
HAL Id: hal-00987492
https://hal.science/hal-00987492v1

Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Phase transitions in the domain structure of
ferromagnetic superconductors

I. M. Khaymovich, A. S. Mel’Nikov, Alexandre I. Buzdin

To cite this version:
I. M. Khaymovich, A. S. Mel’Nikov, Alexandre I. Buzdin. Phase transitions in the domain structure of
ferromagnetic superconductors. Physical Review B: Condensed Matter and Materials Physics (1998-
2015), 2014, 89 (9), pp.094524 (1-14). �10.1103/PhysRevB.89.094524�. �hal-00987492�

https://hal.science/hal-00987492v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Phase transitions in the domain structure of ferromagnetic superconductors.

I.M. Khaymovich,1, 2 A.S. Mel’nikov,2, 3 and A.I. Buzdin4

1 O.V. Lounasmaa Laboratory, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
2Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105, Russia

3Lobachevsky State University of Nizhni Novgorod,

23 Prospekt Gagarina, 603950, Nizhni Novgorod, Russia
4Université Bordeaux and Institut Universitaire de France, LOMA, UMR 5798, F-33400 Talence, France

(Dated: January 14, 2014)

Starting from the London - type model we study the domain structures in ferromagnetic super-
conductors taking account of the nucleation of vortices and antivortices coupled to the magnetic
texture. We predict that the coupling between domains and vortices results in the formation of two
energetically favorable domain configurations: (i) a Meissner - type vortex free configuration with
strong domain shrinking and (ii) a more rare domain configuration with a dense vortex – antivor-
tex lattice. The switching between these configurations is shown to result in the first order phase
transitions which could be observable in superconducting uranium based compounds.

PACS numbers: 74.25.Ha, 75.60.Ch, 74.25.Uv, 74.70.Tx

I. INTRODUCTION

The first two ferromagnetic superconductors (FS)
UGe2 and URhGe were discovered at the beginning of
this millennium [1,2] and later the third FS UCoGe
joined this list [3]. Their Curie temperature θ is sub-
stantially higher than the superconducting (SC) critical
temperature Tc, which evidences the triplet character of
the superconductivity. Indeed, due to the high exchange
field acting on the electron spins in the ferromagnet the
singlet superconductivity is incompatible with the ferro-
magnetism (see [4,5] for review). In the FS, as θ > Tc ,
the superconductivity appears in the ferromagnetic state
where usually a domain structure exists. The presence
of these magnetic domains has been revealed, for exam-
ple, in the unusual temperature dependence of the upper
critical field near Tc [6] and recently they were directly
observed by scanning SQUID microscopy in UCoGe [7].
The interaction between magnetic induction and super-
conductivity may strongly influence the properties of the
domain structure and can even cause an intrinsic domain
structure generation which was first addressed by Krey
[8]. In the limit Tc < θ the domain wall energy is too
large and this prevents the formation of the intrinsic do-
main structure [9]. However, due to the demagnetization
effect the domains structure is inherent to the majority
of the ferromagnetic films. An interesting question how
the superconductivity should modify the equilibrium size
of the domain structure was considered in [10–13] for the
case when the superconductor is in the Meissner state. In
these papers it has been shown that with decreasing tem-
perature the domain size in FS firstly shrinks essentially,
while for further decrease in the penetration depth λ the
monodomain state becomes more energetically favorable.
Besides the vortices penetrating the sample may change
the equilibrium domain size and in the limit λ → 0 one
can get that the domain size decreases with the increase
in the magnetization amplitude (see, e.g., Ref. 10). In
the present work we analyze the domain structure in the

vortex state and determine the conditions of the tran-
sition between Meissner and vortex phases for arbirtary
penetration depth values.

In recent years a lot of attention has been paid
to the magnetism and superconductivity interplay in
superconductor-ferromagnet heterostructures (see, e.g.,
[14–16] and references therein). When a thin oxide
layer separates superconductor and ferromagnet the only
mechanism of their interaction is electromagnetic sim-
ilar to the triplet FS. Nevertheless the physical conse-
quences of this interaction in heterostructures are very
different from FS where the domain size shrinking can
achieve several orders of magnitude. In particular, for
superconductor-ferromagnet bilayers the electromagnetic
interaction may lead to a maximum 15% contraction
of the ferromagnetic domains in equilibrium state as it
has been first predicted by Genkin, Tokman, and Skuzo-
vatkin in Ref. 17 (see also later analysis in Refs. [18,19]).
If one takes into account vortex pinning potentials the ex-
pansion of the domains at low temperatures takes place
and the application of ac magnetic field, routinely used
for equilibration of domains, may lead to their significant
contraction. (see, e.g., [20,21]).

