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Abstract

The present paper aims at studying stochastic singularly perturbed control systems. We begin

by recalling the linear (primal and dual) formulations for classical control problems. In this frame-

work, we give necessary and sufficient support criteria for optimality of the measures intervening

in these formulations. Motivated by these remarks, in a first step, we provide linearized formula-

tions associated to the value function in the averaged dynamics setting. Second, these formulations

are used to infer criteria allowing to identify the optimal trajectory of the averaged stochastic system.

Key words: Optimal stochastic control, singularly perturbed Brownian diffusions, occupation mea-

sures, linear programming.
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1 Preliminaries

1.1 Introduction

The present paper aims at studying stochastic singularly perturbed control systems. We begin by recalling

the linear (primal and dual) formulations for classical control problems. In this framework, we give

necessary and sufficient support criteria for optimality of the measures intervening in these formulations.

Motivated by these remarks, in a first step, we provide linearized formulations associated to the value
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function in the averaged dynamics setting. Second, these formulations are used to infer criteria allowing

to identify the optimal trajectory of the averaged stochastic system.

Linear programming techniques have proved to be very useful in dealing with deterministic and stochastic

control problems. A wide literature is available on the subject both in the deterministic and in the

stochastic setting ([1, 2, 3, 4, 5, 6, 7, 8]).

One of the advantages of transforming a nonlinear control problem into a linear optimization problem

consists in the possibility of obtaining approximation results for the value function. Following the methods

presented in [8] and [9] for the deterministic controlled dynamics, one can approximate the occupational

measures by Dirac measures and construct an optimal feedback control. Moreover, when considering the

ergodic control problem, e.g. [10], the study of the behavior of the value function is simplified whenever

this value is expressed by a linear problem. Recently, linearized versions of the standard continuous

infinite horizon discounted control problems have been provided in [9, 11].

When dealing with controlled perturbed dynamics, if the associated system is fully nonlinear, then it

is very difficult to characterize the optimal trajectories using the classical methods. Indeed, these criteria

involve Pontryagin’s maximum principle which is difficult to study if one does not fully understand the

averaged dynamics. We recall [12, 13, 14] and references therein dealing with this kind of problems.

We propose an alternative to these classical methods. Our approach consists in embedding the

controlled trajectories into a space of probability measures satisfying a convenient constraint. This

condition is given in terms of the coefficient functions (and involves the infinitesimal generator of the

underlying process). The results allow to characterize the set of constraints as the closed convex hull of

occupational measures associated to controls. We first consider general control problems with Lipschitz

continuous running and final costs allowing to explain the approach. Using linearization techniques and

the dual formulations, we characterize the optimal occupational measures by describing their support set.

Next, we extend the linear formulations to singularly perturbed Brownian systems. Finally, we propose

support criteria for the optimality of measures in this setting. To our best knowledge, this work is the

first to propose a linearization approach to the existence of the optimal policy in the singularly perturbed

setting. We emphasize that it does not require to effectively compute the averaged dynamics.

This paper is organized as follows. We briefly state our problem in Subsection 1.2. In Section 2, we

present the main ingredients allowing to deal with classical control problems. We begin with recalling the

linear formulations in this setting taken form [15]; see also [16]. In Subsection 2.2, we provide a support

condition for the optimality of measures appearing in the primal linear formulation. We distinguish

between the regular and the general case. The final section aims at presenting singularly perturbed

control systems and the averaging method and some important results concerning the singularly perturbed
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systems and the value functions associated to this problem. We begin by recalling the basic assumptions

and ingredients in Subsection 3.1. These results are mainly taken from [7]; see also [17]. Combined with

the results in the classical framework, these ingredients allow one to infer linear formulations for the

control problems with stochastic singularly perturbed systems in Subsection 3.2. Finally, in Subsection

3.3, we give some criteria for optimality in the singularly perturbed setting.

1.2 Singularly Perturbed Control Systems

In the following we shortly present our problem. We consider the following dynamics:





dXx,y,u;ε
s = f (Xx,y,u;ε

s , Y x,y,u;εs , us) ds+ σ (X
x,y,u;ε
s , Y x,y,u;εs , us) dWs,

dY x,y,u;εs = 1
εg (X

x,y,u;ε
s , Y x,y,u;εs , us) ds+

1√
ε
β (Xx,y,u;ε

s , Y x,y,u;εs , us) dBs,

X
x,y,u;ε
0 = x, Y

x,y,u;ε
0 = y,

(1)

for all s ≥ 0, (x, y) ∈ RM×RN for some positive integersM,N > 0. Here, ε > 0 is a small real parameter.

The regularity assumptions on the coefficient functions and the exact definition of our solutions will be

made precise in the next paragraph. The evolutions of the two state variables X and Y of the system

are of different scale. We call x the ”slow” variable and y the ”fast” variable.

The control space U is assumed to be a compact metric space. The functions f : RM×RN×U → R
M ,

σ : RM ×RN ×U → R
M×d and g : RM ×RN ×U → R

N , β : RM ×RN ×U → R
N×d′ are assumed to be

uniformly continuous on their domains and Lipschitz-continuous in (x, y), uniformly with respect to the

control parameter u ∈ U. We consider the family of weak control processes :

π =
(
Ω,F , (Ft)t≥0 ,P, (W,B) , u

)

is called a weakly-admissible control and for every (x, y) ∈ RM+N ,
(
Xx,y,uπ ;ε, Y x,y,u

π ;ε, uπ
)
is called a

weakly-admissible pair iff

(i) The quadruple
(
Ω,F , (Ft)t≥0 ,P

)
is a filtered probability space satisfying the usual assumptions;

(ii) The process W is a d-dimensional standard Brownian motion defined on
(
Ω,F , (Ft)t≥0 ,P

)
; the

process B is a d′-dimensional standard Brownian motion defined on
(
Ω,F , (Ft)t≥0 ,P

)
and independent

of W ;

(iii) The process u is an (Ft)t≥0-progressively measurable process on (Ω,F ,P) taking its values in U ;

(iv) The process
(
Xx,y,uπ ;ε, Y x,y,u

π ;ε, uπ
)
is the unique solution of (1) on

(
Ω,F , (Ft)t≥0 ,P

)
satisfying

X
x,y,uπ ;ε
0 = x and Y x,y,u

π ;ε
0 = y.

The set of weakly-admissible controls is denoted by Uw.We denote by
(
X
x,y,u;ε
(·) , Y

x,y,u;ε
(·)

)
the solution
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of (1) starting from (x, y) ∈ RM × RN for some π ∈ Uw. We wish to point out that taking weak control

processes and their admissible pair amounts to considering weak solutions of our control system. To avoid

confusion, the elements of some fixed π ∈ Uw will be denoted by
(
Ωπ,Fπ, (Fπt )t≥0 ,Pπ, (Wπ, Bπ) , uπ

)
.

We let h : RM → R be a given bounded function and T > 0 a finite time horizon and define the

following payoff

Cx,y;ε(π) = E
π
[
h
(
X
x,y,uπ ;ε
T

)]
, (2)

for all (x, y) ∈ RM × RN and all π ∈ Uw. The value function associated with (1) and (2) is

Wε,h(x, y) = inf
π∈Uw

Cx,y;ε(π), (3)

for all (x, y) ∈ RM × RN .

The asymptotic behavior of the value function (3) when ε→ 0 is a very interesting problem. When-

ever the control system (1) has some stability property, it is possible to prove that the trajectories
(
X
x,y,uπ ;ε
(·) , Y

x,y,uπ ;ε
(·)

)
of (1) converge towards some solution of some system obtained by formally replac-

ing ε by 0 in (1). This is the so called Tikhonov approach which has been successfully developed in

[18, 19], for instance.

When (1) is not stable, another approach consists in investigating relationships between the system

(1) and a new differential equation





dXx,y,u
s = f̄ (Xx,y,u

s , µs) ds+ σ̄ (X
x,y,u
s , µs) dWs,

µs ∈ DXx,y,u
s

for (almost) all s ∈ [0, T ] .
(4)

obtained by an averaging method, that will be described later on. We emphasize that, in general, the

averaged system is set-valued. We refer the reader to [14, 20] for averaging methods. It is important to

notice that only the behavior of the "slow" variable Xx,y,uπ ;ε
(·) is concerned by this approach.

