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1. Introduction. Considering the current trend in the eld of air transport [START_REF] Peyrat-Armandy | Les avions de transport modernes et futurs[END_REF][START_REF] Martin | L'Analyse des Nuisances sonores autour des aéroports[END_REF][START_REF] Khardi | Reduction of commercial aircraft noise emission around airports. A new environmental challenge[END_REF], economic and environmental considerations related to the rising cost of oil and the need to preserve the environment impose more severe constraints on the next generation of aircraft [START_REF] Filippone | Comprehensive analysis of transport aircraft ight performance[END_REF]. In sight of reaching one of the 2020 Advisory Council for Aeronautics Reasearch in Europe 'ACARE' objectives [START_REF] Ventre | Les challenges environnementaux pour le transport aérien[END_REF], that consists of the reduction of the environmental pollution and noise impact, ACARE requires a 50% reduction of perceived noise for 2020. This goal represents a dicult scientic and engineering challenge as this requires aerodynamic models and mathematical optimization [START_REF] Zapolozhets | Predicted Flight Procedures for Minimum Noise Impact[END_REF][START_REF] Barriety | La voie de la science, Des outils pour optimiser la conception des avions en phase d'approche[END_REF]. Some work addressing this problem has been carried out. The majority of this work addresses the problem of minimization of aircraft noise around the airport by considering a single plane [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Abdallah | Optimization of operational aircraft parameters reducing noise emission[END_REF]. The other work concerns the stochastic conict detection for air trac management [START_REF] Blin | Stochastic conict detection for air trac management[END_REF], the dynamics of ight [START_REF] Boier | The Dynamics of Flight, The Equations. SUPAÉRO[END_REF] and the comprehensive analysis of transport aircraft ight performance [START_REF] Filippone | Comprehensive analysis of transport aircraft ight performance[END_REF].

The aim of this work is the development of a theoretical model of noise optimization while maintaining a reliable evolution of the ight procedures of two commercial aircraft on approach. These aircraft are supposed to land successively on one runway without conict [START_REF] Roux | Modèle de longueur de piste au décollage-atterrissage, Avions de transport civil[END_REF]. It is all about the evolution of ight dynamics and minimization of noise for two similar commercial aircraft landing taking into account the energy constraint. This model is a non-linear and non-convex optimal control. It is governed by a system of ordinary non-linear dierential equations [START_REF] Kokkinis | Classical and relaxed optimization methods for optimal control problems[END_REF]. The 3-D movement of the two planes is described by a system depending on ordinary non-linear dierential equations with mixed constraints. The function to be minimized is the integral describing the overall level of noise emitted by the two aircraft on approach and collected on the ground. We take into account constraints related to joint stability, performance and ight safety.

The problem of optimal control is described and solved by a Trust Region Sequential Quadratic Programming method 'TRSQP' [START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF][START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires, Cours et exercices corrigés[END_REF][START_REF] Helmut | SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control[END_REF][START_REF] Hait | Optimisation des Systèmes dynamiques hybrides, Application en génie industriel à l'élaboration des scenarios[END_REF][START_REF] Lemarchal | Numerical Optimization: Theorical and pratical Aspects[END_REF]. By using a merit function, a sequential quadratic programming method associated with global trust regions bypasses the non-convex problem. This method is established by following a tangent quadratic problem obtained from the optimality conditions of Karush-Khun-Tucker applied to the problem considering the objective function as the merit function.

The TRSQP methods are suggested as an option by a Nonlinear Interior point Trust Region Optimization solver 'KNITRO' [START_REF] Waltz | KNITRO: An integrated Package for nonlinear optimization[END_REF][START_REF] Plantenga | KNITRO user's Manual, Version 5.2[END_REF] under A Mathematical Programming Modeling Language 'AMPL' [START_REF] Gay | A modelling Language for Mathematical Programming[END_REF][START_REF] Laboratories | A modelling Language for Mathematical Programming[END_REF]. The global convergence properties are analyzed under dierent assumptions on the approximate Hessian. Additional assumptions on the feasibility perturbation technique are used to prove quadratic convergence to points satisfying second-order sucient conditions. Details of the two-aircraft ight dynamic, the noise levels, the constraints, the mathematical model of the two-aircraft acoustic optimal control problem and the trust region sequential quadratic programming method processing are presented in section 2, 3 and 4 while the numerical experiments are presented in the last section.

Mathematical Modelization.

The motion of each aircraft A i , i := 1, 2 is three dimensional analyzed with 3 frames: the landmark (O,

-→ X 1 , -→ Y 1 , -→ Z 1 ), the aircraft frame (G i , -→ X Gi , -→ Y Gi , -→ Z Gi
) and the aerodynamic one

(G i , -→ X ai , -→ Y ai , -→
Z ai ) where i := 1, 2 [START_REF] Blin | Stochastic conict detection for air trac management[END_REF]. The transition between these three frames is shown easily [START_REF] Boier | The Dynamics of Flight, The Equations. SUPAÉRO[END_REF]. In general, the equations of motion of each aircraft are summarized as:

∑ -→ F exti -dmi dt -→ V ai = mid - → V a i dt ∑ -→ M extG i = d dt [I Gi -→ Ω i ] d - → X o dt = d - → X 1 dt + -→ Ω 10 × -→ X (1) 
The index i = 1, 2 reects the aircraft. In the system above, -→

F exti represents the external forces acting on the aircraft, m i (t) the mass of the aircraft, v i the airspeed of aircraft, -→ M extG i the moments of each aircraft, J(G i , A i ) the inertia matrix and Ω i the angular rotation of the aircraft. After transformations and simplications, the system takes the following explicit form:

                                                           V ai = 1 mi [-m i gsinγ ai -1 2 ρSV 2 ai C D + (cosα ai cosβ ai + sinβ ai + sinα ai cosβ ai )F xi -dmi dt u i -m i ∆A i u ] β ai = 1 miVa i [m i gcosγ ai sinµ ai + 1 2 ρSV 2 ai C yi + [-cosα ai sinβ ai + cosβ ai -sinα ai sinβ ai ]F yi -dmi dt v i -m i ∆A i v ] α ai = 1 miVa i cosβa i [m i gcosγ ai cosµ ai -1 2 ρSV 2 ai C Li + [-sinα ai + cosα ai ]F zi -dmi dt w i -m i ∆A i w ] ṗi = C AC-E 2 {r i q i (B -C) -Ep i q i + 1 2 ρSlV 2 ai C li + ∑ 2 j=1 F j [y b Mij cosβ mij sinα mij -z b Mij sinβ mij ]} + E AC-E 2 {p i q i (A -B) -Er i q i + 1 2 ρSlV 2 ai C ni + ∑ 2 j=1 F j [x b Mij sinβ mij -y b Mij cosβ mij cosα mij ]} qi = 1 B {-r i p i (A -C) -E(p 2 i -r 2 i ) + 1 2 ρSlV 2 ai C mi + ∑ 2 j=1 F j [z b Mij cosβ mij cosα mij -x b Mij cosβ mij sinα mij ]} ṙi = E AC-E 2 {r i q i (B -C) + Ep i q i + 1 2 ρSlV 2 ai C li + ∑ 2 j=1 F j [y b Mij cosβ mij sinα mij -z b Mij sinβ mij ]} + A AC-E 2 {p i q i (A -B) -Er i q i + 1 2 ρSlV 2 ai C ni + ∑ 2 j=1 F j [x b Mij sinβ mij -y b Mij cosβ mij cosα mij ]} ẊGi = V ai cosγ ai cosχ ai + u w ẎGi = V ai cosγ ai sinχ ai + v w ŻGi = -V ai sinγ ai + w w φi = p i + q i sinϕ i tanθ i + r i cosϕ i tanθ i θi = q i cosϕ i -r i sinϕ i ψi = sinφi cosθi q i + cosφi cosθi r i ṁi = -1 g dWi dt
(2) where j means the engine index, the expressions A = I xx , B = I yy , C = I zz , E = I xz are the inertia moments of the aircraft, ρ is the air density, S is the aircraft reference area, l is the aircraft reference length, g is the acceleration due to gravity,

C D = C D0 + kC 2 L is the drag coecient, C yi = C yβ β + C yp pl V + C yr rl V + C Y δ l δ l + C Y δn δ n is the lateral forces coecient, C Li = C Lα (α a -α a0 ) + C Lδm δ m + C LM M + C Lq q b a l V is the lift coecient, C li = C lβ β + C lp pl V + C lr rl V + C lδ l δ l + C lδn δ n is the rolling moment coecient, C mi = C m0 + C mα (α -α 0 ) + C mδm δ m is the pitching moment coecient, C ni = C nβ β +C np pl V +C nr rl V +C nδ l δ l +C nδ n δ n is the yawing moment coecient, (x b M ij , x b M ij , x b M ij )
is the position of the engine in the body frame,

F = (F xi , F yi , F zi ) is the propulsive force, V ai = (u i , v i , w i ) is the aerodynamic speed, (∆A i u , ∆A i v , ∆A i w )
is the complementary acceleration, (u w , v w , w w ) is the wind velocity, β mij is the yaw setting of the engine and α mij is the pitch setting of the engine. The expressions α ai (t), β ai (t), θ i (t), ψ i (t), ϕ i (t), V ai (t), X Gi (t), Y Gi (t), Z Gi (t), p i (t), q i (t), r i (t), m i (t) are respectively the attack angle, the aerodynamic sideslip angle, the inclination angle, the cup, the roll angle, the airspeed, the position vectors, the roll velocity of the aircraft relative to the earth, the pitch velocity of the aircraft relative to the earth, the yaw velocity of the aircraft relative to the earth and the aircraft mass.

Transforming the system (2) in state function, one has:

dy i (t) dt = f i (y i (t), u i (t)), i = 1, 2 (3) 
where the state vector is:

y i (t) : [t 0 , t f ] -→ R 13 y i (t) = (α ai (t), β ai (t), θ ai (t), ψ ai (t), ϕ i (t), V ai (t), X Gi (t), Y Gi (t), Z Gi (t), p i (t), q i (t), r i (t), m i (t)) (4) 
The control vector is

u i (t) : [t 0 , t f ] -→ R 4 t -→ u i (t) = (δ li (t), δ mi(t) , δ ni (t), δ xi (t)) (5) 
where the expressions δ li (t), δ mi(t) , δ ni (t), δ xi (t) are respectively the roll control, the pitch control, the yaw control and the thrust one. The dynamics relationship can be written as:

ẏi (t) = f i (y i (t), u i (t), t), ∀t ∈ [0, T ], y i (0) = y i0 (6) 
The angles γ ai (t), χ ai (t), µ ai (t) corresponding respectively to the aerodynamic climb angle (air-path inclination angle), the aerodynamic azimuth (air-path track angle) and the air-path bank angle (aerodynamic bank angle) are not taken as state in this model.