Of course, the electromagnetic mechanism of domain
structure modification should be very sensitive to a possi-
ble nucleation of vortices and antivortices at the domain
boundaries. Recently isolated vortices and antivortices
generated by the magnetic domains were nicely observed
by the scanning force microscopy in the superconductor-
ferromagnet bilayers [22]. The coupling between mag-
netic domains and vortices may result in the interesting
dynamical effect: an oscillating magnetic field combin-
ing with vortex pinning leads to an important contrac-
tion of the domains mentioned above [20,21,23]. The
supercurrents induced by the domain structure are re-
sponsible for a certain pinning potential profile acting on
vortices and at the same time vortex distribution itself
plays the role of pinning for the domain boundaries. It
is naturally to expect that such mutual pinning phenom-
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ena should cause a variety of the hysteretic phenomena
in the system, which are, in fact, analogous to the so-
called “field-cooled” and “zero field cooled” phenomena
in usual superconductors. In other words we can expect
that for a given temperature there may exist two domain
structure configurations which are stable with respect to
rather small perturbations of the domain size and/or the
vortex concentration. One of these configurations cor-
responds to the Meissner state of the superconducting
subsystem, while the other one contains a rather dense
vortex lattice with the characteristic intervortex distance
small compared to the domain size. The changing of the
temperature modifies the minimal energy value for each
of these configurations and, as a consequence, we can
get the switching between configurations. This switch-
ing is accompanied by the abrupt changing of domain
size of the system with eventual formation (or annihi-
lation) of dense vortex-antivortex lattices in the adjust-
ing domains. Such switching effects should result in the
first order phase transitions and are the most prominent
in the ferromagnetic superconductors, where the domain
size shrinking in the Meissner state can be of order of
magnitude while penetration of a rather large number of
vortices into the sample naturally restores the domain
structure inherent to the nonsuperconducting state. The
goal of the present paper is to suggest a theoretical de-
scription of these first order phase transitions which we
believe to be observable in uranium based compounds.

In the present work we neglect the effect of intrinsic
pinning of both magnetic domain walls and vortices at
the inhomogeneities. In real FS compounds these pin-
ning effects may be, of course, rather strong. For exam-
ple, the recent magnetization measurements in UCoGe
[7] show an important vortex pinning effect, overcoming
the magnetic domain pinning. The interplay between
these two types of pinning makes the physics of the do-
main structure in FS very reach. We believe, however,
that the method of the applying a weak oscillating mag-
netic field, similar to the one used in [20,21,23], should
permit to attend the vortex states close to the equilib-
rium one which are studied in the present article, while
the domain pinning effects can be taken into account by
minor generalization of the method used in this paper.

The paper is organized as follows. In Section II we
introduce the basic equations which we use further to
evaluate the energy of the domain structure. In Section
III we analyze the vortex penetration threshold. In Sec-
tion IV we give the details of calculations of the vortex
density profiles. The Section V is the central part of the
paper where we compare the energies of different domain
configurations and describe different possible scenarios of
the first order phase transitions. In Section VI we sum-
marize our results.

II. BASIC EQUATIONS.

Throughout this section we introduce the basic equa-
tions and the assumptions used in our calculations.

