trajectories combination.
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Figure 6: Flight-path angles of the aircraft

Figure 6 shows the principle angles evolution as recommended by ICAO during aircraft landing procedures.
As specified by this result, the aircraft roll angles oscillate around zero, the flight-path angles are negative and
keep the recommended position for aircraft landing procedures. This is the same for the attack angles.
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Figure 7: Aircraft speeds
Figure 7 shows the aircraft speed evolution during aircraft landing procedures. For the first, the aircraft speed
decreases and keeps a constant position, increases and keeps again a constant position till the end of the aircraft

landing. This evolution remains the same for the speed of the second aircraft. The maximum value is 180 m/s
when the minimum is around 124 m/s.
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Figure 8: Aircraft finesse

Figure 8 shows that the finesse evolution is bang-bang for both aircraft. That means that the control lies
constant on one bound of the variation interval. The throttle position keeps constant during all the landing
procedures. This is the same for the two-aircraft roll velocity relative to the earth p;, po, the two-aircraft pitch
velocity relative to the earth ¢1, go and the two-aircraft yaw velocity relative to the earth r1, ro, the aircraft mass,
its roll control, pitch and yaw control and all variation reflect the limiters conditions as shown in table 1.

This solution is achievable with KNITRO through the optimality conditions: final feasibility error (abs/rel) =
3.29e-15 / 8.51e-18, final optimality error (abs/rel) = 1.04e-13 / 1.04e-13, total program time (secs) = 17738,36914
(14893,13 CPU time), time spent in evaluations (secs) = 9815,84082).

6. Conclusion. We developed a numerical solution of an optimal control problem in the case of two-aircraft
on approach. Theoretical considerations and practices of the feasible TRSQP algorithm are used for the estab-
lishment of a non-linear program, implementing the considered problem. The algorithm minimizes a sequence of
merit function using a sub-problem of the quadratic problem at each step for all active constraints to generate a
search trust direction for all primal and dual variables. An optimal solution to the discretized problem is found
through a local convergence. The results show a reduction of noise at reception points during the approach of
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the two-aircraft. The obtained trajectories exhibit optimal characteristics and are acoustically effective. Some
added conditions are necessary to prove the global convergence of the considered algorithm. Further researches
are needed to complete the problem processing. We suggest one optimal trajectory for all the landing aircraft,
although it may not necessarily be the optimal one for each aircraft.
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