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Numerical Analysis

Which spline spaces for design?

Marie-Laurence Mazure a,
aLaboratoire Jean Kuntzmann

Université Joseph Fourier, BP 53, 38041 Grenoble cedex 9, France

Abstract

We recently determined the largest class of spaces of sufficient regularity which are suitable for design. We are
now interested in connecting different such spaces to obtain the largest class of splines usable for design. To cite
this article: M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ???? (200?).

Résumé

Quelles splines utiliser pour le design ? Nous avons récemment déterminé la plus grande classe d’espaces
(de fonctions suffisamment régulières) bons pour le design. Comment connecter de tels espaces pour produire de
“bons” espaces de splines ? Pour citer cet article : M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ? ? ? ? (200 ?).

1. Introduction

To justify the framework presented in Section 3, we draw the reader’s attention on two points. First,
a “good” spline space is expected to permit the development of all classical design algorithms, among
which any knot insertion algorithm. This is the reason why we naturally have to require the section-
spaces themselves to be “good for design”. This explains why Section 2 is devoted to a brief presentation
of the major results concerning Quasi Extended Chebyshev spaces, see [8] and [9]. Second, the presence of
connection matrices in our spline spaces is justified by the fact that requiring that left and right derivatives
coincide at a given knot up to some order has no special meaning for parametric spline curves.

2. Quasi Extended Chebyshev spaces

Given a non-trivial real interval I and an integer n > 1, let E ⊂ Cn−1(I) be an (n+1)-dimensional space.
It is said to be of strict dimension (n+1) if it remains of dimension (n+1) by restriction to any non-trivial
subinterval of I. We say that E is a Quasi Extended Chebsyhev space (for short, QEC-space) on I when
any Hermite interpolation problem in (n+1) data which is not a Taylor interpolation problem has
a unique solution in E [8]. By comparison, E is an (n + 1)-dimensional EC-space on I when any Hermite
interpolation problem in (n + 1) data has a unique solution in E. This includes Taylor interpolation
problems and therefore being an (n + 1)-dimensional EC-space on I requires E to be contained in Cn(I).
The interest of QEC-spaces lies in the following result:
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Theorem 2.1 Given n > 2, let E ⊂ Cn−1(I) be of strict dimension (n + 1) and let it contain constants.
The following two properties are then equivalent:

(i) E is “good for design”, in the sense that E possesses blossoms;

(ii) the space DE := {DF := F ′ | F ∈ E} is an n-dimensional QEC-space on I.

The reader interested in the exact definition of blossoms can refer to [8]. Let us just recall that these
powerful tools are defined in a geometrical way using intersection of osculating flats. Our terminology
“good for design” is highly justified by the fact that, when (i) is satisfied, each function F ∈ E “blossoms”
into a function f : In → IR, called the blossom of F which satisfies the following properties:

(B)1 symmetry: f is symmetric on In;

(B)2 diagonal property: for all x ∈ I, f(x[n]) = F (x), x[n] standing for x repeated n times;

(B)3 pseudoaffinity property: given any y1, . . . , yn−1, a, b ∈ I, with a < b, there exists a strictly increasing
function β(y1, . . . , yn−1; a, b; .) : I → IR (independent of F ) such that:

f(y1, . . . , yn−1, x) =
[
1 − β(y1, . . . , yn−1; a, b;x)

]
f(y1, . . . , yn−1, a)

+ β(y1, . . . , yn−1; a, b;x)f(y1, . . . , yn−1, b), x ∈ I.
(1)

The latter three properties are crucial because they permit the development of all the classical geometric
design algorithms in E ( e.g., de Casteljau algorithms), and they guarantee shape preserving proprties.

Example. Let us recall a simple procedure to build QEC-spaces on I [8]. Take

– any sequence of weight functions on I, i.e., any sequence (w0, . . . , wn−1) such that, for 0 6 i 6 n − 1,
wi is positive and Cn−1−i on I;

– any two-dimensional space U ⊂ C0(I) supposed to be a Chebyshev space on I (for short, C-space on I:
any non-zero element in U vanishes at most once in I, not counting possible multiplicities) containing
constants, that is, any space spanned by 1I, U where U is strictly monotone on I.