Well-developed domain structure. As it was men-
tioned above we consider the emergence of superconduc-
tivity deeply in the ferromagnetic state of FS, therefore
we assume that the exchange energy which depends on
the absolute value M of magnetization M is the largest
energy in the system. This allows us to consider M equal
to the magnetization saturation value M0. We also as-
sume the magnetic anisotropy to be sufficiently strong to
keep the magnetization M oriented along the easy axis
direction. To our best knowledge these assumptions are
valid for most of FS.
In these assumptions we consider a film of the ferro-

magnetic superconductor (FS) of thickness 2Lz with the
easy axis of magnetization (axis z) chosen perpendicular
to the film. It is useful to put the origin of this axis in the
center of the FS film to have the points inside the film at
|z| < Lz. We put other two dimensions of the film (Lx

and Ly) to be sufficiently larger than the film thickness
Lz.
Magnetic structure of the film is chosen to be the set

of equal-sized domains of widths l (see Fig. 1(a)) with
the magnetization periodically varying along the x axis
perpendicular to the domain walls:

M(x) = z0M0s(x)θ(Lz − |z|) . (1)

Here periodic step function s(x) =
∑∞

m=0 4 sin(qx)/[ql] =
s(x+2l) with q = π(2m+1)/l is equal to +1 for 0 < x < l
and to −1 for l < x < 2l, while θ(z) is Heaviside theta-
function: θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0.
The equilibrium domain size (DS) l of the magnetic

structure in the normal state is defined by the inter-
play of domain wall energy (per unit area in lateral
direction) EDW (l) = M2

0 w̃Lz/l inversely proportional
to the DS l and the magnetostatic energy contribution
EH =

∫

H0
2dV/(8πS) of the stray magnetic fields H0

[24,25], which increases with the increase of the DS l.
Here w̃ is the effective domain wall thickness determined
by the energy balance between the exchange interaction
and the anisotropy cost24 and providing an upper limit
of the real domain wall width11 and S = LxLy is the area
of the film in the lateral direction.
The superconducting currents can essentially change

the magnetic structure of the system by the additional
contribution to the energy consisting of the kinetic energy
of superfluid currents j and the energy of the current-
induced magnetic fields H−H0 = HM + HV . As a
result the total free energy E = EDW +Evol contains the
domain-wall energy EDW (see above) and the volume
energy Evol:

13

Evol =
1

8πS

∫

ℜ3

H2dV +
2πλ2

c2S

∫

ℜ3

j2dV , (2)

with the London penetration depth λ, light velocity in
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FIG. 1: (a-c) The sketch of the magnetic domain structure in
the ferromagnetic superconductor of the thickness 2Lz with
the stripe-structure of the domains with the size l: (a) in the
Meissner state; (b) in the vortex state with one vortex (or an-
tivortex) in each domain with the distance x0 between each
of them and the nearest domain wall; (c) in the vortex state
with the dense vortex lattice; (d) The sketch of the applica-
bility of the model at the diagram of the domain size l and
the vortex number NV /lLy in each domain. The horizontal
red solid line corresponds to the Meissner state results, the
cross-hatched region near the horizontal axis stands for calcu-
lations of the Bean-Livingston barrier profile and the vortex
penetration threshold, and the green (shaded) region corre-
sponds to the validity of the dense vortex lattice results. The
contour plot of the total energy is drawn by blue curves.

vacuum c, and the film area S = LxLy in lateral dimen-
sions.
Focusing on the vortex lattice effects we separate the

volume energy into common parts Evol = EMH +EMV +
EV (cf. [13]):

EMH =
1

8πS

∫

[H0 +HM ]2 dV +
2πλ2

c2S

∫

j2MdV =

= − 1

2S

∫

M(H0 +HM )dV

is the volume energy in the Meissner state with vortex-
free superconducting currents jM and the Meissner field
HM .
The second contribution describes the interaction of

the Meissner currents jM and the vortex ones jV :

EMV =
1

4πS

∫

HMHV dV +
4πλ2

c2S

∫

jM jV dV =

=
Φ0

4πS

∫

ℜ2

〈HMz〉z (ρ)n(ρ)d2ρ , (3)

where Φ0 = π~c/e is the flux quantum, 〈HMz〉z =
∫∞

−∞(HM (r) · z0)dz is the z-component of the Meiss-
ner field averaged over the z-axis and the vortices with
winding numbers vi = ±1 are distributed as n(ρ) =
∑NV

i=1 viδ (ρ− ρi) at the in-plane positions ρi = (xi, yi).

