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We consider one-dimensional topological insulators hosting fractionally charged midgap states
in the presence and absence of induced superconductivity pairing. Under the protection of a dis-
crete symmetry, relating positive and negative energy states, the solitonic midgap states remain
pinned at zero energy when superconducting correlations are induced by proximity effect. When
the superconducting pairing dominates the initial insulating gap, Majorana fermion phases develop
for a class of insulators. As a concrete example, we study the Creutz model with induced s-wave
superconductivity and repulsive Hubbard-type interactions. For a finite wire, without interactions,
the solitonic modes originating from the nonsuperconducting model survive at zero energy, revealing
a fourfold-degenerate ground state. However, interactions break the aforementioned discrete sym-
metry and completely remove this degeneracy, thereby producing a unique ground state which is
characterized by a topological bulk invariant with respect to the product of fermion parity and bond
inversion. In contrast, the Majorana edge modes are globally robust to interactions. Moreover, the
parameter range for which a topological Majorana phase is stabilized expands when increasing the
repulsive Hubbard interaction. The topological phase diagram of the interacting model is obtained
using a combination of mean-field theory and density matrix renormalization group techniques.

I. INTRODUCTION

In the context of quantum field theory, Jackiw and
Rebbi1 introduced a general mechanism to generate zero
modes with fractional charges. They considered a one-
dimensional massless fermion coupled to a bosonic scalar
field. Owing to Z2 symmetry breaking, the bosonic field
can acquire a finite uniform expectation value m(x) =
±m, which provides a mass to the fermion. When the
scalar field has a kink m(x) interpolating between two op-
posite values of the mass, the one-particle Dirac equation
exhibits a nondegenerate solution which is isolated in the
middle of the gap (at zero energy E = 0), and spatially
localized around the mass inversion point xc where m(xc)
vanishes. This nondegenerate solution is protected by
a unitary symmetry that connects each single-electron
state ψE with energy E to its partner ψ−E located at
the opposite energy. The zero-energy state ψE=0 is self-
conjugated under this discrete symmetry and thereby
protected. In the many-particle description, there are
two degenerate many-body ground states corresponding
to the state ψE=0 being empty or filled, while negative
energy states of the Fermi sea are all filled. Besides, the
existence of a U(1) symmetry ensures that the electric
charge is a good quantum number. Then, the ground
state with E = 0 empty (occupied) carries the charge
Q = 1/2 (Q = −1/2), in units of the original fermion
charge. This has been generalized to arbitrary fractional
charges2,3 and more complicated bosonic kinks.4,5 The
first condensed matter realization of the Jackiw-Rebbi
mechanism came with the study of conducting polymers,
such as polyacetylene.6,7

More recently, another type of zero-energy excitation,
the Majorana fermion, has attracted a lot of atten-
tion from the condensed matter community.8 A Majo-

rana fermion is its own antiparticle,9 and can appear at
defects of topological superconductors, such as p-wave
superconductors10 or superconducting hybrid systems
mimicking them.11–13 In presence of superconductivity,
the U(1) symmetry is broken, such that the electrical
charge is no longer conserved. Moreover, a discrete an-
tiunitary particle-hole symmetry emerges which differs
from the one discussed above in the case of fractionally
charged solitons. Nevertheless, a Majorana excitation
can also be described within the Jackiw-Rebbi scheme
and its existence is signaled by a nondegenerate and self-
conjugated solution of the Bogoliubov–de Gennes (BdG)
equations.10 The crucial difference appears in the many-
particle description of the system: two solutions of the
BdG equations are needed to construct a fermionic dou-
blet.

This paper aims at understanding the physics of sys-
tems that host fractionally charged solitons in their normal
state and Majorana modes in some of their superconduct-
ing phases. In particular, we study how the zero-energy
solitonic modes survive under the addition of proximity-
induced superconductivity and/or Hubbard repulsive in-
teractions. Several phases are a priori possible, including
a fully gapped superconducting phase without midgap
states, a topological superconductor with Majorana end
states, and finally a superconducting phase with midgap
states which are not Majorana states. The general phase
diagram of such a system is expected to be ruled by at
least two symmetries: the chiral symmetry of the nor-
mal system, and the particle-hole symmetry associated
with superconductivity. Although the U(1) symmetry
is broken, zero-energy states can still be protected by
the discrete symmetry between the positive and nega-
tive energies. The Majorana bound states (MBS) are
end states described by particle-hole self-conjugated wave
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functions. The solitonic modes which do not have this Ma-
jorana self-conjugation property (and eventually survive
in the superconducting phase) are henceforth called, inter-
changeably, chiral bound states (CBS) or, simply, solitons.
Recently, the coexistence of CBS and MBS was studied
in Rashba nanowires where the localized end states are
realized by applying a non uniform magnetic field.14 In
this nanowire system, the end states occur usually at
finite energy and a fine tuning of the parameters of the
model is required to bring these states to zero energy.
The BDI symmetry class15 can provide a family of models
that exhibit both CBS and MBS, over a wide range of
their phase diagram, without fine tuning. Indeed, the
BDI class harbors both topological insulators and super-
conductors associated with integer topological numbers
(Z).16,17 On one hand, this implies that BDI superconduc-
tors host multiple Majorana particles which are spatially
close but do not hybridize, thereby remaining at zero
energy.18–20 On the other hand, the BDI class also en-
compasses insulating (nonsuperconducting) systems with
zero-energy fractionally charged solitonic end states. The
most famous representative example of such BDI nontriv-
ial insulators is the polyacetylene chain described by the
Su-Schrieffer-Heeger (SSH) model.6

Among the possible BDI systems, this paper inves-
tigates in detail the Creutz model,21,22 and also some
aspects of the SSH model6 in the Appendix. Initially
introduced in the context of lattice quantum chromo-
dynamics, the Creutz model has gained a foothold in
condensed matter physics as a versatile model to test dif-
ferent ideas, such as the topological production of defects
when crossing a quantum transition point,23 the dynam-
ics of Dirac points under interaction,24 the decay of the
edge states in the presence of a thermal bath,25 or the
persistent currents in Dirac fermion rings.26 Proposals for
the realization of the Creutz model in cold-atom systems
have been recently advanced.27 Moreover, phases of the
bosonic Creutz model were also recently investigated.28,29

In the absence of superconductivity, the Creutz model
exhibits gapped phases with and without solitonic
modes.21,22 The transition between these inequivalent
gapped phases occurs by closing the bulk gap, thereby
leading to a semi-metallic phase with a single Dirac cone
at the transition. Our purpose is to enrich the Creutz
system by adding spin-singlet superconducting pairing,
induced by a proximity effect. When the superconducting
order parameter becomes larger than the initial insu-
lating gap, a topological superconductor (TSC) phase
develops, hosting Majorana edge modes. In view of this,
the superconducting Creutz model is henceforth called
the Creutz-Majorana (CM) model. This phenomenol-
ogy is also derived in the SSH model in the presence of
proximity-induced superconducting pairing. Moreover,
the superconducting phase in which the solitons survive
proves to be in the bulk a topological phase protected
by spatial inversion at a bond and fermion parity. It is
topologically distinct from the Majorana phase and from
the trivial phase without in-gap states.

The second thread followed by this paper concerns the
effect of the repulsive Hubbard interaction on the different
phases of the CM model and on its edge states. The effect
of Coulomb interactions on MBS has been investigated re-
cently in nanowires with strong spin-orbit in the presence
of superconducting proximity effect which are relevant for
experiments.30 Such nanowire models12,13 break the time-
reversal symmetry, but they nevertheless map onto a BDI
system at low energy, the Kitaev Majorana chain,17 and it
was shown theoretically that Majorana bound states are
robust with respect to repulsive Hubbard interactions.31

Soon after, Stoudenmire et al.32 established that MBS
are not only robust to interactions, but that, counter-
intuitively, the parameter regime where the MBS can
be observed increases, at the price of a reduction in the
bulk superconducting gap. Following the methodology of
Ref. 32, we study the effect of a repulsive Hubbard interac-
tion on the Creutz-Majorana model using a combination
of mean-field theory and density matrix renormalization
group (DMRG). Globally, we obtain comparable results
for the Majorana phase of the Creutz model: its parame-
ter range grows upon increasing the Hubbard interaction.
Nevertheless, there is a region in parameter space, where
interactions prove detrimental to the Majorana states
(cf. Fig. 8). In contrast to nanowire models, the mod-
els studied in this paper (Creutz and SSH models) host
CBS in their normal state in a wide range of parameters.
The Hubbard interaction breaks a chiral symmetry that
protected the CBS modes, pushing them to finite energy,
while the MBS modes remain pinned at zero energy. Even
at finite interactions, the phases surrounding the TSC
have a different topological character from each other.
We describe these phases in terms of their entanglement
properties and excitations.

Finally, we notice that recent papers discuss the pos-
sibility of having time-reversal-invariant topological su-
perconductors supporting two MBS at each end of a
one-dimensional (1D) system.33–35 These Kramers pairs
of MBS are protected by coexisting time-reversal symme-
try and chiral symmetry. We emphasize that the Creutz
model belongs to a completely different symmetry class
(BDI rather than DIII) and has at best one MBS at each
end. Nevertheless, there are also two symmetries at play,
the pseudo-time-reversal symmetry and the chiral sym-
metry, that allow us to understand the behavior of the
solitonic edge modes and of the MBS.

In brief, this paper investigates the mechanism of com-
petition between fractionally charged solitons and Ma-
jorana modes in the large class of BDI models, thereby
complementing the recent proposal in Ref. 35. Further-
more, we demonstrate that the stabilization of Majoranas
by repulsive interactions, first obtained in Ref. 32, is also
globally observed in a distinct topological insulator, the
Creutz model, although its phase diagram also presents
regions where the Majoranas are destabilized.

The paper is organized as follows: Section II reviews the
Creutz model and its topological properties. Section III
investigates the Creutz-Majorana model, including the
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survival of the CBS in the superconducting region, and
their transition to MBS upon increasing the pairing. Sec-
tion IV takes into account the effects of repulsive inter-
actions in the Creutz-Majorana-Hubbard model (CMH)
using self-consistent Hartree-Fock approximation and den-
sity matrix renormalization group (DMRG). Section V
examines a particular case of the interacting, but non-
superconducting, Creutz model where a bulk metallic
phase develops. Section VI holds the conclusions. The
Appendix comments on the generality of the results by
treating the noninteracting Su-Schrieffer-Heeger (SSH)
polyacetylene model6 enriched with a p-wave supercon-
ducting pairing.

