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We study the liquid flow inside a recessed gas-centered swirl coaxial injector, where

a swirled liquid flowing against an outer wall is destabilized by a central fast gas

stream. We present measurements of the liquid intact length inside the injector, as a

function of swirl number and dynamic pressure ratio. We propose a simple model to

account for the effect of these parameters. We next study the surface instability inside

the injector: its frequency is measured for several swirl angles, and as a function of gas

velocity. Results are first confronted to the predictions of an inviscid linear stability

analysis including swirl, and second to the predictions of a viscous linear stability

analysis where swirl is not included. The viscous analysis captures the experimental

frequency. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871395]

I. INTRODUCTION

The break-up of a liquid bulk into droplets is the goal of a wide range of industrial applications,

and for the last decades a considerable amount of study has been conducted to understand the

mechanisms behind various atomization devices.1 Notably, atomization phenomena in applications

related to liquid rocket engines have been actively studied, in order to improve injection systems

and thereby optimize combustion. However, various aspects of atomization characteristics of two-

phase coaxial injectors, which are usually used for liquid rocket engines, are still not sufficiently

understood. Moreover, most of the related studies have been focused on the atomization of a liquid

jet or sheet by a cocurrent gas flow. There are few studies on atomization of a swirled liquid film with

one free and one wall-bounded surface. This configuration is relevant to liquid hydrocarbon rocket

engines with a staged combustion cycle for high-power applications: a swirled liquid hydrocarbon

film is stripped and fragmented by a high velocity oxygen gas flow in so-called Gas-Centered Swirl

Coaxial (GCSC) injectors. However, available results on atomization characteristics in this injection

configuration are too scarce to be helpful for design. Previous works have shown that the dynamic

pressure ratio, recess length, and swirl strength are the main parameters determining the overall

spray characteristics of GCSC injectors (Lightfoot et al.2–4). For example, Jeon et al.5 proposed a

critical dynamic pressure ratio to identify regimes of internal or external mixing in the injectors.

Regarding the interfacial instability, Harper et al.6 performed a numerical analysis to determine the

unsteady hydrodynamic characteristics inside GCSC injectors and showed that the liquid interfacial

frequency decreases as liquid film thickness and swirl velocity increase. Recently, Schumaker et al.7

studied the effect of swirl strength on the intact liquid film length inside the injectors. They showed

that the liquid film length without liquid swirl is shorter than any of the cases with swirl when the

total momentum flux ratio is less than 50. Moreover, they suggested the total momentum flux ratio

could be used to scale the intact film length, and ultimately the atomization ratio and efficiency. In

order to improve the understanding of atomization in GCSC injectors, we carry out measurements

on the two-phase flow inside the injectors. The effect of swirl strength on the intact liquid length is
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investigated by internal flow visualization. We propose a simple model based on energy conservation

to account for these experimental results. In addition, stability of the interface between the fast gas

stream and the swirled liquid film is investigated via spectral measurement of the most unstable mode,

and experimental results are confronted to predictions from inviscid and viscous stability analyses.

We detail the experimental setup in Sec. II. We next present experimental results, namely,

measurements of liquid intact length, frequency, and wave amplitude. Section IV introduces our

model for the liquid intact length, and compares it to experimental results. Section V is devoted to

an inviscid stability analysis, and to the comparison of its results with experimental frequencies.

Finally, Sec. VI presents the viscous stability analysis, and comparison with results plus discussion.

II. EXPERIMENTAL SETUP AND METHODS

Figure 1 shows a sketch of the GCSC injector used in the present study. In applications related

to liquid rocket engines, the gaseous propellant (GOX) enters at a high velocity directly through the

center of the injector. The swirled liquid propellant film (Kerosene) is injected along the periphery of

the injection element, see Figure 1, and then stripped and fragmented into drops by the high velocity

gas stream. In the present study, we use water and air at atmospheric pressure.

The injectors are made of plexiglass. They have a square outer cross-section in order to facilitate

visualization of the internal flow, and to limit distortion due to refraction. Different diameters dg

for gas flow at the end of sheltering lip are investigated, namely, 10.4 and 10.8 mm. The outer

diameter do is 12.4 mm and the lip thickness is 0.3 mm. Consequently, the liquid channel thickness

Hl becomes, respectively, 0.5 and 0.7 mm for dg = 10.8 and 10.4 mm, respectively. The diameter

of the four liquid tangential entries dt is 1.0 ± 0.01 mm. The recess length lR is fixed to 11.4 mm

(corresponding to a recess ratio lR/do = 0.92). The volumetric liquid flow rate is measured with

an oval wheel flow meter (OVAL). Air is supplied by laboratory compressed air, and its flow rate

measured with a mass flow meter (Brooks Instruments). The uncertainty on the measured liquid and

FIG. 1. Sketch of the GCSC injector.
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FIG. 2. Estimation of swirl number Sw is carried out from measurement of spray angle when lR = 0. Images are for Hl =
0.7 mm injector. Spray angle is constant when liquid velocity is varied.

gas flow rates are less than 1 l/h and 10 Nl/min, respectively. Mean liquid and gas velocities derived

from respective flow rates are used to compute the dynamic pressure ratio M = ρgU 2
g /ρlU

2
l .

Liquid swirl strength is varied by changing the inlet angle α of the liquid entry holes, as shown

in Figure 1. The swirl number Sw is defined here as the ratio of the azimuthal velocity Wl to the

axial velocity Ul, when there is no recess: Sw = Wl/Ul . In order to measure Sw, a second series

of injectors was built, identical to the injectors described above (two Hl values and five α values)

but with lR = 0 mm. Ratio Sw was measured for each geometry (namely, each couple Hl and α) by

measuring the spray angle γ via direct visualization on these injectors without recess. The angle

γ is defined here as the sum of both local angles to the vertical measured on the left and on the

right: basically γ corresponds to the double of the averaged local slope. We then take Sw = tan γ /2.

Figure 2 shows that γ (and therefore Sw) increases with α, but depends very little on liquid axial

velocity. Measured spray angles and corresponding swirl numbers are indicated in Table I for each

geometry. There is an uncertainty of about 5◦ for larger spray half-angles, which results in an

uncertainty of about 20% for larger Sw. In the following, only injectors with lR = 11.4 mm will be

used, and the swirl number at liquid outlet will be estimated via the values of Table I.

Internal flow visualization with a LIF (Laser Induced Fluorescence) method was conducted to

investigate the overall form and the interface corrugation of the liquid flow at various experimental

conditions. A Coherent Innova 70 Argon laser and a rod lens are used to produce a laser sheet

which is set to pass along the central axis of the injector. Images are captured with a Phantom high

speed digital camera. Fluorescein is mixed with the liquid (water), and visualization of fluoresced

light is carried out through an optical filter, in order to remove any reflected or refracted light. The

exposure time and the image number for each experimental condition studied here are 99 µs (capture

frequency of 10 000 frames/s) and 7000 images, respectively.

A digital image processing algorithm was developed with MATLAB to identify the intact liquid

area inside the injectors. This method, which relies on appropriate thresholding of raw images, is

described in Appendix A.

TABLE I. Values of Sw for the injectors used in the present study.