The free energy of the vortex subsystem

EV · S =
1

8π

∫

H2
V dV +

2πλ2

c2

∫

j2V dV =

=
1

2c

∫

jV

[

4πλ2

c
jV +AV

]

dV = ε0V NV + Uvv , (4)

contains the self energy ε0V of each of NV vor-
tices/antivortices in the FS sample and the vortex in-
teraction energy

Uvv =
1

2

∑

i6=j

vivjV0 (|ρi − ρj|) , (5)

determined by the potential of the interaction V0(R) be-
tween two isolated vortices situated at the distance R
from each other.
London approximation. The further assumption used

in our model is that the superconducting coherence
length ξ(T ) is small compared with with DS and penetra-
tion depth ξ(T ) ≪ λ(T ), l(T ) for all temperature values
T < Tc to make the London-type equations valid:

rotrotAλ(r) = 4πrotM(r)− 1

λ2
θ(Lz − |z|)Aλ(r) , (6)

with the last term corresponding to the Meissner-induced
screening current as follows jM (r) = −θ(Lz − |z|) ·
Aλ(r)c/(4πλ

2). The latter equation is written for the
vector-potential Aλ(r) and the superconducting currents
jM in the Meissner state [H0 +HM + 4πM = rotAλ(r)
with the magnetization given by (1)] and reduces to the
normal state one H0 = rotA∞(r) for λ → ∞.
The solution of the London equation (6) for vortex-

independent part of vector-potential Aλ(r) takes the
standard form of expansion to the Fourier series

Aλ(r) = −y0
16πM0

l

∞
∑

m=0

aλ(q, z) cos(qx) ,

with

aλ(q, z) =

{

1
q2z

− qLz cosh(qzz)
qzCq sinh(qzLz)

, |z| < Lz

Lz

Cq
exp[−q(|z| − Lz)] , |z| > Lz

,

Cq = Lzq
2
z

[

1 +
q coth(qzLz)

qz

]

, (7)

q = π(2m + 1)/l, q2z = q2 + λ−2, and integer m. As a
result the vortex-independent part of the volume energy
can be written in the form

EMH = − 1

2S

∫

M(r) [∂xAλ(r)− 4πM(r)] dV =

=
EM

l2

∞
∑

n=0

[

1

q2
− 1

q2z
+

q

q2zCq

]

, (8)
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with the characteristic energy scale (per unit area) EM =
32πM2

0Lz. Obviously the expression for EMH coincides
with the volume energy of the Meissner state derived in
[13].
Analogously we have the following expression for the

averaged Meissner field 〈HMz〉z, which enters the expres-
sion (3) for energy EMV :

〈HMz〉z =

∫ ∞

−∞

∂x [Aλ(r)−A∞(r)] dz =

= −8πM0Lz

λ2

∞
∑

n=0

4 sin(qx)

ql
fq , (9)

with fq = [1− q/Cq] /q
2
z . Here the subscript ∞ in A∞

means the limit of a large London penetration depth
λ → ∞ corresponding to its normal value. We wrote
the sum (9) in the similar form to (1) to emphasize the
analogy between 〈HMz〉z and the periodic profile of the
magnetization M(x) = M0

∑∞
m=0 4 sin(qx)/[ql].

For calculating the vortex energy in the form of r.h.s.
of Eq. (4) we use linearity of London equations and
put the vortex-induced vector-potentialAV (r) [HV (r) =
rotAV(r)] in the form of the superposition of the screen-
ing current contributions near each of the vortices:

AV (r) =

NV
∑

i=1

viA
(0)
V (r − ρi) . (10)

with A
(0)
V (r) satisfying the London equation:

rotrotA
(0)
V (r) = − 1

λ2
θ(Lz − |z|)

(

A
(0)
V (r) − Φ0eϕ

2π|ρ|

)

≡

≡ 4π

c
j
(0)
V (r) . (11)

for an isolated Abrikosov vortex with positive vorticity
v0 = 1 situated at the origin ρ0 = 0. Here eϕ = [z0×ρ]/ρ
is the unit vector along azimuthal angle ϕ.
The latter equation has the well-known solution for

an arbitrary ratio λ/Lz (see, e.g., [26,27]) within the

London gauge and the cylindrical symmetry A
(0)
V =

eϕA
(0)
V (ρ, z). As a result the expression for the Fourier

component of the vortex-vortex interaction term VG =
(2πL2

z)
−1
∫

V0(R)e−iGRd2R in the superconducting film
with arbitrary thickness Lz takes the form

