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SPLITTING METHODS WITH VARIABLE METRIC FOR K L

FUNCTIONS

PIERRE FRANKEL, GUILLAUME GARRIGOS, JUAN PEYPOUQUET

Abstract. We study the convergence of general abstract descent methods applied to
a lower semicontinuous nonconvex function f that satisfies the Kurdyka- Lojasiewicz
inequality in a Hilbert space. We prove that any precompact sequence converges to
a critical point of f and obtain new convergence rates both for the values and the
iterates. The analysis covers alternating versions of the forward-backward method
with variable metric and relative errors. As an example, a nonsmooth and nonconvex
version of the Levenberg-Marquardt algorithm is detailled.

Key words: Nonconvex and nonsmooth optimization ; Kurdyka- Lojasiewicz inequal-
ity ; Descent methods ; Convergence rates ; Variable metric ; Gauss-Seidel method ;
Newton-like method

AMS subject classification. 49M37, 65K10, 90C26, 90C30

1. Introduction

In this paper we present a class of numerical methods to find critical points for a
class of nonsmooth and nonconvex functions defined on a Hilbert space. Our analysis
relies on the Kurdyka- Lojasiewicz (K L) inequality, initially formulated by  Lojasiewicz
for analytic functions in finite dimension [1], and later extended to nonsmooth func-
tions in more general spaces [2, 3, 4, 5]. Gradient-like systems governed by potentials
satisfying this K L inequality enjoy good asymptotic properties: under a compactness
assumptions, the corresponding trajectories have finite length and converge strongly to
equilibria or critical points. These ideas were used in [6] to study nonlinear first-order
evolution equations (see also [7, 8]). Second-order systems were considered in [9, 10]
and a Schrödinger equation in [11].

The convergence analysis of algorithms in this context is more recent. See [12] for
gradient-related methods, [13, 14, 15] for the proximal point algorithm and [16] for a
nonsmooth subgradient-oriented descent method. The celebrated Forward-Backward
algorithm, a splitting method exploiting the nonsmooth/smooth structure of the objec-
tive function, has been studied in [17], and extended in [18] to take in account a vari-
able metric. Another splitting approach comes from Gauss-Seidel-like methods, which
apply to functions with separated variables, and consist in doing a descent method rel-
atively to each (block of) variables alternatively. See [19, 20] for a proximal alternating
method, and [17] for a variable-metric version. Recent papers [20, 21, 22] propose to
combine these two splitting approaches in order to exploit both the smooth/nonsmooth
character and the separated structure of the function.

Most of the algorithms studied in the aforementioned papers share the same asymp-
totic behavior: under a compactness assumption, the sequences generated converge
strongly to critical points, and the affine interpolations have finite length. This is not
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surprising since the algorithms described in [13, 15, 14, 17, 19, 21] together with the
ones of [18, 20] (without extrapolation step) fall into the general convergence result for
abstract descent methods of Attouch, Bolte and Svaiter [17]. Besides, these methods
essentially share the same hypotheses on the parameters with the abstract method of
[17] : the step sizes (resp. the eigenvalues of the matrices underlying the metric) are
required to remain in a compact subinterval of the positive numbers. Moreover they
have little flexibility regarding the presence of computational errors. To our knowledge
vanishing step sizes (resp. unbounded eigenvalues) or sufficiently general errors have
never been treated in the K L context.

Another interesting aspect is that the convergence rate of several of these methods
are essentially the same and depend on the K L inequality rather than the nature of
the algorithm. Therefore, it seems reasonable to consider the existence of an abstract
convergence rate result for general descent methods.

We present now the structure of the paper and underline its main contributions: in
Section 2 we recall some definitions, well-known facts, and set the notation. Section 3
contains the main theoretical results of the paper. More precisely, in Subsection 3.1,
we present an abstract inexact descent method, which is inspired by [17] but extending
their setting in order to account for additive computational errors and more versatility
in the choice of the parameters. The strong convergence of the iterates with a finite-
length condition, and a capture property are proved under certain hypotheses. Since
the proofs are very close to those of [17], most arguments are given in Appendix A.1.
Then, in Subsection 3.2 we prove new and interesting general convergence rates. They
are similar to the ones obtained in [13, 19, 20, 21, 22]. Surprisingly, an explicit form of
the algorithm terminates in a finite number of iterations in several cases. A link with
convergence rates for some continuous-time dynamical systems is also given. Sections
4 and 5 contain the main practical contributions. In Section 4, we present a particular
instance of the model, which provides further insight into a large class of known meth-
ods and present some innovative variants. More exactly, we revisit the Alternating
Forward-Backward methods, already considered in [21, 22, 23], but allowing inexact
computation of the iterates and a dynamic choice of metric. This setting includes
also the generalized Levenberg-Marquardt algorithm, a Newton-like method adapted for
nonconvex and nonsmooth functions. In Section 5, we describe in detail some spe-
cial instances of these algorithms to produce new methods in image compression and
reconstruction. Finally, some perspectives are discussed in Section 6.

2. Preliminaries

Throughout this paper H is a real Hilbert space with norm ‖ · ‖ and scalar product

〈·, ·〉. We write xk −→ x, or xk
w−→ x, if xk converges strongly or weakly to x,

respectively, as k → +∞. The domain of f : H −→ R ∪ {+∞} is dom f = {x :

f(x) < +∞}. A sequence xk f -converges to x (we write xk
f−→ x) if xk −→ x and

f(xk) −→ f(x). It is f -precompact if it has a f -convergent subsequence.

2.1. Subdifferential and critical points. Let f : H → R ∪ {+∞}. The Fréchet
subdifferential of f at x ∈ dom f is the set ∂F f(x) of those elements p ∈ H such that

lim inf
y→x, y 6=x

f(y) − f(x) − 〈p, y − x〉
‖y − x‖ ≥ 0.

For x /∈ dom f , we set ∂F f(x):= ∅. The (limiting Fréchet) subdifferential of f at x ∈
dom f is the set ∂f(x) of elements p ∈ H for which there exists sequences (xk)k∈N and

(pk)k∈N in H such that xk
f−→ x, pk

w−→ p, and pk ∈ ∂F f(xk). As before, ∂f(x) := ∅
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for x /∈ dom f and its domain is dom ∂f := {x ∈ H : ∂f(x) 6= ∅}. This subdifferential
satisfies the following chain rule : let g1, g2 and h be extended real valued functions on
H1, H2 and H1×H2 respectively. If h is continuously differentiable in a neighbourhood
of (x1, x2) ∈ dom g1 × dom g2, the subdifferential of f(x1, x2) := g1(x1) + g2(x2) +
h(x1, x2) at (x1, x2) is

(1) ∂f(x1, x2) =
(

∂g1(x1) + {∇1h(x1, x2)} , ∂g2(x2) + {∇2h(x1, x2)}
)

.

We say that x ∈ H is a critical point if 0 ∈ ∂f(x). The lazy slope of f at x is
‖∂f(x)‖− := inf

p∈∂f(x)
‖p‖ if x ∈ dom ∂f , and +∞ otherwise. This definition gives the

following result:

Lemma 1. If xk
f−→ x and lim inf

n→+∞
‖∂f(xk)‖− = 0, then 0 ∈ ∂f(x).

2.2. The Kurdyka- Lojasiewicz property. Let η ∈]0,+∞] and let ϕ : [0, η[−→
[0,+∞[ be a continuous concave function such that ϕ(0) = 0 and ϕ is continuously
differentiable on ]0, η[ with ϕ′(t) > 0 for all t ∈]0, η[. A proper lower-semicontinuous
function f : H → R ∪ {+∞} has the Kurdyka- Lojasiewicz property at a point x∗ ∈
dom ∂f with desingularizing function ϕ if there exists δ > 0 such that the Kurdyka-
 Lojasiewicz inequality

(2) ϕ′(f(x) − f(x∗))‖∂f(x)‖− ≥ 1

holds for all x in the strict local upper level set

(3) Γη(x∗, δ) = {x ∈ H : ‖x− x∗‖ < δ and f(x∗) < f(x) < f(x∗) + η }.
A proper lower-semicontinuous function having the Kurdyka- Lojasiewicz property at
each point of dom ∂f is a K L function. When f is continuously differentiable, (2)
becomes ‖∇(ϕ ◦ f)‖ ≥ 1. This means that the more f is flat around its critical points,
the more ϕ has to be steep around 0, whence the term “desingularizing”. The K L
property reveals the possibility to reparameterize the values of f in order to avoid
flatness around the critical points. We shall see in Subsection 3.2 that the growth of ϕ
has a direct impact on the convergence rate of optimization algorithms.