As is classical one can define differential operators L0, . . . , Ln−1 on Cn−1(I) as follows:

L0F :=
F

w0
, LiF :=

1

wi

DLi−1F, 1 6 i 6 n − 1. (2)

Then the set of all functions F ∈ Cn−1(I) such that Ln−1F ∈ U is an (n + 1)-dimensional QEC-space
on I, denoted QEC(w0, . . . , wn−1; U). For instance, given any positive numbers p, q > n − 1, the linear
space E

p,q
n spanned by the functions 1, x, . . . , xn−2, (1 − x)p, xq is a QEC-space on [0, 1], see [2], [3], [5].

We recently established the following converse property, of which the proof strongly relies on Theorem
2.1 and on the pseudoaffinity property of blossoms.

Theorem 2.2 Let E be an (n + 1)-dimensional QEC-space on a closed bounded interval I. Then
there exists infinitely many ways to write E as E = QEC(w0, . . . , wn−1; U).

3. The result

Given I = [a, b], a < b, the ingredients to build our spline space S are :

– a sequence of interior knots: a < t1 < · · · < tq < b and an associated sequence of multiplicities mk,
with 1 6 mk 6 n for 1 6 k 6 q;

– a sequence of section spaces Ek, 0 6 k 6 q: for each k, Ek contains the constant function 1Ik and DEk

is an n-dimensional QEC-space on [tk, tk+1], where t0 := a, tq+1 := b;
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– a sequence of connection matrices Mk, 1 6 k 6 q: for each k, Mk is a lower triangular square matrix
of order (n − mk) with positive diagonal entries.

The spline space S is then defined as the space of all continuous functions S : I → R such that

(1) for k = 0, . . . , q, the restriction of S to [tk, tk+1] belongs to Ek;

(2) for k = 1, . . . , q, the following connection condition is fulfilled:
(
S′(t+k ), . . . , S(n−mk)(t+k )

)T
= Mk ·

(
S′(t−k ), . . . , S(n−mk)(t−k )

)T
. (3)

As a consequence of Theorems 2.1 and 2.2, for each k = 0, . . . , q one can choose a system (wk
1 , . . . , wk

n−1)
of weight functions on [tk, tk+1] and a two-dimensional C-space Uk on [tk, tk+1] containing the constant
function 1Ik such that Ek = QEC(1Ik, wk

1 , . . . , wk
n−1; Uk). For each such choice, when denoting by Lk

0 =
Id, Lk

1 , . . . , Lk
n−1 the differential operators on Cn−1([tk, tk+1]) associated with (1Ik, wk

1 , . . . , wk
n−1), the

connection conditions (3) can be replaced by
(
Lk

1(t+k ), . . . , Lk
n−mk

(t+k )
)T

= M̂k ·
(
Lk−1

1 (t−k ), . . . , Lk−1
n−mk

(t−k )
)T

, 1 6 k 6 q, (4)

where M̂k is in turn a lower triangular matrix of order (n − mk) with positive diagonal entries.

The result we announce is then the following:

Theorem 3.1 The following two statements are equivalent:

(i) the spline space S is good for design, in the sense that it possesses blossoms;

(ii) for each k = 0, . . . , q, there exists a system (wk
1 , . . . , wk

n−1) of weight functions on [tk, tk+1] and
a two-dimensional C-space Uk on [tk, tk+1] containing the constant function 1Ik such that Ek =

QEC(1Ik, wk
1 , . . . , wk

n−1; Uk) and such that each matrix M̂k in (4) is the identity matrix of order
(n − mk).