α (deg) 0 10.6 11.8 34 65.7

Measured spray angle (deg) 0 13 22 113 131

Sw for Hl = 0.5 mm 0 0.11 0.19 1.5 2.2

Measured spray angle (deg) 0 30 42 128 132

Sw for Hl = 0.7 mm 0 0.27 0.38 2.05 2.25
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FIG. 3. Left: Examples of spectra of the interface perturbations, for Ug = 39 m/s, Ul = 1 m/s, Hl = 0.7 mm, and α = 10.6◦;

top: spectrum of the whole set of images; bottom: the signal is split into 32 segments and averaged; the latter method is

preferred when the spectrum is very noisy (see below); right: spectrum obtained for Ug = 94 m/s, Ul = 1 m/s, Hl = 0.7 mm,

and α = 34◦: on the top spectrum two maxima are observed, a broad one (f = 620 ± 100 Hz) and a very thin one (f = 110 ±
10 Hz).

We also use visualization to study the nature of surface perturbations: for a given downstream

distance from liquid injection, we capture the variations of the interface position as a function of time.

A spectrum of this quantity is computed via MATLAB. We then observe that for certain conditions

a clear maximum frequency dominates the spectrum (see Figure 3 for examples of spectra). This

frequency can then be measured as a function of gas and liquid velocities. For a range of conditions

two maxima frequencies may be observed (see Figure 3 top right): a lower one whose peak is very

narrow, and a larger one whose peak is much broader. The variation of each of these maxima as a

function of experimental conditions will be discussed in Sec. III.

Spectra can be carried out for varying downstream positions: Figure 4 shows how spectra vary

for two sets of conditions. For Hl = 0.7 mm, α = 11.8◦, Ul = 1 m/s, and Ug = 77 m/s, a constant broad

maximum is observed over a relatively long distance downstream. Its frequency remains constant.

FIG. 4. Spectra for the interface perturbations as a function of downstream distance. The dashed line indicates the end of

the liquid tongue. Left: Hl = 0.7 mm, α = 11.8◦, Ul = 1 m/s, Ug = 77 m/s; Right: Hl = 0.7 mm, α = 34◦, Ul = 1 m/s,

Ug = 79 m/s.
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For Hl = 0.7 mm, α = 34◦, Ul = 1 m/s, and Ug = 79 m/s, the additional lower frequency peak

of Figure 3 is also observed around 150 Hz, but it disappears over a shorter distance (z < 1 mm).

Note also a small peak around 50 Hz just at the location of injection: this frequency is observed if

the spectrum is carried out over a reflection emitted from a solid wall (in spite of the filter some

reflections may not be entirely filtered out), but is not observed to survive in the free interface.

III. EXPERIMENTAL RESULTS

A. Intact liquid length

The dynamic pressure ratio M = ρgU 2
g /ρlU

2
l is usually considered as a main parameter

to determine the intact liquid length and the global spray characteristics of GCSC injectors.

Figures 5 and 6 show the variation of the internal liquid flow as a function of this parameter at

a constant liquid and gas velocity, respectively: the intact liquid length decreases as the dynamic

pressure ratio increases. Moreover, the global form of the internal liquid flow remains the same

for a constant value of M obtained from different values of liquid and gas velocities: the internal

flow visualization for a given value of M is shown in Figure 7. Although the interfacial instability

characteristics may be different when changing gas and liquid velocities, it seems that the intact

liquid length remains constant for a given value of M.

FIG. 5. Variation of the internal liquid flow as a function of the dynamic pressure ratio M at a constant Ul = 1.0 m/s (Hl =
0.7 mm, α = 65.7◦, M = 0 → 11.0 from left to right).
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FIG. 6. Variation of the internal liquid flow as a function of the dynamic pressure ratio M at a constant Ug = 79 m/s (Hl =
0.7 mm, α = 65.7◦, M = 11.8 → 3.1 from left to right).

We now turn to the influence of swirl on the liquid intact length. Figure 8 shows the variation of

the internal liquid flow at various Sw for a same set of axial phasic velocities: the intact liquid length

increases when the swirl strength increases. For both constant M of Figure 8, the intact liquid length

reaches the end of the injector when swirl is increased up to Sw = 2.3 (α = 65.7◦ for Hl = 0.7 mm).

Figure 9 left shows the effects of the dynamic pressure ratio and swirl strength on Lb for injectors

with Hl = 0.5 mm. As the dynamic pressure ratio increases and the swirl strength decreases, the

intact liquid length somewhat decreases. The data of Figure 9 suggest a power law dependency

between the intact liquid length and the dynamic pressure ratio. As the swirl velocity increases Lb

increases: the liquid film becomes more stable, being forced against the injector inner wall with

the increment of the azimuthal momentum. Schumaker et al.7 suggested to use the total dynamic

pressure ratio Mt = ρgU 2
g /ρlU

2
l (1 + S2

w) to capture the influence of swirl on the intact liquid length:

Figure 9 right shows that this parameter fails to appropriately scale our data, and that dispersion is

increased. Finally, it must be noted that the decrease of the intact liquid length as M−1.2 observed

here is steeper than the decrease in M−1/2 observed in mixing layer experiments (see, e.g., Eggers and

Villermaux9), and which is attributed to stripping of the liquid by the fast gas stream. We think that

in the present case the thickness of the liquid stream is mainly driven by the acceleration of the liquid

by the fast gas stream, which leads to thinning of the liquid film. In addition, spray measurements

indicate that few droplets are detached from the film within the injector recess zone, and that at any

rate these droplets are very small,10 so that the mass loss due to stripping is actually quite weak. At

large M values, where stripping becomes more efficient, the M−1/2 dependency may eventually be

recovered (see lower slope for M > 2 on Figure 9). Experiments at higher M are needed to confirm

this point.

Figure 10 shows the variations of intact liquid length as a function of M and Sw, this time for

Hl = 0.7 mm. The same overall decrease with M and increase with Sw is observed. The slopes of

Figure 9 are reported on Figure 10 to facilitate a comparison: the power law behavior is not clearly
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FIG. 7. Variation of the internal liquid flow at a constant M = 3.1 obtained from different combinations of liquid/gas

velocities (Hl = 0.5 mm, α = 65.7◦, Ul = 1.1 → 1.8 m/s, Ug = 54.6 → 90.1 m/s).

seen. Exponent −1.2 (dashed line) may be valid for M < 4, but data for larger M clearly show a

much weaker impact of M, which is overestimated by the M−0.5 trend (dotted line).

B. Interfacial instability

Figures 11 and 12 show the variations of the most unstable frequency in surface perturbations,

as a function of gas velocity. The error bars are related to the uncertainty on localizing the maximum

in the spectrum, typically the width of the maximum peak in the spectrum. All in all the main trend

is that frequency increases as a function of gas velocity, for all injector conditions (i.e., for all initial

swirl in the system). This is consistent with what is known for shear instabilities in two-phase mixing

layers, where the frequency of the instability is mostly controlled by velocity of the fast gas stream.9

However, a peculiar feature of the instability in the present study can be seen in Figure 12(b), where

two frequencies seem to coexist: in addition to the frequency increasing with Ug, there is a constant

frequency, comprised between 150 Hz and 200 Hz for the large range of gas velocities investigated.