Semi-algebraic and bounded sub-analytic functions in finite dimension satisfy a K L
inequality ([3, 4, 5]), as well as some, but not all, convex functions (see [14] for details
and a counterexample). See [24, 25, 26], and the references therein, for more information
in the general context of o-minimal functions. See [27, 28] for characterizations in
infinite-dimensional Hilbert spaces.

2.3. Proximal operator in a given metric. Let S++(H) denote the space of bounded,
uniformly elliptic and self-adjoint operators on H. Each A ∈ S++(H) induces a metric

on H by the inner product 〈x, y〉A := 〈Ax, y〉, and the norm ‖x‖A :=
√

〈x, x〉A. We
also set α(A) as the infimum of the spectral values of A, satisfying ‖x‖2

A ≥ α(A)‖x‖2

for all x ∈ H. Let f : H → R∪{+∞}, the proximal operator of f in the metric induced
by A is the set-valued mapping proxA

f : H ⇉ H, defined as

(4) proxA
f (x) := argmin

y∈H

{

f(y) +
1

2
‖y − x‖2

A

}

.

Observe that proxA
f (x) 6= ∅ if f is weakly lower-semicontinuous and bounded from

below (see [29, Theorem 3.2.5]), which holds in many relevant applications. If f is the
indicator function of a set, then proxA

f (x) is the nearest point mapping relatively to the
metric induced by A.
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3. Convergence of an abstract inexact descent method

Throughout this section, f : H → R ∪ {+∞} is a proper function that is lower-
semicontinuous for the strong topology. We shall adopt the notation given in Subsec-
tion 2.2 concerning the K L property, whenever it is invoked. We consider a sequence
(xk)k∈N, computed by means of an abstract algorithm satisfying the following hypothe-
ses:

H1 (Sufficient decrease): For each k ∈ N, for some ak > 0,

f(xk+1) + ak‖xk+1 − xk‖2 ≤ f(xk).

H2 (Relative error): For each k ∈ N, for some bk+1 > 0 and εk+1 ≥ 0,

bk+1‖∂f(xk+1)‖− ≤ ‖xk+1 − xk‖ + εk+1.

H3 (Parameters): The sequences (ak)k∈N, (bk)k∈N and (εk)k∈N satisfy:

(i) ak ≥ a > 0 for all k ≥ 0.
(ii) (bk)k∈N /∈ l1;

(iii) supk∈N∗
1

akbk
< +∞;

(iv) (ǫk)k∈N ∈ l1.

In Section 4, we complement this axiomatic description of descent methods by pro-
viding a large class of implementable algorithms that produce sequences verifying hy-
potheses H1, H2 and H3. A simple example is:

Example 1. If f is differentiable, a gradient-related method (see [30]) is an algorithms
where each iteration has the form xk+1 = xk + λkd

k, where λk > 0 and dk agrees with
the steepest descent direction −∇f(xk) in the sense that 〈dk,∇f(xk)〉 + C‖dk‖2 ≤ 0
and ‖∇f(xk) + dk‖ ≤ C‖dk‖ + ek, with C > 0 and limk→∞ ek = 0. If ∇f is Lipschitz-
continuous, it is easy to find conditions on the sequence (λk) to verify hypotheses H1,
H2 and H3.

3.1. Capture, convergence, and finite length of the trajectories. Sequences
generated by the procedure described above converge strongly to critical points of
f and the piecewise linear curve obtained by interpolation has finite length. More
precisely, we have:

Theorem 1. Let f : H → R ∪ {+∞} be a K L function and let H1, H2 and H3 hold.
If the sequence (xk)k∈N is f -precompact, then it f -converges to a critical point of f and
∑+∞

k=0 ‖xk+1 − xk‖ < +∞.

It is possible in Theorem 1 to drop the f -precompactness assumption and obtain
a capture result, near a global minimum of f . To simplify the notation, for x∗ ∈ H,
η ∈]0,+∞] and δ > 0, define the relaxed local upper level set by

(5) Γη(x∗, δ) = {x ∈ H : ‖x− x∗‖ < δ and f(x∗) ≤ f(x) < f(x∗) + η }.
We have the following:

Theorem 2. Let f : H −→ R ∪ {+∞} have the K L property in a global minimum x∗

of f . Let (xk)k∈N be a sequence satisfying H1, H2 and H3 with ǫk ≡ 0. Then, there
exist γ > 0 and η > 0 such that if x0 ∈ Γη(x∗, γ), then (xk)k∈N f -converges to a global

minimum x of f , with
∑+∞

k=0 ‖xk+1 − xk‖ < +∞.
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As mentioned in [17], Theorem 2 admits a more general formulation, for instance, if x∗

is a local minimum of f where a growth assumption is locally satisfied (see [17, Remark
2.11]).

The proofs of Theorems 1 and 2 follow the arguments in [17, Subsection 2.3], adapted
to the presence of errors and the variability of the parameters. They are given in
Appendix A.1 for the reader’s convenience.

3.2. Rates of Convergence. We assume that H1, H2 and H3 hold, and for sim-
plicity and precision, we restrict ourselves to the case where εk ≡ 0. Suppose that
xk f -converges to a point x∗ where f has the K L property. We study three types of
convergence rate results, depending on the nature of the desingularizing function ϕ:

1. Theorem 3 establishes the relationship between the distance to the limit ‖xk −
x∗‖ and the gap f(xk) − f(x∗), for a generic desingularizing function. It is
similar to the result in [14] for the proximal method in the convex case.

2. Theorem 4 gives explicit convergence rates in terms of the parameters − both
for the distance and the gap − when the desingularizing function is of the form
ϕ(t) = C

θ
tθ with C > 0 and θ ∈]0, 1]. Several results obtained in the literature

for various methods are recovered.
3. Finally, Theorem 5 provides convergence rates when H2 is replaced by a slightly

different hypothesis that holds for certain explicit schemes, namely gradient-
related methods. This result is valid for a generic desingularizing function ϕ.
However, when ϕ is of the form ϕ(t) = C

θ
tθ (C > 0, θ ∈]0, 1]) the prediction is

considerably better than the one provided by Theorem 4.

3.2.1. Distance to the limit in terms of the gap.

Theorem 3. Set ϕ̃(t) := max{ϕ(t),
√
t}. Then ‖x∗ − xk‖ = O

(

ϕ̃(f(xk−1) − f(x∗))
)

.

Proof. By assumption, xk
f−→ x∗ and f satisfies the K L inequality on some Γη(x∗, δ).

Let rk := f(xk) − f(x∗) ≥ 0. We may suppose that rk > 0 for all k ∈ N because
otherwise the algorithm terminates in a finite number of steps. For K large enough,
we have xk ∈ Γη(x∗, δ) for all k ≥ K. Lemma 2, gives

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + M [ϕ(rk) − ϕ(rk+1)]

for all k ≥ K. Summing this inequality for k = K, . . . ,N , we obtain

N
∑

k=K

‖xk+1 − xk‖ ≤ ‖xK − xK−1‖ + Mϕ(rK).

Using the triangle inequality and passing to the limit, we get

‖x∗−xK‖ ≤
∞
∑

k=K

‖xk+1−xk‖ ≤ ‖xK−xK−1‖+Mϕ(rK) ≤
√

f(xK−1) − f(xK)√
aK

+Mϕ(rK)

by H1. Then, using H0, along with the fact that f(xK) ≥ f(x∗) and that (rk) is
decreasing, we deduce that ‖x∗ − xK‖ ≤ 1√

a

√
rK−1 + Mϕ(rK−1), which finally gives

‖x∗ − xK‖ ≤ max
{

1√
a
,M
}

ϕ̃(rK−1). �
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3.2.2. Explicit rates when ϕ(t) = C
θ
tθ with C > 0 and θ ∈]0, 1]. Theorem 4 below

is qualitatively analogous to the results in [13, 15, 19, 20, 21, 22] : convergence in a
finite number of steps if θ = 1, exponential convergence if θ ∈ [1

2 , 1[ and polynomial

convergence if θ ∈]0, 1
2 [. In the general convex case, finite-time termination of the

proximal point algorithm was already proved in [31] and [32] (see also [33]).