To simplify the model, the atmosphere standards conditions are considered. The engine angles, the complementary acceleration and the aerodynamic sideslip angle are negligible because the wind is constant and there is no engine failure. With some complex mathematical transformations, the dynamic system (2) becomes:

                                       V ai = 1 mi [-m i gsinγ ai -1 2 ρSV 2 ai C D + (cosα ai + sinα ai )F xi -dmi dt u i ] α ai = 1 miVa i cosβa i [m i gcosγ ai cosµ ai -1 2 ρSV 2 ai C Li + [cosα ai -sinα ai ]F zi -dmi dt w i ] ṗi = C AC-E 2 {r i q i (B -C) -Ep i q i + 1 2 ρSlV 2 ai C li } + E AC-E 2 {p i q i (A -B) -Er i q i + 1 2 ρSlV 2 ai C ni ṙi = E AC-E 2 {r i q i (B -C) + Ep i q i + 1 2 ρSlV 2 ai C li + A AC-E 2 {p i q i (A -B) -Er i q i + 1 2 ρSlV 2 ai C ni } ẊGi = V ai cosγ ai cosχ ai ẎGi = V ai cosγ ai sinχ ai ŻGi = -V ai sinγ ai φi = p i + q i sinϕ i tanθ i + r i cosϕ i tanθ i θi = q i cosϕ i -r i sinϕ i ψi = sinφi cosθi q i + cosφi cosθi r i ṁi = -1 g dWi dt (7) 
By the combination of this system with the aircraft control, one has the two-aircraft dynamic ight model as shown in [START_REF] Zapolozhets | Predicted Flight Procedures for Minimum Noise Impact[END_REF]. The state vector is

y i (t) : [t 0 , t f ] -→ R 12 y i (t) = (α ai (t), θ ai (t), ψ ai (t), ϕ ai (t), V ai (t), X Gi (t), Y Gi (t), Z Gi (t), p i (t), q i (t), r i (t), m i (t)) (8) 
This will be added to the cost function and constraint function for the aircraft optimal control problem as shown in the following paragraphs.

The ob jective function model. Many noise indices (LAmax, L eq , EP N L, ...) exist and are presented in the open literature [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Martin | Noise monitoring in the vicnity of airports[END_REF]. In this paper, the Sound Exposure Level 'SEL' is considered. It provides a comprehensive way to describe noise events in modeling and analyzing noise environment impacts [START_REF] Harris | How do we Describe Aircraft Noise[END_REF]:

SEL = 10log [ 1 t o ∫ t ′ 10 0.1L A1,dt (t) dt ] (9) 
where t o is the time reference taken equal to 1 s and t ′ the noise event interval. [t 10 , t 1f ] and [t 20 , t 2f ] are the respective approach intervals for the rst and the second aircraft, the objective function is calculated as:

SEL 1 = 10log [ 1 to ∫ t20 t10 10 0.1L A1,dt (t) dt ] , t ∈ [t 10 , t 20 ] SEL 12 = SEL 11 ⊕ SEL 21 = 10 log[ 1 to ∫ t 1f t20 10 0.1L A1,dt (t) dt + 1 to ∫ t 1f t20 10 0.1L A2,dt (t) dt], t ∈ [t 20 , t 1f ] SEL 2 = 10 log [ 1 to ∫ t 2f t 1f 10 0.1L A2,dt (t) dt ] , t ∈ [t 1f , t 2f ] SEL G = (t20-t10)SEL1⊕(t 1f -t20)SEL12⊕(t 2f -t 1f )SEL2 t 2f -t10 = 10 log{ 1 t 2f -t10 [(t 20 -t 10 ) ∫ t20 t10 10 0.1LA1(t) dt + (t 1f -t 20 ) ∫ t 1f t20 10 0.1LA1(t) dt + (t 1f -t 20 ) ∫ t 1f t20 10 0.1LA2(t) dt +(t 2f -t 1f ) ∫ t 2f t 1f 10 0.1LA2(t) dt, ]}, t ∈ [t 10 , t 2f ] (10 
) where SEL G is the cumulated two-aircraft noise and the operator ⊕ means the convoluted addition of noises. Expressions L A1 (t), L A2 (t) are equivalent and reect the aircraft jet noise given by the formula [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Zola | An improved prediction method for noise generated by conventional prole coaxial jets[END_REF]:

L A1 (t) = 141 + 10 log ( ρ 1 ρ ) w + 10 log ( V e c ) 7.5 + 10 log s 1 + 3 log ( 2s 1 πd 2 1 + 0.5 ) + 5 log τ 1 τ 2 + 10 log      ( 1 - v 2 v 1 ) me + 1.2 ( 1 + s 2 v 2 2 s 1 v 2 1 ) 4 ( 1 + s 2 s 1 ) 3      -20 log R + ∆V + 10 log [ ( ρ ρ ISA ) 2 ( c c ISA ) 4 ]
where v 1 is the jet speed at the entrance of the nozzle, v 2 the jet speed at the nozzle exit, τ 1 the inlet temperature of the nozzle, τ 2 the temperature at the nozzle exit, ρ the density of air, ρ 1 the atmospheric density at the entrance of the nozzle, ρ ISA the atmospheric density at ground, s 1 the entrance area of the nozzle hydraulic engine, s 2 the emitting surface of the nozzle hydraulic engine, d 1 the inlet diameter of the nozzle hydraulic engine,