While the spectrum associated with the larger frequency is usually broad (width larger than 100 Hz),

the maximum associated with the lower frequency independent of Ug is very narrow (width smaller
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FIG. 8. Variation of the internal liquid flow as a function of swirl strength for: Left M = 1.8, Ul = 1.0 m/s, Ug = 39.2 m/s,

and Hl = 0.7 mm; Right: M = 1.46, Ul = 1.4 m/s, Ug = 49.1 m/s, Hl = 0.5 mm.

than 5 Hz). Figure 3 shows an example of a spectrum where both frequencies coexist. Figure 13 left

shows the superposition of the data for Ul = 1 m/s, Hl = 0.7 mm, and all Sw: surprisingly it can

be seen that frequency does not vary much when the swirl is varied. Figure 13 right shows that the

superposition is even better when data are sorted as a function of the width of the spectrum. The

frequency of data points corresponding to a wide spectrum increases steadily with Ug independent of

Sw, and the frequency of data points corresponding to a narrow spectrum is approximately constant.

There is however an exception: the single data point corresponding to Sw = 0 (cross) in Figure 13(c),

for Ug = 60 m/s, has a very sharp spectrum (width at mid height of the order of 2 Hz), but a much

larger frequency than other data points with a similar spectrum.

It is known11–13 that the inviscid instability of a two-phase planar shear layer is controlled by the

thickness of the gas vorticity layer δg: more precisely, the wavelength λ can be shown to be directly

proportional to δg, with λ ∼ δg/
√

rρ where rρ is the density ratio rρ = ρg/ρ l. The frequency of the

FIG. 9. Left: Variation of the intact liquid length as a function of the momentum flux ratio M, for varying swirl strengths (Hl

= 0.5 mm, dg = 10.8 mm). Right: same data, plotted as a function M/(1 + S2
w).
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FIG. 10. Variation of the intact liquid length as a function of the momentum flux ratio M, for varying swirl strengths (Hl =
0.7 mm, dg = 10.8 mm).

instability can then be estimated from the ratio of the wave velocity Uc to λ: wave velocity is the

velocity of the frame in which dynamic pressure in both phases are balanced,14 Uc ≈ √
rρUg . This

leads to a frequency scaling as f ∼ rρUg/δg. This estimate is valid when the dynamic pressure ratio

M is large, which may not be the case for the lower Ug investigated here. Nonetheless, comparison

can be attempted between this prediction and our experimental data: gas vorticity thickness δg has

been determined via hotwire measurements (with a single sensor normal probe, 1.25 mm long and

0.5 µm diameter, 55P11 of DANTEC Dynamics), and was found to follow δg ≈ 0.18dg Re
−1/7
g for

the conditions of our experiment. We have noted Reg = UgR/νg the Reynolds number in the gas

stream, with νg the gas kinematic viscosity. This would yield frequencies in the range [1-50] Hz

according to the above prediction for f, quite below the frequency observed experimentally. Inviscid

predictions have been observed to underestimate the value of frequencies observed experimentally

by a factor 2 or 3 in particular in the round jet configuration,12 but here the factor 10 between

FIG. 11. Variation of the frequency of the surface instability as a function of gas velocity; Left: Sw = 0; Right: Sw = 0.11.
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(a) (b)

(c)

FIG. 12. Variation of the frequency of the surface instability as a function of gas velocity; (a) Sw = 0.2; (b) Sw = 1.5;

(c) Sw = 2.2.

experimental value and estimate suggest that a different mechanism may be at play. We will discuss

this in subsequent sections when turning to stability analysis.

Figure 14 shows the amplitude of the perturbation as a function of downstream distance, for

two swirl numbers (Sw = 0 and Sw = 0.11), four different gas velocities, and fixed Ul = 1 m/s and

Hl = 0.7 mm. Amplitude is here defined as the rms value of the interface position in pixels. Amplitude

for Ug = 0 m/s and Ug = 20 m/s are relatively close, indicating that gas velocity only has a significant

effect on the surface instability for Ug > 40 m/s: this is consistent with the results of Figure 13,

which show that frequency of the instability converges to a finite value when gas velocity tends to

zero, and that frequency departs from this limit value for Ug between 20 and 40 m/s. For all Ug >

20 m/s, the amplitude first increases, then reaches a maximum and eventually decreases: interface

destabilization is mainly effective at short distances from the liquid outlet. For example, for Ug =
78 m/s and both Sw, the maximum is found just before 2 mm from injection. At larger downstream

distances wave amplitude decreases: as mentioned earlier stripping of droplets is negligible within

the recess zone, and we attribute this stabilization of the liquid interface to the acceleration, and

simultaneous thinning, of the liquid film by the gas stream.

We also note on Figure 14 that until the maximum is reached growth of the waves is mostly

linear (algebraic): a very short convex region may be observed close to injection, but it is not long

enough to allow for a proper spatial growth rate measurement. In addition, to be valid growth rate

measurement cannot be made on raw amplitude but would have to take into account a precise

calibration along the radius of the injector, since refraction effects across the injector are expected

to stretch distances at larger radii.
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(a)

(b)

(c)

FIG. 13. Variation of the frequency of the surface instability as a function of gas velocity. (a) Superposition of frequencies

for Ul = 1 m/s, Hl = 0.7 mm and all Sw investigated: × Sw = 0; � Sw = 0.11; ◦ Sw = 0.2 �; r Sw = 1.5; * Sw = 2.2. (b)

Data for which the maximum frequency corresponds to a broad peak; (c) data for which the maximum frequency corresponds

to a sharp peak in the spectrum.

IV. MODEL FOR THE LIQUID INTACT LENGTH

In order to understand the impact of swirl and of gas velocity in the data of Figures 9 and

10, we now present a simple model based on energy conservation. We write Bernoulli’s law in a

frame rotating at angular velocity Wl/R, where Wl is the fluid azimuthal velocity. In this frame,

the fluid is subject to a centrifugal force deriving from potential E p = − 1
2
ρl W

2
l . We consider two

points lying on the same streamline at the surface of the liquid, one located at the fluid outlet (axial

FIG. 14. Amplitude of the surface perturbation (rms value of amplitude in pixels) as a function of downstream distance for

Sw = 0 (left) and Sw = 0.27 (right), fixed Ul = 1 m/s and Hl = 0.7 mm: solid line Ug = 0 m/s; dotted line Ug = 20 m/s;

dashed line Ug = 40 m/s; dashed-dotted line Ug = 78 m/s.
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velocity U1, swirl velocity W1), and the other one located at a downstream distance z (axial velocity

U2, swirl velocity W2). Assuming steady motion and neglecting gravity and viscous effects, energy

conservation writes

1

2
ρl(U

2
2 − U 2

1 ) −
1

2
ρl (W

2
2 − W 2

1 ) = Edrag,

where Edrag is the energy provided to the liquid by the fast central gas stream between points 1 and

2. This term can be estimated as

Edrag ≈ KρgU 2
g (2π Rz)z/(2π Rz(h1 + h2)/2) = 2KρgU 2

g

z

h1 + h2

,

where h1 (resp. h2) is the liquid thickness at point 1 (resp. 2) and coefficient K is a drag coefficient.

This coefficient is expected to mainly depend on interface corrugation. The expression for Edrag, work

of the drag force per liquid unit volume, is derived by assuming Edrag = dragforce × length/volume.