Theorem 4. Assume ϕ(t) = C
θ
tθ for some C > 0, θ ∈]0, 1].

i) If θ = 1 and inf
k∈N

akb
2
k+1 > 0,1 then xk converges in finite time.

ii) If θ ∈ [1
2 , 1[, sup

k∈N
bk < +∞ and inf

k∈N
akbk+1 > 0,1 there exist c > 0 and k0 ∈ N

such that:

(1) f(xk) − f(x∗) = O

(

exp

(

−c
k−1
∑

n=k0

bn+1

))

, and

(2) ‖x∗ − xk‖ = O

(

exp

(

− c

2

k−2
∑

n=k0

bn+1

))

.

iii) If θ ∈]0, 1
2 [, sup

k∈N
bk < +∞ and inf

k∈N
akbk+1 > 0,1 there is k0 ∈ N such that:

(1) f(xk) − f(x∗) = O





(

k−1
∑

n=k0

bn+1

)
−1

1−2θ



, and

(2) ‖x∗ − xk‖ = O





(

k−2
∑

n=k0

bn+1

)
−θ

1−2θ



.

Proof. We can suppose that rk > 0 for all k ∈ N, because otherwise the algorithm
terminates in a finite number of steps. Since xk converges to x∗, there exists k0 ∈ N

such that for all k ≥ k0 we have xk ∈ Γη(x∗, δ) where the K L inequality holds. Using
successively H1, H2 and the K L inequality we obtain

ϕ′2(rk+1)(rk − rk+1) ≥ ϕ′2(rk+1)akb
2
k+1‖∂f(xk+1)‖2

− ≥ akb
2
k+1(6)

for each k ≥ k0. Let us now consider different cases for θ:
Case θ = 1: If rk > 0 for all k ∈ N, then C2(rk − rk+1) ≥ akb

2
k+1 ≥ inf

k∈N
akb

2
k+1 > 0 for

all k ≥ k0. Since rk converges, we must have inf
k∈N

akb
2
k+1 = 0, which is a contradiction.

Therefore, there exists some k ∈ N such that rk = 0, and the algorithm terminates in
a finite number of steps.
Case θ ∈]0, 1[: Write b̄ := sup

k∈N
bk, m := inf

k∈N
akbk+1 and c = m

C2(1+b̄)
and, for each k ∈ N,

βk := bkm
C2 . For each k ≥ k0, inequality (6) gives

(7) (rk − rk+1) ≥
akb

2
k+1r

2−2θ
k+1

C2
≥ βk+1r

2−2θ
k+1 .

Subcase θ ∈ [1
2 , 1[: Since rk → 0 and 0 < 2 − 2θ ≤ 1, we may assume, by enlarging

k0 if necessary, that r2−2θ
k+1 ≥ rk+1 for all k ≥ k0. Inequality (7) implies (rk − rk+1) ≥

βk+1rk+1 or, equivalently, rk+1 ≤ rk

(

1

1 + βk+1

)

for all k ≥ k0. By induction, we

1A simple sufficient − yet not necessary − condition for infk∈N akb
2
k+1 > 0 and infk∈N akbk+1 > 0 is

that infk∈N bk > 0.



SPLITTING METHODS WITH VARIABLE METRIC FOR K L FUNCTIONS 7

obtain

rk+1 ≤ rk0





k
∏

n=k0

1

1 + βn+1



 = rk0 exp





k
∑

n=k0

ln

(

1

1 + βn+1

)





for all k ≥ k0. But ln

(

1

1 + βn+1

)

≤ −βn+1

1 + βn+1
≤ −1

1 + b̄
βn+1, and so

rk+1 ≤ rk0 exp







k
∑

n=k0

( −1

1 + b̄
βn+1

)







= rk0 exp



−c
k
∑

n=k0

bn+1



 .

The second part follows from Theorem 3.
Subcase θ ∈]0, 1

2 [: Recall from inequality (7) that r2θ−2
k+1 (rk − rk+1) ≥ βk+1. Set φ(t) :=

C
1−2θ t

2θ−1. Then φ′(t) = −Ct2θ−2, and

φ(rk+1) − φ(rk) =

rk+1
∫

rk

φ′(t) dt = C

rk
∫

rk+1

t2θ−2 dt ≥ C(rk − rk+1)r2θ−2
k .

On the one hand, if we suppose that r2θ−2
k+1 ≤ 2r2θ−2

k , then

φ(rk+1) − φ(rk) ≥ C

2
(rk − rk+1)r2θ−2

k+1 ≥ C

2
βk+1.

On the other hand, suppose that r2θ−2
k+1 > 2r2θ−2

k . Since 2θ − 2 < 2θ − 1 < 0, we have

2θ−1
2θ−2 > 0. Thus r2θ−1

k+1 > qr2θ−1
k , where q := 2

2θ−1

2θ−2 > 1. Therefore,

φ(rk+1) − φ(rk) =
C

1 − 2θ
(r2θ−1

k+1 − r2θ−1
k ) >

C

1 − 2θ
(q − 1)r2θ−1

k ≥ C ′,

with C ′ := C
1−2θ (q − 1)r2θ−1

k0
> 0. Since βk+1 ≤ b̄m

C2 , we can write

φ(rk+1) − φ(rk) ≥ C ′C2

b̄m
βk+1.

Setting c := min{C
2 ,

C′C2

b̄m
} > 0 we can write φ(rk+1) − φ(rk) ≥ cβk+1 for all k ≥ k0.

This implies

φ(rk+1) ≥ φ(rk+1) − φ(rk0) =

k
∑

n=k0

φ(rn+1) − φ(rn) ≥ c

k
∑

n=k0

βn+1,

which is precisely rk+1 ≤ D

(

k
∑

n=k0

bn+1

)
−1

1−2θ

with D =
(

cm(1−2θ)
C3

)
−1

1−2θ
. As before,

Theorem 3 gives the second part. �

3.2.3. Sharper results for gradient-related methods. Convergence rates for the continuous-
time gradient system

(8) − ẋ(t) = ∇f(x(t)),

where f is some integral functional, are given in [34]. For any ϕ, [34, Theorem 2.7]
states that

(1) f(xk) − f(x∗) = O
(

Φ−1(t− t̂)
)

, and

(2) ‖x∗ − xk‖L2(Ω) = O
(

ϕ ◦ Φ−1(t− t̂)
)

,
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where Φ is any primitive of −(ϕ′)2. If the desingularizing function ϕ has the form

ϕ(t) = Ctθ

θ
, we recover (see [34, Remark 2.8]) convergence in finite time if θ ∈]1

2 , 1],

exponential convergence if θ = 1
2 , and polynomial convergence if θ ∈]0, 1

2 [. The same
conclusion was established in [5, Theorem 4.7] for a nonsmooth version of (8) when
f is any subanalytic function in R

N . This prediction is better than the one given by
Theorem 4 above, as well as the results in [13, 15, 19, 20, 21, 22] since it guarantees
convergence in finite time for θ > 1

2 . We shall prove that for certain algorithms including
gradient-related methods, this better estimation remains true. To this end, consider
the following variant of hypothesis H2:
H′

2 (Relative error): For each k ∈ N, bk+1‖∂f(xk)‖− ≤ ‖xk+1 − xk‖.

Theorem 5. Suppose condition H′
2 is satisfied instead of H2 and assume m := inf

k∈N
akbk+1 >

0. Let Φ :]0, η[→ R be any primitive of −(ϕ′)2.

i) If lim
t→0

Φ(t) ∈ R, then the algorithm converges in a finite number of steps.

ii) If lim
t→0

Φ(t) = +∞, then there exists k0 ∈ N such that:

(1) f(xk) − f(x∗) = O

(

Φ−1

(

m
k−1
∑

n=k0

bn+1

))

, and

(2) ‖x∗ − xk‖ = O

(

ϕ ◦ Φ−1

(

m
k−1
∑

n=k0

bn+1

))

.

Proof. The following proof is inspired by the one of [34] in the continuous case. First,
if rk > 0 for all k ∈ N, we claim that there is k0 ∈ N such that

(9) Φ(rk+1) ≥ Φ(rk0) + m

k
∑

n=k0

bn+1.