II. CREUTZ MODEL

Here, we present the noninteracting part of the lattice
model. Historically, this type of model was introduced by
Wilson36 to solve the fermion doubling problem and simu-
late Dirac fermions on lattices. Later, Creutz investigated
the existence of edge states in finite chains or ladders.21

We shall refer to this model simply as the Creutz model
in the remainder of this paper. This section provides a
review of the spectral and topological properties of the
Creutz model.

A. Model

In the absence of superconductivity and interactions,
our starting point is the lattice Hamiltonian

HC =
1

2

∑
j

[
wc†jσ1cj + c†j(itσ3 − gσ1)cj−1

]
+ H.c., (1)

where the sum runs over all sites indexed by j (see illus-
tration in Fig. 1). In this paper, the electronic spin is
represented by the standard Pauli matrices σi (i = 1, 2, 3).
The spin indices for the electron annihilation operators
cj = (cj↑, cj↓) and spin matrices are implicit. The elec-
trons can jump from one site to the nearest-neighboring
site while conserving their spin: this process has a com-
plex amplitude ±it, i.e., the electrons gain or lose a phase
π/2 when hopping between the same spin states. The
electrons can also hop between sites with amplitude g
while flipping their spin, which mimics a spin-orbit cou-
pling. Finally, there is an onsite mass term w which
favors the polarization of the electronic spin along the x
direction. This Hamiltonian can be seen as an adaptation
from Ref. 22, where the chain index of the Creutz ladder
has been replaced by the electronic spin.

The Hamiltonian is diagonalized by Fourier transform-

ing it into momentum space HC =
∑
k c
†
kHC(k)ck:

HC(k) = t sin kσ3 + (w − g cos k)σ1. (2)

w

it

g g

it

w
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1

E
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E
/
t

-π 0 π

Quasi-momentum k

2|w − g| 2|w + g|

FIG. 1. (Color online) Left: Creutz lattice model. The filled
(empty) bullets represent spin-up (-down) states of σ3. Each
site encompasses a vertical bond, containing two spin states.
The spin degeneracy is lifted by an on-site coupling w. There
is a spin-conserving hopping term t, and a “spin-orbit” term
g that encodes the probability of electrons to spin flip during
hopping to a different site. Right: Energy dispersion of the
lattice Creutz model. One-dimensional Dirac cones can be
realized at k = 0 and π for a parameter choice w = ±g.
Otherwise, the system is insulating with gapped Dirac cones
as shown in the figure.

Consequently, there are two bands with the energy dis-
persion

E± = ±
√

(t sin k)2 + (w − g cos k)2, (3)

shown in Fig. 1. From Eq. (3) it follows that the two
energy bands can touch either at k = 0, or at k = π.
At these momenta, the energy dispersion is linear and
there is a Dirac cone band touching. For g = w, the
band-touching takes place at k = 0, and for g = −w, at
k = π. When both g and w vanish, the system exhibits
two Dirac cones.

When g and w are finite and close in absolute value, the
low-energy physics is given at k = 0 or k = π, correspond-
ing to one gapped fermion. Without loss of generality,
the parameters in the Creutz model (t, w, g) can be con-
sidered positive. In this case, the Dirac cone forms at
k = 0, and it is gapped with a mass g − w, which can be
either positive or negative. If g/t becomes larger than
w/t, new minima (maxima) for the upper (lower) band
in Eq. (3) develop near k = ±π/2.

B. Topological characterization

The Creutz model is classified in the BDI class of
topological insulators.16,17 Although it is a normal (non-
superconducting) system, it is possible to find an an-
tiunitary operator σ3K, which anticommutes with the
Hamiltonian, and thus realizes a particle-hole symmetry
σ3H∗C(k)σ3 = −HC(−k). The operator K is the complex-
conjugation operator. There is also a pseudo-time-reversal
symmetry represented by antiunitary operator, σ1K, such
that σ1H∗C(k)σ1 = HC(−k). Both pseudo-time-reversal
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and particle-hole symmetry operators square to one. Fi-
nally, there is a chiral symmetry represented by σ2, which
is proportional to the product σ1σ3 of the other two sym-
metries. The chiral symmetry anticommutes with the
Hamiltonian

{HC(k), σ2} = 0, (4)

thereby allowing us to associate any eigenstate with energy
E and momentum k to another eigenstate with opposite
energy and the same momentum.

When g = w (resp. g = −w), the system is gapless
with a Dirac cone at momentum k = 0 (resp. k = π). A
particular point is the case of vanishing g and w, when the
system recovers the time-reversal symmetry, and exhibits
two Dirac cones at k = 0 and π. In all these gapless
phases, there is no well-defined global topological winding
number.

For all other values of the parameters (g, w), the chain
is a fully gapped insulator, whose topological properties
are encoded in its associated winding number W

W =
1

2

[
sgn(w + g)− sgn(w − g)

]
. (5)

From the expression of the winding number it follows that
when |g/w| < 1, the system is a topologically trivial insu-
lator (W = 0) and when |g/w| > 1, it is a topologically
nontrivial insulator characterized by W = sgn(g).26

In the topologically nontrivial state there are chiral
zero-energy bound states (CBS) at the edges of an open
system. These localized states are protected by the chiral
symmetry σ2 and the bulk gap. For a finite chain, the
two edge CBS overlap through the insulating bulk. This
overlap is exponentially small for chains longer than the
spatial extension of the CBS.22

III. CREUTZ-MAJORANA MODEL

A natural question is whether Majorana fermions can
be induced in the Creutz model by considering a super-
conducting pairing potential. This would not be very
surprising because the system has the necessary ingredi-
ents to realize Majorana fermions. Crucially the system
has the possibility to realize a single Dirac cone in the
Brillouin zone (for g = ±w). At the Dirac point, the
electron wave functions are eigenstates of σ3 with zero
energy. Then a spin-singlet superconducting pairing could
open a gap in the spectrum and Cooper pairs of spin-
polarized fermions can be formed. In this way, s-wave
pairing plus a topological insulating state could generate
a p-wave superconducting regime where MBS become
possible at the ends of a finite system. A similar mecha-
nism was thoroughly investigated in different proposals
to realize MBS using the proximity effect to an s-wave
superconductor.11–13

In addition, the Creutz model displays CBS in the in-
verted gap regime, g−w > 0 (where all the parameters in

the model were considered real positive numbers). There-
fore a key question is whether induced superconductivity
immediately removes these modes, and leads to the for-
mation of Majorana fermions. A central finding of this
section is that the solitonic (CBS) modes are robust with
respect to the superconducting pairing. These modes are
protected by the chiral symmetry and they will subsist at
finite superconducting pairing. It will be necessary that
the bulk gap closes at finite ∆, in order to subsequently
have Majorana fermions forming (see Fig. 2).

It is noteworthy to remark that the CBS will prove
fragile in comparison to the Majorana fermions. The
reason is that the CBS crucially depend on the chiral
symmetry for staying at zero energy, and they are removed
even by scalar potentials that are created by nonmagnetic
disorder. In the strong pairing regime (large ∆, with
respect to the other system parameters), it is expected
that the topological Majorana phase is destroyed10.

A. Bulk structure

1. Model

Let us modify the Creutz Hamiltonian (1) by adding
an s-wave singlet superconducting pairing with amplitude
∆. This leads to the Creutz-Majorana model described
by the Hamiltonian

HCM = HC +H∆, H∆ =
∑
j

∆c†j↑c
†
j↓ + H.c., (6)

where the sum is taken over all the lattice sites, and the
order parameter ∆ can be considered real without any
loss of generality.

The momentum-space Hamiltonian is quadratic in the

standard BdG form. Let us choose the basis C†k =

(c†k↑, c
†
k↓, c−k↑, c−k↓). In this basis, the Hamiltonian is

written as HCM = 1
2

∑
k C
†
kHCM(k)Ck with

HCM(k) = t sin kσ3τ0 + (w − g cos k)σ1τ3 −∆σ2τ2. (7)

The σ are the spin Pauli matrices and τ are Pauli matrices
in particle-hole space. The products of two Pauli matrices
from different spaces is understood as a tensor product.

By diagonalizing the BdG Hamiltonian HCM(k), it
follows that there are four energy bands ±E± satisfying

E± =
√

(t sin k)2 + (w − g cos k ±∆)2. (8)

There are four possible gap closings in the system at k = 0,
for ∆ = ±(w− g), and at k = π, for ∆ = ±(w+ g). As it
will be shown, all these lines mark topological transitions
between different gapped topological phases.

2. Symmetries

In the presence of translational invariance, the following
symmetries catalog the Creutz-Majorana Hamiltonian in
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the BDI topological class.15–17 There are two symmetries
which are represented by anti-unitary operators squaring
to one. First, the Bogoliubov–de Gennes (BdG) Hamilto-
nian has an intrinsic built-in particle-hole symmetry

PHCM(k)P−1 = −HCM(−k), (9)

represented by P = σ0τ1K. This anti-unitary operator P
anticommutes with the BdG Hamiltonian and squares to
one.

Second, the system also has a pseudo-time-reversal
symmetry represented by the anti-unitary operator T =
σ1τ3K satisfying

T HCM(k)T −1 = HCM(−k), (10)

and commuting with the Hamiltonian.
Finally, there is a chiral symmetry proportional to the

product of the two symmetries P and T :

S = σ1τ2. (11)

This symmetry associates to each state with energy E, a
partner at −E, with the same momentum. These three
symmetries are sufficient to place the CM model in the
BDI class.

Nevertheless, it is crucial to note a second set of sym-
metries that also place the model in the same BDI class.
There is a second time-reversal symmetry, T̄ 2 = 1, and a
second chiral symmetry, S̄:

T̄ = σ2τ2K, S̄ = σ2τ3. (12)

The new chiral symmetry can be considered as inherited
from the original Creutz model, since the nonsupercon-
ducting system already exhibits a chiral symmetry rep-
resented by σ2. Therefore, under the BdG doubling of
degrees of freedom, the symmetry can be extended to the
hole sector, such that an electron of a definite chirality
is reflected in a hole of the same chirality. Hence, the
addition of superconductivity does not destroy this chiral
symmetry, but it simply promotes it in the CM model to
S̄ = σ2τ3.