Surface 2πRz and volume πRz(h1 + h2) are expressed to lowest order in h/R. Assuming stripping is

negligible mass conservation yields U1h1 = U2h2. Angular momentum conservation gives

W1(R − h1) = W2(R − h2).

Writing again that thicknesses h1 and h2 are small compared to R (largely true in our experimental

case) leads to

W2 ≈ W1

(

1 −
h1 − h2

R

)

.

We report this in energy conservation, and obtain (at lower order in h/R)

1

2
ρlU

2
1

(

h2
1

h2
2

− 1

)

+ ρl

W 2
1

R
(h1 − h2) = 2KρgU 2

g

z

h1 + h2

. (1)

Solving this equation for h2(z) would give the liquid thickness as a function of downstream distance

z. Here, we just write that the liquid intact length Lb is defined by: dh2

dz |z=0
= − h1

Lb
. Derivating

Eq. (1), and considering h1 = Hl (initial liquid height) then gives Lb

Lb

Hl

=
1

K

(

1

M
+

S2
w

M

Hl

R

)

. (2)

We plot on Figure 15 the data of Figures 9 and 10, but this time as a function of M/(1 + S2
w Hl/R),

the parameter suggested by Eq. (2): the data for larger Sw (symbol ◦ on Figures 9 and 10, and

symbols ◦ and ◮ on Figure 15) are indeed collapsed on the main trend. We call the attention of

the reader to the fact that data of Figures 9 and 10 were for Lb/H, while our model is for Lb/Hl:

we justify the comparison by our observation that the experimental liquid height H does not vary

significantly for our whole set of measurements, and that the ratio H/Hl is therefore approximately

constant. Figure 15 next shows the superposition of the data for both Hl, and their comparison to the

predicted slope: The dashed line shows the slope of −1 suggested by Eq. (2). This slope is consistent

with experimental data. As mentioned in Sec. III the trend for M > 4 seems to be different, with a

lower slope: this may be due to non-negligible stripping of the liquid by the fast gas stream for these

large dynamic pressure ratio conditions. Another possible explanation could be that drag coefficient

K may itself depend on gas velocity: as mentioned in Sec. III the average wave amplitude over

the whole recess length is globally lower at large gas velocities (see Figure 14). A reduction in

interface corrugation may then induce a lower K (and hence a larger Lb) for these conditions. The

drag coefficient K estimated from the dashed line in Figure 15 is K ≈ 0.045: this is a correct order

of magnitude for friction drag over a rough surface and pressure drag due to surface corrugations.

V. INVISCID LINEAR STABILITY ANALYSIS

A. Method

In order to investigate how swirl in the base flow may affect the inviscid mechanism discussed

in Sec. III B, we carry out an inviscid linear stability analysis where swirl is taken into account. We
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FIG. 15. Liquid intact length as a function of M/(1 + S2
w Hl/R) for both Hl investigated, and comparison to predicted slope.

The data of Figures 9 and 10 for larger Sw are collapsed on the main trend.

write down Navier Stokes equations + mass conservation in axisymmetric coordinates (z,r,θ ), and

write that velocity is the superposition of a base flow U = (U (r ), 0, W (r )) and of a small perturbation

u = (u, v, w). Component U is therefore the base flow axial velocity, and component W the base

flow azimuthal velocity. We then linearize the system and look for normal solutions of the form

ũ(k, r, n, ω)ei(kz+nθ+ωt). Away from the interface we can solve for the radial velocity perturbation ṽ,

and find the following differential equation:

d2ṽ

dr2
+

d ṽ

dr

[

1

r
+

2n2

r3

1

k2 + n2

r2

]

− ṽ

[

1

r2
+

(

k2 +
n2

r2

)[

1 +
2W

A2r

(

W

r
+

dW

dr

)]

+

1

A

(

d B

dr
−

1

r

d A

dr
−

2inW

r3
+

2inW

r2

B

A

)

+
1

k2 + n2

r2

2n2

r3

(

B

A
−

1

r

)

]

= 0, (3)

where we have introduced coefficients

A = i
(

−ω + kU +
n

r
W

)

,

B = i

[

k
dU

dr
+

n

r

(

W

r
+

dW

dr

)]

.

In the inner region of the injector, and away from the liquid interface, the base gas flow is

such that W = 0, and the axial velocity is constant: We note r0 the radial distance below which we

assume W = 0 and U constant. It can be shown that in this region pressure is solution of a modified

Bessel equation, and the radial velocity can therefore be directly obtained in terms of derivatives of

modified Bessel functions of the first kind In(r): ṽ = d In (r )

dr
= I ′

n(r ).

We therefore integrate three independent solutions of Eq. (3): one solution from the solid wall

to the interface in the liquid phase, and two other solutions from an arbitrary position r0 (supposedly

in the constant gas velocity region) to the interface in the gas phase. Position r0 is taken such that

r0 = dg/2 − 5δg. Orthonormalization is enforced within the couple of solutions during integration

to ensure both solutions remain independent (see, for example, Asmolov15 for a description of

this procedure in a similar context). Integration is carried out with a Dormand-Prince Runge-Kutta

method in Fortran. We finally impose continuity of normal velocity ṽ and continuity of normal stress

(pressure) across r0, and across the interface where surface tension σ is taken into account. These

four conditions enforced on the three integrated solutions and on I ′
n(r ) yield the dispersion relation.

We chose to solve for temporal modes, i.e., real k and complex ω.
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FIG. 16. Base flow profiles obtained via numerical simulation, and injected in the stability analysis. Left: axial velocity;

right: orthoradial velocity; α = 65.7◦ and Hl = 0.5 mm, Ul = 1.4 m/s. The origin of distance r is taken at the outer wall.

Profiles are shown for four different downstream distances z.

The base flow in the gas phase is modelled with error functions with a vorticity thickness δg

equal to the one measured experimentally (see Sec. II)

U (r ) = Ui + (Ug − Ui )erf

(

R − Hl − r

1.13δg

)

and W (r ) = Wi

(

1 − erf

(

R − Hl − r

1.13δg

))

.

The liquid base flow at the end of the annular channel is estimated via a volume of fluid (VOF)

numerical simulation of air-water two-phase flow with Fluent. The simulation is carried out without

the central fast gas jet. Profiles of Figure 16 are obtained for the α = 65.7◦ and Hl = 0.5 mm injector,

for Ul = 1.4 m/s, at the downstream location where the liquid meets the fast gas stream in the

experiment. They show a well developed axial velocity profile (liquid Reynolds number based on

axial velocity is Rel = 700), with liquid boundary layers of the order of the channel half-height. The

profiles are almost parabolic. We could check that in the simulation these profiles are independent

of the azimuthal position (not shown here). This simulation predicts a ratio Wl/Ul ≈ 3.5 at the end

of the liquid channel for this injector (Umax ≈ 2 m/s and Wmax ≈ 7 m/s in Figure 16). This ratio is

larger than the ratio Sw = 2.2 observed experimentally for the same injector without any recess, see

Sec. II: however, these values of Sw = 2.2 and Sw = 3.5 actually correspond to relatively close

spray half angles (namely 68◦ and 74◦), meaning that the simulated swirl is actually not so different

from the observed one. Based on these results, we choose to model the liquid base flow with

simple parabolic velocity profiles for U and W in the inviscid stability analysis. In order to study a

possible influence of the interface velocity (which is expected to increase when the profile develops

downstream of the injection), the interface velocities can be set to arbitrary Ui and Wi by stretching

the parabola.