Again, for the sake of simplicity we omit the precise definition of blossoms for splines, simply mentioning
that, when (i) holds, each spline S ∈ S “blossoms” into a function s (the blossom of S), of which the
natural domain of definition is a restricted set An(K) of n-tuples said to be admissible w.r.t. the knot-
vector K := (ξ−n, . . . , ξm+n+1) := (t0

[n+1], t1
[m1], . . . , tq

[mq ], tq+1
[n+1]), with m :=

∑q

k=1 mk.

To conclude the section let us stress that Theorem 3.1 presents a twofold interest:

• first, it provides us with a very simple recipe to build all good spline spaces;

• for given section spaces, it enables us to answer the following question: a sequence
(
Mk

)q

k=1
of connec-

tion matrices being given, is the corresponding spline space suitable for design or not?

4. Sketch of the proof – Illustration

Theorem 3.1 extends to QEC-spaces a recent result obtained for EC-spaces [10]. Though guided by the
ideas developed in [10], replacing EC-spaces by QEC-spaces is not a trivial adaptation of existing results,
especially as we are working with different section spaces. Below we mention the two majors difficulties
encountered in the present situation:

• When (i) holds, blossoms are obviously symmetric on An(K) and they obviously satisfy the diagonal
property. A major difficulty consists in proving that they also satisfy the crucial pseudoaffinity property
(B)3, of course limited to An(K). The tricky proof of (B)3 in QEC-spaces [8] involved difficult generalised
convexity arguments. The spline framework will require that we go deeper into the arguments in question.
We would like to stress that pseudoaffinity is THE property justifying that a spline space is considered
good for design when it possesses blossoms. Indeed, it permits all the geometric design algorithms and
leads to the important intermediate result stated below (see [6] for the EC case):
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Theorem 4.1 If (i) holds, then S possesses a quasi B-spline basis (see below) which is its optimal nor-
malised totally positive basis. Conversely, if S and any spline space derived from S by knot insertion
possess B-spline bases, then (i) holds.

Normalised totally positive bases are crucial for design [4], and optimality should simply be understood
as “the best possible” [1]. For the links with blossoms, see [7]. The presence of quasi B-spline basis is
crucial too. Let us recall that it means a normalised sequence Nℓ ∈ S, −n 6 ℓ 6 m, ( i.e.,

∑m

ℓ=−n Nℓ = 1I),
each Nℓ being positive on the interior of its support [ξℓ, ξℓ+n+1], and satisfying some additional condition
of zeros at the endpoints of its support. The term “quasi” simply refers to the fact that we are dealing
with QEC-spaces, not with EC-spaces, and the count of zeros should take this into account.

• For simplicity we have assumed all interior mulitplicities to satisfy mk > 1. Still, it is essential to
understand what does mk = 0 would mean when dealing with QEC-space (see Example below).

Example. Let us give an elementary example. Given any real numbers pk, qk > n − 1, 0 6 k 6 q, here
we consider a spline space S with kth section space E

pk,qk
n up to the convenient affine change of variable.

1- To remain inside the framework described at the beginning of Section 3, it is sufficient to consider the
case where all interior knots are simple. Given any positive numbers ak, 1 6 k 6 q, the splines are then
supposed to be Cn−2 on I and to meet the additional requirement:

S(n−1)(t+k ) = akS(n−1)(t−k ), 1 6 k 6 q. (5)

Theorem 3.1 guarantees that the spline space S is then good for design. In particular it therefore possesses
a quasi B-spline basis which is its optimal normalised totally positive basis.

2- To illustrate multiplicities equal to 0, let us now assume that mk ∈ {0, 1} for all k = 1, . . . , q. Any
interior knot tk of multiplicity mk = 0 is then allocated two additional positive numbers bk, ck. Along
with (5) the splines in S are now supposed to satisfy:

S(n−1)(t−k+1) = −bkS(n−1)(t+k−1) + ckS(n−1)(t−k ) for any k ∈ {1, . . . , q} such that mk = 0. (6)

Again, this yields a spline space good for design.
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