V e = v 1 [1 -(V /v 1 ) cos(α p )] 2/3
the eective speed (α p is the angle between the axis of the motor and the axis of the aircraft), R the source observer distance, w the exponent variable dened by: w = 3(V e /c) 3.5 0.6 + (V e /c) 3.5 -1, c the sound velocity (m/s), m the exhibiting variable depending on the type of aircraft: me = 1.1

√ s 2 s 1 ; s 2 s 1 < 29.7, me = 6.0; s 2 s 1 ≥ 29.7, the term ∆V = -15log(C D (M c , θ)) -10log(1 -M cosθ), means the Doppler convection when C D (M c , θ) = [(1 + M c cosθ) 2 + 0.04M 2 c ], M the aircraft Mac Number, M c the convection Mac Number: M c = 0.62(v 1 -V cos(α p )) c, θ is the Beam angle.
Formula above leads to the objective function

J G12 (y(t), u(t), i = 1, 2) = ∫ t ′ g(y(t), u(t), t, i = 1, 2)dt.
Constraints.

The two-aircraft optimal control problem which minimizes noise and provides optimal trajectory must be done in realistic ight domains. Operational procedures are performed while respecting dynamic limits related to the safety of ight and operational modes of the aircraft. This concerns aircraft airspeed, altitude, attack angle, aerodynamic sideslip angle, inclination angle, roll angle, throttle control position, roll control position, pitch control position, yaw control position, energy constraint, vertical, longitudinal and lateral aircrafts separation, roll velocity of aircraft relative to the earth, pitch velocity of aircraft relative to the earth, yaw velocity of aircraft relative to the earth and the aircraft mass.

1. The vertical separation given by Z G12 = Z G2 -Z G1 where Z G1 , Z G2 are respectively the altitude of the rst and the second aircraft and Z G12 the altitude separation.

2. The horizontal separation X G12 = X G1 -X G2 [START_REF] Dgac | Mémento à l'usage des utilisateurs des procédures d'approche et de départ aux instruments[END_REF][START_REF] Sors | Séparation et contrôle aérien[END_REF][START_REF] Dgac | Méthodes et minimums de séparations des aéronefs aux procédures[END_REF] where X G1 , X G2 are horizontal positions of the rst and the second aircraft and their separation distance.

3. The aircraft speed V ai must be bounded as follows 1.3V s ≤ V ai ≤ V f where V s is the stall speed,V f is the maximum speed and V o the minimum speed of the aircraft A i [START_REF] Dominique | Cisaillement de vent ou Windshear[END_REF][START_REF] Roux | Pour une approche analytique de la dynamique du[END_REF], the roll velocity of the aircraft relative to the earth p i ∈ [p 0 , p f ], the pitch velocity of the aircraft relative to the earth q i ∈ [q 0 , q f ] and the yaw velocity of the aircraft relative to the earth r i ∈ [r 0 , r f ] .

4. On the approach, the ICAO standards and aircraft manufacturers require ight angle evolution as follows: attack angle

α ai ∈ [α o , α f ], the inclination angle θ i ∈ [θ 0 , θ f
] and the roll angle

ϕ i ∈ [ϕ o , ϕ f ].
5. The aircraft control δ(t) = (δ li (t), δ mi(t) , δ ni (t), δ xi (t)) keeps still between the position δ l0 and δ lf for the roll control, δ m0 and δ mf for the pitch control, δ n0 and δ nf for the yaw control and δ xo and δ xf for the thrust.

The mass m i of the aircraft

A i is variable: m o < m i < m f , i = 1, 2.
This constraint results in energy consumption of the aircraft [START_REF] Boier | Dynamique de vol de l'avion. SupAéro, Départements des Aéronefs[END_REF][START_REF] Ifrance | Fiches techniques[END_REF].

On the whole, the constraints come together under the relationship:

C(y i (t), u i (t), t) ≤ 0 (11) 
where

C(t) : R 12 × R 4 × R -→ R 17 , (y i (t), u i (t), t) -→ C(y i (t), u i (t), t), with C i (t) = (α i (t), θ i (t), ψ i (t), ϕ i (t), V ai (t), X Gi (t), Y Gi (t), Z Gi (t), p(t), q(t), r(t), δ li (t), δ mi (t), δ ni (t), δ xi (t), m i (t), t).
The following values reect the digital applications considered for the two-aircraft [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Boier | The Dynamics of Flight, The Equations. SUPAÉRO[END_REF][START_REF] Roux | Pour une approche analytique de la dynamique du[END_REF][START_REF] Boier | Dynamique de vol de l'avion. SupAéro, Départements des Aéronefs[END_REF]. 

V a1 = V a2 = 180 m/s V a1 = V a2 = 73.45 m/s
The A1 Aircraft altitude

Z 1 = 35 × 10 2 m Z 1 = 0 m
The A2 Aircraft altitude

Z 2 = 41 × 10 2 m Z 2 = 0 m
The aircraft roll control

δ l1 = δ l2 = 0.0174 δ l1 = δ l2 = -0.0174
The pitch control

δ m1 = δ m2 = 0.087 δ m1 = δ m2 = 0
The yaw control

δ n1 = δ n2 = 0.314 δ n1 = δ n2 = -0.035
The thrust control

δ x1 = δ x2 = 0.6 δ x1 = δ x2 = 0.2
The attack angle

α a1 = α a2 = 12 • α a1 = α a2 = 2 •
The inclination angle

θ a1 = θ a2 = 7 • θ a1 = θ a2 = -7 •
The air-path inclination angle

γ a1 = γ a2 = 0 • γ a1 = γ a2 = -5 •
The aerodynamic bank angle

µ a1 = µ a2 = 3 • µ a1 = µ a2 = -2 •
The air-path azimuth angle

χ a1 = χ a2 = 5 • χ a1 = χ a2 = -5 •
The roll angle

ϕ a1 = ϕ a2 = 1 • ϕ a1 = ϕ a2 = -1 •
The cup

ψ a1 = ψ a2 = 3 • ψ a1 = ψ a2 = -3 •
The limits of time

t 1f = 600 s,t 2f = 645 s t 10 = 0 s, t 20 = 45 s
The mass of the A1 Aircraft The Aircraft vertical separation