2 Classical Control Problems

In this section, we present an occupation measure approach to the optimality problem in the framework

of classical control problems. The basic idea is to embed the family of controlled trajectories in a larger

family of probability measures. This later set has the advantage of being explicitly given by a linear

constraint and is compact and convex. Using Lagrange duality techniques, we express the value function

as a sup inf problem. The set of points realizing the infimum in this formulation gives a good candidate

for the support of optimal measures. We distinguish between the regular case where the supremum is
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attained and the general case where (slightly) less general criteria can be obtained.

We let π =
(
Ω,F , (Ft)t≥0 ,P,W, u

)
be a weak control consisting of a complete probability space

(Ω,F , ,P) endowed with a filtration F =(Ft)t≥0 satisfying the usual assumptions, a standard p-dimensional

Brownian motion with respect to this filtration denoted W . We recall that an admissible control process

u is any F−progressively measurable process with values in the compact metric space U . We denote by

T > 0 a finite time horizon and let Uw denote the class of all admissible (weak) controls on [0, T ] . We

consider the stochastic control system





dXt,x,u
s = b (Xt,x,u

s , us) ds+ ρ (X
t,x,u
s , us) dWs, for all s ∈ [t, T ] ,

X
t,x,u
t = x ∈ Rm,

(5)

where t ∈ [0, T ] . Throughout the section, we use the following standard assumption on the coefficient

functions b : Rm × U −→ R
m and ρ : Rm × U −→ R

m×p :





(i) the functions b and ρ are bounded and uniformly continuous on Rm × U,

(ii) there exists a real constant c > 0 such that

|b (x, u)− b (y, u)|+ |ρ (x, u)− ρ (y, u)| ≤ c |x− y| ,

(6)

for all (x, y, u) ∈ R2m×U . Under the Assumption (6), for every (t, x) ∈ [0, T ]×Rm and every admissible

control π ∈ Uw, there exists a unique solution to (5) starting from (t, x) denoted by Xt,x,uπ

· .

2.1 Lipschitz Continuous Cost Functionals

In this subsection, we recall the basic tools that allow to identify the primal and dual linear formulations

associated to (finite horizon) stochastic control problems. The results can be found in [15] (see also [11]

for the infinite time horizon).

To any (t, x) ∈ [0, T [×Rm and any π ∈ Uw, we associate the (expectation of the) occupation measures

γ1t,T,x,π (A×B × C) =
1

T − tE
π

[∫ T

t

1A×B×C

(
s,Xt,x,uπ

s , uπs

)
ds

]
, γ2t,T,x,π (D) = E

π
[
1D

(
X
t,x,uπ

T

)]
,

for all Borel subsets A×B × C ×D ⊂ [t, T ]× Rm × U × Rm. Also, we can define

γ1T,T,x,π (· × C) = δ(T,x) (·)× Pπ (uπT ∈ C) , γ2T,T,x,π = δx,

5



where δ denotes the Dirac measure. We denote by

Γ(b,ρ) (t, T, x) =
{
γt,T,x,π =

(
γ1t,T,x,π, γ

2
t,T,x,π

)
∈ P ([t, T ]× Rm × U)× P (Rm) : π ∈ Uw

}
.

Here, P (X ) stands for the set of probability measures on the metric space X . Due to the Assumption

(6), there exists a positive constant C0 (depending on T > 0) such that, for every (t, x) ∈ [0, T ] × Rm

and every π ∈ Uw, one has

sup
s∈[t,T ]

E
π

[∣∣∣Xt,x,uπ

s

∣∣∣
4
]
≤ C0

(
|x|4 + 1

)
. (7)

Therefore,





∫
Rm
|y|4 γ1t,T,x,π ([t, T ] , dy, U) ≤ C0

(
|x|4 + 1

)
,

∫
Rm
|y|4 γ2t,T,x,π (dy) ≤ C0

(
|x|4 + 1

)
.

(8)

We have chosen to give these estimates for the fourth-order moment in order to fit the framework of [7]

(see Subsection 3.1 and Assumption (6)). We define

Θ(b,ρ) (t, T, x) =





γ ∈ P ([t, T ]× Rm × U)× P (Rm) : ∀φ ∈ C1,2b ([0, T ]× Rm) ,

∫
[t,T ]×Rm×U×Rm



(T − t)Lv(b,ρ)φ (s, y)

+φ (t, x)− φ (T, z)


 γ1 (ds, dy, dv) γ2 (dz) = 0.





, (9)

where

Lv(b,ρ)φ (s, y) =
1

2
Tr
[
(ρρ∗) (y, v)D2φ (s, y)

]
+ 〈b (y, v) , Dφ (s, y)〉+ ∂tφ (s, y) ,

for all (s, y) ∈ [0, T ]×Rm, v ∈ U and all φ ∈ C1,2 ([0, T ]× Rm) . The equality constraint appearing in the

definition of Θ(b,ρ) (t, T, x) is nothing else than Itô’s formula applied to φ
(
s,Xt,x,uπ

s

)
on [t, T ] for regular

test functions φ ∈ C1,2b ([0, T ]× Rm) . To see this, we can, alternatively, write it as

φ (t, x) + (T − t)
∫

[t,T ]×Rm×U
Lv(b,ρ)φ (s, y) γ1 (ds, dy, dv) =

∫

Rm

φ (T, z) γ2 (dz) .

As a consequence,

Γ(b,ρ) (t, T, x) ⊂ Θ(b,ρ) (t, T, x) .

Moreover, the set Θ(b,ρ) (t, T, x) is convex and a closed subset of P ([t, T ]× Rm × U)×P (Rm). For further

details, the reader is referred to [15].

Let us suppose that l1 : R × Rm × U −→ R, l2 : R
m −→ R are bounded and uniformly continuous
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such that

|l1 (t, x, u)− l1 (s, y, u)|+ |l2 (x)− l2 (y)| ≤ c (|x− y|+ |t− s|) , (10)

for all (s, t, x, y, u) ∈ R2 × R2m × U, and for some positive c > 0. We introduce the usual value function

Vl1,l2,(b,ρ)(t, x) = inf
π∈Uw

E
π

[∫ T

t

l1

(
s,Xt,x,uπ

s , uπs

)
ds+ l2

(
X
tx,uπ

T

)]
(11)

= inf
γ∈Γ(b,ρ)(t,T,x)


(T − t)

∫

[t,T ]×Rm×U

l1 (s, y, u) γ
1 (ds, dy, du) +

∫

Rm

l2 (y) γ
2 (dy)


 ,

and the primal linearized value function

Λl1,l2,(b,ρ) (t, x) = inf
γ∈Θ(b,ρ)(t,T,x)


(T − t)

∫

[t,T ]×Rm×U

l1 (s, y, u) γ
1 (ds, dy, du) +

∫

Rm

l2 (y) γ
2 (dy)


 , (12)

for all (t, x) ∈ [0, T ]× Rm. We also consider the dual value function

µl1,l2,(b,ρ) (t, x) = sup





µ ∈ R : ∃φ ∈ C1,2b ([0, T ]× Rm) s.t. ∀ (s, y, v, z) ∈ [t, T ]× Rm × U × Rm,

µ ≤ (T − t)
(
Lv(b,ρ)φ (s, y) + l1 (s, y, u)

)
+ l2 (z)− φ (T, z) + φ (t, x) ,




(13)

for all (t, x) ∈ [0, T ]×Rm. The reader may want to note that this formulation corresponds to the Lagrange

dual where the cost (T − t) l1 (s, y, u)+ l2 (z) is penalized by the constraint expression in the definition of

Θ(b,ρ) (t, T, x) (i.e. (T − t)Lv(b,ρ)φ (s, y) + φ (t, x)− φ (T, z)). A second interpretation of this term comes

from the theory of Hamilton-Jacobi-Bellman systems. The term Lv(b,ρ)φ (s, y)+ l1 (s, y, u) comes from the

Hamiltonian and l2 (z) − φ (T, z) is the final condition. Roughly speaking, one maximizes over viscosity

subsolutions φ the value φ (t, x) . This is coherent with Perron’s preconization of the unique viscosity

solution.

The following result is a slight generalization of [15, Theorem 4]. The proof is very similar and will

be omitted.

Theorem 2.1 . Under the Assumptions (6) and (10),

Vl1,l2,(b,ρ) = Λl1,l2,(b,ρ) = µl1,l2,(b,ρ).