To see this, let k0 be large enough to have xk ∈ Γη(x∗, δ) where the K L inequality holds
for all k ≥ k0. We apply successively H1, H′

2, the K L inequality and H3 to obtain

ϕ′(rk)2(rk − rk+1) ≥ ϕ′(rk)2akb
2
k+1‖∂f(xk)‖2

− ≥ akb
2
k+1 ≥ bk+1m.

Let Φ be a primitive of −(ϕ′)2. Then

Φ(rk+1) − Φ(rk) =

∫ rk

rk+1

ϕ′(t)2 dt ≥ (rk − rk+1)ϕ′(rk)2 ≥ bk+1m

because ϕ′ is decreasing. Therefore,

Φ(rk+1) − Φ(rk0) =

k
∑

n=k0

Φ(rn+1) − Φ(rn) ≥ m

k
∑

n=k0

bn+1

as claimed. Now let us analyze the two cases:
For i), if rk > 0 for all k ∈ N, then (9) implies lim

k→+∞
Φ(rk+1) = +∞ which contradicts

the fact that lim
t→0

Φ(t) ∈ R. Hence, rk = 0 for some k ∈ N.

For ii), we may suppose that rk > 0 for all k ∈ N (otherwise the algorithm stops in
a finite number of steps) and so (9) holds for all k ∈ N. Since lim

k→+∞
Φ(rk) = +∞, we

can take k0 large enough to have Φ(rk0) > 0. Whence Φ(rk+1) ≥ m
k
∑

n=k0

bn+1. Since
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(bn) /∈ ℓ1, for all sufficiently large k, m
k
∑

n=k0

bn+1 is in the domain of Φ−1 and we obtain

the first estimation, namely:

(10) rk+1 ≤ Φ−1



m
k
∑

n=k0

bn+1



 .

For the second one, since ϕ is concave and differentiable, we have

ϕ(rk) − ϕ(rk+1) ≥ ϕ′(rk)(rk − rk+1) ≥ ϕ′(rk)an‖xk+1 − xk‖2,

by H1. The K L property and H′
2 then give

ϕ(rk) − ϕ(rk+1) ≥ m‖xk+1 − xk‖,
which in turn yields

‖x∗ − xk‖ ≤ 1

m

∞
∑

n=k

[ϕ(rn) − ϕ(rn+1)] ≤ 1

m
ϕ(rk).

We conclude by using (10). �

4. Descent methods with errors and variable metric

As stressed in [17], the abstract scheme developed in Section 3 covers, among others,
the gradient-related methods (a wide variety of schemes based on the gradient method
sketched in [35]), the proximal algorithm (introduced in [36] and further developed in
[37, 31]), and the forward-backward algorithm (a combination of the preceding, see
[38, 39]). This last one is a splitting method, used to solve structured optimization
problems with the following form

(11) minimize
x∈H

f(x) = g(x) + h(x),

where g is a nonsmooth proper l.s.c function and h is differentiable with a L Lipschitz
gradient. It has been studied in the nonsmooth nonconvex setting in [17] and the
algorithm was stated as follows: start with x0 ∈ H, consider (λk) ⊂ [λ, λ̄] with 0 <
λ ≤ λ̄ < 1

L
and ∀k ∈ N

(12) xk+1 ∈ proxλkg

(

xk − λk∇h(xk)
)

.

It satisfies H1, H2 and H3 (see [17, Theorem 5.1]) and falls into the setting of Theorem
1. We shall extend this class of algorithms in different directions:

• Alternative choice of metric for the ambient space, which may vary at each
step (see [40, 41] and the references therein). Considering metrics induced by
a sequence (Ak) ⊂ S++(H), the forward-backward method becomes

(13) xk+1 ∈ proxAk
g

(

xk −A−1
k ∇h(xk)

)

(recall Subsection 2.3). Indeed, (13) can be rewritten as

(14) xk+1 ∈ argmin
y∈H

g(y) + h(xk) + 〈y − xk,∇h(xk)〉 +
1

2
〈y − xk, Ak(y − xk)〉.

At each step, an approximation of f , replacing its smooth part h by a qua-
dratic model, is minimized. See [18] for a similar algorithm called Variable
Metric Forward-Backward, and [16] for an approach considering more general
models. Note that when Ak = 1

λk
idH one recovers (12). Allowing variable
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metric can improve convergence rates, help to implicitly deal with certain con-
straints, or compensate the effect of ill-conditioning. Rather than simply giving
a convergence result for a general choice of Ak, we handle, in Subsection 4.2, a
detailed method to select these operators, using second-order information.

• Effectively solve structured problems as

(15) minimize
x1∈H1,x2∈H2

f(x1, x2) = g1(x1) + g2(x2) + h(x1, x2),

where g1, g2 are nonsmooth proper l.s.c functions and h is differentiable with
Lipschitz gradient. One approach is the regularized Gauss-Seidel method, which
exploits the fact that the variables are separated in the nonsmooth part of f , as
considered in [17, 19, 20]. It consists in minimizing alternatively a regularized
version of f with respect to each variable. In other words, it is an alternating
proximal algorithm, of the form:

xk+1
1 ∈ proxf(·,xk

2
)

(

xk1
)

xk+1
2 ∈ prox

f(xk+1

1
,·)
(

xk2
)

.

But this algorithm does not exploit the smooth nature of h. An alternative
is to use an alternating minimization method which can deal with the non-
smooth character, while it benefits from the smooth features. An Alternating
Forward-Backward Method considering variable metrics is presented below. A
constant-metric version, namely the Proximal Alternating Linearized Minimiza-
tion Algorithm, can be found in [21]. A forthcoming paper [22] deals with the
same algorithm, called Block Coordinate Variable Metric Forward-Backward,
with a non-cyclic way of selecting the variables to minimize. Nevertheless, our
setting differs from the aforementioned works in the following ways:

• We allow more flexibility in the choice of parameters, accounting, in particular,
for vanishing step sizes or unbounded eigenvalues for the metrics.

• We allow relative errors. Indeed, the computation of x̃k := xk − A−1
k ∇h(xk)

and xk+1 ∈ proxAk
g

(

x̃k
)

often require solving some subroutines, which may

produce x̃k and xk+1 inexactly. To take these errors into account we introduce
two sequences (rk), (sk) and consider

(16) xk+1 − sk+1 ∈ proxAk
g

(

xk −A−1
k ∇h(xk) + rk

)

.

Convergence of this method with errors is given in Theorem 8.

4.1. The Alternating Forward-Backward (AFB) method. Let H1, . . . ,Hp be
Hilbert spaces, each Hi provided with its own inner product 〈·, ·〉Hi

and norm ‖ · ‖Hi
.

If there is no ambiguity, we will just note ‖xi‖ instead of ‖xi‖Hi
. Set H =

p
∏

i=1
Hi and

endow it with the inner product 〈·, ·〉 =
p
∑

i=1
〈·, ·〉Hi

and the associated norm ‖·‖ =
√

〈·, ·〉.
Consider the problem

(17) minimize
xi∈Hi

f(x1, . . . , xp) = h(x1, . . . , xp) +

p
∑

i=1

gi(xi),

where h : H → R is continuously differentiable and each gi : Hi → R ∪ {+∞} is a
lower-semicontinuous function. Moreover we suppose that there is L ≥ 0 such that for
each (x1, ..., xp) ∈ H and i ∈ {1, ..., p}, the application

(18) x ∈ Hi 7→ h(x1, ..., xi−1, x, xi+1, ..., xp)
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has a L-Lipschitz continuous gradient. We shall present an algorithm that generates
sequences converging to critical points of f . The sequences will be updated cyclically,
meaning that given (xk1 , ..., x

k
p), we start by updating the first variable xk1 into xk+1

1 ,

and then we consider (xk+1
i , xk2 , ..., x

k
p) to update the second variable, and so on. In

order to have concise and clear notations, throughout this section we shall denote:

(19) Xk := (xk1 , ..., x
k
p) and Xk

i := (xk+1
1 , ..., xk+1

i−1 , x
k
i , ..., x

k
p).

Observe that Xk
1 = Xk and that we can write Xk

p+1 = Xk+1.