VG =
(Φ0/2πλ)

2 L−1
z

G2 + λ−2

[

1 +
1

λ2GCG

]

, (12)

with CG derived from (7) by substituting G instead of
q, and G2

z = λ−2 +G2. Strictly speaking this expression
works well for |G| . ξ−1, because the interaction energy
(5) doesn’t contain the self energies ε0V · NV of the vor-
tices. In the high G limit Eq. (12) should be modified in
such a way to have V0(|ρi − ρj | < ξ) = 0. The self en-
ergy of each vortex ε0V can be written using this Fourier

component VG in a such way

ε0V =
L2
z

4π

∫

ℜ2

VGd
2G ≈ L2

z

2

1/ξ
∫

0

VGGdG ≈

≈ 2Lz

(

Φ0

4πλ

)2{

ln κ̃+
1

2
+O

[

min

(

λ

Lz
,
L2
z

λ2

)]}

,

with the Landau Ginzburg parameter κ̃ = λ∗/ξ and the
effective penetration depth λ∗ = max(λ, λ2/Lz) of the
magnetic field. We have to cut off logarithmic divergence
in the integration for the vortex self energy in high G
limit of order of inverse vortex core size ξ−1.

Dense vortex lattice and the correlation between mag-

netization sign and the vorticity. Further analysis is
based on the assumption that the vortex lattice is dense
at the lengths of order of the domain size. This assump-
tion allows us to consider the continuous model of the
vortex distribution function n(ρ). The vortex-vortex in-
teraction energy Uvv in terms of the vortex density takes
the form14:

Uvv =
1

2

∫∫

V0(|ρ− ρ
′|)n(ρ)n(ρ′)d2ρd2ρ′ , (13)

where the condition ρ 6= ρ
′ included into Eq. (5) is taken

into account by the choice V0(|ρi−ρj| < ξ) = 0 discussed
above.
The number of the vortices NV can be easily written as

the integral of the vortex-antivortex distribution function
n(ρ)14

NV =

∫

ℜ2

n(ρ)s(ρ)d2ρ (14)

in the assumption that in the equilibrium vortex-
antivortex density corresponds to the situation when the
vortices located in the domains with positive magneti-
zation sign s(x) = Mz(x)/M0 and antivortices - with
negative one, i.e. vorticity is equal to the sign of the
magnetization vi = s(xi).
Using the Fourier transformation n(ρ) =

∑

G
nGeiGρ

and substituting s(x) =
∑∞

m=0 4 sin(qx)/[ql], (9), and
(12) to (3, 4) one can obtain the following expression for
the vortex-dependent part of the energy EnV = EV +
EMV :

EnV =
∑

G

[(

ε0V − 2Φ0M0Lz

λ2
fq

)

sGn−G+

+πL2
zVGnGn−G

]

, (15)

with sG = −2iδGy,0 (δGx,q − δGx,−q) /ql. Here we assume
that the sample has the large sizes in lateral dimensions
Lx, Ly ≫ λ, l, Lz. Note that the modification of expres-
sion (12) for VG at large |G| discussed above plays the
role only for nG with rather wide spectrum, i.e. in the
case when the vortex distribution function n(r) is written
in the form of delta-functions. However, even in this case
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one can also use the expression (12) for |G| ∼ ξ−1 if one
additionally subtract a certain constant term from VG

to get V0(|ρi − ρj| < ξ) = 0. Occasionally, the absolute
value of this additional term is equal to the single energy
term of NV vortices, therefore for the delta-functional
vortex density one can use (15) with VG from (12) if
one effectively threw the single energy term away from
vortex-dependent energy.
As we will see below the parameter

lv = (Φ0 ln κ̃/2π
2M0)