Since this result holds true for arbitrary (regular) functions l1 and l2, a standard separation argument

yields:
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Corollary 2.1 The set of constraints Θ(b,ρ) (t, T, x) is the closed, convex hull of Γ(b,ρ) (t, T, x) :

Θ(b,ρ) (t, T, x) = coΓ(b,ρ) (t, T, x) . (14)

The closure is taken with respect to the usual (narrow) convergence of probability measures.

Remark 2.1 1. Due to the inequality (8), Prohorov’s theorem yields that coΓ (t, T, x) is relatively com-

pact and, thus, Θ(b,ρ) (t, T, x) is compact. Moreover,





∫
Rm
|y|4 γ1 ([t, T ] , dy, U) ≤ C0

(
|x|4 + 1

)
,

∫
Rm
|y|4 γ2 (dy) ≤ C0

(
|x|4 + 1

)
,

(15)

for all γ =
(
γ1, γ2

)
∈ Θ(b,ρ) (t, T, x) .

2. In the applications intended in this paper, we will solely consider final costs (i.e. we take l1 = 0).

However, the proofs rely on Θ being compact. This follows from the previous Corollary and its proof needs

both final and running cost functions. This is the reason why we have chosen to give this (rather heavy)

presentation.

We equally mention the following result due to N. V. Krylov [21, Theorem 2.1]. It is both an essential

ingredient in proving Theorem 2.1 and a tool for further developments.

Proposition 2.1 There exists a constant C > 0 such that, for every δ ∈ (0, 1] , there exists a function

V δ ∈ C1,2b
([
0, T + δ2

]
× Rm

)
such that

Lv(b,ρ)φ (s, y) + l1 (s, y, v) ≥ 0,

for all (s, y, v) ∈
[
0, T + δ2

]
× Rm × U and

(i)
∣∣V δ (t, ·)− l2 (·)

∣∣ ≤ Cδ, for t ∈
[
T, T + δ2

]
, and

(ii)
∣∣V δ (·)− Vl1,l2,(b,ρ) (·)

∣∣ ≤ Cδ, on [0, T ]× RN .

Remark 2.2 (i) The constant C only depends on the Lipschitz constants and the bounds of (b, ρ):

C ≤ c0 (1 + |b|∞ + Lip (b) + |ρ|∞ + Lip (ρ)) ,

where c0 is a constant (depending, eventually on T ).
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(ii) We assume that l1 = 0. Then, the functions V δ are obtained by the "shaking of coefficients"

method as Vδ ∗ ψδ, where Vδ = V0,l2,(bδ,ρδ) with

bδ (x, u, v) = b (x+ δv, u) , ρδ (x, u, v) = ρ (x+ δv, u) , u ∈ U , v ∈ Rm, |v| ≤ 1

and (ψδ)δ a sequence of standard mollifiers ψδ (y) =
1
δmψ

(
y
δ

)
, y ∈ Rm, δ > 0, where ψ ∈ C∞ (Rm) is a

positive function such that

Supp(ψ) ⊂ B (0, 1) and

∫

Rm

ψ(x)dx = 1.

2.2 Characterization of Optimal Measures

In this subsection we present necessary and sufficient conditions for characterizing optimal occupational

measures. We consider that l1 ≡ 0, T > 0 is fixed and we set

Θ(x) := Θ(b,ρ)(0, T, x), Vl2 (x) := V0,l2,(b,ρ) (0, x) , Λl2 (x) := Λ0,l2,(b,ρ) (0, x) , ηl2 (x) := η0,l2,(b,ρ) (0, x) ,

for simplicity. Recall that, with the above notations,

Vl2 (x) = Λl2 (x) = ηl2 (x) ,

for all initial data x ∈ Rm and

ηl2 (x) = sup





η ∈ R : ∃φ ∈ C1,2b (R+ × Rm) s.t. ∀ (s, y, v, z) ∈ [0, T ]× Rm × U × Rm,

η ≤ TLvφ (s, y) + l2 (z)− φ (T, z) + φ (0, x)




, (16)

for all x ∈ Rm. As before, this formulation corresponds to the Lagrange dual where the cost l2 (z) is

penalized by the constraint expression in the definition of Θ(x) (i.e. TLvφ (s, y)−φ (T, z)+φ (0, x)). Of

course, for a fixed test function φ, one is interested in maximal η satisfying the previous inequality. With

this in mind, we denote by

Dl2 (x) =





(η, φ) ∈ R× C1,2b (R+ × Rm) s.t.

η = inf
(s,y,v,z)∈[0,T ]×Rm×U×Rm

{TLvφ (s, y) + l2 (z)− φ (T, z) + φ (0, x)}




, (17)

for all x ∈ Rm. By our assumptions, the coefficient functions are bounded and, thus, the set Dl2 (x) is

well defined.
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The dual formulation yields

Vl2 (x) = sup{η, (η, φ) ∈ Dl2 (x)}. (18)

2.2.1 The Regular Case

We introduce the following.

Definition 2.1 Whenever x ∈ Rm, we say that (η̄, φ̄) ∈ Dl2 (x) is an optimal pair whenever we have

Vl2 (x) = η̄.

We denote by

Ωl2,(η̄,φ̄) (x) =




(s, y, v, z) ∈ [0, T ]× Rm × U × Rm, s.t.

η̄ = TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (0, x) .





(19)

We recall that the definition of Dl2 (x) implies that η̄ = inf
(s,y,v,z)∈[0,T ]×Rm×U×Rm

TLvφ̄ (s, y) + l2 (z)−

φ̄ (T, z) + φ̄ (0, x) . It turns out that the support of optimal measures only takes into account those

(s, y, v, z) which realize the infimum and this leads us to introducing Ωl2,(η̄,φ̄) (x). Of course, neither

the set of optimal pairs, nor Ωl2,(η̄,φ̄) are a priori non empty. It is the case if V0,l2 (·, ·) belongs to

C
1,2
b (R+ × Rm) and we consider the setting of the problem to be some invariant compact set K ⊂ Rm.

In this framework, one can guarantee that optimal pairs exists for every x ∈ K. Indeed, it suffices to

consider φ̄ = V0,l2 and get, using the fact that it is a (regular) subsolution of the associated HJB equation,

TLvφ̄ (s, y) ≥ 0, l2 (z) ≥ φ̄ (T, z) ,

for all (s, y, v, z) ∈ [0, T ]×K × U ×K. Hence,

Vl2 (x) ≤ TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (0, x) ,

for all (s, y, v, z) ∈ [0, T ]×K×U×K. The fact that Ωl2,(η̄,φ̄) (x) is nonempty follows from the compactness

of K.

Proposition 2.2 Let x ∈ R
m be fixed and assume that (η̄, φ̄) ∈ Dl2 (x) is an optimal pair. Then,

γ ∈ Θ(x) is optimal for Λl2 (x) if and only if Ωl2,(η̄,φ̄) (x) is nonempty and γ
(
Ωl2,(η̄,φ̄) (x)

)
= 1.

Proof. The proof will be postponed to the Appendix. �
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2.2.2 The General Framework

If the value function is not smooth, optimal pairs may not exist. However, if optimal pairs do not exist,

one finds some sequence (ηn, φn) ∈ Dl2 (x) such that (ηn)n is strictly increasing and converging to Vl2 (x) .

The functions φn can be chosen to be uniformly bounded (e.g. Theorem 2.1 in [21], see also Proposition

3 in [15]). We define the nonempty, closed sets

Ωnl2 (x) =




(s, y, v, z) ∈ [0, T ]× Rm × U × Rm, s.t.

Vl2 (x) +
√
Vl2 (x)− ηn ≥ TLvφn (s, y) + l2 (z)− φn (T, z) + φn (0, x) .





(20)

Following the regular case, one may be inclined to take ηn instead Vl2 (x) +
√
Vl2 (x)− ηn. Due to the

fact that ηn < Vl2 (x) , this gives little information (especially when limit is involved). The penalty
√
Vl2 (x)− ηn is decreasing and the choice of the square root is intended for technical reasons in Propo-

sition 2.3. We also define the limit sets

Ωinl2 (x) := lim infn→∞
Ωnl2 (x) = ∪

n≥1
∩
k≥n

Ωkl2 (x) , Ω
out
l2
(x) := lim sup

n→∞
Ωnl2 (x) = ∩

n≥1
∪
k≥n

Ωkl2 (x) ,

Ωout,cll2
(x) := ∩

n≥1
cl

(
∪
k≥n

Ωkl2 (x)

)
,

where cl is the usual Kuratowski closure operator.