Let us now present the Alternate Forward-Backward (AFB) algorithm. As said
before, it consists in doing a forward-backward step relatively to each variable, taking
in account a possibly different metric. Then for all i ∈ {1, ..., p}, consider a sequence
(Ai,k) ⊂ S++(Hi) which will model the metrics. Given a starting point X0 ∈ H, the

AFB algorithm generates a sequence (Xk)k∈N by taking for all k ∈ N and i ∈ {1, ..., p}

(AFB) xk+1
i ∈ prox

Ai,k
gi

(

xki −A−1
i,k∇ih(Xk

i )
)

.(20)

We shall consider some hypotheses on the operators Ai,k. Define αk = min
i=1..p

α(Ai,k)

and βk := max
i=1..p

�Ai,k�, which give bounds on the spectral values of (Ai,k)i=1..p. We

make the following assumptions:
(HP) 1. There exists α > 0 such that αk ≥ α > L

2. 1
βk

/∈ ℓ1 3. sup
k∈N

βk

αk+1
< +∞.

Remark 1. Here HP1 is a bound on the spectral values by the Lipschitz constant
of the gradient of h, in order to enforce the descent property of the sequence. For
operators of the form 1

λi,k
idHi

, we recover the classical bound Lλi,k ≤ Lλ̄ < 1. In

[22], the authors prove that, with an additional convexity assumption on the gi’s, and
boundedness of the parameters, one can consider Lλi,k ≤ Lλ̄ < 2. Item HP2 states
that the spectral values may diverge, but not too fast. Finally, HP3 can be seen as
an hypothesis on the variations of the extreme spectral values of the chosen operators.
It clearly holds for instance if βk is bounded. It is also sufficient to assume that the
condition numbers

κki :=
�Ak

i �

α(Ak
i )

are bounded, with also min
{

αk

αk+1
, βk

βk+1

}

remaining bounded.

Remark 2. Even if ∇h is globally Lipschitz continuous, L is not the Lipschitz con-
stant of ∇h but a common Lipschitz constant for the functions defined in (18). As a
consequence the partial gradients ∇ih are

√
pL-Lipschitz continuous while ∇h is pL-

Lipschitz. This allows us to have a better bound in HP1 which is particularly important
in the applications (see Section 5). In [21], the authors give a more precise analysis:
at each substep Xk

i of the algorithm, they consider Li,k as the Lipschitz constant of

the gradient of x ∈ Hi 7→ h(xk+1
1 , ..., xk+1

i−1 , x, x
k
i+1, ..., x

k
p). Then they take step sizes

equal to λi,k = ǫi
Li,k

where ǫi < 1 is a fixed non-negative constant. This approach can

be related to the one in [18, 22]. However, they suppose a priori that the values Li,k

remain bounded. It would be interesting to know if it is possible to combine the two
approaches (a variable Lipschitz constant and vanishing step sizes).

The AFB algorithm is a particular case of the abstract descent method studied in
Section 3. This is proved in Lemma 4, in Appendix A.2. Hence we could directly
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apply Theorem 1 to obtain convergence of the sequence (Xk) to a critical point of f .
But this result needs the sequence to be f -precompact. In some cases, precompact-
ness can be deduced using compact embeddings between Hilbert spaces. Sequences
remaining in a sublevel set of an inf-compact function f are also precompact. However,
f -precompactness is harder to obtain without further continuity assumptions. Actu-
ally, Lemma 5 (also in Appendix A.2) establishes that precompactness is enough to
guarantee convergence when the parameters are bounded.

Theorem 6. Let f be a proper lower-semicontinuous K L function, and (Xk) be a
precompact sequence generated by the AFB algorithm with (HP). Suppose that either
βk remains bounded, or that f is continuous on its domain. Hence the sequence has
finite length and f -converges toward a critical point of f .

An analog of the capture result in Theorem 2 can also be deduced. Theorem 6
extends the results of [22] (when taking a cyclic permutation on the variables) in two
directions: the functions gi need not be continuous on their domain, and the step sizes
can tend to 0.

4.2. Variable metric: towards generalized Newton methods. We focus here on
the problem of minimizing a C1,1 function h : RN → R over a closed nonempty set
C ⊂ R

N . The AFB algorithm reduces in this case to a projected-gradient method,
and allow us to compute in the explicit step a descent direction governed by a chosen
metric Ak. As an example, take h(x) = 1

2〈Ax, x〉 − 〈b, x〉 with A ∈ S++(RN ). In the
unconstrained case, the Newton method (that is taking Ak ≡ A) is known to solve
in one single step the problem. If we add a constraint C it is easy to see that the
Newton-projected method

(21) xk+1 ∈ projAk

C

(

xk −A−1
k ∇h(xk)

)

gives the minimum of h over C in one single step. For a general function h, (21) reduces
to the minimisation over C of a quadratic model of h, as stressed in (14). One can
see on this example that computing the proximal operator relatively to the metric An

used in the explicit step (and not the ambient metric !) is of crucial importance in this
method.

The spirit here is to use second-order information from h in order to improve the
convergence of the method. In the unconstrained case, a popular choice of metric is
given by Newton-like methods, where the metric at step k is induced by (an approxima-
tion of) the Hessian ∇2h(xk). Since it is often impossible to know in advance whether
or not the Hessian is uniformly elliptic at each xk, a positive definite approximation
has to be chosen.
We detail here a natural way to chose this positive definite Ak ∼ ∇2h(xk) in closed loop,
and show that this method remains in the setting of Theorem 6. Since it generalizes
the Levenberg-Marquardt method used in the convex case (see [42]) we will refer to
the Generalized Levenberg-Marquardt method for this way of designing Ak. One of
the interesting aspect of the method is that such a matrix can be defined even if h is
only C1,1 and not C2, since the differentiability of ∇h is not necessary in Theorem 6.
Another interesting aspect is that the splitting approach led us to solve constrained
minimization problems with a Newton-projected approach.

We set S+(RN ) the closed convex cone of nonnegative matrices. Consider the gener-
alized Hessian of h, by taking the generalized Jacobian of ∇h in sense of Clarke. Given
x ∈ R

N it is

∂2h(x) := co{ lim
n→+∞

∇2h(xn), where ∇h is differentiable at xn and xn → x}.
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This set contains symmetric matrices bearing second-order information on h. Hence,
the Generalized Levenberg-Marquardt method to compute Ak ∈ S++(RN ) from a given
xk ∈ R

N is the following : for ε > 0,

Take Hk ∈ ∂2h(xk),
Project Pk = proj S+(RN )(Hk),

Regularize Ak = Pk + εIN .

A globalized version of the method can be considered by taking step sizes ensuring
descent. Then the following convergence result holds:

Theorem 7. Let f(x) := h(x) + δC(x) be a K L function, where C ⊂ R
N is closed

nonempty and h is differentiable with a L-Lipschitz gradient. Let x0 ∈ H and suppose
that (xk) is a bounded sequence generated by

xk+1 ∈ projAk

C

(

xk − λkA
−1
k ∇h(xk)

)

,

where Ak is selected with the Generalized Levenberg-Marquardt process detailed above,
and the stepsizes λk satisfy:

0 < λk ≤ λ̄ <
ε

L
, λk /∈ ℓ1 and sup

k∈N

λk+1

λk
< +∞.

Then the sequence has finite length and is converging to a critical point of f .

Proof. Start by observing that proj Ak

C = proj
λ−1

k
Ak

C , so the algorithm falls in the setting
of the AFB algorithm. According with the previous notations, ∇h being L-Lipschitz
continuous implies that the sequence (�Hk�) is bounded by L, and so (�Pk�) remains
bounded by 2L. To conclude through Theorem 6 we just need to check the hypotheses
(HP) on the parameters 1

λk
Ak. We have here αk = α( 1

λk
Ak) ≥ ελk

−1 ≥ ελ̄−1 > L

and βk = �
1
λk
Ak� ≤ (2L + ǫ)λ−1

k . Thus HP1 is satisfied, while items HP2 and HP3

follows directly from the hypotheses made on (λk). Since the indicator function δC is
continuous on its domain, the hypotheses of Theorem 6 are satisfied. �

This extends, in a way, results from the convex setting to the nonconvex one, en-
forcing moreover the strong convergence (see [42, Theorem 7.1]).

A drawback of this method is that the Hessian increases the complexity of imple-
mentation since a matrix must be inverted in the explicit step. An alternative is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update scheme (see [30],[43]), using only
first-order information to compute the inverse of the Hessian. On the other hand, the
implicit step gains also in complexity since one must project onto a constraint rela-
tively to a given metric, which is nontrivial even for simple constraints. For linear
constraints, a particular second-order model of the Hessian can be taken in order to
reduce the implicit step in a trivial orthogonal projection step (see [43, 44, 45]).