B. Results

We first consider the case α = 65.7◦, Hl = 0.7 mm, Ul = 1 m/s (note that Ul denotes the

mean liquid velocity, and not the maximum velocity which is higher) and Ug = 80 m/s. We assume

Wl/Ul = 3.5, and parabolic velocity profiles in the liquid phase. Figure 17 left shows the results

obtained for axisymmetric mode n = 0 (solid line) and helical mode n = 1 (dotted line), when

the interface velocities Ui and Wi are taken equal to zero. The initial zero velocity at the interface

models the velocity defect induced by the splitter plate. The growth rate is significantly larger for

the axisymmetric mode. The most unstable wavenumber corresponds to k ≈ 4800 m−1, i.e., λ ≈
1.3 mm: though we have not carried out measurements of wavelength, this order of magnitude is

consistent with the visualizations of Figure 5, where the whole length corresponds to lR = 11.4 mm,
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(a) (b)

FIG. 17. Frequency and temporal growth rate predicted by inviscid analysis: Ug = 80 m/s, Ul = 1 m/s, Wl = 3.5 m/s. Solid

line corresponds to n = 0, and dotted line to n = 1. (a) Ui = 0 and Wi = 0. (b) Ui = Ul/2 and Wi = Wl/2.

and wavelengths can be seen to be of the order of lR/10. Most unstable frequency corresponds to f

≈ 711 Hz, slightly larger but close to the frequency for Ug = 80 m/s on Figure 13. If the interface

velocity is increased to Ui = Ul/2 and Wi = Wl/2, most unstable wavelength is unchanged, but

frequency is slightly decreased to f ≈ 681 Hz, and temporal growth rate is slightly increased by

about 20% (Figure 17 right).

We then look at the influence of the swirl number on the wavelength and frequency of this most

unstable mode. Gas and liquid velocities are kept fixed at, respectively, Ug = 80 m/s and Ul = 1 m/s,

and swirl is decreased from Wl/Ul = 3.5 down to Wl/Ul = 2.5. Figure 18 shows that when swirl

is decreased the temporal growth rate rapidly decreases, and reaches zero for Sw ≈ 2.4. Frequency

decreases also significantly when swirl is reduced. This is not consistent with experiments, where

the unstable mode is observed down to Sw = 0 (α = 0◦), and where frequency does not significantly

depend on the injection angle.

We then compute the wavelength and frequency of the most unstable mode as a function of gas

velocity, for fixed interface velocity Ui = Ul/2 and for a fixed swirl number Sw = 2.5 (expected to

approximately match the conditions of Figure 12(c)). Figure 19 shows that frequency and temporal

growth rate are unaffected by gas velocity: this is contrary to the trend observed in experiments,
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FIG. 18. Frequency (left) and temporal growth rate (right) as a function of swirl number, for fixed Ug = 80 m/s, Ul = 1 m/s,

and n = 0 (axisymmetric mode), inviscid analysis.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

194.254.66.217 On: Mon, 28 Apr 2014 15:21:44



042108-16 Matas, Hong, and Cartellier Phys. Fluids 26, 042108 (2014)

0 50 100 150
400

410

420

430

440

450

460

470

480

490

500

f 
[H

z]

U
g
 [m/s]

0 50 100 150
60

62

64

66

68

70

72

74

76

78

80

U
g
 [m/s]

ω
i [

s−
1
]

FIG. 19. Frequency (left) and temporal growth rate (right) as a function of gas velocity, for fixed Sw = 2.5, Ul = 1 m/s, and

n = 0 (axisymmetric mode), inviscid analysis.

where frequency consistently increases with gas velocity. This suggests that the instability captured

by the present inviscid stability analysis is not a shear instability. Also note that setting surface

tension to zero has almost no effect on the graphs of Figure 17, except a slight reduction in temporal

growth rate.

In order to help us determine the nature of the instability, we compute the rate of energy transfer

via Reynolds stresses uv dU
dr

within the liquid stream: this term is positive when energy is taken from

the base flow to feed the kinetic energy of the perturbation. Figure 20 shows that this contribution

is positive next to the solid wall (its contribution next to the interface is negligible). This leads us

to believe that the inviscid mode captured here is a Taylor-Couette mode arising from the boundary

layer for the azimuthal velocity W : this would be consistent with the fact that this mode disappears

when swirl is decreased, and that it is roughly insensitive to the axial gas velocity. In addition,

axisymmetric modes are known to be more unstable than helical ones for Taylor-Couette instability,

as was observed on Figure 17.
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FIG. 20. Local energy transfer via Reynolds stresses in the liquid film: destabilization occurs next to the solid wall (located

at r = 6.2 mm). Computation for Ug = 80 m/s, Ul = 1 m/s, Sw = 3.5, n = 0, and Hl = 0.7 mm.
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VI. VISCOUS LINEAR STABILITY ANALYSIS

A. Equations

We now include viscosity in the stability analysis. In order to facilitate the resolution of the

resulting equations, we will consider a zero swirl velocity for the base flow in this section, Wl = 0, a

hypothesis strictly valid when α = 0◦: this approach is motivated by the fact that experiments show

that swirl angle does not impact the frequency of the instability. We only look for axisymmetric

modes n = 0. The resulting system of equations is then

iρ(−ω + kU )ũ + ρṽ
dU

dr
= −ik p̃ + ν

[

dũ2

dr2
− ũk2 +

1

r

dũ

dr

]

, (4)

iρ(−ω + kU )ṽ = −
d p̃

dr
+ ν

[

d ṽ

dr2
− ṽ

(

1

r2

)

+
1

r

d ṽ

dr

]

+ σ
η̃

R2
(1 − n2 − k2 R2)δ(r ),

(5)

iρ(−ω + kU )w̃ = ν

[

dw̃

dr2
− w̃

(

1

r2
+ k2

)

+
1

r

dw̃

dr

]

,

iρ(−ω + kU )η̃ = ṽ, (6)

ikũ +
ṽ

r
+

d ṽ

dr
= 0, (7)

where U, ν, and ρ are to be set to Ug, νg, and ρg in the gas phase, and to Ul, ν l, and ρ l in the

liquid phase. Following Heaton,16 we introduce the stream function φ, from which axial and radial

velocities can be recovered by

ũ =
1

r

dφ

dr
, ṽ = −

ik

r
φ, (8)

and the governing equation for φ is then analogous to the Orr-Sommerfeld equation

(Uk − ω)

(

φ′′ −
φ′

r
− k2φ

)

+ φk

(

U ′

r
− U ′′

)

=
−i

Re

[

φ′′′′ −
2

r
φ′′′ +

3

r2
φ′′ −

3

r3
φ′ − 2k2

{

φ′′ −
φ′

r

}

+ k4φ

]

, (9)

where a prime denotes differentiation to r. Boundary conditions are enforced at the outer wall: φ(R)