Remark 2.3 If an optimal pair
(
Vl2 (x) , φ

)
exists, we pick φn = φ. In this case, ηn = Vl2 (x). The sets

Ωnl2 (x) coincide. Hence, Ω
out
l2
(x) = Ωinl2 (x) = Ωl2,(Vl2 (x),φ)

(x) as in the previous case.

We get the following characterization of the support of optimal measures.

Proposition 2.3 Let us consider x ∈ Rm.

(i) If γ ∈ Θ(x) is optimal, then

γ
(
Ωout,cll2

(x)
)
= γ

(
Ωoutl2 (x)

)
= 1,

(i.e. the support of γ is included in Ωoutl2
(x)). In particular, when the limit of the sets exists (i.e.

Ωinl2 (x) = Ω
out
l2
(x)), one gets

sup
n≥1

γ

(
∩
k≥n

Ωkl2 (x)

)
= 1.

(ii) Conversely, if γ ∈ Θ(x) is such that the supremum can be replaced with maximum (i.e. if there

exists some n0 such that γ

(
∩

k≥n0
Ωkl2 (x)

)
= 1) , then γ is optimal.

Proof. Again, the proof will be postponed to the Appendix. �
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3 The Averaging Method

Motivated by the optimality results obtained in the classical framework, we develop linearization argu-

ments for the control of singularly perturbed systems. We begin with some usual assumptions taken from

[7]. The basic idea is that, under reasonable conditions, the value function for the averaged system can

be seen as a limit of some standard value functions. This allows us to equally pass to the limit the dual

value functions and get linear formulations in this perturbed framework. Next, we proceed similar to the

standard case, by using the expression of the dual linear formulation. Since optimal pairs have no reason

to exist, we proceed as in the second case described for classical control problems. Moreover, since in

general, the dual formulation has not a sup inf form (but rather some sup lim
ε→0

inf form, where ε is the

scaling parameter), we need to propose a particular choice for the test functions. This is done by using

the shaking of coefficients idea of Krylov. The optimality results are closely connected to those already

described for classical control problems.

3.1 General Considerations

All the assumptions and ideas of this preliminary part can be found in [7]. Let us shortly explain the

behavior of the perturbed system (1) as ε→ 0. To this purpose, let us fix, for the time being, ε > 0 and

the weak control π =
(
Ω,F , (Ft)t≥0 ,P, (W,B) , u

)
. If one makes the change of variables τ = s

ε in the

system (1) and sets
(
X̃τ , Ỹτ , ũτ

)
= (Xετ , Yετ , uετ ), B

′
τ =

1√
ε
Bετ , W

′
τ =

1√
ε
Wετ for τ ∈ [0, Tε ], one gets





dX̃x,y,u
τ = εf

(
X̃x,y,u
τ , Ỹ x,y,uτ , ũτ

)
dτ +

√
εσ
(
X̃x,y,u
τ , Ỹ x,y,uτ , ũτ

)
dW ′

τ ,

dỸ x,y,uτ = g
(
X̃x,y,u
τ , Ỹ x,y,uτ , ũτ

)
dτ + β

(
X̃x,y,u
τ , Ỹ x,y,uτ , ũτ

)
dB′τ ,

(21)

When ε tends to 0, we are led to consider the following associated system:

dY x,y,uτ = g (x, Y x,y,uτ , uτ ) dτ + β (x, Y
x,y,u
τ , uτ ) dB

′
τ (22)

for τ ∈ [0,+∞), where x (resp. y) is a fixed RM (resp. RN )-valued random variable independent of B′.

We denote by yy,u;x(·) the unique solution of (22) corresponding to the control u and to the initial value y.

The framework will still be that of weak controls.

Assumption 1 Following the approach in [7]; see also [17], throughout the paper, unless stated otherwise,
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we will assume that

supε>0,t∈[0,T ],π∈Uw E
π

[∣∣∣Y x,y,u
π ;ε

t

∣∣∣
4
]
< c

(
|x|4 + |y|4 + 1

)
,

supt∈[0,T ],π∈Uw E
π

[∣∣∣yx,y,u
π

t

∣∣∣
4
]
< c

(
|x|4 + |y|4 + 1

)
,

(A1)

for all initial data (x, y) ∈ RM × RN .

For explicit conditions (e.g. asymptotic exponential stability for the fourth order moment) implying

the above inequalities, the reader is referred to [7, Page 172].

Whenever x ∈ RM , we let

Dx :=





µ ∈ P
(
R
N × U

)
:

∫
〈g (x, y, u) , Dφ (y)〉+ 1

2Tr
(
ββ∗ (x, y, u)D2φ (x)

)
µ (dydu) = 0.





It turns out that x  Dx is an upper semicontinous set-valued function with nonempty, closed, convex

values; see [7, Lemma 2.1].

The averaged system is given by





dX
x,u

s = f̄
(
X
x,µ

s , µs

)
ds+ σ̄

(
X
x,µ

s , µs

)
dWs,

µs ∈ DX
x,µ

s
for (almost) all s ∈ [0, T ] ,

(23)

where f̄ (x, µ) :=
∫
f (x, y, u)µ (dydu) , σ (x, µ) :=

∫
σ (x, y, u)µ (dydu) and the control processes are

P
(
R
N × U

)
-valued. For further considerations on the compactness issues on P

(
R
N × U

)
, the reader

is referred to [7, Section 2]. In particular, one can introduce a metric (denoted by d) on P
(
R
N × U

)

which is consistent with the weak convergence of probability measures. The set of P
(
R
N × U

)
-valued

weakly-admissible controls will be denoted by UwN .

Following [7, Assumption 2], we ask that

Assumption 2 There exists some ωc ∈ C (R+;R+) satisfying limS→∞ ωc (S) = 0 such that, whenever

x ∈ RM , y ∈ RN satisfy |x| ≤ c and µ ∈ Dx, there exists an admissible weak control π such that

E
π
[
d
(
µ, µ10,S,x,π

)]
≤ ωc (S) .

The measure µ10,S,x,π is similar to the occupation measures γ
1
0,S,x,π but it does not involve the expec-

tation i.e.

µ10,S,x,π (B × C) =
1

S

∫ S

0

1B×C

(
s, yy,u

π ;x
s , uπs

)
ds,

13



for all Borel subsets B×C ⊂ RN ×U . The previous assumption is implied by classical mixing conditions

in [7, Proposition 4.1], if one further assumes that the noise coefficient is control independent.

Additionally to the perturbed control problemsWε,h (given in Subsection 1.2), we consider the optimal

control problem

Wh(x) = inf
π∈UwN

E
π

[
h

(
X
x,µπ

T

)]
, (24)

for all initial data x ∈ RM .

We endow the space RM × P
(
R
N × U

)
with the metric d̃ given by

d̃ ((x, µ) , (x′, µ′)) = |x− x′|+ d (µ, µ′) ,

for all (x, µ) , (x′, µ′) ∈ RM ×P
(
R
N × U

)
.We introduce the set valued function with nonempty, convex,

compact values

R
M 3 x Qx :=

{(
b (x, µ) , µ

)
: µ ∈ Dx

}

and make the following (see [7, Assumption 3])

Assumption 3 The set valued function Q is Lipschitz continuous on RM (i.e. there exists c0 ∈ R such

that

d̃Hausdorff (Qx, Qx′) ≤ c0 |x− x′| , for all x, x′ ∈ RM .

Here, d̃Hausdorff denotes the Hausdorff distance constructed from d̃).

Remark 3.1 Both the Assumption 2 and Assumption 3 hold true if the system (22) satisfies an ex-

ponential ergodicity condition, uniformly with respect to the control process, using [7, Assumption 4;

Proposition 5.2]. This condition can be obtained if dissipativity is assumed for the stochastic system (22).

Alternatively, it is possible to adapt the arguments in [22] to deal with nonexpansive (yet nondissipative)

systems. However, this generalization is not within the scopus of the present paper.