Nevertheless, there is an important difference between
the two chiral symmetries of the CM model, S and S̄. The
latter, S̄, remains (as in the Creutz model) fragile in the
sense that it can be destroyed by a scalar (nonmagnetic)
on-site potential (which multiplies a σ0τ3 matrix) because
{S̄, σ0τ3} 6= 0. In contrast, the chiral symmetry S is
preserved as it anticommutes with the scalar potential,
{S, σ0τ3} = 0. Therefore, unless the bulk gap closes or a
perturbation breaks the chiral symmetry, it is guaranteed
that the zero-energy modes of the topological insulating
phase of the Creutz model remain protected in the Creutz-
Majorana model.

The fragility of the chiral symmetry to (local or global)
changes in the chemical potential will prove central in
explaining the phenomenology of the topological phases
in the Creutz-Majorana model with and without interac-
tions.

3. Phase diagram

A one-dimensional BdG Hamiltonian from the BDI
class always has an associated Z topological invariant
which is a winding number.16 Using either one of the two
chiral symmetries, it is possible to block off-diagonalize
the CM model and to obtain

HCM(k) =

(
0 Q(k)

Q†(k) 0

)
. (13)

The topological invariant can be extracted from the Q
matrix by defining a winding number as

W̄ =
1

2πi

∮
dz

z
, z =

detQ
|detQ| . (14)

This procedure can be further simplified by using both
chiral symmetries to completely off-diagonalize the Hamil-
tonian. Subsequently, the winding number can be deter-
mined algebraically.

In the present case of the Creutz model, the winding
number does not exceed 1 in absolute value, so one can
expect at most a single MBS at a given edge. This allows
us to use a perhaps more transparent determination of
the invariant by using the Majorana number M.17 This
invariant is sensitive only to the winding number parity.
But since the Creutz-Majorana model does not realize
higher winding number phases, |W̄| ≤ 1, M can decide
unequivocally whether the system is in a topological triv-
ial or non-trivial state. In the trivial phase, without
Majorana states, the invariant is M = 1, while in the
nontrivial phase (topological superconductor), M = −1.

Following Ref. 17, the Majorana number is defined at
the time-reversal-invariant momenta, k = 0 and π

M = sgn{Pf[τ1HCM(0)]Pf[τ1HCM(π)]}, (15)

where Pf denotes the Pfaffian of a matrix. It follows
immediately that the topological invariant reads as

M = sgn
[(

1 +
g2

w2
− ∆2

w2

)2 − 4
g2

w2

]
, (16)

where we have assumed a nonzero on-site w.
The ensuing phase diagram is illustrated in two different

representations in Figs. 2 and 3. Figure 2 uses Eq. (16)
to present the phases as a function of system parameters
squared, such that the relative sign difference is not an
issue. Both the phase without in-gap states (gray) and the
CBS hosting phase (yellow) are trivial, with respect to the
Majorana number (M = 1). As we shall see in Sec. IV B,
these two phases are actually distinct with regards to
a different topological invariant. This compact picture
can be compared with Fig. 3, where it is shown more
clearly that the topological transition lines in the phase
diagram are in fact the lines where the bulk spectrum is
gapless [Eq. (8]. Figure 3 refines Figs. 2 by labeling the
respective topological phases, and also by illustrating the
phase diagram for the original Creutz model (∆/w = 0).
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FIG. 2. (Color online) Phase diagram of the Creutz-Majorana
model. The blue region represents the topological supercon-
ductor with zero-energy Majorana bound states (M = −1).
The gray and yellow regions represent phases with M = 1.
The yellow region hosts chiral bound states at zero energy,
even if it is trivial with respect to Majorana number M.

Note in both figures the effect of a finite superconduct-
ing pairing ∆ on the original Creutz model, which lies
in the horizontal axis ∆/w = 0. When |g/w| = 1, an
infinitesimal ∆ is sufficient to open a superconducting gap
at the Dirac cone, and produces a topologically nontrivial
superconductor. However, when the Creutz model is deep
in a nontrivial insulating state with solitons at its end,
the addition of superconducting pairing does not destroy
these modes. Since the CBS are protected by the bulk
gap and the chiral symmetry S̄, they survive the induced
superconducting pairing.

Because the solitons develop in a gapped phase without
Majorana fermions, the topological invariants M and W̄
remain impervious to the existence of the CBS phases.
They can not differentiate between trivial phases and the
phase with CBS states. As a consequence, the winding
number of the Creutz model is not a limit case of the
winding number in CM model, W̄:

lim
∆→0

W̄ 6=W. (17)

Since the chiral bound states’ existence can only be
inferred from the bulk properties, it is necessary to study
their localization on defects in an infinite system, or at
the edges of an open system.

B. From chiral bound states to Majorana fermions

Here, we further analyze the transition between the
trivial superconductor with CBS and the topological su-
perconductor with MBS. Let us first consider a single
interface which can host either CBS or MBS. Using a
continuum approximation of the lattice model, the single
interface problem is solved analytically and the BdG wave
functions are derived explicitly. In the second part of this
section, we perform numerical diagonalization of a finite
length system, which hosts CBS or MBS at its two end
points. These studies yield a more precise account of the
transition that takes place from two chiral bound states
(in the redoubled BdG formalism) to a single Majorana
edge mode that develops in the nontrivial superconducting
phase.

1. Edge state analysis at an interface in a continuum model

Let us consider an isolated interface between a triv-
ial Creutz insulator and the superconducting Creutz-
Majorana model (CM). Depending of the topological
phase of CM, there will be zero-energy bound states at
this interface. Then, by increasing the strength of the
superconducting pairing ∆, there is a transition induced
from the region with CBS to the one with MBS (see
Fig. 3). To further fix ideas, let us consider all the pa-
rameters in the original models (t, w, g,∆) as positive
real numbers. In this case, the low-energy physics, when
w and g are comparable in magnitude, is given by that
of a gapped Dirac fermion at k = 0, with mass g − w.
The sign change in the mass signals a transition from a
topologically trivial (g − w < 0) to a nontrivial phase
(“inverted” gap; g − w > 0) (Eq. 5).

Let us start with the Creutz model on an infinite line,
and an additional spatial twist is introduced in the mass
of the Dirac fermion

v(x) = (g − w)sgn(x) = v sgn(x), (18)

where v is a positive number, and x is the spatial coordi-
nate (Fig. 4). According to Eq. (5), the trivial phase is
realized to the left (x < 0), and the nontrival phase, to
the right (x > 0). At the interface there will be a single
solitonic mode (CBS), eigenstate of the chiral symmetry
operator σ2.

Now, let us investigate the more interesting case of the
Creutz-Majorana model, when a superconducting pairing
∆ is added to the nontrivial insulating phase. This will
allow us to observe the effect of the superconducting gap
on the bound state from the topological insulator. It is
now possible to increase the pairing ∆ until the lower
boundary to the Majorana phase is crossed (see Fig. 3).
This provides a picture for the behavior of the edge states
over the topological transition.

The continuum Hamiltonian that models the interface
between the trivial Creutz insulator and the CM model
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FIG. 3. (Color online) Phase diagram of the noninteracting
superconducting model. The black continuous lines represent
the bulk-gap closing. The dashed line on the x axis represents
the Creutz model, with CBS at |g/w| > 1 (in red) and a trivial
gapped phase for |g/w| < 1 (in black). The yellow phases
contiguous to the red line represent the domain where the soli-
tonic modes (CBS) survive in the superconducting region. In
the bulk, the yellow region is an inversion symmetry-protected
topological phase (SPT). The blue region represents the topo-
logically nontrivial superconductor where Majorana bound
states can develop. On the dashed green line, the supercon-
ducting pairing increases and produces a transition from the
nontrivial insulating Creutz model, to a superconducting phase
with CBS, and, subsequently, to the demise of CBS, and the
formation of Majorana modes. This transition is investigated
in a continuum model in Sec. III B 1.

v

g−w

x0

FIG. 4. Kink in the Dirac fermion mass at the interface. The
topologically nontrivial “inverted” gap regime is realized for
x > 0.

is readily obtained by linearizing the lattice Hamiltonian
near k = 0 and neglecting second-order contributions in
momentum

H = vFσ3τ0p− v(x)σ1τ3 − θ(x)∆σ2τ2, (19)

with v(x) = v sgn(x) and v = g − w > 0. The function
θ(x) is the Heaviside step function. The Fermi velocity
vF is determined from the lattice model vF = ta/~, with
a the lattice constant.

It is possible to write analytically the wave functions
at positive and negative x, respectively. The solution
is obtained by matching these wave functions at the in-
terface x = 0. Moreover, the problem is simplified by
looking specifically for zero-energy, bound solutions at
the interface (E = 0 and x = 0).

In the trivial insulating state to the left of the interface,
the wave function reads as

ψL = [α(1, i, 0, 0)T + β(0, 0, 1,−i)T ]e
vx

~vF , (20)

where α and β are space-independent coefficients, and T
transposes the row four-vectors. In the superconducting
phase to the right, the solution will depend on whether
it is the superconducting gap or the Dirac fermion mass
which dominates. For ∆ < v, the right-side wave function
reads as

ψ
(1)
R = a1(1, i, 1,−i)T e−

(v+∆)x
~vF + b1(1, i,−1, i)T e

− (v−∆)x
~vF .

(21)
Matching the wave functions over the boundary, it

follows that the coefficients of ψ
(1)
R depend on α and β

a1 = (α+ β)/2, b1 = (α− β)/2. (22)

Crucially, the matching procedure has left two free coeffi-
cients, α and β. This indicates that there are two modes
living at the interface, and they are eigenstates of the
chiral symmetry operator S̄ = σ2τ3. These modes are
diagonal in electron-hole space, so one of them is electron-
like while the other is a hole-like excitation (see Eq. 20).
In the doubled (four-band) BdG formalism, they corre-
spond to the solitonic mode that was already present in
the Creutz model, in the absence of the superconducting
pairing ∆. Breaking the chiral symmetry that protects
them allows removal of the CBS from zero energy. To sum
up, when the “inverted” Dirac fermion mass dominates
the superconducting gap, there are two modes at zero
energy protected by the chiral symmetry inherited from
the Creutz model.