= 0 and φ′(R) = 0, as well as on the axis where radial velocity v has to vanish and axial velocity

u has to remain finite leading to φ(0) = 0 and φ′(0) = 0. Two solutions φ1l and φ2l are integrated

in the liquid phase from the outer wall to the interface, and two solutions φ1g and φ2g are integrated

in the gas phase from the centerline to the interface. These two couples of solutions are connected at

the interface r = R − Hl via continuity of normal and tangential velocity, and continuity of normal

and tangential stresses

φl = φg, (10)

φ′
g − φ′

l =
kφg

kUi − ω

(

U ′
g − U ′

l

)

, (11)

µg

(

φ′′′
g −

φ′′
g

ri

)

− φ′
g

[

iρg (kUi − ω) −
µg

r2
i

+ 3µgk2

]

+φg

(

ikρgU ′
g + 2µg

k2

ri

)

+ iσ
k2

r2
i

1

kUi − ω

(

1 − k2r2
i

)

=

µl

(

φ′′′
l −

φ′′
l

ri

)

− φ′
l

[

iρl (kUi − ω) −
µl

r2
i

+ 3µlk
2

]

+ φl

(

iρlkU ′
l + 2µl

k2

ri

)

, (12)
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(a) (b)

FIG. 21. Velocity profile used in the viscous linear stability analysis, for Ug = 20 m/s, Ul = 1 m/s, and Hl = 0.7 mm. The

liquid/gas interface is indicated by the vertical dotted line: (a) δd = δl; (b) δd = 0.1δl.

µg

[

k2φg +
kU ′′

i

ω − kU
φg + φ′′

g −
φ′

g

ri

]

= µl

[

k2φl +
kU ′′

i

ω − kU
φl + φ′′

l −
φ′

l

ri

]

, (13)

where µg and µl are gas and liquid dynamic viscosities, and ri = R − Hl stands for the interface

location. Functions φg and φl denote the respective total stream functions in the gas and liquid

phase. Stream functions and their derivatives are all evaluated for r = ri. Similarly, U ′
g , U ′

l , U ′′
g , and

U ′′
l represent the first and second derivatives of the base flow respective gas and liquid velocities

evaluated at the interface.

The base flow has to satisfy a similar set of conditions: continuity of normal and tangential

velocities, and continuity of normal and tangential stresses. We chose the velocity profile suggested

by Otto et al.,17 constructed with a sum of error functions
⎧

⎪

⎨

⎪

⎩

Ug(r ) = Ug erf
(

ri −r

δg

)

+ Ui

[

1 − erf
(

ri −r

δd

)]

,

Ul(r ) =
[

Ulmax erf
(

r−ri

δl

)

+ Ui

[

1 − erf
(

r−ri

δd

)]]

erf
(

R−r
δl

)

,

where term erf[(R − r)/δl] has been added to account for the boundary layer against the outer wall.

Due to this boundary layer, Ulmax has to be slightly larger than Ul to ensure that the mean liquid

velocity remains equal to the desired value Ul. The magnitude of the velocity defect close to the

interface is directly controlled by coefficient δd: for δd = δl there is no velocity defect and the velocity

profile is monotonous, while for δd < δl a minimum velocity is reached close to the interface on the

liquid phase.17 This velocity profile ensures continuity of shear stress provided that17

Ui =
µgUg

δg
+ µl Ulmax

δl

µg + µl

δd . (14)

This profile is plotted on Figure 21 for two cases, δd = δl (no velocity defect) and δd = 0.1δl

(strong velocity defect). Numerical integration of stream functions is carried out in Fortran, with

a classical Runge-Kutta order 4-5 algorithm. Each couple of stream functions is orthonormalized

during integration to ensure they remain independent.15

We chose to look for temporal modes, i.e., to solve the dispersion relation obtained from system

of Eqs. (10)-(13) for complex ω for a fixed real wavenumber k. Figure 22(a) shows the unstable

mode observed for air and water at Ug = 80 m/s and Ul = 1 m/s (conditions of Figure 17). We have

chosen δl = Hl/4. Solid line shows results for δd = 0.1δl (velocity defect) and dotted line for δd = δl

(no velocity defect). Note that the mean velocity Ul is kept fixed, meaning that maximum velocity

is necessarily different for both cases (Ulmax = 1.39 for δd = 0.1δl and Ulmax = 1.1 for δd = δl). The
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(a) (b)

FIG. 22. (a) Unstable mode for Ug = 80 m/s, Hl = 0.7 mm, and Ul = 1 m/s: solid line δd = 0.1δl and dotted line δd = δl;

(b) frequency of the most unstable mode for varying gas velocities and fixed Ul = 1 m/s. •: δd = 0.1δl; �: δd = δl. Viscous

analysis, Sw = 0.

inclusion of a velocity defect increases slightly the wavenumber, but has no effect on the frequency

since the increase in k is compensated almost exactly by the decrease in velocity (decrease of slope

on Figure 22(a) left). When gas velocity is increased we observe that the frequency of the mode

strongly increases. Figure 22(b) shows frequency results as a function of Ug: without a velocity

deficit (symbol �) frequency is roughly proportional to gas velocity. When a velocity defect is

included (δd = 0.1δl, symbol •) this trend is modified: frequency for zero gas velocity converges

towards a finite frequency of around 400 Hz. We next compare these results with experimental

results: Figure 23 shows the superposition of experimental data from Figure 13 to predictions of

Figure 22(b). Frequency is correctly predicted under the assumption δd = δl corresponding to black

triangles (no velocity defect).

Figure 24 shows the predicted wavelength and temporal growth rate of the instability as a

function of gas velocity. Gas boundary layer thickness δg is set to the experimental value, which
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FIG. 23. Comparison of predictions of Figure 22 to experimental data of Figure 13(b), all for Hl = 0.7 mm and Ul = 1 m/s.

Symbols are the same as in Figures 13 and 22, with filled symbols corresponding to viscous prediction. Frequency is correctly

predicted under the assumption δd = δl corresponding to black triangles (no velocity defect).
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FIG. 24. Left: Predicted wavelength of the instability for varying gas velocity. Right: Predicted temporal growth rate as a

function of gas velocity. Fixed liquid velocity Ul = 1 m/s, Hl = 0.7 mm, no velocity deficit (δd = δl).

varies between 479 and 367 µm when Ug increases from 20 to 140 m/s. Though wavelength could

not be measured experimentally, we observe that the order of magnitude of the predicted wavelength

is consistent with visualizations: λ is typically of the order of a few millimeters. We also note

that gas velocity has a strong impact on the temporal growth rate, which increases almost linearly

with Ug.

In order to compare amplitude measurements of Figure 14 to predictions, we can solve the

dispersion relation for a spatial solution: this yields directly a spatial growth rate ki. Table II shows

the results of both spatial and temporal analyses for the set of gas velocities corresponding to

Figure 14 and a fixed liquid velocity Ul = 1 m/s. We can see that Gaster’s relation18 gives a good

estimate of the spatial growth rate for low gas velocities, but underestimates it for Ug = 80 m/s.

Figure 25 shows a comparison of these predictions with experimental data for α = 0◦ and three gas

velocities. The agreement is not good for the lowest gas velocity (Ug = 20 m/s): predicted growth

rate is much smaller than observed. Note also that for Ug = 0 m/s stability analysis predicts that

the spatial growth rate tends to zero, whereas in experiments growth for Ug = 0 m/s and Ug =
20 m/s is roughly similar, and seems to reach a plateau (Figure 14). Nonetheless, slopes for Ug =
40 m/s (dashed line) and Ug = 80 m/s (dashed-dotted line) are in relatively good agreement with

experimental slopes close to injection, i.e., for z < 2 mm for Ug = 40 m/s and z < 1 mm for Ug =
80 m/s.