Under the above conditions, using [7, Theorem 3.3 and Theorem 4.2] and [17, Theorem 5.1]), every

partial limit of solutions
(
X
x,y,uπε ;ε
(·)

)

ε>0
satisfies (23) and, conversely, for every solution X

x,uπ

of (23),

one finds a suitable sequence
(
X
x,y,uπε ;ε
(·)

)

ε>0
converging to X

x,uπ

. Due to Assumption 2, the distance is

given uniformly with respect to x within a compact set. To simplify our presentation, let us assume that

Assumption 4 There exists some compact set K ⊂ RM such that K × RN is invariant with respect to

(5).
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For explicit criteria of invariance, the reader is referred to [23]; also see [24]. We note that these

criteria only involve the coefficients f and σ.

If the cost functional h is bounded and uniformly continuous, the convergence of the value functions is

a direct consequence of the convergence of trajectories. More precisely, we have Wε,h →Wh with respect

with the uniform convergence :

There exists ω ∈ C (R+;R+) satisfying lim
ε→0

ω (ε) = 0 such that

|Wε,h (x, y)−Wh (x)| ≤ ω (ε) , (25)

for all x ∈ K and all y ∈ RN ; see [7, Corollaries 3.4 and 4.3].

Remark 3.2 The estimates in [7] show that ω depends on the bounds of the coefficient and cost functions

and their continuity moduli, but not on the functions themselves. Thus, if δ > 0 and Wε,h,δ is the

value function associated with the "shaked" problem (i.e. in which ϕ ∈ {f, σ, g, β} are replaced with

ϕδ (x, y, u, v) = ϕ (x+ δv, y + δv′, u) , (v, v′) ∈ RM × RN , |(v, v′)| ≤ 1) under analogous assumptions, the

inequality (25) holds true for some Wh,δ constructed as before replacing Wh. In particular,

|Wε,h,δ (x, y)−Wε,h,δ (x, y
′)| ≤ 2ω (ε) ,

for all x ∈ K and all y, y′ ∈ RN . Now, let us consider (ψδ)δ to be a sequence of standard mollifiers

ψδ (x, y) =
1

δM+N ψ
(
x
δ ,

y
δ

)
, (x, y) ∈ RM+N , δ > 0, where ψ ∈ C∞

(
R
M+N

)
is a positive function such

that

Supp(ψ) ⊂ B (0, 1) and

∫

RM+N

ψ(x)dx = 1.

Then, using the Remark 2.2 (i) and (25), the convoluted function W δ
ε,h :=Wε,h,δ ∗ ψδ satisfy :





∣∣∣W δ
ε,h (x, y)−Wε,h (x, y)

∣∣∣ ≤ c0
(
1 + 1

ε

)
δ,

∣∣∣W δ
ε,h (x, y)−W δ

ε,h (x, y
′)
∣∣∣ ≤ 2c0

(
1 + 1

ε

)
δ + 2 |Wε,h (x, ·)−Wh (x)|

≤ 2c0
(
1 + 1

ε

)
δ + 2ω (ε)

(26)

where c0 is independent of δ and ε. Moreover, since DxW
δ
ε,h =

1
δWε,h,δ ∗Dxψδ, one gets

∣∣DxW
δ
ε,h (x, y)−DxW

δ
ε,h (x, y

′)
∣∣ ≤ 1

δ
2ω (ε) .

Similar assertions are valid for
∣∣∣D2

xW
δ
ε,h (x, y)−D2

xW
δ
ε,h (x, y

′)
∣∣∣ . The approach equally works for the time

dependent problem W δ
ε,h (t, x, y) ,Wh (t, x); see Remark 2.2. Also, using [21, Theorem 2.1, Estimate 2.3],
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one can prove that

∥∥W δ
ε,h

∥∥
∞ +

∥∥∂tW δ
ε,h

∥∥
∞ +

∥∥DW δ
ε,h

∥∥
∞ +

∥∥D2W δ
ε,h

∥∥
∞ ≤ c0

1

δ2
, (27)

where c0 depends only on T (but not on δ).

3.2 Linear Formulations for the Averaged System

As previously, let us consider that T > 0 is a fixed time horizon. We fix ε > 0 and (x0, y0) ∈ RM × RN .

To every π ∈ Uw, one can associate a couple of occupation measures γx0,y0,π;ε =
(
γ1x0,y0,π;ε, γ

2
x0,y0,π;ε

)
∈

P
(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)
defined by





γ1x0,y0,π;ε (A×B × C ×D) = 1
T E

π
[∫ T
0
1A×B×C×D

(
s,Xx0,y0,u

π ;ε
s , Y x0,y0,u

π ;ε
s , uπs

)
ds
]
,

γ2x0,y0,π;ε (E × F ) = Eπ
[
1E×F

(
X
x0,y0,u

π ;ε
T , Y

x0,y0,u
π ;ε

T

)]
,

for all Borel sets A ⊂ [0, T ], B ⊂ RM , C ⊂ RN and D ⊂ U . The family of occupation measures associated

to weak controls

Γ (x0, y0; ε) :=

{
(
γ1x0,y0,π;ε, γ

2
x0,y0,π;ε

)
, for all π ∈ Uw

}
(28)

can be embedded into a larger set

Θ(x0, y0; ε)

=





(
γ1, γ2

)
∈ P

(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)

∀φ ∈ C1,2b
(
R+ × RM × RN

)
,

∫

[0,T ]×RM×RN×U×RM×RN




φ (0, x0, y0) + TLu;εφ (s, x, y)

−φ (T, z, w)


 γ1 (dsdxdydu) γ2 (dzdw) = 0.





,

(29)

where

Lu;εφ (s, x, y) = 1

2
Tr
[
(σσ∗) (x, y, u)D2

xφ (s, x, y)
]
+
1

2ε
Tr
[
(ββ∗) (x, y, u)D2

yφ (s, x, y)
]

+ 〈f (x, y, u) , Dxφ (s, x, y)〉+
1

ε
〈g (x, y, u) , Dyφ (s, x, y)〉+ ∂tφ (s, x, y) ,
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for all φ ∈ C1,2
(
R+ × RM × RN

)
and all s ≥ 0, (x, y) ∈ RM × RN , u ∈ U .

Remark 3.3 Using similar arguments as in the previous sections, the set Θ(x0, y0; ε) contains all occu-

pation measures issued from (x0, y0) at time t. Moreover, it is also convex and relatively compact with

respect to the weak convergence of probability measures (due to Prohorov’s Theorem).

Throughout the remaining of the paper, h is assumed to be bounded and Lipschitz-continuous. The

linearized value function is given by

Λε,h (x0, y0) = inf
γ=(γ1 ,γ2)∈Θ(x0,y0;ε)

∫

RM×RN

h (z) γ2 (dzdw) ,

and its dual by

ηε,h (x0, y0) = sup





η ∈ R : ∃φ ∈ C1,2b
(
R+ × RM × RN

)
s.t.

∀ (s, x, y, v, z, w) ∈ [0, T ]× RM × RN × U × RM × RN ,

η ≤ TLv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (0, x0, y0) .





, (30)

for all (x0, y0) ∈ RM × RN . This is a particular case of systems considered in Subsection 2.2. Hence, for

every ε > 0, one gets, applying Theorem 2.1,

Wε,h (x0, y0) = Λε,h (x0, y0) = ηε,h (x0, y0) ,

for all initial data (x0, y0) ∈ RM × RN .

At this point, we wish to give the intuition leading to the linear formulation for the averaged problem

: if one thinks of the y component as being some penalization term, as ε → 0, the corresponding part

in Lu;ε should be 0 on the support of admissible measures. For the remaining component, y would be

indifferent. We denote by

Θ(x0, y0) =





γ =
(
γ1, γ2

)
∈ P

(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)
:

∃γε ∈ Θ(x0, y0; ε) , γε ⇀ γ along some subsequence εn →
n→∞

0




,

for all (x0, y0) ∈ RM×RN .Whenever γε =
(
γ1ε , γ

2
ε

)
∈ Θ(x0, y0; ε) for all ε > 0, one can find a subsequence

(still indexed by ε > 0, for notation purposes) and a probability measure γ such that γε ⇀ γ. This is

done using (A1) and Prohorov’s theorem. Hence, the set Θ(x0, y0) is nonempty. One can also prove that

it is closed; see Corollary 14.
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Proposition 3.1 The following inclusion holds true

Θ(x0, y0) ⊂




(
γ1, γ2

)
∈ P

(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)
s.t.