Newton-like methods are expected to have good convergence rates in exchange for
a more expensive implementation. An interesting question is whether one can obtain
convergence rates beyond the results in Subsection 3.2, by exploiting, not only the K L
nature of the function, but also the specific properties of the matrices selected by the
Generalized Levenberg-Marquardt process.

4.3. The AFB algorithm with errors. In order to allow for approximate compu-
tation of the descent direction or the proximal mapping, we consider an inexact AFB
method. We introduce the sequences (rki )k∈N and (ski )k∈N for i ∈ {1, ..., p} which cor-
respond respectively to errors arising at the explicit and implicit steps relatively to the
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variable xi. The inexact AFB method is computed from an initial (x0
1, ..., x

0
p) ∈ H by

yk+1
i ∈ prox

Ai,k
gi

(

xki −A−1
i,k∇ih(Xk

i ) + rki

)

(22)

xk+1
i = yk+1

i + sk+1
i .(23)

The following hypotheses on the errors (defining Sk
i from (ski )k∈N as in (19)) guarantee

convergence of the method:

(HE) There exists σ ∈ [0,+∞[, ρ ∈]0, 1] with σ+1
ρ

< αL−1 such that

1. ‖Sk
i ‖ ≤ σ

2 ‖yk+1
i − yki ‖,

2. ‖rki ‖ ≤ σ
2 ‖yk+1

i − yki ‖ + µk where (µk) is a summable sequence,

3. 〈rki + ski , y
k+1
i − yki 〉Ai,k

≤ 1−ρ
2 ‖yk+1

i − yki ‖2
Ai,k

.

Theorem 8. Let f be a proper lower-semicontinuous K L function, and (Xk) be a pre-
compact sequence generated by the AFB algorithm with errors, with (HP) and (HE)
satisfied. Suppose that either βk remains bounded, or that f is continuous on its do-
main. Hence, the sequence has finite length and f -converges toward a critical point of
f .

5. Applications

5.1. Sparse and low-rank matrix decomposition. The problem of recovering the
sparse and low-rank components of a matrix arises naturally in various areas such as
model selection in statistics or system identification in engineering (see [46] and refer-
ences therein). Denote by ‖X‖0 the number of nonzero components of X ∈ Mm,n(R).
Given A ∈ Mm,n(R) and bounds r, s ∈ N, the low-rank sparse matrix decomposition
problem consists in finding X,Y ∈ Mm,n(R) such that A = X + Y with rank (x) ≤ r
and ‖Y ‖0 ≤ s. Endowing Mm,n(R) with the Frobenius norm, this reduces to

minimize
X,Y ∈Mm,n(R)

δ{rank ·≤r}(X) + δ{‖·‖0≤s}(Y ) +
1

2
‖A−X − Y ‖2

F .

An approach to solve this problem consists in doing a convex relaxation of the objective
function (see [47, 48]). The sparsity and low-rank properties are obtained by minimizing
the ℓ1 and nuclear norms, respectively (see [49]).

The K L framework is well adapted to the original nonconvex (but semialgebraic !)
problem and offers convergent numerical methods. Moreover, the AFB method is well
suited for its structure (separated variables, smooth/nonsmooth parts), and leads to an
Alternate Averaged Projected Method : consider initial data (X0, Y0) and take (λk)k∈N,
(µk)k∈N with 0 < τ ≤ λk, µk ≤ τ̄ < 1. For k ≥ 0, define

Xk+1 ∈ proj {rank ·≤r}(λk(A− Y k) + (1 − λk)Xk),

Y k+1 ∈ proj {‖·‖0≤s}(µk(A−Xk+1) + (1 − µk)Y k).

Projection onto {rank · ≤ r} can be done using the Singular Value Decomposition (see
Eckart-Young’s theorem). To project onto {‖·‖0 ≤ s}, one simply sets all the coefficient
to zero, except for the s largest ones (in absolute value). Theorem 2 asserts that if the
initial data is close enough to the solution, the algorithm will converge to it.
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5.2. Image Compression and Reconstruction. The search for sparse solutions
of under-determined linear systems is important in compressive sensing and appears
naturally in signal denoising, deblurring or compression processes (see [50, 51]). Take
A ∈ R

M×N with M < N , b ∈ R
M and consider the following problem:

(P0) minimize
Ax=b

‖x‖0.

Its exact solution is NP-hard to find using combinatorial techniques (see [52]). Here
also a popular approach consists in convexifying (P0), and considering:

(P1) minimize
Ax=b

‖x‖1 :=
N
∑

i=1
|xi|.

This easier problem is equivalent to (P0) under some conditions on A (see [50], [53,
Theorem 5.2] and [54, Theorem 1.2]).

In order to solve directly (P0), which can be rewritten as

min
x∈RN

α‖x‖0 + δ{Ay=b}(x),

we can apply the proximal algorithm to the lower-semicontinuous function x 7→ α‖x‖0+
δ{Ay=b}(x), but the proximal operator associated to this sum is not easy to compute.
However, the proximal operator associated to each summand is well known. Indeed,
proxα‖·‖0 is the hard shrinkage operator (see [17]) and proxδ{Ax=b}(x) is the projection

of x onto the affine set {Ax = b}. The following alternatives allow us to use these
operators separately:

(1) Hard-Thresholded Gradient algorithm: A quadratic penalization of the con-
straint gives

(P
(1)
0 ) min

x∈RN
α‖x‖0 +

1

2
‖Ax− b‖2.

The AFB algorithm is the Hard-Thresholded Gradient algorithm:

xk+1 = Hαλk
(xk − λkA

T (Axk − b)),

with 0 < λ ≤ λk ≤ λ̄ < �ATA�−1.
(2) Hard-Threshold Projection method: Separate the variables and introduce

(P
(2)
0 ) min

x∈RN
δ{Ay=b}(x) + α‖y‖0 +

1

2
‖x− y‖2.

The AFB algorithm yields the Hard-Threshold-Projection method:

xk+1 = proj {A·=b}(λky
k + (1 − λk)xk),

yk+1 = Hαµk
(µkx

k+1 + (1 − µk)yk),

with 0 < τ ≤ λk, µk ≤ τ̄ < 1.

The functions to minimize in (P
(1)
0 ) and (P

(2)
0 ) satisfy the K L property because they

are semi-algebraic (see [24]). Thus, the convergence results apply.
While the Hard-Thresholded Gradient method was already evoked in [17], the Hard-

Threshold-Projection method is seemingly new. In both cases, these algorithms are
relatively new in the context of compressed sensing. Future works may focus on the
enhancement of these algorithms, and their comparison to specific methods such as
LASSO or Matching Pursuit. The work done here can also be applied to (P1), replacing
Hα by the soft threshold operator Sα := proxα‖·‖1 to obtain “soft” versions of the
two previous algorithms. Even in this convex case, the corresponding Soft-Threshold-
Projection algorithm is apparently new, while the Soft-Threshold Gradient algorithm
is known under the name of Thresholded Landweber algorithm (see [55]).
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6. Concluding Remarks

We have given a unified way to handle various recent descent algorithms, and de-
rived general convergence rate results in the K L framework. These are applicable to
potential future numerical methods. Some improvements have been explored, and a
novel projected Newton-like method has been proposed.

A challenging task is to extend the present convergence analysis to algorithms that
do not satisfy the sufficient decrease condition H1. This will allow to consider acceler-
ation schemes like the ones studied in [56, 57, 58], or primal-dual methods based on a
Lagrangian approach. A recent preprint [59] seems to be an interesting first attempt
in this direction.

From the applications point of view, the counting norm ‖ · ‖0 described in Section
5 has a natural extension to an infinite-dimensional functional setting, namely the
measure of the support of a function u defined on some Ω ⊂ R

N . An interesting but
challenging issue is to apply our algorithm to this extension in order to solve the problem
of sparse-optimal control of partial differential equations. From the implementation
point of view, it suffices to apply the one-dimensional Hard Shrinkage Operator at each
point. Nevertheless, the verification of the K L inequality for this function has not been
established and will probably rely on sophisticated arguments concerning the geometry
of Hilbert spaces. Then, there is the natural question whether this approach is more
efficient than those using the L1 norm (see, for instance, [60]).

Finally, it is worth mentioning that the results in Section 3 remain true in the more
general context of a normed space, adapting the definition of subdifferential and lazy
slope in an obvious manner.
Acknowledgements. The authors thank H. Attouch for useful remarks.