1/2 ∼ (Φ0/M0)
1/2 (16)

which is the typical intervortex distance for the magnetic
fields of order of magnetization amplitude H ∼ M0 rel-
ative to the other characteristic lengths determines the
vortex penetration threshold and play an important role
in the equilibrium DS.
The basic idea of the rest part of the paper is schemat-

ically sketched in Fig. 1(d). In rather general case of
the parameters the shown contour plot of the total en-
ergy minimized over the vortex distribution has two local
minima versus the domain size l and the number of the
vortices in each domain. One of these minima is in the
Meissner state, which corresponds to the l-axis, and an-
other one is somewhere at the finite vortex density. Using
the described model one can calculate the energy profile
in the Meissner state. Substituting the vortex distribu-
tion with the one vortex (or antovortex) in each domain
(see Fig. 1(b)) to the total energy one can find the vor-
tex penetration threshold with the fixed domain size and
check if the Meissner state realizes at least a local energy
minimum for the certain parameters. The total energy
calculations with the dense vortex lattice can give us the
most favorable vortex space distribution and the total
energy minimum which can be compared with the value
in the Meissner state.
As a result, in rather general situation we can consider

the phase transitions between Meissner and the vortex
states with decreasing temperature as follows. For the
temperatures larger than SC critical temperature the do-
main structure of the FS is equivalent to the normal fer-
romagnetic one. Lowering of the temperature leads to the
emergence of the superconductivity accompanied by the
spontaneous vortex penetration into the FS. The vortices
prevent the domain structure to shrink sufficiently (see
Fig. 1(c)). At some lower temperatures there is the criti-
cal temperature where the vortex state is not stable any-
more and the ground state corresponds to the Meissner
state with rather different domain size (see Fig. 1(a)). As
we will see below this phase transition of abrupt chang-
ing of the vortex number and the domain size is the first-
order phase transition.

III. VORTEX PENETRATION THRESHOLD.

BEAN-LIVINGSTON BARRIER PROFILE.

The most probable scenario of (anti)vortex penetra-
tion into the sample in the geometry given by Fig. 1(a)

is implemented by the creation of the vortex-antivortex
pairs at the domain wall. To calculate the profile of the
Bean-Livingston barrier and find the minimum value of
the magnetization which is enough to make vortex state
energetically favorable for certain domain size one should
substitute the vortex density into the vortex-dependent
energy EnV in the form of the periodic lattice of the
vortex-antivortex pairs with the distances from the near-
est domain wall equal to certain distance x0 (see Fig. 1(b)
for details):

n(ρ) = δξ(y)

∞
∑

m′=−∞

[

δξ(x− x+
m′)− δξ(x+ x−

m′)
]

=

=
∑

k

∑

|Gy|.ξ−1

nk sin (kx) e
iGyy ,

where x±
m′ = ±x0 + 2lm′ is the position of the m′th

(anti)vortex, δξ(x) is the physical delta-function with
the length scale ξ, nk = 2 sin (kx0) /(lLy) is the Fourier
components of the n(ρ) for momentum projections k =
π(m + 1)/l to the axis Ox perpendicular to the domain
walls and Gy = 2πmy/Ly to the axis Oy parallel to them,
with integer m and my. Here and further we assume that
the sample size along y-axis Ly is much larger than the
domain size Ly ≫ l.
After modification of VG by subtracting of the constant

term equal to the self energies of NV vortices [see discus-
sion after (15)] we obtain the profile of Bean-Livingston
energy barrier depending on the distance x0:

Eth
nV (x0) =

E0

λ2

2Nξ
∑

m=0

Φ0

16πM0l
sin2 [kx0] 〈u〉 (k)−

− E0

λ2

Nξ
∑

m=0

fq
2m+ 1

sin [qx0] , (17)

with the function fq = [1− q/Cq] /q
2
z , Cq given by (7),

the typical barrier amplitude E0 = 8Φ0M0Lz/(πlLy)
(per unit area in lateral dimension), momenta k = π(m+
1)/l, q = π(2m+ 1)/l, and the normalized vortex-vortex
interaction term (12) uq = G−2

z

[

1 + (λ2GCG)
−1
]

〈u〉 (k) =
∑

|Gy|<ξ−1

π/Ly

G2 + λ−2

[

1 +
1

λ2GCG

]

≈

≈
∫ ξ−1

0

dGy

G2 + λ−2

[

1 +
1

λ2GCG

]