∀ψ ∈ C1,2b
(
R+ × RM

)
and ∀φ ∈ C1,2b

(
R+ × RM × RN

)
,

∫

[0,T ]×RM×RN×U×RM×RN




ψ (0, x0) + TLu,fψ (s, x, y)

−ψ (T, z)


 γ1 (dsdxdydu) γ2 (dzdw) = 0 and

∫

[0,T ]×RM×RN×U×RM×RN
Lu,gφ (s, x, y) γ1 (dsdxdydu) γ2 (dzdw) = 0





,

where

Lu,fψ (s, x, y) = 1

2
Tr
[
(σσ∗) (x, y, u)D2ψ (s, x)

]
+ 〈f (x, y, u) , Dxψ (s, x)〉+ ∂tψ (s, x)

and

Lu,gφ (s, x, y) = 1

2
Tr
[
(ββ∗) (x, y, u)D2φ (s, x, y)

]
+ 〈g (x, y, u) , Dyφ (s, x, y)〉 ,

for all φ ∈ C1,2
(
R+ × RM × RN

)
, ψ ∈ C1,2

(
R+ × RM

)
and all s ≥ 0, (x, y) ∈ RM × RN , u ∈ U .

Proof. Let us fix γ ∈ Θ(x0, y0) and γε =
(
γ1ε , γ

2
ε

)
∈ Θ(x0, y0; ε) such that γε ⇀ γ. Whenever

ψ ∈ C1,2b
(
R+ × RM

)
, the definition of Θ(x0, y0; ε) yields

∫

[0,T ]×RM×RN×U×RM×RN

[
ψ (0, x0) + TLu,fψ (s, x, y)− ψ (T, z)

]
γ1ε (dsdxdydu) γ

2
ε (dzdw) = 0.

Moreover, if one considers any fixed (though arbitrary) φ ∈ C1,2b
(
R+ × RM × RN

)
, then

∫

[0,T ]×RM×RN×U×RM×RN

Lu,gφ (s, x, y) γ1ε (dsdxdydu) γ2ε (dzdw)

= −ε
∫

[0,T ]×RM×RN×U×RM×RN

[
φ (0, x0, y0) + TLu,fφ (s, x, y)− φ (T, z, w)

]
γ1ε (dsdxdydu) γ

2
ε (dzdw)

and the conclusion follows by letting ε → 0 and recalling that φ ∈ C
1,2
b

(
R+ × RM × RN

)
, resp. ψ ∈

C
1,2
b

(
R+ × RM

)
. �
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We define the following linearized problem

Λh (x0, y0) = inf
γ=(γ1,γ2)∈Θ(x0,y0)

∫

RM×RN

h (z) γ2 (dzdw) ,

and denote by

ηh (x0) = sup





η ∈ R : ∃α ∈ C (R+;R+) , lim
ε→0

α (ε) = 0 s.t. ∀ε > 0,

∃φ ∈ C1,2b
(
R+ × RM × RN

)
s.t.

sup
y,y′∈RN

‖φ (·, ·, y)− φ (·, ·, y′)‖∞ ≤ α (ε) and s.t.

∀ (s, x, y, v, z) ∈ [0, T ]× RM × RN × U × RM ,

η ≤ TLv;εφ (s, x, y) + h (z) + ‖−φ (T, z, ·)‖∞ + ‖φ (0, x0, ·)‖∞





, (31)

for all (x0, y0) ∈ RM × RN .

Remark 3.4 In the previous definition one can, equivalently, ask that ‖φ (·, ·, ·)− φ (·, ·, y0)‖∞ ≤ α (ε)

for some fixed y0 ∈ RM .

Consequently, we can formulate the main result of this section:

Theorem 3.1 We assume (A1) and (25) to hold true. Moreover, we assume the invariance condition

(4) to be satisfied. Then the following equalities hold true

Wh (x0) = Λh (x0, y0) = ηh (x0) ,

for all (x0, y0) ∈ K × RN .

Remark 3.5 As we have hinted in the previous subsection, whenever the Assumptions 1 - 3 hold true,

then (25) holds true. For further details, the reader is referred to [7]; see also [17].

Proof. Let us fix (x0, y0) ∈ K × RN . In a first step, we recall that there exists an optimal measure

γ̄(x0,y0;)ε =
(
γ̄1ε , γ̄

2
ε

)
∈ Θ(x0, y0; ε) such that

Λε,h (x0, y0) =

∫

RM×RN

h (z) γ̄2ε (dzdw) ,
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for all ε > 0. One can find a subsequence (still indexed by ε > 0, for notation purposes) and a probability

measure γ such that γε ⇀ γ using (A1) and Prohorov’s theorem. Consequently,

Λh (x0, y0) ≤
∫

RM×RN

h (z) γ2 (dzdw) = lim
ε→0

∫

RM×RN

h (z) γ̄2ε (dzdw)

= lim
ε→0

Λε;h (x0, y0) = lim
ε→0

Wε,h (x0, y0) =Wh (x0) . (32)

for all (x0, y0) ∈ RM × RM . The converse inequality is similar.

We continue by considering γ ∈ Θ(x0, y0) and η ∈ R such that

∃α ∈ C (R+;R+) with lim
ε→0

α (ε) = 0, s.t. ∀ε > 0, ∃φ ∈ C1,2b
(
R+ × RM × RN

)
s.t.

sup
y,y′∈RN

‖φ (·, ·, y)− φ (·, ·, y′)‖∞ ≤ α (ε) and ∀ (s, x, y, v, z) ∈ [0, T ]× RM × RN × U × RM ,

η ≤ TLv;εφ (s, x, y) + h (z)− inf
y′∈RN

φ (T, z, y′) + sup
y′∈RN

φ (0, x0, y
′)

,

Then,

η ≤ TLv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (0, x0, y0) + 2α (ε) , (33)

for all ∀ (s, x, y, v, z, w) ∈ [0, T ]×RM ×RN ×U ×RM ×RN . By the definition of Θ(x0, y0) , there exists

some sequence γε ∈ Θ(x0, y0; ε) converging to γ. By integrating with respect to γε the inequality (33),

we obtain that

η ≤
∫

RM×RN

h (z) γ2ε (dzdw) + 2α (ε) ,

and, consequently, recalling that γ ∈ Θ(x0, y0) , ε > 0 are arbitrary and lim
ε→0

α (ε) = 0, it follows that

ηh (x0) ≤ Λh (x0, y0) . (34)

Let ε > 0 be fixed. Using Proposition 2.1 (see Remark 3.2 for the specific details; in particular the

inequality (26)), there exists a family of functions W δ
ε,h ∈ C

1,2
b

([
0, T + δ2

]
× RM+N

)
such that, for every

(s, x, y, v, z, w) ∈ [t, T ]× RM × RN × U × RM × RN ,

Lv;εW δ
ε,h (s, x, y) ≥ 0 and

h (z)−W δ
ε,h (T, z, w) ≥ h (z)−Wε,h (T, z, w)− c0

(
1 + 1

ε

)
δ ≥ −c0

(
1 + 1

ε

)
δ.
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Hence,

W δ
ε,h (0, x0, y0)− c0

(
1 +

1

ε

)
δ ≤ Lv;εW δ

ε,h (s, x, y) + h (z)−W δ
ε,h (T, z, w) +W

δ
ε,h (0, x0, y0) (35)

≤ Lv;εW δ
ε,h (s, x, y) + h (z)− inf

w
W δ
ε,h (T, z, w) + sup

w
W δ
ε,h (0, x0, w)

Thus, W ε2

ε,h (0, x0, y0)− c0
(
1 + 1

ε

)
ε2 ≤ ηh (x0). The first inequality in (26) and (25) yield that

∣∣∣W ε2

ε,h (0, x0, y0)−Wh (x0)
∣∣∣ ≤

∣∣∣W ε2

ε,h (0, x0, y0)−Wε,h (x0)
∣∣∣+ |Wε,h (x0, y0)−Wh (x0)|

≤ c0

(
1 +

1

ε

)
ε2 + ω (ε) . (36)

Consequently, passing to the limit as ε→ 0, we get

Wh (x0) ≤ ηh (x0) . (37)

By combining the inequalities (34) and (37) and recalling we have already proven that Wh (x0) =

Λh (x0, y0), we complete the proof. �

Remark 3.6 If the estimates in (26) are independent of ε (e.g. by imposing a dissipativity condition on

(g, β)), then one can prove that Λh can be defined with respect to the (explicit) set appearing in Proposition

3.1.