Z 12 = 2 × 10 3 f t ≃ 6 × 10 2 m
The Aircraft longitudinal separation

X G12 = 5 N M ≃ 9 × 10 3 m
The Aircraft roll velocity relative to the earth

p 1 = p 2 = 1 • s -1 p 1 = p 2 = -1 • s -1
The Aircraft pitch velocity relative to the earth q 1 = q 2 = 3.6 • s -1

q 1 = q 2 = 3 • s -1
The Aircraft yaw velocity relative to the earth

r 1 = r 2 = 12 • s -1 r 1 = r 2 = -12 • s -1
The two-aircraft acoustic optimal control problem.

The combination of the aircraft dynamic equation ( 3) and ( 7), the aircraft objective function from equations [START_REF] Blin | Stochastic conict detection for air trac management[END_REF] and the the aircraft constraints function [START_REF] Boier | The Dynamics of Flight, The Equations. SUPAÉRO[END_REF], the two-aircraft acoustic optimal control problem is given as follows:

           min (y,u)∈Y×U J G12 (y(t), u(t)) = ∫ t 1f t10 g 1 (y 1 (t), u 1 (t), t)dt+ ∫ t 1f t20 g 12 (y 1 (t), u 1 (t), y 2 (t), u 2 (t), t)dt + ∫ t 2f t20 g 2 (y 2 (t), u 2 (t), t)dt + ϕ(y(t f )) ẏ(t) = f (u(t), y(t)), u(t) = (u 1 (t), u 2 (t)) y(t) = (y 1 (t), y 2 (t)), ∀t ∈ [t 10 , t 2f ], t 10 = 0, y(0) = y 0 , u(0) = u 0 C(y(t), u(t)) ≤ 0 (12)
where g 12 shows the aircraft coupling noise function and J G12 is the SEL of the two A300-aircraft.

3. The numerical processing. The problem as dened in the relation ( 12) is an optimal control problem with instantaneous constraints. We aim to solve this problem with the Trust Region Sequential Quadratic Programming method. Applying SQP methods [START_REF] Wright | Numerical Optimization[END_REF] , we write the system (12) as:

       min J G12 (x), x = (y(t), u(t)) ẏ = f (x) n j (x) = 0, j ∈ Ξ n j (x) ≥ 0, j ∈ Γ (13)
where the expressions Ξ and Γ are the sets of equality and inequality indices. The function J G12 (x), f (x), n(x) must be twice continuously dierentiable. The Lagrangian of the system ( 13) is dened by the function L(x, λ) = J GP 12 (x) + λ T [b( ẏ, x) + n(x)] where the vector λ is the Lagrange multiplier and b( ẏ, x) = ẏ -f (x) = 0. Considering the feasible points of (12), one transforms the system (13) into a quadratic problem. A SQP method solves a succession of quadratic problems. The mathematical formulation of sub-problems obtained at the k-th step ∆x k is the following:

       min ∆x k [K G12 (x k )] = ∇ T J G12 (x k )∆x k + 1 2 (∆x k ) T H k ∆x k ∇ T b( ẏk , x k )∆x k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )∆x k + n Ξ (x k ) = 0 ∇ T n Γ (x k )∆x k + n Γ (x k ) ≥ 0 (14)
The vector ∆x k is a primal-dual descent direction, H k = ∇ 2 L(x k , λ k ) is the Hessian matrix of Lagrangian L from system ( 13) and K G12 (x k ) the quadratic model. The estimation of gradients is, in principle, calculated by nite dierences or the calculation of the adjoint systems for problems with many parameters and nally by the sensitivity analysis. This last technique is very eective in the case of a large number of variables with few parameters [START_REF] Helmut | SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control[END_REF][START_REF] Hait | Optimisation des Systèmes dynamiques hybrides, Application en génie industriel à l'élaboration des scenarios[END_REF]. The SQP method is a qualied local method. Its convergence is quadratic if the rst iterate is close to a solution ỹ satisfying the sucient optimality conditions [START_REF] Walter | SNOPT: An SQP Algorithme for large-scale constrained optimization[END_REF][START_REF] Gilbert | SQPpro: A solver of nonlinear optimization problems, using an SQP approach[END_REF][START_REF] Bricker | SQP: Sequential quadratic programming[END_REF]. This algorithm above must be transformed because the two-Aircraft problem is non-convex. For improving the robustness and global convergence behavior of this SQP algorithm, it must be added with the trust radius of this form:

||D∆x k || p ≤ ∆, p ∈ [1, ∞] (15)
where D is uniformly bounded. The relations ( 14) and ( 15) form a quadratic program when p = ∞. So, the trustregion constraint is restated as -∆e ≤ Dx ≤ ∆e, e = (1, 1, 1, ..., 1) T . If p = 2, one has the quadratic constraint

∆x T k D T D∆x k ≤ ∆ 2 .
In the following, we develop the convergence theory for any choice of p just to show the equivalence between the ||.|| p and ||.|| 2 . By the combination of some relation of ( 13) and the relation ( 14), all the components of the step are controlled by the trust region. The two-aircraft problem takes the following form

           min ∆x k [K G12 (x k )] = ∇ T J G12 (x k )∆x k + 1 2 (∆x k ) T H k ∆x k ∇ T b( ẏk , x k )∆x k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )∆x k + n Ξ (x k ) = 0 ∇ T n Γ (x k )∆x k + n Γ (x k ) ≥ 0 ||D∆x k || p ≤ ∆, p ∈ [1, ∞] (16) 
In some situations, all of the components of the step are not controlled by the trust region because of some hypotheses on D. There is an other alternative which allows the practical SQP methods by using the merit function or the penalty function to measure the worth of each point x.