When the two masses are equal (∆ = v), the bulk
gap closes. This signals the topological transition to the
Majorana phase. Subsequently, for ∆ > v, the super-
conducting gap dominates, and the solution in Eq. (21)
becomes non-normalizable at x > 0. The appropriate
(normalizable) wave function in this new regime reads as

ψ
(2)
R = a2(1, i, 1,−i)T e−

(v+∆)x
~vF + b2(−1, i, 1, i)T e

(v−∆)x
~vF .

(23)

Matching the right, ψ
(2)
R , and left, ψL, wave functions

reveals that a single mode remains at the edge in the
∆ > v regime:

ψ(x) = α
[
θ(−x)e

vx
~vF + θ(x)e

− (v+∆)x
~vF

]
(1, i, 1,−i)T . (24)

At the wave-function level, one notices how the two CBS
are combined into a Majorana fermion. Moreover, the
resulting wave function has the property that it is self-
particle-hole conjugate (for α ∈ R), indicating that one
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true Majorana fermion lives now at the interface. As
dictated by the bulk-boundary correspondence,5 the edge-
state existence could be predicted from information about
the bulk topology.

Adding a constant potential θ(x)µσ0τ3 in the Hamilto-
nian, removes the CBS from zero energy, but it does not
destroy the Majorana fermion. For a small µ with respect
to both the superconducting gap and the insulating gap, it
follows that the domain for Majorana fermions increases,
such that the transition from the trivially gapped state
to the nontrivial superconductor moves at lower pairing
potential ∆2 = v2 − µ2. Additionally, if the chemical
potential is larger than the insulating gap µ > v, then
any positive pairing potential opens a gap which hosts
Majorana fermions. This is a case where the potential is
in a band and the single-band electrons are subsequently
coupled by a p-wave-type pairing to realize a topological
superconducting phase.

In conclusion, we have described the transition between
the trivial superconducting phase with doubly-degenerate
zero-energy states protected by the chiral symmetry to
a phase with Majorana fermions. This section offers the
proof that the local twofold degeneracy in the spectrum
does not stand for multiple Majorana modes at an edge,
but for chiral bound states protected by a fragile symmetry
inherited from the Creutz insulator.

2. Spectrum of the finite lattice model: Gapping the CBS

The CBS in the superconducting phase contiguous to
the solitonic phase of the Creutz model, can be equally
explored using exact diagonalization of the lattice Hamil-
tonian in Eq. (6). In an open wire, the CBS and the
MBS form at the two edges of the system. Therefore
there will be a doubling in the degeneracy of zero-energy
modes. The numerical analysis of the lattice confirms the
location of the bound states, reveals the fourfold energy
degeneracy of the CBS, and their sensitivity to chiral
symmetry breaking terms.

It is possible to take a crosscut through the phase dia-
gram from Fig. 3. The system parameters are fixed, except
the pairing ∆ which is varied in order to traverse the three
distinct regimes of the model: trivial superconductor, su-
perconductor with CBS, and nontrivial superconductor
with MBS. In units where t = 1, the parameters are g = 2
and w = 1. The pairing ∆ is varied as to encompass
the topological transitions at ∆1 = 1 and ∆2 = 3. The
lowest eigenvalues resulting from exact diagonalization
are plotted against ∆ in Fig. 5 (top). The chiral bound
states are seen as fourfold-degenerate midgap states at
small ∆. The bulk spectrum closes at ∆1 and a twofold
degeneracy characteristic of Majorana fermions remains.
In the strong-pairing regime ∆ > ∆2, the system becomes
a trivial superconductor devoid of midgap states.

The fragility of the chiral bound states can be tested
by adding different types of scalar potentials. Because
the chiral symmetry S̄ does not anticommute with the
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FIG. 5. Representation of the energy eigenstates of the BdG
Hamiltonian near zero energy. Top: Phase transitions at
∆/w = 1, 3. Majorana modes are present when ∆/w ∈ (1, 3).
Bottom: Removal of the fourfold degeneracy when an onsite
scalar potential is added on the first and last sites. The wire
length is L = 500a.

local on-site scalar potentials, these modes are not robust.
Nonmagnetic disorder or even a constant chemical poten-
tial removes them from zero energy. In fact, it is sufficient
to add a local potential on the first and last sites to lift
them from zero energy. This chiral-symmetry-breaking
term is implemented in Eq. (6) by adding∑

j=1,L

C†jµjσ0τ3Cj . (25)

The result is presented in the spectrum of the lowest
eigenstates in Fig. 5(bottom), for ∆/w =

√
0.5 and g/w =

2, deep in the CBS region of the phase diagram. Since
the chemical potential is chosen identical on the first and
last sites µ1 = µL, the fourfold degeneracy is reduced to
two degenerate pairs of states moving in opposite energy
direction away from zero energy.

In the Creutz model, a chemical potential can move
two degenerate states away from zero energy. In the
CM superconducting model, a pair of electronic states
is reflected in a pair of hole states that feel an opposite
chemical potential. This observation accounts for the
evolution of states seen in Fig. 5 (top). The remaining
twofold degeneracy is naturally removed by rendering
incommensurate the chemical potential magnitude on
the first and last sites. That is the general case of a
(nonmagnetically) disordered wire.

In contrast, in the nontrivial superconducting region
there is a single Majorana fermion bound at each edge.
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FIG. 6. (Color online) Local expectation value of the chiral
operator S̄ in the zero-energy eigenstates at the first 10 and
the last 10 sites of a L = 500a wire. Two CBS, positive
chiral eigenstates are localized at the right edge (red circles
and green squares). The remaining two CBS, negative chiral
eigenstates are localized at the left edge (blue triangles and
magenta diamonds). The total “chiral density” obeys Eq. (26).

Moderate disorder which does not close the bulk gap
leaves them at zero energy.

Both kinds of edge modes are eigenstates of the chiral
symmetry operator S̄. Two CBS, the positive eigenstates
are localized at one edge, while the negative eigenstates, at
the other edge. If |ψ〉 is a zero-energy eigenstate, one can
represent the spatial distribution for the chiral operator
expectation value 〈ψ|S̄ψ〉. If |ψ〉 is normalized to one,
then the following equation holds:∑

j

〈ψ|j〉〈j|S̄ψ〉 = ±1, (26)

depending whether |ψ〉 is a positive or negative eigenstate.
The sum is carried over all lattice sites. This yields at
once a representation for the localization of the modes, as
well as a proof of them being chiral. The result is shown
in Fig. 6. Note that the local weight of the expectation
value between two eigenstates at two different edges is not
correlated. There is a degree of freedom in distributing
this weight for degenerate states, resting on the specifics
of the diagonalization procedure. Nevertheless, the global
Eq. (26) always holds.

In conclusion, we have found a trivially topological
phase with fragile midgap edge states which are eigen-
states of the chiral operator. These states are removed
from zero energy by chiral symmetry breaking perturba-
tion. Also they can disappear by driving the system in a
Majorana phase.

C. Many-body ground-state degeneracy

Until now, we have only described the zero-energy edge
modes from the perspective of single-particle physics,
without touching on the question of the state filling. This
subsection clarifies the way to count the ground states
expected in the Creutz-Majorana model at the transition
from fractionally charged solitons, to the CBS in the

FIG. 7. (Color online) Different phases in the system under
increasing pairing ∆. The images stand for the possible ground
states forming in the CM wires by studying the zero-energy
states’ occupation. The filled (empty) circles represent filled
(empty) electronic states. (a) At zero pairing, i.e., in the
Creutz model, there are fractionally charged bound states
forming at the two ends of the wire. An electron filling a
state at the left (right) edge has σ2 projection spin 1/2 (−1/2).
(b) For finite pairing ∆, but below the topological transition
∆ < ∆crit, there are CBS zero modes. In the BdG there is
a doubling of states (represented in gray) near zero energy.
However, this redundant doubling does not modify the number
of physical states, which remain four. The charge is no longer
a good quantum number. (c) After crossing the transition
to the Majorana phase (∆ > ∆crit), there are again just two
states in the spectrum, two Majorana fermions forming at the
two system edges. These states can be either filled or empty
by with a single electron. This is represented by having a
fractionalized empty or filled electronic state at the two edges
of the system.

superconducting phase, and, subsequently, to Majorana
bound states.

In the absence of superconductivity, the Creutz model
provides nontrivial insulating phases with zero-energy
states. These states can be either filled or empty with
electrons. For long wires and at half filling, there will be
no energy cost in having either of the states filled or empty.
Therefore, while there are two states in the spectrum at
zero energy, the ground state will be fourfold degenerate,
with four possible configurations in the occupation of the
zero modes (Fig. 7).

The states at positive energy can be thought as states
carrying positive charges. Due to the chiral symmetry,
each filled negative energy state has an empty positive
energy partner. Therefore, when there is a single electron
occupying one of the two midgap states, the overall charge
of the system is zero. When both zero-energy states are
filled, there will be an excess of one electron charge −e
in the system. Because the charge of a midgap state
can change only by one, it follows that each edge state
will carry a fractional charge −e/2. Similarly, when both
states are empty, the total energy does not change, and
each edge state carries a charge e/2.7

Moreover, the states are eigenstates of the chiral op-
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erator σ2. Here, the left modes have spin projection up
and the right states, spin projection down. Therefore,
when both states are either filled or empty, the spin of
the zero-energy pair is zero. When only the one state is
filled, the total charge vanishes, but the ground state will
have spin 1/2.

Under the addition of superconductivity, the U(1)
charge symmetry is broken. However the system main-
tains its chiral symmetry and there will be CBS edge
modes at zero energy. In the BdG formalism, the number
of states is doubled. Therefore, in the BdG spectra of
the CM model, there will be four zero-energy end states.
Nevertheless, the degeneracy of the many-body ground
state does not change. There are still four configurations,
because the quasiparticle occupation numbers are not
independent between particle-hole symmetric states.

While the states remain at zero energy, the ground-state
is fourfold degenerate, either in the nontrivial insulating
Creutz model, or in the CBS phases of the superconduct-
ing model. Breaking the chiral symmetry, allows states
to be moved away from zero energy, while remaining
localized in bulk energy gaps, as it was shown in differ-
ent nanowire systems.14,37 Nevertheless, the ground state
becomes in this case unique as for the trivially gapped
system.