A careful look at the proof, especially (35) and (36), tells us that

Wh (x0) = lim
n→∞

W
1
n2

1
n
,h
(0, x0, y0)

≤ lim inf
n→∞

inf
(s,x,y,v,z,w)∈[t,T ]×K×RN×U×K×RN




Lv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)

−W
1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)


 (38)

In particular, we deduce that Θ(x0, y0) can be replaced with

Θ̃ (x0, y0) =





γ =
(
γ1, γ2

)
∈ P

(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)
:

∃γn ∈ Θ
(
x0, y0;

1
n

)
, γn ⇀ γ along some subsequence




. (39)
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Moreover, if γn is an optimal measure for W 1
n
,h, one can find a subsequence converging to an optimal

measure in Θ(x0, y0) . Hence, one can also replace Θ(x0, y0) with

Θopt (x0, y0) =





γ =
(
γ1, γ2

)
∈ P

(
[0, T ]× RM × RN × U

)
× P

(
R
M × RN

)
:

∃γn ∈ Θ
(
x0, y0;

1
n

)
, γn is optimal for W 1

n
,h(

i.e.
∫

[0,T ]×RM×RN×U×RM×RN
h (z) γn (dsdxdydzdw) =W 1

n
,h (x0, y0)

)
,

γn ⇀ γ along some subsequence.





. (40)

3.3 Characterization of optimal trajectories for the averaged system

As already mentioned in the introduction, when the perturbed system is fully nonlinear it is very difficult

to characterize the optimal trajectories using the Pontryagin maximum principle because we do not know

exactly the form of the averaged dynamics. An alternative to this method is to look at the support of the

occupational measures contained in the set Θ(x0, y0) in order to obtain optimal trajectories from every

x0 ∈ K. Following the approach already introduced in Subsection 2.2, we denote by

Dε,h (x0, y0) =





(η, φ) ∈ R× C1,2b
(
R+ × RM × RN

)
s.t.

η = inf
(s,x,y,v,z,w)∈[t,T ]×RM×RN×U×RM×RN




TLv;εφ (s, x, y) + h (z)

−φ (T, z, w) + φ (0, x0, y0)








, (41)

for all (x0, y0) ∈ K × RN . We can write

Wε,h (x0, y0) = sup {η, (η, φ) ∈ Dε,h (x0, y0)} and

Wh (x0) = sup





lim sup
ε→0

ηε : (ηε, φε) ∈ Dε,h (x0, y0) ,

lim
ε→0

‖φε (·, ·, ·)− φε (·, ·, y0)‖∞ = 0




.

At this point, we pick

(
ηn,W

1
n2

1
n
,h

)
∈ D 1

n
,h (x0, y0) and recall that

∣∣∣W ε2

ε,h (·, ·, ·)−W ε2

ε,h (·, ·, y0)
∣∣∣
∞
≤ 2c0

(
1 +

1

ε

)
ε2 + 2ω (ε) ,
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and the second inequality in (26). Then Wh (x0) ≥ lim sup
n→∞

ηn. Combining this inequality with (38) yields

Wh (x0) = lim
n→∞

inf
(s,x,y,v,z,w)∈[t,T ]×RM×RN×U×RM×RN




Lv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)

−W
1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)


 .

Similar to the approach of Subsection 2.2, we introduce the following. Whenever (x0, y0) ∈ K × RN ,

we denote by

Ωsimple1
n
,h

(x0, y0) =





(s, x, y, v, z, w) ∈ [t, T ]× RM × RN × U × RM × RN s.t.

Wh (x0) +
√
|Wh (x0)− ηn|

≥ Lv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)−W

1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)





(42)

Ωdouble1
n
,h (x0, y0) =





(s, x, y, v, z, w) ∈ [t, T ]× RM × RN × U × RM × RN s.t.

W 1
n
,h (x0) +

√
W 1

n
,h (x0)− ηn

≥ Lv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)−W

1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)





(43)

and by

Ωinh (x0, y0) := ∪
n≥1

∩
k≥n

Ωdouble1
k
,h (x0, y0) ,Ω

out,cl
h (x0, y0) := ∩

n≥1
cl

(
∪
k≥n

Ωdouble1
k
,h (x0, y0)

)
.

In the simple superscript case we use the same kind of construction as in the classical framework,

while in the "double" case, we also approximate the target value Wh by W 1
n
,h (or, equivalently, by W 1

m
,h

and then take the diagonal n = m). We get the following criteria of optimality.

Proposition 3.2 Let (x0, y0) ∈ K × RN be fixed.

(i) If γn ∈ Θ
(
x0, y0;

1
n

)
is a (sub)sequence such that

lim
n→∞

n3γn

((
Ωsimple1

n
,h

(x0, y0)
)c)

= 0,

then any limit of γn is optimal.

(ii) Every γ ∈ Θopt (x0, y0) is optimal for Wh and

γ
(
Ωout,clh (x0, y0)

)
= 1 (44)

(i.e. the support of γ is included in Ωout,clh (x0, y0)). Moreover, if Ω
in
h (x0, y0) = Ω

out,cl
h (x0, y0) (i.e. the
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limit of Ω 1
n
,h (x0, y0) exists), then

sup
n≥1

γ

(
∩
k≥n

Ωdouble1
k
,h (x0, y0)

)
= 1.

Remark 3.7 (i) The sufficient condition (ii) relies on finding (near) optimal measures γn ∈ Θ
(
x0, y0;

1
n

)
.

(ii) The reader is invited to note that the condition (44) is the same as in the classical framework, see

Proposition 2.3.

Let us come back to the proof of Proposition 3.2.

Proof. (i) Let us fix Θ
(
x0, y0;

1
n

)
3 γn as in our assertion and converging (along some subsequence) to

some γ. The inequality (27) yields

Lv; 1nW
1
n2

1
n
,h
(s, x, y) ≤ c (1 + n)n2,

for some constant c independent of n. Then, recalling the definition of Ωsimple1
n
,h

(x0, y0) , we get

Wh (x0) ≤
∫

[0,T ]×RM×RN×U×RM×RN

h (z) γ (dsdxdydzdw)

= lim
n→∞

∫

[0,T ]×RM×RN×U×RM×RN

h (z) γn (dsdxdydzdw)

≤ lim
n→∞

∫

[0,T ]×RM×RN×U×RM×RN




TLv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)

−W
1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)


 γn (dsdxdydzdw)

≤ lim sup
n→∞

[
Wh (x0) +

√
|Wh (x0)− ηn|+

(
3 ‖h‖∞ + c (1 + n)n2

)
γn

((
Ωsimple1

n
,h

(x0, y0)
)c)]

=Wh (x0) .

It follows that γ is optimal.

(ii) If γ ∈ Θopt (x0, y0), then γ ∈ Θ̃ (x0, y0) is the limit of some (sub)sequence γn ∈ Θ
(
x0, y0;

1
n

)
of

optimal measures for W 1
n
,h (x0, y0), by using (40). It is obvious that

∫

[0,T ]×RM×RN×U×RM×RN

h (z) γ (dsdxdydzdw)

= lim
n→∞

∫

[0,T ]×RM×RN×U×RM×RN

h (z) γn (dsdxdydzdw) = lim
n→∞

W 1
n
,h (x0, y0) ,
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hence γ is optimal. Since γn ∈ Θ
(
x0, y0;

1
n

)
is optimal for W 1

n
,h (x0, y0), it follows that

W 1
n
,h (x0) =

∫

[0,T ]×RM×RN×U×RM×RN

h (z) γn (dsdxdydzdw)

=

∫

[0,T ]×RM×RN×U×RM×RN




TLv; 1nW
1
n2

1
n
,h
(s, x, y) + h (z)

−W
1
n2

1
n
,h
(T, z, w) +W

1
n2

1
n
,h
(0, x0, y0)


 γn (dsdxdydzdw)

≥ ηnγn

(
Ωdouble1

n
,h (x0, y0)

)
+
(
W 1

n
,h (x0) +

√
W 1

n
,h (x0)− ηn

)
γn

(
Ωdouble1

n
,h (x0, y0)

)
.