Appendix A. Appendix

A.1. Proofs of Theorems 1 and 2. The argument is a straightforward adaptation
of the ideas in the proof of [17, Lemma 2.6]. One first proves:

Lemma 2. Let H1 and H2 hold and fix k ∈ N. If xk and xk+1 belong to Γη(x∗, δ),
then

(24) 2‖xk+1 −xk‖ ≤ ‖xk−xk−1‖+
1

akbk

[

ϕ(f(xk)−f(x∗))−ϕ(f(xk+1)−f(x∗))
]

+ ǫk.

For the next results, we introduce the following auxiliary property (automatically
fulfilled under the hypotheses of Theorems 1 and 2), which includes a stability of the se-
quence (xk)k∈N with respect to the point x∗, along with a sufficiently close initialization.

S(x∗, δ, ρ): There exist δ > ρ > 0 such that

i) For each k ∈ N, if x0, . . . , xk ∈ Γη(x∗, ρ), then xk+1 ∈ Γη(x∗, δ);

ii) The initial point x0 belongs to Γη(x∗, ρ) and

(25) ‖x∗ − x0‖ + 2

√

f(x0) − f(x∗)
a0

+ Mϕ(f(x0) − f(x∗)) +

+∞
∑

i=1

ǫi < ρ.

Then, we have the following estimation:
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Lemma 3. Let H1, H2, H3 and S(x∗, δ, ρ) hold, and note M = supk∈N∗
1

akbk
< +∞.

Then, for all K ∈ N
∗, we have xK ∈ Γη(x∗, ρ) and

K
∑

k=1

‖xk+1−xk‖+‖xK+1−xK‖ ≤ ‖x1−x0‖+M
[

ϕ(f(x1)−f(x∗))−ϕ(f(xK+1)−f(x∗))
]

+
K
∑

k=1

ǫk.

The basic asymptotic properties are given by the following result:

Proposition 1. Let H1, H2, H3 and S(x∗, δ, ρ) hold. Then xk ∈ Γη(x∗, ρ) for all k and

converges to some x lying in the closed ball B(x∗, ρ). Moreover
∑∞

k=1 ‖xk+1−xk‖ < ∞,

lim infk→∞ ‖∂f(xk)‖− = 0, and f(x) ≤ limk→∞ f(xk) = f(x∗).

Proof. Capture, convergence and finite length follow from Lemma 3 and H3. Next,
since (bk) /∈ ℓ1 and

∑∞
k=1 bk+1‖∂f(xk)‖− ≤ ∑∞

k=1 ‖xk+1 − xk‖ +
∑∞

k=1 εk+1 < ∞,

we obtain lim infk→∞ ‖∂f(xk)‖− = 0. Finally, observe that that limk→∞ f(xk) ex-
ists because f(xk) is decreasing and bounded from below by f(x∗) and the lower-
semicontinuity of f implies f(x) ≤ limk→∞ f(xk). If limk→∞ f(xk) = β > f(x∗),
the K L inequality and the fact that ϕ′ is decreasing imply ϕ′(β − f(x∗))‖∂f(xk)‖− ≥
ϕ′(f(xk) − f(x∗))‖∂f(xk)‖− ≥ 1 for all k ∈ N, which is impossible because :
lim infk→∞ ‖∂f(xk)‖− = 0. Whence β = f(x∗). �

We are now in position to complete the proofs of Theorems 1 and 2.
Proof of Theorem 1 Let xnk → x∗ with f(xnk) → f(x∗) as k → ∞. Since f(xk) is
nonincreasing and admits a limit point, we deduce that f(xk) ↓ f(x∗). In particular,
we have f(x∗) ≤ f(xk) for all k ∈ N. The function f satisfies the K L inequality on
Γη(x∗, δ) with desingularizing function ϕ. Let K0 ∈ N be sufficiently large so that
f(xK) − f(x∗) < min{η, aδ2}, and pick ρ > 0 such that f(xK) − f(x∗) < a(δ − ρ)2.
Hence, f(x∗) ≤ f(xk+1) < f(x∗) + η for all k ≥ K and

‖xk+1 − xk‖ ≤
√

f(xk) − f(xk+1)

ak
≤
√

f(xK) − f(x∗)
a

< δ − ρ,

which implies part i) of S(x∗, δ, ρ). Now take K ≥ K0 such that

‖x∗ − xK‖ + 2

√

f(xK) − f(x∗)
anK

+ Mϕ(f(xK) − f(x∗)) +

+∞
∑

k=K+1

ǫk < ρ.

The sequence (yk)k∈N defined by yk = xK+k for all k ∈ N satisfies the hypotheses of
Proposition 1. Finally, since the whole sequence (yk)k∈N is f -convergent toward x∗ and
lim infk→∞ ‖∂f(yk)‖− = 0, we conclude that x∗ must be critical using Lemma 1.

Proof of Theorem 2 Since f has the K L property in x∗, there is a strict local upper
level set Γη(x∗, δ) where the K L inequality holds with ϕ as a desingularizing function.

Take ρ < 3
4δ and then γ < 1

3ρ. If necessary, shrink η so that 2

√

η

a
+Mϕ(η) <

2ρ

3
. This

is possible since ϕ is continuous in 0 with ϕ(0) = 0. Let x0 ∈ Γη(x∗, γ) ⊂ Γη(x∗, ρ). It
suffices to verify that S(x∗, δ, ρ) is fulfilled and use Proposition 1. For i), let us suppose
that x0, . . . , xk lie in Γη(x∗, ρ) and prove that xk+1 ∈ Γη(x∗, δ). Since x∗ is a global

minimum, from H1 and the fact that
(

f(xk)
)

k∈N is decreasing, we have

f(x∗) + a‖xk+1 − xk‖2 ≤ f(xk+1) + a‖xk+1 − xk‖2 ≤ f(xk) ≤ f(x0) < f(x∗) + η.



18 PIERRE FRANKEL, GUILLAUME GARRIGOS, JUAN PEYPOUQUET

It follows that ‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖ + ‖xk − x∗‖ <
√

η
a

+ ρ < 4
3ρ < δ, and so

xk+1 ∈ Γη(x∗, δ). Finally, we have

‖x0 − x∗‖ + 2

√

f(x0) − f(x∗)
a0

+ Mϕ(f(x0) − f(x∗)) <
1

3
ρ + 2

√

η

a
+ Mϕ(η) < ρ,

which is precisely ii).

A.2. Proof of Theorem 8. We prove here Theorem 8 which states the convergence
of the AFB with errors. Then Theorem 6 follows directly by taking errors equal to
zero.

Lemma 4. Any bounded sequence Y k = (yk1 , ..., y
k
p ) generated by the AFB algorithm

with errors satisfies H1, H2 and H3.

Proof. Since Xk
i = Y k

i + Sk
i , we can rewrite the algorithm as

(26) yk+1
i ∈ prox

Ai,k
gi (yki −A−1

i,k∇ih(Y k
i + Sk

i ) + rki + ski ).

We start by showing that H1 is satisfied.

Let i = 1..p be fixed. Using the definition of the proximal operator prox
Ai,k
gi in (26)

and developing the squared norms gives

gi(y
k
i ) − gi(y

k+1
i )(27)

≥ 1

2
‖yk+1

i − yki ‖2
Ai,k

+ 〈yk+1
i − yki ,∇ih(Y k

i + Sk
i )〉 − 〈yk+1

i − yki , r
k
i + ski 〉Ai,k

.

Using HE3 in (27), the latter results in

(28) gi(y
k
i ) − gi(y

k+1
i ) ≥ 1

2
‖yk+1

i − yki ‖2
ρAi,k

+ 〈yk+1
i − yki ,∇ih(Y k

i + Sk
i )〉.

For fixed k ∈ N and i = 1, . . . , p, introduce the function

(29) h̃i,k : yi ∈ Hi 7→ (yk+1
1 , .., yk+1

i−1 , yi, y
k
i+1, .., y

k
p ) ∈ R

which satisfies h̃i,k(yki ) = h(Y k
i ), h̃i,k(yk+1

i ) = h(Y k
i+1) and ∇h̃i,k(yki ) = ∇ih(Y k

i ). Ap-

plying the descent lemma to h̃i,k, we obtain

(30) h(Y k
i+1) − h(Y k

i ) − 〈yk+1
i − yki ,∇ih(Y k

i )〉 ≤ L

2
‖yk+1

i − yki ‖2.