Several approaches like Byrd-Omojokun and Vardi approaches exist to solve the system (13) [START_REF] Xavier-Jonsson | Méthodes des points intérieurs et de régions de conence en optimisation non-linéaire et application à la conception des verres ophtamiques progressifs[END_REF]. It can also be solved with the KNITRO, the SNOPT and other methods [START_REF] Ouriemchi | Résolution de problèmes non-linéaires par les méthods des points intérieurs[END_REF]. In the latter case, we have an ordinary dierential system of non-linear and non-convex equations. The uniqueness of the solution of the quadratic sub-problem is not guaranteed. It therefore combines the algorithm with a merit function for judging the quality of the displacement. The merit function can therefore oer a way to measure all progress of iterations to the optimum while weighing the importance of constraints on the objective function. It is chosen in l 2 norm particularly the increased Lagrangian L I because of its smooth character. So, in the equation above, one replaces L by L I . Thus, this transforms the SQP algorithm in sequential quadratic programming with trust region globalization 'TRSQP'. Its principle is that each new iteration must decrease the merit function of the problem for an eligible trust radius. Otherwise, we reduce the trust radius ∆x K for computing the new displacement. A descent direction is acceptable if its reduction is emotionally positive. The advantages of the method are that the merit function will circumvent the non-convexity of the problem. This approach shows that only one point is sucient to start the whole iterative process [START_REF] Gilbert | Eléments d'optimisation diérentiable -Théorie et Algorithmes[END_REF][START_REF] Nahayo | Les méthodes numériques appliquées en optimisation non-linéaire et en commande optimale[END_REF][START_REF] Khardi | Mathematical Model for Advanced CDA and Takeo Procedures Minimizing Aircraft Environmental Impact[END_REF].

Meanwhile, we use an algorithm called feasibility perturbed SQP in which all iterates x k are feasible and the merit function is the cost function. Let us consider the perturbation ∆x k of the step ∆x k such that 1. The relation

x + ∆x k ∈ F ( 17 
)
where F is the set of feasible points for (12),

The asymptotic exactness relation

||∆x -∆x k || 2 ≤ ϕ(||∆x k || 2 )||∆x k || 2 (18)
is satised where ϕ : R + -→ R + with ϕ(0) = 0.

These two conditions are used to prove the convergence of the algorithm and the eectiveness of this method. The advantages gained by maintaining feasible iterates for this method are:

• An inequality constraint n j is active at point x = (y * , u * ) if n j (x) = 0. Γ(x) = Γ * is the set of indices j corresponding to active constraints in x,

Γ + * = {j ∈ Γ * |(λ * Γ ) j > 0} Γ 0 * = {j ∈ Γ * |(λ * Γ ) j = 0} (19) 
where the constraints of index Γ + * are highly active and those of Γ 0 * weakly active. • An element x ∈ Γ * veries the condition of qualifying for the constraints n if the gradients of active constraint ∇n Ξ (x), ∇n Γ (x) are linearly independent. This means that the Jacobian matrix of active constraints in x is full.

• An element x ∈ Γ * satises the qualication condition of Mangasarian-Fromowitz for constraints n in x if there exists a direction d such that

∇n Ξ (x) T d = 0∇n j (x) T d < 0∀j ∈ Γ(x) (20) 
where the gradients {∇n(x)} are linearly independent.

The Karush-Kuhn-Tucker optimality conditions are obtained by considering that J, n functions of C 1 class and

x a solution of the problem ( 12) which satises a constraints qualication condition. So,there exists λ * such that:

∇ y L(x, λ * ) = 0, n Ξ (x) = 0, n Γ (x) ≤ 0, λ * Γ ≥ 0, λ * Γ n Γ (x) = 0 (21) 
These equations are called the conditions of Karush-Kuhn-Tucker(KKT). The rst equation reects the optimality, the second and third the feasibility conditions. The others reect the additional conditions and Lagrange multipliers corresponding to inactive constraints nj(x) are zero. The couple (x, λ * ) such that the KKT conditions are satised is called primal-dual solution of [START_REF] Waltz | KNITRO: An integrated Package for nonlinear optimization[END_REF]. So, x is called a stationary point.