We now turn to the question of the nature of this instability: the fact that frequency and growth

rate are strongly impacted by gas velocity suggests that it is a shear instability. Figure 26 shows

the variation of the norm of the temporal eigenfunction φ in the case δd = δl (no velocity defect)

TABLE II. Comparison of results from temporal and spatial viscous linear stability analyses (Ul = 1 m/s, Hl = 0.7 mm, air

and water); vg stands for group velocity.

Ug (m/s) k (m−1) ωr (s−1) ωi (s−1) ωi /vg

Temporal 20 907 1162 136 95

40 1512 2101 456 328

80 2174 3451 1261 680

Ug kr ω ki

Spatial 20 807 900 116

40 1195 1500 355

80 2016 3000 922
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FIG. 25. Comparison of experimentally measured amplitude of the surface perturbation (rms value of amplitude in pixels)

and spatial growth rate predicted by spatial stability analysis. Fixed Ul = 1 m/s, α = 0◦ (Sw = 0), and Hl = 0.7 mm. Dotted

line: Ug = 20 m/s; dashed line: Ug = 40 m/s; dashed-dotted line: Ug = 80 m/s.

and for two gas velocities: in both cases, the function reaches its maximum in the strong shear

regions on both side of the interface, but appears unaffected by the outer wall boundary layer. As

mentioned in Sec. III B, a simple scaling law based on an inviscid linear stability analysis has been

suggested by Marmottant and Villermaux:12 it predicts f ∼ ρg

ρl

Ug

δg
, an estimate much lower than in

our experiments as discussed in Sec. III B. In order to test the corresponding scaling law, and to

discern better the physics involved here we have looked at the influence of several parameters on

the most unstable mode, and show the results in Table III. Conditions were varied around a chosen

set of data: Ug = 80 m/s, Ul = 1 m/s, Hl = 0.7 mm for air and water at room temperature. Not

shown in this table are runs for varying gas kinematic viscosity: this parameter has no impact on the

unstable mode. Similarly, changing the extent or even suppressing the liquid boundary layer against

the outer solid wall has no effect on the mode considered here. All results of Table III are obtained for

(a) (b)

FIG. 26. Eigenfunction φ for Ul = 1 m/s, Hl = 0.7 mm, and δd = δl and for two gas velocities: (a) Ug = 20 m/s; (b) Ug =
80 m/s.
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TABLE III. Results from temporal viscous linear stability analysis.

Ug Ul δg σ νl ρg ρl Hl Ui k ωr ωi

(m/s) (m/s) (µm) (N/m) (cSt) (kg/m3) (kg/m3) (mm) (m/s) (m−1) (s−1) (s−1)

40 1 393 0.072 1 1.2 1000 0.7 1.41 1590 2218 514

80 1 393 0.072 1 1.2 1000 0.7 1.68 2220 3515 1275

160 1 393 0.072 1 1.2 1000 0.7 2.22 2839 5351 2741

80 0.5 393 0.072 1 1.2 1000 0.7 1.11 2220 2198 1330

80 1 393 0.072 1 1.2 1000 0.7 1.68 2220 3515 1275

80 2 393 0.072 1 1.2 1000 0.7 2.83 2235 6069 1189

80 1 98 0.072 1 1.2 1000 0.7 3.34 3798 8149 4544

80 1 196 0.072 1 1.2 1000 0.7 2.22 2835 5096 2542

80 1 393 0.072 1 1.2 1000 0.7 1.71 2220 3515 1275

80 1 786 0.072 1 1.2 1000 0.7 1.42 1596 2269 559

80 1 393 0.018 1 1.2 1000 0.7 1.68 3330 5263 1587

80 1 393 0.036 1 1.2 1000 0.7 1.68 2731 4286 1443

80 1 393 0.072 1 1.2 1000 0.7 1.68 2220 3515 1275

80 1 393 0.142 1 1.2 1000 0.7 1.68 1749 2730 1087

80 1 393 0.072 0.6 1.2 1000 0.7 2 2046 2988 1090

80 1 393 0.072 1 1.2 1000 0.7 1.68 2221 3515 1275

80 1 393 0.072 2 1.2 1000 0.7 1.43 2490 3802 1429

80 1 393 0.072 1 0.6 1000 0.7 1.42 1931 2771 823

80 1 393 0.072 1 1.2 1000 0.7 1.68 2221 3515 1275

80 1 393 0.072 1 2.4 1000 0.7 2.19 2268 3888 1790

80 1 393 0.072 1 1.2 500 0.7 2.19 1916 3258 1609

80 1 393 0.072 1 1.2 1000 0.7 1.68 2221 3515 1275

80 1 393 0.072 1 1.2 2000 0.7 1.43 2460 3521 969

80 1 393 0.072 1 1.2 1000 0.49 1.68 4824 2704 4429

80 1 393 0.072 1 1.2 1000 0.56 1.68 3020 4145 1828

80 1 393 0.072 1 1.2 1000 0.7 1.68 2221 3459 1277

80 1 393 0.072 1 1.2 1000 1.4 1.68 1975 3132 1454

δd = δl, i.e., no velocity defect in the base flow at the interface (conditions for which the agreement

of predictions with experimental data was best).

Results of Table III show that though reducing δg increases k, the influence of ρ l on k is not

compatible with the inviscid scaling law k ∼
√

ρg/ρl/δg: doubling ρ l increases k, instead of reducing

it. Next to δg, the parameter having the most influence on k appears to be Ug, whose effect on k is

exactly the opposite of δg: this suggests that both parameters probably influence k via the gas shear

rate γ g = Ug/δg. We also note a strong increase in k when the liquid channel thickness Hl is reduced

(with δl kept constant), and when surface tension is decreased.

We believe this mode is akin to the family of shear modes discussed in Charru and Hinch,19

and initially evidenced by Yih,20 Hooper and Boyd,21 and Hooper and Boyd.22 These modes,

whose mechanism depends on the jump in viscosity across the interface (see Hinch23 for a detailed

discussion of its mechanism in the limit of short wavelengths), have recently been discussed in

the context of liquid atomization by Boeck and Zaleski24 and Otto et al.17 We think in the present

situation the mode is strongly impacted by surface tension (see Table III) and channel thickness Hl

(of the order of λ/4). Note also that previous analyses for this family of modes are for Couette flow:

the wavelength found here is much larger than δg, and this parameter may also affect the instability

other than via the shear rate only.

Results of Table III show that though Ul has no effect on the wavelength, doubling Ul nearly

doubles the frequency of the instability: close examination of the data for these conditions show

that phase velocity of the most unstable mode is directly proportional to interface velocity Ui (itself

fixed by Eq. (14)). This holds for most conditions of Table III, except for the smaller δg investigated
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FIG. 27. Energy budget for Ug = 80 m/s, Ul = 1 m/s, Hl = 0.7 mm, and δg = 393 µm. The largest contribution to the

instability is from term TAN, originating from the work of (viscous) tangential stresses.