Then, combining (28) and (30) we get

gi(y
k
i ) − gi(y

k+1
i ) + h(Y k

i ) − h(Y k
i+1)(31)

≥ 1

2
‖yk+1

i − yki ‖2
ρAi,k−LidHi

+ 〈yk+1
i − yki ,∇ih(Y k

i + Sk
i ) −∇ih(Y k

i )〉,

where ρAi,k − LidHi
remains coercive, since ραk > L. Using successively the Cauchy-

Schwartz inequality, the Lipschitz property of ∇ih (see Remark 2) and HE1, one gets

〈yk+1
i − yki ,∇ih(Y k

i + Sk
i ) −∇ih(Y k

i )〉 ≥ −‖yk+1
i − yki ‖‖∇ih(Y k

i + Sk
i ) −∇ih(Y k

i )‖

≥ −L‖yk+1
i − yki ‖‖Sk

i ‖ ≥ − σL

2
√
p
‖yk+1

i − yki ‖2.

Inserting this estimation in (31) we deduce that

(32) gi(y
k
i ) − gi(y

k+1
i ) + h(Y k

i ) − h(Y k
i+1) ≥ 1

2
‖yk+1

i − yki ‖2

ρAi,k−L(σ
√

p

p
+1)idHi

.
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We can now conclude by summing all these inequalities for i = 1, . . . , p:

f(Y k) − f(Y k+1) =

p
∑

i=1

gi(y
k
i ) − gi(y

k+1
i ) + h(Y k

i ) − h(Y k
i+1)(33)

≥ 1

2

p
∑

i=1

‖yk+1
i − yki ‖2

ρAi,k−L(σ
√

p

p
+1)idHi

so H1 is fulfilled with ak =
ραk−L(σ

√
p

p
+1)

2 .
To prove H2, fix i = 1, . . . , p and use Fermat’s first order condition in (26) to get:

(34) 0 ∈ ∂gi(y
k+1
i ) +

{

Ai,k(yk+1
i − yki ) −Ai,k(rki + ski ) + ∇ih(Y k

i + Sk
i )
}

Define wk+1
i := ∇ih(Y k) −∇ih(Y k

i + Sk
i ) − Ai,k(yk+1

i − yki ) + Ai,k(rki + ski ) which lies

in ∂gi(y
k+1
i ) + ∇ih(Y k+1), by (34). The triangle inequality gives

(35) ‖wk+1
i ‖ ≤ βk

(

‖yk+1
i − yki ‖ + ‖rki ‖ + ‖ski ‖

)

+ ‖∇ih(Y k
i + Sk

i ) −∇ih(Y k+1)‖,

where we use the error estimations from (HE)

(36) ‖rki ‖ + ‖ski ‖ ≤ σ‖yk+1
i − yki ‖ + µk,

and the
√
pL-Lipschitz continuity of ∇ih:

‖∇ih(Y k
i + Sk

i ) −∇ih(Y k
i )‖ ≤ √

pL‖Y k
i − Y k+1 + Sk

i ‖(37)

≤ √
pL‖Y k+1 − Y k‖ +

√
pLσ‖yk+1

i − yki ‖.
Combining (35), (36) and (37) leads to

(38) ‖wk+1
i ‖ ≤ (βk(1 + σ) +

√
pLσ)‖yk+1

i − yki ‖ +
√
pL‖Y k+1 − Y k‖ + βkµk.

Define now W k+1 := (wk+1
1 , ..., wk+1

p ) ∈ ∂f(Y k+1) (recall the definition of wk+1
i ). Then

through the sum over i = 1..p of inequality (38) we have (using
√
p ≤ p ≤ p2)

‖W k+1‖ ≤
p
∑

i=1

‖wk+1
i ‖ ≤ pβkµk + p2(βk + L)(1 + σ)‖Y k+1 − Y k‖.

Hence H2 is verified with bk+1 = 1
p2(1+σ)(βk+L)

and ǫk+1 = βkµk

p(1+σ)(βk+L) .

Now we just need to check that the hypotheses H3 are satisfied with our hypotheses

on αk, βk and µk. Clearly H3(i) holds since we’ve supposed that αk ≥ α > (σ
√
p

p
+1)L

ρ
.

Then H3(ii) asks that bk /∈ ℓ1, which is equivalent to 1
βk+L

/∈ ℓ1 in our context. This

holds since we’ve supposed that 1
βk

/∈ ℓ1. Hypothese H3(iii) is satisfied because βk

αk+1

is supposed to be bounded. Finally, H3(iv) asks the summability of βkµk

βk+L
which is

bounded by µk ∈ ℓ1. �

Lemma 5. Suppose that the sequence (Y k) obtained through the AFB algorithm with
errors is precompact. Then the following holds:

(1) for all i = 1..p, (ski ) and (rki ) lie in ℓ2. In particular they converge to zero.
(2) If either βk ≤ β̄ or f is continuous on its domain, then (Yk) is f -precompact.

Proof. Let (Y nk) be a subsequence converging to some Y ∞ = (y∞1 , ..., y∞p ) ∈ H. By
Lemma 4 we have that

(39) a‖Y k+1 − Y k‖2 ≤ f(Y k) − f(Y k+1),
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hence (f(Y k)) is a decreasing sequence. But f is lower semi-continuous so the sub-
sequence (f(Y nk)) is bounded from below by f(Y ∞). The whole sequence being de-
creasing, we thus conclude that it is bounded from below by f(Y ∞). Then we can sum
inequality (39) to obtain that

(40) a
∑

k∈N
‖Y k+1 − Y k‖2 ≤ f(Y 0) − f(Y ∞) < +∞.

Since we have ‖rki ‖ ≤ σ
2 ‖yk+1

i −yki ‖+µk where µk ∈ ℓ1 and ‖yk+1
i −yki ‖ ≤ ‖Y k+1−Y k‖

which is in ℓ2, we deduce that ‖rki ‖ ∈ ℓ2, and the same holds for ‖ski ‖.
Assumption 1) being proved, let us show that (Y k) is f -precompact. In other words,

we know that Y kn converges to Y ∞ and we must check that f(Y kn) converges also to
f(Y ∞). Note that f(Y k) being decreasing we know that Y ∞ must lie in the domain
of f . Hence if f is continuous on its domain the conclusion is immediate. On the
other hand suppose that βk ≤ β̄. Since h is continuous, we only need to verify that

lim
n→+∞

gi(y
kn
i ) = gi(y

∞) for each i = 1..p. The lower-semicontinuity of gi already gives

us gi(y
∞
i ) ≤ lim inf

n→∞
gi(y

kn
i ), so we just have to prove lim sup

n→∞
gi(y

kn
i ) ≤ gi(y

∞
i ), following

the ideas of [17].
Let n ∈ N

∗ and k = kn − 1, using the definition of the proximal operator, we have

gi(y
k+1
i ) +

1

2
‖yk+1

i − yki + A−1
i,k∇ih(Y k

i + Sk
i ) − rki − ski ‖2

Ai,k

≤ gi(y
∞
i ) +

1

2
‖y∞i − yki + A−1

i,k∇ih(Y k
i + Sk

i ) − rki − ski ‖2
Ai,k

,

and the latter implies (using Cauchy-Schwartz and �Ai,k� ≤ β̄):

(41) gi(y
k+1
i ) ≤ gi(y

∗
i )+

β̄

2
‖y∞i −yki ‖2 +‖y∞i −yk+1

i ‖
[

‖∇ih(Y k
i + Sk

i )‖ + β̄‖rki + ski ‖
]

.

Now recall that yk+1
i = ykni tends to y∞i while rki + ski goes to zero (it is Assumption

1). Observe also that ∇ih(Y k
i + Sk

i ) is bounded since ∇ih is Lipschitz-continuous and
Y k
i + Sk

i converges to Y ∞. Moreover, ‖y∞i − yki ‖ goes also to zero since we have

‖y∞i − yki ‖ ≤ ‖y∞i − ykni ‖ + ‖yk+1
i − yki ‖,

with ykni → y∞i and ‖yk+1
i − yki ‖ ∈ ℓ2 (see (40)). Passing to the upper limit in (41)

leads finally to lim sup
n→+∞

gi(y
kn
i ) ≤ gi(y

∞
i ). �
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