When crossing the topological transition to the Majo-
rana phase, the BdG spectrum will reveal the existence of
two Majorana solutions bound at zero energy at the ends
of the wire. The ground state is also twofold degenerate.
Two pair of states can be either filled or empty with a
single electron. In contrast to the fractionally charged
solitons, the electron itself can be viewed as divided be-
tween the edge states of the system in the form of two
Majoranas. This is pictorially represented in Fig. 7.

The upshot of this section is that the topological transi-
tion from CBS to Majorana fermions can be tracked either
by looking at the spectrum of the BdG Hamiltonians, or
from the many-body ground-state degeneracy. These two
view points must be clearly distinguished in the following,
when interactions are treated either in mean-field theory,
or by using DMRG techniques. While in mean field one
has access to BdG Hamiltonians, and to their spectral
properties, the DMRG obtains the many-body ground
state.

IV. CREUTZ-MAJORANA-HUBBARD MODEL

The Creutz-Majorana model on a finite-size chain hosts
either zero-energy solitonic (CBS) states, or Majorana
modes, depending on the strength of the superconducting
pairing ∆. The aim of this section is to investigate the
effects of repulsive onsite interactions on these edge modes
and to obtain the topological phase diagram of the model.
To that end, we consider the following Hamiltonian of the
Creutz-Majorana-Hubbard (CMH) model:

H = HCM +HI . (27)
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FIG. 8. (Color online) Topological phase diagram of the
Creutz-Majorana-Hubbard model at different interaction
strengths. The dotted line represents transitions between
topological phases obtained at the mean-field level, while
the dots represent critical points from the DMRG calcula-
tions. The topological superconductor phase which can host
Majorana modes (MBS), represented in the central region,
increases under the effects of interactions. The region at large
“spin-orbit” |g| and weak pairing |∆| is a symmetry-protected
topological phase. The rest of the outer regions are trivial
superconductors with a unique ground state. The agreement
between mean field and DMRG breaks down at very large g,
for strong interactions.

The first term, HCM, represents the Hamiltonian of the
Creutz-Majorana model from Eq. (6), and HI contains the
Hubbard interaction between onsite electronic densities
of opposite spin

HI = U
∑
j

nj↑nj↓, (28)

with U being the interaction strength.
In this section, the CMH model is studied using a

combination of self-consistent Hartree-Fock theory and
extensive DMRG simulations. Let us begin by summariz-
ing the main results and defer the details to the following
subsections.

Figure 8 shows the topological phase diagram for dif-
ferent values of interaction U , combining results from
the mean-field analysis and DMRG simulations. The
agreement between both approaches is overall very good.
The main standout feature of the phase diagram is that
the topological phase and its associated Majorana bound
states at zero energy are robust to interactions. In fact,
the parameter range for which a topological Majorana
phase is stabilized globally expands, upon increasing the
Hubbard coupling. However, there is also a region in the
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phase diagram (|∆/w|, |g/w| < 1), where the Hubbard
interaction is detrimental to the Majoranas. Here their
existence domain decreases with increasing interaction
strength. The mean-field phase diagram captures the
topological transitions of the model rather accurately for
small and moderate interactions. At strong interactions,
the mean field keeps a very good estimate of the topologi-
cal transition at small g/w, while at large g/w it tends to
overestimate the extension of the Majorana phase. The
“spin-orbit” coupling g tends to delocalize the electrons
and leads to quantum fluctuations in the particle number.
This explains, at a qualitative level, the divergence of
the mean field results from the “exact” DMRG results at
large “spin-orbit” coupling.

A priori, this overall very good agreement may seem
surprising in a quantum 1D system, where fluctuations
are expected to be pronounced. However, let us recall
that U(1) charge and the SU(2) spin-rotation symmetries
are broken in this model, and hence the system acquires
a certain stiffness to fluctuations, as observed in nanowire
models32 which also break these symmetries.

Crucially, the interactions have a different effect on the
two types of zero-energy states localized at the edges of the
wire. The chiral bound states from the large g/w phase
(cf. Fig. 2) are removed from zero energy. Recall that for
U = 0, there is a fourfold zero-energy degeneracy in the
BdG energy spectrum as well as a fourfold degenerate
many-body ground state. At the mean-field level, upon
increasing the interaction strength, the zero-energy CBS
acquire a finite energy. Further increase of the interaction
leads to a decrease of the bulk gap and pushes the end
states into the bulk continuum. (Fig. 9). As soon as
the CBS aquire a finite energy, the many-body ground-
state degeneracy is lifted. DMRG results confirm that
the ground state becomes unique, corresponding in the
BdG picture to having all negative quasiparticle states
filled (Fig. 10). Therefore, the degeneracy of the ground
state in the CBS phase is not protected with respect to
Hubbard interactions. However, the system remains in
a “nontrivial” phase which is protected by a product of
fermion parity and inversion symmetry. This phase is
characterized by a bulk topological invariant.

In contrast, the Majorana end states generally remain
pinned at zero energy as expected from the phase diagram.
Consequently, the ground state of the system remains
twofold degenerate. As already remarked, only in a limited
region with a small superconducting gap (|∆/w| < 1) and
small “spin-orbit” coupling (|g/w| < 1) can Majorana
fermions be destroyed by interactions (Fig. 8).

A. Mean-field study

At the mean-field level, the four-operator interaction HI

is approximated by a sum of two-operator interactions.
In the present case, we choose the following Hartree-
Fock decoupling of density-density interaction term from

Eq. (28):

n↑n↓ ≈ n↑〈n↓〉+ n↓〈n↑〉+ δc†↑c
†
↓ + δ∗c↓c↑ (29)

−c†↑c↓η∗ − c
†
↓c↑η − 〈n↑〉〈n↓〉 − |δ|2 + |η|2,

where the site index was neglected, since the decoupling
involves only local terms at a given site. The brackets
〈. . . 〉 denote the expectation value in the ground state.
The site-independent parameters δ and η are defined:

δ = 〈c↓c↑〉 η = 〈c†↑c↓〉. (30)

A finite anomalous pairing δ indicates intrinsic supercon-
ducting correlation produced by repulsive interactions U .
Note that the Hamiltonian H, already has an induced
(extrinsic) superconducting pairing ∆, which is indepen-
dent on the interactions U . The finite η represents the
tendency towards a polarization in the x direction.

Let us also introduce the onsite electronic density ρ
and the onsite magnetization m (in the z direction),

ρ = 〈n↑ + n↓〉, m = 〈n↑ − n↓〉, (31)

where again these quantities are uniform. Consequently,
the ground state of the system is characterized by the
expectation values (ρ,m, η, δ). The Wick theorem is ver-
ified by evaluating both sides of Eq. (29) in the ground
state.

Because the specific decoupling in Eq. (29) is site in-
dependent, the implicit assumption that we have made
is that the ground state can develop only ferromagnetic
instabilities. However, the DMRG simulations do not
reveal evidence of antiferromagnetic instabilities, so in
this approximation we neglect antiferromagnetic order pa-
rameters or more complicated nonlocal decoupling terms.
A further simplification in the present mean-field theory
is to consider only real order parameters.

Let us consider the mean-field Hamiltonian as describ-
ing a periodic chain, where the ground state is unique.
Therefore, a Fourier transform allows us to determine the
momentum-space mean-field Hamiltonian H(k):

HMF =
1

2

∑
k

C†kH(k)Ck + EI . (32)

The interaction energy EI reads as

EI = LU

(
ρ

2
− ρ2

4
+
m2

4
+ η2 − δ2

)
, (33)

and the BdG Hamiltonian H(k),

H(k) = t sin kσ3τ0 + (w − Uη − g cos k)σ1τ3

−(∆ + Uδ)σ2τ2 +
Uρ

2
σ0τ3 −

Um

2
σ3τ3, (34)

where it becomes clear that interactions renormalize the
onsite terms. The exchange term η modifies the x po-
larization w and the anomalous pairing δ renormalizes
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the proximity-induced pairing ∆. In addition, the in-
teraction also introduces a chemical potential Uρ and a
z-polarization term Um. The m term would act as a
Zeeman term, breaking the time-reversal symmetry.

The mean-field Hamiltonian (34) is quadratic and can
be diagonalized in a basis of quasiparticles as:

HMF =
1

2

∑
k

Γ†kHqpΓk + EI , (35)

with Γ†k = (γ†ka, γ
†
kb, γ−ka, γ−kb), and the Hamiltonian

matrix, Hqp = diag(εa, εb,−εa,−εb). The quasiparticle

operators γ†a,b create quasiparticle excitations at positive
energies εa,b > 0. Also, note that the spectrum exhibits
the particle-hole symmetry with a spectrum symmetric
about the zero energy.

The system ground state |GS〉 is annihilated by the
quasiparticle excitations. Therefore, it can be represented
as

|GS〉 =
∏
k

γkaγkb|0〉, (36)

where |0〉 is the vacuum of conventional fermionic anni-
hilation and creation operators. The usual creation and
annihilation operators can be decomposed on the basis of
the quasiparticle excitations Γ with coefficients given by
the eigenvectors of the Hamiltonian H(k).

The order parameters for the mean-field Hamiltonian
are found using a self-consistent procedure. At the start,
the order parameters are assumed to be zero. After diago-
nalizing the mean-field Hamiltonian, the order parameters
are evaluated in the ground state |GS〉 given by Eq. (36).
This allows us to determine the interaction energy EI ,
and, consequently, the total Hartree-Fock energy, given
by the occupied quasiparticle energy levels, plus the in-
teraction energy (EHF = EI − εa − εb). The resulting
order parameters are fed back into the mean-field Hamil-
tonian and a new ground state is obtained. Therefore,
new order parameters can be calculated. The cycle of
operations is repeated until self-consistency is reached
(i.e., the ground-state energy settles to a minimum value
among cycles). As a consequence, this procedure gen-
erates a final set of order parameters (ρ,m, η, δ) which
completely characterize the mean-field Hamiltonian.

In the mean-field calculations, we consider wires of
lengths L = 100a at several interaction strengths. The
self-consistent procedure is performed over a 500 × 500
point grid in the (∆/w, g/w) parameter space to obtain
the order parameters of the mean-field Hamiltonian.