(phase velocity smaller than Ui) and for the smaller Hl investigated (phase velocity divided by three

when Hl is decreased by 30%).

In order to support the claim that the unstable mode is a viscous mode we have carried out an

energy budget following the method first suggested by Boomkamp and Miesen:25 we compute an

energy budget for the temporal eigenmode corresponding to the reference conditions of Table III

(second line), namely, air and water for Ug = 80 m/s, Ul = 1 m/s, Hl = 0.7 mm, and δg = 393 µm.

The energy budget can be written as

d Ekin

dt
= REY 1 + REY 2 + T AN + N O R + DI S1 + DI S2, (15)

where Ekin is the total kinetic energy of the eigenmode (gas+liquid), REY1 (resp. REY2) is the transfer

of energy from the base flow to the perturbation via Reynolds stresses in the liquid (resp. gas) stream,

TAN is the work of tangential stresses, NOR the contribution of normal stresses (surface tension in

the present case), and DIS1 (resp. DIS2) the dissipation in the liquid phase (resp. gas phase). The

expressions for each of these terms are given in Appendix B. We compute each term for a broad range

of wavenumbers k, and normalize them by the sum of all positive terms (i.e., destabilizing terms).

Figure 27 shows that the most destabilizing term is by far TAN, which corresponds to the work done

by viscous stresses. Contribution REY1 (red solid line), which corresponds to the contribution of

Reynolds stresses in the liquid stream, is destabilizing for k < 3300, but negligible compared to the

viscous term. Contribution REY2, blue curve, is negative (stabilizing) over the range of k studied

here. Most dissipation occurs in the liquid via DIS1. Normalized surface tension contribution NOR

is not shown on Figure 27: it is negative, and smaller than 10−4 for the range of k studied here. The

most unstable k for these conditions corresponds to k = 2220 m−1 (see Table III).

Results of Figures 3 and 12 also indicated the presence of a second lower frequency unstable

mode for certain experimental conditions. This mode was not predicted by the present stability

analysis. Our guess is that this may be an absolute instability: such a transition from a convective

instability (i.e., noise amplification) to an absolute instability (akin to a resonance) has recently

been evidenced on an air-water mixing layer,26 and the signature of this transition is precisely the

apparition of sharp frequency peaks in spectra of the interface position. Absolute instability may be

induced in the present configuration by the strong confinement in the recess zone.27

VII. CONCLUSION

We have characterized the two-phase flow inside a gas-centered swirl coaxial injector by in-

vestigating the effect of swirl strength on the intact liquid length Lb. We have shown that the intact

liquid length decreases as the swirl strength decreases and the dynamic pressure ratio increases. We
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have proposed a simple model to account for the influence of these parameters on Lb: the predictions

of this model are consistent with experiments, and suggest that the relevant parameter controlling

Lb is an effective dynamic pressure ratio M/(1 + S2
w Hl/R). The relevance of this model supports

the hypothesis that the decrease of Lb when M is increased is caused by increased acceleration of

the liquid, and not by increased stripping of droplets from the liquid bulk as in classical mixing

layer experiments. We think the present mechanism may also be relevant to applications involving

atomization of 2D thin films.

A frequency instability is observed on the liquid issued from the injector. This frequency

increases with gas velocity, and does not appear to depend on the initial swirl number. This frequency

is much larger than the frequency observed in classical mixing layer experiments for similar air/water

velocities. An inviscid stability analysis was not able to capture it. When viscosity is included in

the analysis an instability is predicted with a frequency close to that of experiments. The order of

magnitude of the predicted growth rate is in relative agreement with experiments, except at very

low gas velocities. We believe this instability is related to the family of viscous shear instabilities

described in Charru and Hinch,19 which occur when a jump in viscosity is present across the interface.

The fact that frequencies and wavenumbers are much larger here than on air/water mixing layer

experiments carried out for similar gas and velocities may be related to the very small thickness Hl

of the liquid layer. Characterizing more precisely the influence of this parameter may be crucial to

better predict the surface instability frequencies expected in applications related to drop formation.
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APPENDIX A: IMAGE PROCESSING

We detail here the image analysis method used for intact length measurement.

The 8-bit gray-scaled raw images captured by the digital camera were averaged and then

converted into binary image files using a proper threshold value obtained via Otsu’s method. This

method calculates the threshold value which minimizes the interclass variance of the bi-modal

histogram assumed from the gray level intensities (Otsu8). Once the binary image has been computed,

the slope of the intact liquid area is calculated by a simple linear regression with liquid interface

points. The intact liquid length Lb can then be derived from the cone angle β (see Figure 28)

by Lb = H/tan β. Here, H represents the height of liquid inlet flow at the liquid outlet. It can

be seen from visualizations that this height is larger than the geometrical height Hl, but it is

smaller than Hl + 0.3 mm (Hl + lip thickness). The increase of the height is due to the low

pressure in the gas flow recirculation behind the sheltering lip. Note however, that for the sake of

simplification we still calculate the mean axial liquid velocity based on Hl. In order to improve the

reliability of measurements, we have investigated the effects of the threshold level on the cone angle.

Figure 29 shows a series of raw images, and the corresponding averaged image on the right. Randomly

distributed white regions at the left of the liquid tongue on raw images are due to refraction effects

caused by the corrugation of the liquid surface. Figure 30 then shows the binary images obtained

from this averaged image for different threshold level varying from 40% to 100% of Otsu’s value.

At low threshold values, the binary images do not appropriately represent the intact liquid area

because waves or fragmented liquid inclusions connected to the intact liquid area are retained,

and impair slope calculation. On the other hand, for high threshold values, the intact liquid area

quickly becomes partially perforated because of inhomogeneous light intensity inside the swirled

liquid flow. In light of this, we decided to process our data with a threshold level of 80% of Otsu’s

value.

The length of the remaining liquid tongue after thresholding is L0: in order to prevent the liquid

film present at the end of the intact liquid area from impairing linear regression, we chose to keep
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FIG. 28. Illustration of image processing and definition of β (Hl = 0.5 mm, α = 0◦, M = 2.07). Left: averaged raw image;

right: thresholded image.

FIG. 29. Raw images, and resulting averaged image on the right (Hl = 0.5 mm, α = 65.7◦, Ul = 1.4 m/s, M = 1.83).
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FIG. 30. Binary images as a function of the threshold level: % means the percentage of Otsu’s value (Hl = 0.5 mm, α =
65.7◦, Ul = 1.4 m/s, M = 1.83): (a) 40%, (b) 50%, (c) 60%, (d) 70%, (e) 80%, (f) 90%, (g) 100%.

only a fraction of L0, corresponding to length Lc, for the interpolation of the liquid interface (see

Figure 30). If Lc is too close to L0, the cone angle will be underestimated because of the liquid film

present at the end of the intact liquid area. On the contrary, if Lc is too short, the linear regression

line may not capture correctly the slope of the liquid interface because the slope is calculated only

over the forepart of the intact liquid area. We have chosen to carry out measurements with Lc =
0.8L0.

APPENDIX B: ENERGY BUDGET

We give here the expressions for each of the terms in Eq. (15). The expressions are valid for a

temporal perturbation (real k), and correspond to an energy rate per unit axial length z.

d Ekin

dt
= ωi
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