Then

γn

(
Ωdouble1

n
,h (x0, y0)

)
≥ 1

1 +
√
W 1

n
,h (x0)− ηn

,

for all n ≥ 1. Hence,

γn

(
cl

(
∪

k≥n0
Ωdouble1

k
,h (x0, y0)

))
≥ 1(

1 +
√
W 1

n
,h (x0)− ηn

) ,

for all n ≥ n0. Passing to the lim
n→∞

, one gets γ

(
cl

(
∪

k≥n0
Ωdouble1

k
,h

(x0, y0)

))
= 1, for all n0 ≥ 1 and the

proof is complete. �

Remark 3.8 (i) If a suitable monotonicity can be established for the approximating problemsW 1
n
,h (x0, y0),

then, one can envisage the use of the dual formulation in Theorem 3.1 to infer necessary conditions similar

to those in Proposition 2.3.

(ii) When the inclusion (3.1) is an equality (see Remark 3.6 (i)), one can employ convex duality

arguments to get another dual formulation for the limit value. One can, for instance, adapt the method

of [11, Theorem 1]. This dual formulation would be very similar to the classical case and the ingredients

of Proposition 2.3 apply. The main drawback in this approach is that, unlike the classical case, we have

no information on the structure of the test functions φn in the (almost-) optimal pairs.

4 Perspectives

We wish to emphasize that the method allowing to deduce optimality criteria in the study of singularly

perturbed control systems does not depend on particular properties of the Brownian setting. Instead, it

strongly relies on the ability to linearize the approximating problems. In particular, this can be applied

to larger classes of systems (e.g. Piecewise Deterministic Markov Processes presenting a mild path-

dependance; see [25, 26] for the linearization techniques). For this particular class, little is available in
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the literature. The applications include but are not limited at multi-scale stochastic gene networks ,

reliability and traffic on random networks.

This paper is a first step in the study of optimal policies for singularly perturbed differential dynamics

with random perturbations. This opens the way to compute strict optimal (or nearly-optimal) control

policies following the approach of [27] for classical control problems. Also, numerical methods allowing

to compute the optimal value function and, hence, the support set, are in progress. They follow the hints

of [8] and rely on the dual linear formulation for the approximating problems.

We also wish to point out that, in all its generality and without further assumptions, the question of

equivalent (necessary AND sufficient) criteria for optimality in the control of singularly perturbed control

systems remains an open problem.

5 Conclusions

In this paper we have studied the optimality issues for a class of singularly perturbed controlled stochastic

systems driven by a finite-dimensional Brownian motion. This is done via linear programming techniques

by embedding the controlled trajectories for the scaled system in a larger class of probability measures.

Using compactness techniques and passing to the limit we have achieved two goals. First, we have

proposed linearized formulations (primal and dual) for the limit system whose dynamics are difficult to

identify. Second, using these formulations, we have given a class of necessary and a class of sufficient

criteria allowing to identify the optimal measures for the limit system. These conditions concern the

support of the candidates to optimality belonging to the class of occupation measures.

The main advantage of the method is that it is independent of the knowledge of the limit differential

dynamics which are often very difficult to obtain. The drawback of the method is that it relies on

computing several approximating value functions or optimal measures for the approximating problems.

Although the computational price might be high, this method is, to our best knowledge, the first method

which does not rely on further information on the limit system (which might, itself be a high-cost issue).

Further numerical studies and application to different Markov-structured systems are in progress.
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6 Appendix

6.1 Proof of Proposition 2.2

Proof. We begin with assuming that γ ∈ Θ(x) is such that γ
(
Ωl2,(η̄,φ̄) (x)

)
= 1, i.e. the support of γ is

included in Ωl2,(η̄,φ̄) (x). Then, by definition, we have the following equality

η̄ = TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (t, x) ,

on Ωl2,(η̄,φ̄) (x). Consequently, recalling the definition of Θ(x) , one gets

Vl2 (x) =

∫

[0,T ]×Rm×U×Rm
η̄γ(dsdxdudz) =

∫

[0,T ]×Rm×U×Rm
l2 (z) γ(dsdxdudz),

i.e. γ ∈ Θ(x) is optimal. Conversely, let us consider some optimal γ ∈ Θ(x) . One writes

Vl2 (x) =
∫
[t,T ]×Rm×U×Rm l2 (z) γ(dsdxdudz) =

∫
[0,T ]×RN×U×RN

[
TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (t, x)

]
γ(dsdxdudz).

for all optimal pairs (η̄ = Vl2 (x) , φ̄) ∈ Dl2 (x). By the definition of Dl2 (x), it follows that

[
TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (t, x)

]
≥ Vl2 (x) .

Hence, in order for the previous equality to hold, one has

[
TLvφ̄ (s, y) + l2 (z)− φ̄ (T, z) + φ̄ (t, x)

]
= Vl2 (x) ,

γ-almost everywhere. Hence, the support of γ is included in Ωl2,(η̄,φ̄) (x) and the proof is now complete.

�

Remark 6.1 One can construct a set which is independent of the choice of optimal pairs (η̄, φ̄) ∈ Dl2 (x).

Indeed, in the case where the state space K is compact, the set C1,2b ([0, T ]×K) is compact. The family of

optimal test functions is denoted by Optl2 (x) and is totally bounded with respect to the usual topology of

C
1,2
b . For every n ≥ 1, we select a finite family

(
φ
n

j

)

1≤j≤kn
⊂ Optl2 (x) such that, for every φ̄ ∈ Optl2 (x)

d
(
φ̄, φ̄nj

)
≤ 1

n2
,
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for some 1 ≤ j ≤ kn. The distance is given in the sense of C1,2b ([0, T ]×K) functions. We define

Ωl2 (x) := ∩
n≥1,1≤j≤kn

Ωl2,(η̄,φ̄nj ) (x) .

Due to the previous proposition, whenever γ is optimal, γ (Ωl2 (x)) = 1. The converse also holds true. If

no invariant compact can be found for the system, a localization procedure can be developed starting from

Remark 2.1.

6.2 Proof of Proposition 2.3

Proof. We begin with assuming that γ ∈ Θ(x) is optimal (should it exist). Then

Vl2 (x) =
∫
[t,T ]×Rm×U×Rm l2 (z) γ(dsdxdudz) =

∫
[0,T ]×RN×U×RN [TLvφk (s, y) + l2 (z)− φk (T, z) + φk (0, x)] γ(dsdxdudz),

for all k ≥ 1. The definition of Dl2 (x) yields

[TLvφk (s, y) + l2 (z)− φk (T, z) + φk (0, x)] ≥ ηk,

for all (s, y, v, z) ∈ [0, T ]× RN × U × RN and all k ≥ 1. Thus,

Vl2 (x) ≥ ηkγ
(
Ωkl2 (x)

)
+
(
Vl2 (x) +

√
Vl2 (x)− ηk

)
γ
((
Ωkl2 (x)

)c)
.

It follows that
(
1 +

√
Vl2 (x)− ηk

)
γ
(
Ωkl2 (x)

)
≥ 1.

Passing to the lim sup
k→∞

, one gets γ
(
Ωoutl2

(x)
)
= 1 and the proof is complete.

For the converse, let us assume that γ

(
∩

k≥n0
Ωkl2 (x)

)
= 1. Then γ

(
Ωkl2 (x)

)
= 1, for all k ≥ n0. It

follows that

Vl2 (x) ≤
∫

[0,T ]×Rm×U×Rm
l2 (z) γ(dsdxdudz)

=

∫

[0,T ]×Rm×U×Rm
(TLvφk (s, y) + l2 (z)− φk (T, z) + φk (0, x)) γ(dsdxdudz)

≤ Vl2 (x) +
√
Vl2 (x)− ηk,

for all k ≥ n0. Passing to the limit as k →∞, one gets that
∫
[0,T ]×Rm×U×Rm l2 (z) γ(dsdxdudz) = Vl2 (x),
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i.e. γ ∈ Θ(x) is optimal. �

Remark 6.2 If an optimal pair exists for our control problem then, due to the Remark 2.3, a measure

γ ∈ Θ(x) is optimal if and only if γ
(
Ω
in/out
l2

(x)
)
= 1.
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