Crucially, the self-consistent analysis (backed by DMRG
results) reveals that there is no polarization developing in
the z direction. The vanishing Zeeman term Um implies
that the mean-field Hamiltonian is T invariant. Conse-
quently, it can still be classified in the BDI class, as a non-
interacting and translation-invariant Hamiltonian, which
can be treated similarly to the Creutz-Majorana model
in Sec. III. Therefore, information about its topological
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FIG. 9. (Color online) Energy eigenvalues of a finite Creutz-
Majorana model at three different interaction strengths. The
interaction pushes the CBS located in the trivial supercon-
ducting region at finite energy, rendering the ground state
unique. Model parameters are ∆2/w2 = 0.5, g2/w2 = 4 and
the wire length in L = 500a.

phases can be extracted from the topological invariant:

M = sgn
{[
w̄2 +g2−∆̄2−U2〈n↑〉〈n↓〉

]2−4w̄2g2
}
, (37)

where the renormalized on-site terms read as

w̄ = w − Uη, ∆̄ = ∆ + Uδ, 〈n↑〉〈n↓〉 =
ρ2

4
. (38)

The topological phase diagram from Fig. 8 follows by
plotting the transition lines where the Majorana number
M changes sign.

The properties of the edge states due to interactions can
be explored at mean-field level. Retaining the interaction-
renormalized order parameters obtained for the periodic
system, one can study wire models with open edges.
Hence, the existence of MBS and CBS can be tested
in comparison with further DMRG results (Sec. IV C).

At the mean-field level, interactions produce a finite
uniform scalar potential Uρσ0τ3, which breaks the chiral
symmetry S̄. Therefore, the zero-energy CBS inherited
from the Creutz model are no longer protected. As shown
in Sec. III B, this leads to a removal of the zero-energy
degeneracy for CBS states. Fig. 9 shows the lifting of the
CBS modes from zero energy under increasing interaction
strength U .

B. DMRG Study

In this section, the DMRG study of the ground-state
phases and phase transitions of the Creutz-Majorana-
Hubbard model is discussed. We first employ the DMRG
method38 in an MPS formulation39 to obtain the three
lowest-lying levels of the energy spectrum for open chains
of length L = 64a. This is done successively, by first
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FIG. 10. (Color online) DMRG results for the energy spec-
trum measured from the ground-state energy E0 for L = 64a
open wires. Top row: ∆2 = 0.0625, g2 = 1. The double
degeneracy in the topological phase with MBS survives the
addition of interactions U . Bottom row: ∆2 = 0.0625, g2 = 20.
The fourfold energy degeneracy of the phase hosting CBS is
removed by interactions U .

obtaining the ground state in MPS form, and then per-
forming a new DMRG calculation optimizing an MPS
which is orthogonal to the previous ones.39 The resulting
spectra, shown in Fig. 10, illustrate the fate of the MBS
and CBS when interactions are considered. The results
are consistent with mean-field theory of the open chain.
When starting from a phase with CBS modes, interactions
remove the fourfold degeneracy and yield a unique ground
state (bottom-right panel in Fig. 10). It corresponds to
having all negative quasiparticle states occupied. In con-
trast, the twofold degeneracy of the ground state in the
Majorana phase is robust to interactions.

The above procedure on open chains is, however, rather
cumbersome, especially when close to the critical points
where the correlation length rises and finite-size effects
from the coupling of edge modes can become relevant.
For this reason, we employ the more efficient iDMRG
algorithm39–41 to obtain an MPS representation of the
ground-state wave function for an infinite system (see
Ref. 41 for the details of the algorithm). We conserve
the fermion number parity in our simulations, and use a
maximum bond dimension up to χ ≈ 500 when calculating
ground states. Obtaining the energy spectrum of an
infinite chain is problematic. However, the entanglement
spectrum is readily available and also contains information
about the degeneracies of the system.42–45

An MPS representation of a wave function |ψ〉 can be
cut anywhere in the chain (including across a physical
site), yielding the Schmidt decomposition

|Ψ〉 =
∑
α

Λα|α〉L ⊗ |α〉R, (39)

where |α〉L/R represent the states to the left/right respec-
tively of the cut. Taking |α〉R, these are the eigenstates of

U=0

U=0

U=0.5

U=0.5

FIG. 11. (Color online) Phases found in the Creutz-Majorana-
Hubbard model at fixed ∆2 = 0.25, from iDMRG results. By
increasing g we sweep through the trivial phase, the TSC
and an inversion symmetry-protected topological (SPT) phase.
The bulk entanglement spectrum is obtained from two dif-
ferent cuts of the chain, shown in the diagrams in the right
corners. The topological phase with Majorana edge states
(blue) displays a twofold entanglement degeneracy for both
kinds of cuts, unlike the phases surrounding it.

the reduced density matrix for the right half of the system,
ρR = TrL(|ψ〉〈ψ|). The bulk entanglement spectrum,

{εα} = −2 log(Λα), (40)

reflects how the different Schmidt states contribute to the
wave function |ψ〉. It can be interpreted as the spectrum of
the so-called entanglement Hamiltonian HE = − log ρR
which contains information about “artificial edges” of
semi-infinite chains. The symmetries that protect the
topological degeneracies in the energy spectrum associ-
ated with open edges also protect degeneracies in the
entanglement spectrum.43–45 In the following, we work in
units where w = t = 1.

The different phases found in Fig. 11 for ∆2 = 0.25 can
be distinguished by their entanglement spectrum, whose
features survive the addition of interactions. We perform
two different cuts of the chain, as illustrated in the insets
of Fig. 11 : one of the cuts corresponds to separating two
physical sites; and the other can be seen as the act of
polarizing a single site.

The topological phase with Majorana end states (blue),
is distinguished from the other phases by its twofold
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entanglement degeneracy for both kinds of cuts. This
degeneracy is due to the fractionalization of the fermion
parity symmetry Q = eiπ

∑
j nj and can not be lifted un-

less the system undergoes a phase transition, as discussed
in detail in Ref. 44.

The trivial phase at small g is only degenerate for cuts
inside a physical site. The phase at large g (yellow) dis-
plays entanglement degeneracy only for a vertical cut,
separating two physical sites. This degeneracy is pro-
tected by the product of the fermion parity and inversion
symmetry, i.e., by Ĩ = Q.I with I being the inversion of
the chain at a bond. In order to distinguish this phase
from the trivial phase at small g, we employ a method
similar to the one used to classify topological phases in
spin chains.46 The basic idea is to find the cohomology
class to which the “fractionalized” representation UΣ of
a symmetry Σ belongs. The matrices UΣ are represen-
tations of the symmetry Σ acting on the Schmidt states
|α〉. In our case, assuming a two-site unit cell, we use the

symmetry Ĩ to calculate UÎ . We find that the topological
invariant UĨU

∗
Ĩ = −1 and thus the phase is a topologi-

cal phase, while in the trivial phase for small g we find
UĨU

∗
Ĩ = +1. A direct consequence of UĨU

∗
Ĩ = −1 is the

observed even degeneracy in the entanglement spectrum
(see Ref. 46 for details). The spatial inversion symmetry
is broken at the edges of an open chain and thus there
will be no signatures of this phase in the energy spectrum
of Fig. 10. The existence of the CBS end states at U = 0
is stabilized by the presence of further symmetries, which
are broken by interactions (as discussed above).

The boundaries between different phases correspond to
gapless points in the thermodynamic limit. We extract
the correlation length ξ of the system from the spectrum
of the transfer matrix of the MPS. A sharp increase near
the boundaries between phases is observed in Fig. 12
(top), both with and without interactions. This reflects
the diverging behavior of the correlation length close to
the critical point, cutoff by the finite bond dimension
used, as discussed in Ref. [41]. We therefore take the
location of the ξ maxima as an estimate for the position
of the critical points.

The transition between the TSC phase and the topo-
logical phase stabilized by Î at U = 1, ∆2 = 0.25 and
g2 ≈ 3.25 in Fig. 12(bottom row) is a representative
case of all the phase transitions reported here. In or-
der to analyze the phase transitions, we employ a finite-
entanglement scaling approach41,47 of the entanglement
entropy S and correlation length ξ. The entanglement
entropy, S = −∑α Λ2

α ln Λ2
α, also displays a divergent

behavior when approaching the critical point (not shown).
The spin-orbit term g is first fine-tuned in order to give
the largest possible ξ for χ ≈ 500. This provides an
estimate of gc and ensures that the system is in the
finite-entanglement scaling region. At this point, the en-
tanglement entropy scales with the calculated correlation
length, setting an effective length scale48,

S =
c

6
log(ξ) + s0, (41)

U=0
U=0.5

FIG. 12. (Color online) Top: Topological transitions are
tracked by peaks in the correlation length ξ at different in-
teraction strengths. Bottom: Finite-entanglement scaling of
iDMRG results of the phase transition at U=1, ∆2 = 0.25
and gc = 1.80840(4). Left: Scaling of the entanglement en-
tropy with the correlation length at gc. Right: Scaling of the
correlation length with the distance to the critical coupling
gc. Results are representative of all transitions observed and
consistent with the Ising universality class.

giving access to the central charge c of the critical point.
A standard scaling form for the correlation length is also
used,

log |g − gc| = ν log ξ + b. (42)

The extracted central charge c and correlation-length
exponent ν are in very good agreement with those of the
2D Ising universality class, c = 1/2 and ν = 1. All the
transitions reported between the different phases, with
and without interactions, belong to the Ising universality
class.

In order to connect with the mean-field results of
Sec. IV A, we analyze in Fig. 13 the average fermion num-
ber per site and associated fluctuations. For U = 0.5 and
g > 0 (bottom), the fermion number deviates from half
filling in order to reduce the Hubbard energy for on-site
repulsions. In the mean-field description, this corresponds
to an effective (uniform) chemical potential, that lifts the
chiral symmetry S̄ which protected the zero-energy chiral
bound states. Additionally, the increasing fluctuations
of the fermion number with g imply that the mean-field
approach of Section IV A becomes less accurate for large
g.

The topological phase with MBS is extremely robust
to strong interactions, as shown by the persistence of
the twofold degeneracy of the entanglement spectrum in
Fig 14(top) for g2 = 1, ∆2 = 1 up to U = 100. The
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U=0

U=0.5

FIG. 13. (Color online) Phases in the Creutz-Majorana-
Hubbard model at ∆2 = 0.25 from iDMRG simulations. Top:
U=0, The transition into the TSC phase is marked by a rise
in particle-number fluctuations for simulations initialized at
half filling 〈ni〉 = 1. Bottom: U=0.5, Repulsive interactions
lower the average number of fermions in the system, thereby
inducing an effective chemical potential, which lift the chiral
bound states at large g.