For the necessary optimality conditions of second order [START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires, Cours et exercices corrigés[END_REF], taking x a local solution of [START_REF] Waltz | KNITRO: An integrated Package for nonlinear optimization[END_REF] and satisfying a qualication condition, then there exist multipliers (λ * ) such that the KKT conditions are veried . So we have

∇ 2 xx L(x, λ * )d.d > 0∀h ∈ C * where C * is a critical cone dened by C * = {h ∈ Y × U : ∇n j (x).h = 0 ∀j ∈ Ξ ∪ Γ + * , ∇n j (x).h ≤ 0∀j ∈ Γ 0 * }. The elements of C * are called critical directions.
For the sucient optimality conditions of second order [START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires, Cours et exercices corrigés[END_REF], suppose that there exists (λ * ) which satisfy the KKT conditions and such that ∇ 2 xx L(x, λ * )d.d > 0∀h ∈ C * \{0}. So x is a local minimum of [START_REF] Roux | Modèle de longueur de piste au décollage-atterrissage, Avions de transport civil[END_REF]. [START_REF] Filippone | Comprehensive analysis of transport aircraft ight performance[END_REF] The TRSQP algorithm and convergence analysis. Assume that for a given SQP step ∆x k and its perturbation ∆x k , the ratio to predict decrease is

r k = J G12 (x k ) -J G12 (x k + ∆x k ) -K G12 ( ∆x k ) (22) 
The two-aircraft acoustic optimal control TRSQP algorithm is written as:

1. Let x 0 a given starting point, ∆ ≥ 1 the trust region upper bound, ∆ 0 ∈ (0, ∆) an initial radius, ϵ ∈ [ϵ 0 , ϵ f ) and p ∈ [1, ∞]
2. Calculate ∆x k by solving the system

           min ∆x k [K G12 (x k )] = ∇ T J G12 (x k )∆x k + 1 2 (∆x k ) T H k ∆x k ∇ T b( ẏk , x k )∆x k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )∆x k + n Ξ (x k ) = 0 ∇ T n Γ (x k )∆x k + n Γ (x k ) ≥ 0 ||D∆x k || p ≤ ∆, p ∈ [1, ∞]
Seek also ∆x k by using the system

x + ∆x k ∈ F ||∆x -∆x k || 2 ≤ ϕ(||∆x k || 2 )||∆x k || 2
3. If no such for the perturbed counterpart ∆x k is found, the following aectations are considered.

∆x k+1 ← ( 1 2 )||D k ∆x k || p x k+1 ← x k ; D k+1 ← D k ; 4. Otherwise, calculate r k = JG12(x k )-JG12(x k + ∆x k ) -KG12( ∆x k ) ; if r k ≤ ϵ f , ∆ k+1 ← ( 1 2 )||D k ∆x k || p ; else if r k > a 0 × ϵ 0 and ||D k ∆x k || p = ∆ k ∆ k+1 ← min(2∆ k , ∆); else ∆ k+1 ← ∆ k ; 5. If r k > ϵ x k+1 ← x k + ∆x k ; Choose the new matrix D k+1 ; else x k+1 ← x k ; D k+1 ← D k ;
6. end.

At each major iteration a positive denite quasi-Newton approximation of the Hessian of the Lagrangian function, H, is calculated using the BFGS method, where λ i , i = 1, ..., m, is an estimate of the Lagrange multipliers.

H k+1 = H k + q k q T k q T k s k - H T k s T k s k H k s T k H k s k
where

s k = x k+1 -x k , q k = (∇J G12 (x k+1 + ∑ n j=1 λ j .∇n(x k+1 ) + b(x k+1 )) -(∇J G12 (x k + ∑ n j=1 λ j .∇n(x k ) + b(x k ))
A positive denite Hessian is maintained providing q T k s k is positive at each update and that H is initialized with a positive denite matrix. This algorithm is implemented by AMPL language programming and the KNITRO solver [START_REF] Waltz | KNITRO: An integrated Package for nonlinear optimization[END_REF][START_REF] Plantenga | KNITRO user's Manual, Version 5.2[END_REF].

Analysis of the algorithm and its convergence.

Let us dene the set F 0 as follows:

F 0 = {x|∇ T b( ẏ, x)∆x + b( ẏ, x) = 0, ∇ T n Ξ (x)∆x + n Ξ (x) = 0, ∇ T n Γ (x)∆x + n Γ (x) ≥ 0, J G12 (x) ≤ J G12 (x 0 )} ∈ F The trust-region bound ||D∆x k || p ≤ ∆, p ∈ [1, ∞]
species the following assumption.

1. There exists a constant β such that for all points x ∈ F 0 and all matrix D used in the algorithm, we have for any ∆x satisfying the following equations

∇ T b( ẏ, x)∆x + b( ẏ, x) = 0, ∇ T n Ξ (x)∆x + n Ξ (x) = 0, ∇ T n Γ (x)∆x + n Γ (x) ≥ 0 that β -1 ||∆x|| 2 ≤ ||D∆x|| p ≤ β||∆x|| 2 (23) 
2. The level set F 0 is bounded and the functions J G12 , b, η are twice continuously dierentiable in an open neighborhood M(F 0 ) of this set.

Under certain assumptions as shown in [START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF], this algorithm is well dened.

In this paragraph, one wants to prove that the algorithm has a convergence to stationary point of [START_REF] Kokkinis | Classical and relaxed optimization methods for optimal control problems[END_REF]. If we consider that all assumptions hold for each feasible point x for [START_REF] Roux | Modèle de longueur de piste au décollage-atterrissage, Avions de transport civil[END_REF], the Mangasarian-Fromowitz are satised for constraints. After all, the KKT optimality conditions are specied and that shows that there is at least a local convergence. With other added conditions as shown in [START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF], the global convergence is held.