FIG. 14. (Color online) Robustness of the topological phase
to large interactions from iDMRG results. g2 = ∆2 = 1.
Top: The entanglement spectrum remains twofold degenerate.
Bottom: The correlation length increases but remains finite.

correlation length increases with increasing U (bottom
panel), but it is always found to converge to a finite value.
Hence, the bulk energy gap remains finite, albeit reduced
by increasing interactions. These conclusions are in good
agreement with those reached by Stoudenmire et al.32

for the effects of Hubbard interactions on a topological
phase hosted by a nanowire model. We have additionally
checked that this phase is robust to a moderate chemical
potential randomly distributed across a finite chain (not
shown).

C. Spectral properties

The excitation properties of topological phases provide
important clues to their nature, as well as insight into
quantities which can be used experimentally to measure
them.8 For example, the spectral functions A(k, ω) can

be used to track the closing of the bulk energy gap, which
may signal a topological transition. Moreover, the local
spectral function A(ω) describes the local single-particle
density of states at the edges of an open chain. This
information could be used to detect Majorana fermions
via a 2e2/h quantized zero-bias signal in the differential
conductance.49–52 In this section, the spectral functions
are calculated within mean-field theory and using MPS
techniques.

1. Excitation spectrum

At the mean-field level, the excitation spectrum is ob-
tained by solving for the eigenenergies of the BdG Hamilto-
nian from Eq. (34) on a periodic chain. The self-consistent
Hartree-Fock calculation results are represented in com-
parison with the DMRG results in Fig. 15.

Spectral functions can be obtained with an MPS
approach via the evolution of correlations in real
time with the time-evolving block decimation (TEBD)
method.39,53–56 A fermionic operator c or c† (the spin
index is suppressed for clarity) is applied at site i0 to
the ground state MPS of a finite chain. The resulting
excited MPS is evolved in real time, such that the hole
and particle Green’s functions, defined as

Gh = −i〈c†i (0)ci0(t)〉, (43)

Gp = −i〈ci (t)c†i0(0)〉, (44)

are calculated separately. A Fourier transform to momen-
tum and frequency space gives the retarded single-particle
Green’s function57 Gret(k, ω)=Gh(k, ω) +Gp(k, ω). The
momentum-resolved spectral function is given by

A(k, ω) = − 1

π
Im[Gret(k, ω)], (45)

which probes the energy spectrum associated with single-
particle excitations in the bulk. We let the matrix bond
dimensions grow with time such that the truncation error
is at most 10−5 per step. A fourth-order Suzuki-Trotter
decomposition with dt = 0.04 is employed, where the time
scale is set by the inverse hopping 1/t = 1. The maximum
time is chosen such that the wave-front of the “light cone”
of correlations does not reach the edges of the system,
resulting in a cutoff at small frequencies. The sampled
time is extended using linear prediction56 to improve the
resolution in the limit: ω → 0.

The bulk spectral functions A(k, ω) for the different
phases found are shown in Fig. 15. The color map rep-
resents the TEBD results for open chains of sizes up
to L = 280a and the black dashed lines are calculated
within mean-field theory. The overall qualitative agree-
ment is rather good. The single-particle spectra in Figs. 15
(a), (c), and (e) correspond exactly to the respective low-
energy spectra of the noninteracting model at half filling,
and the gapped nature of all phases is evident. The
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FIG. 15. (Color online) Bulk spectral function A(k, ω) for
U = 0 (left column) and U = 1 (right column). (a, b) Trivial
phase for g2 = 0.5, ∆2 = 5. (c, d) TSC phase with Majo-
rana edge modes for g2 = ∆2 = 1. (e) Symmetry-protected
topological phase with CBS edge modes and (f) without them
for g2 = 5,∆2 = 0.5. Color map is a TEBD calculation and
dashed lines come from the mean-field theory.

flat bands in Figs. 15(c) arise because there is no mo-
mentum dependence in a band in the parameter point
g = w = ∆ (Eq. 8).

Turning on strong interactions U = 1 (right column of
Fig. 15) results in breaking of the particle-hole symme-
try, seen in a corresponding shift of the spectral weight
towards positive energies. Nevertheless, the mean-field
Hamiltonian remains P symmetric [Eq. (9)], because it
captures only the single-particle physics and retains the
symmetry between the positive and negative states. The
band crossings of Figs. 15(c) and (e) are lost, with a sub-
gap opening at small momentum. Increasing U leads to a
decreasing of the bulk gap, cf. Fig. 14, such that it quickly
becomes too small to observe with our energy resolution.
Inside the topological superconducting phase Fig. 15(d),
the gap is not located at k = 0, but moves at some small
momenta which depend on g and ∆. Also noteworthy is
the appearance of a faint shoulder in A(k, ω) for |k| close

to π in Fig. 15(d) at ω ≈ 3, which may signal the presence
of a scattering continuum. Unsurprisingly, a local probe
in the bulk, such as A(k, ω), does not distinguish between
phases with different topological character.

2. Local spectral functions

We now turn our attention to the edge physics. In
order to look at edge properties, we calculate the local
spectral function A1(ω) = A(i = 1, ω) for open chains of
size L = 140a for the same parameters as in Fig. 15. The
edge spectral function is represented in Fig. 16 using both
mean-field results and DMRG approaches. Once again,
the qualitative agreement between the two methods is
rather good.

At the mean-field level, the Hamiltonian for the open
chain is still described by Eq. (34). However, the order
parameters (ρ,m, η, δ) on the open chain are determined
from the Hartree-Fock calculation on the periodic system.
The local density of states at site i reads as

Ai(ω) =
∑
α

|〈i|ψα〉|2δ(ω − εα). (46)

The sum is carried over all eigenstates |ψα〉 with respective
eigenenergies εα. The Dirac delta function is numerically
approximated using Gaussians of width inversely propor-
tional to the system size.

In the context of DMRG, the local spectral functions
Ai(ω) are computed by adding a fermion (or removing) to
an edge of the chain and then calculating only equal-space
correlations, i.e., i = i0 = 1 in Eqs. (43) and (44).

The signatures of the trivial phase are not affected much
by the presence of interactions, [cf. Figs. 16(a) and 16(b)].
The absence of zero-energy quasiparticle peaks remains,
but the energy gap decreases with interactions.

More interestingly, the topological phase shows a clear
signature of the Majorana zero-energy mode for both
U = 0 and 1 in Figs. 16(c) and 16(d). This can be
interpreted as a direct observation of the Majorana bound
state. Without interactions, this mode is well separated by
a symmetric gap of width ω = 1 from the remainder of the
excitations. The overall structure survives the addition
of interactions, reflecting once again the robustness of
the Majorana states. The survival of the zero-energy
MBS peak was also recently observed in the Kitaev chain
subject to nearest-neighbor repulsive interactions.58

The edge CBS at large g are also clearly signalled by
the presence of a zero-energy peak in the noninteracting
regime [Fig. 16(e)]. In order to perform this simulation,
the ground-state MPS is biased to one of the four degen-
erate states by applying a small pinning potential to an
edge of the chain. Turning interactions to U = 1 splits
this peak into two peaks at nonzero energies, showing that
the CBS have moved away from zero energy, as described
in the preceding sections.
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FIG. 16. (Color online) Local spectral function A1(ω) at the
edge of an open wire for U = 0 (left column) and U = 1 (right
column). (a), (b) The trivial phase at g2 = 0.5 and ∆2 = 5
has no quasiparticle peak at zero energy. (c), (d) A Majorana
edge fermion in the topological phase at g2 = ∆2 = 1 is seen as
a sharp peak at zero energy, which survives finite interactions.
(e), (f) The superconducting phase at g2 = 5 and ∆2 = 0.5. (e)
The presence of zero-energy states is reflected in the spectral
function peak at zero energy. (f) The CBS are not robust to
interactions U , which removes them from zero energy, leading
to a unique ground state. Each subfigure combines TEBD
(red open points) with mean-field results (lines), scaled by an
overall factor.

V. CREUTZ-HUBBARD MODEL

In this section, we focus on the original Creutz model
without superconductivity, but with Hubbard interactions

H = HC + U
∑
j

nj↑nj↓. (47)

In the noninteracting Creutz model, there are two insu-
lating phases meeting at a critical gapless point |g/w| = 1
(Fig. 2). In contrast, at finite U , there is an extended
phase developing around |g/w| = 1 along the nonsuper-
conducting ∆ = 0 line (Fig. 8). The present section seeks
to elucidate the nature of this phase.

Close to the Dirac point (|g/w| = 1), adding a small

-0.4
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FIG. 17. (Color online) Energy gap for the interacting Creutz
model at U/t = 1 in mean-field theory (blue dots). Ferro-
magnetic order parameter η in the x direction (red crosses; in
dimensionless units). Phase transitions are denoted by dashed
green lines. The closing of the gap in the intermediary phase
marks the metallic phase. The wire length is L = 500a.

interaction leads to moving the chemical potential from
half filling into the bulk bands. Therefore, the system de-
velops a metallic phase. However, when the Creutz model
is in an insulating phase, small interactions with respect
to this gap, keep the chemical potential inside the gap and
leave the system insulating. This explanation accounts
for the observed increase in the metallic phase with the
interaction strength, near the original band touching.

At the mean-field level, we consider explicitly in this
case possible antiferromagnetic ordering in x and, respec-
tively, z directions

ηa = (−1)j〈c†j↑cj↓〉, ma = (−1)j〈nj↑ − nj↓〉. (48)

However, both mean-field and DMRG indicate that there
is only ferromagnetism in the x direction developing for
low to moderate U (and vanishing ferromagnetic m, and
antiferromagnetic ma, ηa). Keeping the formalism where
the degrees of freedom are doubled, the metallic region is
identified with a closing of an energy gap. On Fig. 17 it
is shown the system becoming metallic at precisely the
predicted points on the phase diagram (Fig. 8).