5. Numerical Results. For this result, one considers the 20 km radius for the rst aircraft around the airport when its maximum altitude is 1 km and 1.5 km for the second on 29 km radius. Figures 1, 2, 3 and4 show noise levels around the airport when the optimization is applied or not. This explains the importance of optimizing the acoustics in aircraft approach and the gains brought by this model when compared to what is done daily. As specied by this gure, the noise level increases and is maximum when the observation point lies below the aircraft. After all, noise level decreases gradually as the aircraft departs increasingly from the observation point. The noise levels increase comparing with the result of the rst gure because aircraft altitudes decrease. As specied by this gure, the noise level increases and is maximum when the observation point lies below the aircraft. After all, noise level decreases gradually as the aircraft departs increasingly from the observation point.The noise levels increase comparing with the result of the second gure because aircraft altitudes decrease. As specied by this gure, the noise level increases and is maximum when the observation point lies below the aircraft. After all, noise level decreases gradually as the aircraft departs increasingly from the observation point.

The general remark on gure 1, 2, 3 and 4 is that all noise levels evolution keeps the same behavior. By comparison, this result is close to standard values of jet noise on approach as shown by Harvey [START_REF] Hubbard | Noise sources and[END_REF]. Figure 5 shows the evolution of the trajectories which reect a continuous descent. The aircrafts' landing procedures are suciently separated. It is obvious that each aircraft follows its optimal trajectory when considering the separation distance. The same constraints on speed are considered, allowing a subsequent landing on the same track. Thus, as recommended by ICAO, the security conditions are met and ight procedures are good as shown by the following results. The maximum altitude considered are 3500 m and 4100 m for the rst and second aircraft. The duration approach considered is 600 s for the rst aircraft and 645 s for the second. Our suggestion is an optimal trajectory for the two-aircraft , not necessarily optimal for each of them , but resulting from the two trajectories combination. 6 shows the principle angles evolution as recommended by ICAO during aircraft landing procedures. As specied by this result, the aircraft roll angles oscillate around zero, the ight-path angles are negative and keep the recommended position for aircraft landing procedures. This is the same for the attack angles. Figure 7 shows the aircraft speed evolution during aircraft landing procedures. For the rst, the aircraft speed decreases and keeps a constant position, increases and keeps again a constant position till the end of the aircraft landing. This evolution remains the same for the speed of the second aircraft. The maximum value is 180 m/s when the minimum is around 124 m/s. Figure 8 shows that the nesse evolution is bang-bang for both aircraft. That means that the control lies constant on one bound of the variation interval. The throttle position keeps constant during all the landing procedures. This is the same for the two-aircraft roll velocity relative to the earth p 1 , p 2 , the two-aircraft pitch velocity relative to the earth q 1 , q 2 and the two-aircraft yaw velocity relative to the earth r 1 , r 2 , the aircraft mass, its roll control, pitch and yaw control and all variation reect the limiters conditions as shown in table 1.

This solution is achievable with KNITRO through the optimality conditions: nal feasibility error (abs/rel) = 3.29e-15 / 8.51e-18, nal optimality error (abs/rel) = 1.04e-13 / 1.04e-13, total program time (secs) = 17738,36914 (14893,13 CPU time), time spent in evaluations (secs) = 9815,84082). 6. Conclusion. We developed a numerical solution of an optimal control problem in the case of two-aircraft on approach. Theoretical considerations and practices of the feasible TRSQP algorithm are used for the establishment of a non-linear program, implementing the considered problem. The algorithm minimizes a sequence of merit function using a sub-problem of the quadratic problem at each step for all active constraints to generate a search trust direction for all primal and dual variables. An optimal solution to the discretized problem is found through a local convergence. The results show a reduction of noise at reception points during the approach of the two-aircraft. The obtained trajectories exhibit optimal characteristics and are acoustically eective. Some added conditions are necessary to prove the global convergence of the considered algorithm. Further researches are needed to complete the problem processing. We suggest one optimal trajectory for all the landing aircraft, although it may not necessarily be the optimal one for each aircraft.

m 10 ≃ 1 . 1 ×

 1011 10 5 kg, m 1f ≃ 1.09055 × 10 5 kg, The mass of the A2 Aircraft m 20 ≃ 1.10071 × 10 5 kg m 2f ≃ 1.09126 × 10 5 kg The A300 inertia moments [31] A = 5.555 × 10 6 kg m 2 B = 9.72 × 10 6 kg m 2 C = 14.51 × 10 6 kg m 2 E = -3.3 × 10 4 kg m 2

  Hypothesis:The observation points are taken on the ground under the path of the aircraft and are independent of each other.The observation positions are: (-20000 m, -20000 m, 0 m), (-19800 m, -19800 m, 0 m), ..., (0 m, 0 m, 0 m), for a space step of 200 m for x and y. The touching point on the ground is (0 m, 0 m, 0 m) while the temporal separation of aircraft varies from 45 s to 90 s . At each point of view, it is a vector of N noise levels as shown in the discretization. It is very important to consider the maximum value among the N values, which value corresponded to the shortest distance between the noise source and the observation point.
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  Figure6shows the principle angles evolution as recommended by ICAO during aircraft landing procedures. As specied by this result, the aircraft roll angles oscillate around zero, the ight-path angles are negative and keep the recommended position for aircraft landing procedures. This is the same for the attack angles.
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	The Aircraft speed		

• The trust region restriction[START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires, Cours et exercices corrigés[END_REF] is added to the SQP problem[START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF] without concern that it will yield an infeasible subproblem.• The objective function J G12 is itself used as a merit function in deciding whether to take a step.• If the algorithm is terminated early, we will be able to use the latest iterate x k as a feasible suboptimal point, which in many applications is far preferable to an infeasible suboptimum.Here are some considerations that are needed for the KKT optimality conditions.
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