This picture is fully supported by DMRG results (cf.
Fig. 18 for a representative case g2/w2 = 2 and U/t = 1).
The system is in a gapless metallic phase, with a central
charge c ' 1 as for free fermions. Superconducting s-
wave correlations are observed to decay exponentially fast
with distance. The interaction U reinforces the w term.
For positive w, η is negative such that the renormalized
on-site coupling w̄ = w − Uη is larger than the bare w.
Nevertheless, the “spin-orbit” term g(> 0) competes with
the ferromagnetic ordering η. It tends to delocalize the
electrons and to spin-flip, thus leading to a reduction of
the η polarization at higher values of |g| (Fig. 17).

At finite superconducting pairing ∆, the metallic re-
gion is immediately gapped out. Consequently, Majorana
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FIG. 18. (Color online) Finite-entanglement scaling of DMRG
results for the interacting Creutz model at g2/w2 = 2 and
U/t = 1. The central charge c ' 1 matches that of a normal
metallic phase.

fermions are hosted in the proximity-induced gap, leading
to the topological superconducting region in Fig. 8.

VI. CONCLUSIONS

This paper demonstrates that insulators hosting frac-
tionally charged states (chiral bound states or CBS) con-
tinue to exhibit solitonic modes under the addition of
proximity-induced superconducting pairing. It also ex-
plains in detail how the CBS can be transformed into
Majorana bound states (MBS) when the pairing exceeds a
certain threshold fixed by the gap of the insulator. Build-
ing on two representative examples, the Creutz model
and the Su-Schrieffer-Heeger model (treated in the Ap-
pendix), we propose the following general mechanism for
one-dimensional topological insulators in the BDI class.

For moderate pairing, the CBS remained pinned at zero
energy owing to the protection of chiral symmetries. This
is reflected in a fourfold-degenerate many-body ground
state for a finite wire. Indeed, the two zero-energy end
states of the wire can be either occupied or empty with-
out changing the total energy of the electronic system.
However, breaking the chiral symmetries, pushes the CBS
at finite energy, thereby leading to a unique ground state
(the chemical potential is fixed at zero energy) because
the localized end states are then either completely filled
or completely empty.

At stronger superconducting pairing, larger than the
initial insulating gap, the Creutz, and the Su-Schrieffer-
Heeger insulators are driven in a phase supporting Ma-
jorana fermions. In the absence of interaction, we have
investigated this transition directly by finding the wave
functions of the zero mode pinned at the interface be-
tween a topological and a trivial semi-infinite phase. This
transition can be also seen in a halving of the many-body
ground-state degeneracy for a finite wire: the two end
states become then two spatially separated Majoranas
forming a single ordinary fermion (topological quantum
bit).

The behavior of the CBS and MBS is also considered
under the effects of repulsive interactions. In the Creutz

FIG. 19. (Color online) Superconducting SSH model. The
red A sites and the blue B sites are connected by alternating
hopping terms leading to a dimer structure. A homogeneous
pairing ∆ couples near-neighbor sites.

model, the interactions were shown to break the chiral
symmetry, leading to a removal of the CBS from zero
energy and a unique ground state. In contrast, the Majo-
rana fermions are rather robust, such that the parameter
regime for the existence of Majorana fermions increases,
albeit the bulk gap is reduced by interactions.

Aside from the edge-state physics, we have also studied
the bulk phase diagram of the Creutz-Majorana-Hubbard
model using a combination of self-consistent Hartree-Fock
theory and extensive DMRG simulations (cf. Fig. 8), the
agreement between both approaches being overall very
good. The main feature is that increasing the Hubbard
repulsion U tends to expand stability domain of the topo-
logical Majorana superconductor, in agreement with the
phenomenology obtained in other nanowire models.32 In
contrast, at weak pairing |∆/w| < 1 and small spin-orbit
coupling |g/w| < 1, the interactions lead to a decrease
of the Majorana phase (cf. Fig. 8). For large |g|, the
model exhibits a topological phase which is protected by
a combination of fermion parity and inversion symmetry.

Besides the topological phases, the phase diagram (see
Figure 8) presents various other interesting bulk phases.
For example, in the absence of superconductivity (∆ = 0),
a metallic phase develops for a finite range of values (which
extends upon raising the interaction U) of the spin-orbit
parameter g/w owing to the effect of interactions. This
gapless phase was restricted to |g/w| = 1 in the absence
of interactions. It would be interesting to study the
possibility of intrinsic superconductivity in such a phase.
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Appendix: Superconducting SSH model

The physics of survival of solitonic modes into the su-
perconducting phase and their subsequent transformation
into Majorana fermions is more general. This section com-
ments on the topological phases in another model from
the BDI class, the Su-Schrieffer-Heeger (SSH) model.6

The most simple superconducting SSH model is repre-
sented by a dimerized chain with a cell containing two
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FIG. 20. (Color online) Phase diagram of the superconducting
SSH model. The original SSH is at ∆/t = 0 axis, marked by
the dashed line. Dashed red line is the region with fractional
charge solitons, and in black the trivial insulating region.
Under the addition of superconducting p-wave pairing, the
solitonic (CBS) region (represented in yellow) survives until
the bulk gap closes. The region hosting CBS is an inversion
symmetry-protected phase (SPT) in the bulk. At large ∆/t,
the system is in a topologically nontrivial region with one
Majorana fermion trapped at the ends. The gray region
is the trivially gapped state. The y axis (green dashed line)
represents the Kitaev chain model at zero chemical potential,17

in a nontrivial regime, for ∆ 6= 0.

atoms A and B:

H =
∑
i

tc†AicBi+t
′c†BicAi+1+∆c†Aic

†
Bi+∆c†Bic

†
Ai+1+H.c..

(A.1)
The alternating hopping strengths represent the “single
bond”, t′, and the “double bond”, t, of the polyacetylene
chain. This model captures only the fermionic degrees
of freedom from the Hamiltonian in Ref. 6, neglecting
the bosonic degrees of freedom due to lattice distortion.
Crucially, the model is enriched here by the addition of a
homogeneous superconducting order parameter ∆ which
couples near-neighbor sites (Fig. 19).

Let us consider first a finite one-dimensional wire in

the absence of superconductivity (∆ = 0) with an integer
number of cells (A − B) and positive real values for t
and t′. If the inter-cell hopping strengths are larger than
the intra-cell hopping terms, δt = t − t′ < 0, then a
zero-energy state is bound at the edge.

As in the CM model, the solitonic modes survive at zero
energy under the addition of a finite superconducting pair-
ing. In this case, they are protected by the insulating gap
induced by the Peierls instability ∝ δt. The general mech-
anism for their survival depends on the relative magnitude
between the insulating gap and the superconducting gap.
The topology of the Hamiltonian is characterized using
Eq. (16) and the resulting phase diagram is represented
in Fig. 20.

For small superconducting pairing |∆| < |δt/2|, the
system has two phases without Majorana fermions. These
are two distinct phases: one is an inversion symmetry-
protected phase (only in the bulk), and with solitonic
modes (CBS) that survive at finite ∆ until entering the
Majorana region (δt < 0); the other is a trivial phase
devoid of midgap states (δt > 0).

For large superconducting pairing |∆| > |δt/2|, the sys-
tem is in a topologically nontrivial phase which supports
Majorana fermions at the ends. Note that Kitaev chain
model17 at zero chemical potential is recovered by making
the system uniform in normal hopping, δt = 0. In this
case, any finite ∆ yields one Majorana bound state at the
edge.

In the presence of repulsive interactions, we expect to
see a similar removal of the ground-state degeneracy in
the CBS phase. This was already investigated in the
absence of superconductivity, revealing a split in energy
between a charged soliton and the neutral solitons.59 The
addition of superconducting pairing should qualitatively
change these results only by allowing a Majorana phase
robust to interactions.

In this section, we have shown how another BDI system
supporting fractionally charge modes can be driven in
a Majorana phases under the effect of superconducting
pairing. In a straight parallel to the Creutz model, the
solitonic modes are protected by a chiral symmetry and
remain at zero energy in a wide region of parameters,
before entering a Majorana phase. The condition to
see the transition to the Majorana phase comes to a
competition between the insulating gap and the induced
superconducting pairing.

∗ doru-cristian.sticlet@u-bordeaux1.fr
† seabra@physics.technion.ac.il
‡ frankp@pks.mpg.de
§ jerome.cayssol@u-bordeaux1.fr
1 R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
2 W. P. Su and J. R. Schrieffer, Phys. Rev. Lett. 46, 738

(1981).
3 J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986

(1981).

4 R. Jackiw and P. Rossi, Nuclear Physics B 190, 681 (1981).
5 G. E. Volovik, The Universe in a Helium Droplet (The In-

ternational Series of Monographs on Physics, 117) (Oxford
University Press, USA, 2003).

6 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical
Review Letters 42, 1698 (1979).

7 A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su,
Rev. Mod. Phys. 60, 781 (1988).

8 J. Alicea, Reports on Progress in Physics 75, 076501 (2012);

mailto:doru-cristian.sticlet@u-bordeaux1.fr
mailto:seabra@physics.technion.ac.il
mailto:frankp@pks.mpg.de
mailto:jerome.cayssol@u-bordeaux1.fr
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevLett.46.738
http://dx.doi.org/10.1103/PhysRevLett.46.738
http://dx.doi.org/10.1103/PhysRevLett.47.986
http://dx.doi.org/10.1103/PhysRevLett.47.986
http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://www.amazon.com/Universe-Droplet-International-Monographs-Physics/dp/0198507828%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0198507828
http://www.amazon.com/Universe-Droplet-International-Monographs-Physics/dp/0198507828%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0198507828
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1088/0034-4885/75/7/076501


20

C. Beenakker, Annual Review of Condensed Matter Physics
4, 113 (2013).

9 E. Majorana, Il Nuovo Cimento (1924-1942) 14, 171 (1937).
10 N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
11 L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
12 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
13 Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).
14 J. Klinovaja, P. Stano, and D. Loss, Phys. Rev. Lett. 109,

236801 (2012).
15 A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
16 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
17 A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001), arXiv:cond-

mat/0010440.
18 Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and

S. Chakravarty, Phys. Rev. B 85, 035110 (2012).
19 S. Tewari and J. D. Sau, Physical Review Letters 109,

150408 (2012).
20 D. Sticlet, C. Bena, and P. Simon, Phys. Rev. B 87, 104509

(2013).
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