,

averaged over y-axis projection Gy of the momentum
G = (k,Gy). The divergent terms should be cut off
at the momenta of order of the inverse vortex core size
Gy, k, q ∼ ξ−1, i.e. m ∼ Nξ = l/(2πξ). Here we used the
integration instead of summation over Gy, due to large
size Ly of the sample along y-axis.
While the vortex-dependent threshold energy (17) has

only non-negative values, the vortex state can’t be sta-
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FIG. 2: The energy profile Eth
nV (x0) of the vortex penetration

barrier normalized to E0 in logarithmic scale for decreasing
ratio l/λ from top to bottom. All the plots are shown for the
threshold magnetization values for the certain domain size l
and for w̃/Lz = 10−4.

ble for the certain domain size. Increasing magnetiza-
tion amplitude M0 one can effectively suppress the con-
tribution of the first term in (17) relatively to the second
one. At the certain magnetization value the energy pro-
file turns to negative value at some point and the vor-
tex state becomes more favorable than the Meissner one
for the fixed domain size. The typical Bean-Livingston
barrier profiles at the threshold magnetization values for
different ratios l/λ of the domain size l and London pene-
tration depth λ are shown at Fig. 2. The domain size l for
all the plots is chosen to be the one lS which minimizes
the Meissner energy of FS (see Sec. V for details).
Note that for whole range of parameters the most en-

ergetically favorable place for vortices is at the center of
each domain x0 = l/2. Considering the energy value at
this point:

Eth
nV (l/2) =

E0

λ2

Nξ
∑

m=0

[

Φ0 · 〈u〉 (q)
16πM0l

− (−1)mfq
2m+ 1

]

, (18)

and using the inequality q < Cq < ∞ (i.e. q−2
z < uq <

q−2 and π/2qz < 〈u〉 (q) < π/2q) one can estimate the

bounds of the sum
∑Nξ

m=0 〈u〉 (q) as follows

l

4
lnκm .

Nξ
∑

m=0

〈u〉 (q) . l

4
ln

(

l

ξ

)

,

with κm = min(l, λ∗)/ξ. The upper bound can be
reached for small domain sizes l ≪ λ∗, while the lower
one – in the opposite limit l ≫ λ∗. The second term
in (18) converges quickly enough to extend the sum to
infinity.
As a result the threshold value of the magnetization

takes the form

4πMth =
Φ0 lnκm

16

(

∞
∑

m=0

(−1)mfq
2m+ 1

)−1

, (19)

with fq = [1− q/Cq] /q
2
z , and Cq given by (7).

The limiting cases of the latter expression give the
standard results mentioned, e.g., in [13]:
(i) For rather high temperatures when screening effects

are not sufficient l ≪ λ∗(T ) Eq. (19) reduces to

Mth =
Φ0 ln(l/ξ)

2π2l2

[

1− l

π4Lz
F

(

Lz

l

)]−1

, (20)

with F (z) = L(12 , 4,
1
2 ) − L(2iz + 1

2 , 4,
1
2 ) and the Lerch

zeta function L (y, k, δ) =
∑∞

m=0 exp(2πiy)/(m+ δ)k. In
this case magnetization threshold both for thick films
Lz ≫ l [see Mth∗(l) in (21a)] and for thin ones Lz ≪ l
[see M∗

th(l) in (21b)] is larger than the lower critical field
Hc1 = Φ0 ln κ̃/(4πλ

2) in the bulk superconductor:

Mth∗(l) =
Φ0 ln(l/ξ)

2π2l2
, Lz ≫ l , (21a)

M∗
th(l) =

Φ0 ln(l/ξ)

64GlLz
, Lz ≪ l . (21b)

Here G ≈ 0.915966 is Catalan’s constant. These limiting
cases coincide with (39, 41) in [13].
(ii) In the opposite case of rather good screening of

magnetic field l ≫ λ∗: fq ≈ λ2 and one can easily prove
that the standard result restores

4πMλ
th = Hc1 (22)

One can easily check that in terms of the typical inter-
vortex distance lv ∼ (Φ0/M0)

1/2 for H ∼ M0 the vortex
penetration threshold corresponds to lv = lthv∗ ≃ l for
l ≪ Lz, λ

∗, lv = lth∗v ≃ (4/π)
√
2GlLz for Lz ≪ l ≪ λ∗

and lv = lthv,λ = 2λ
√
2 for l ≫ λ∗. Here we neglect the

difference between ln κ̃ and ln(l/ξ) for simplicity.
The results derived in this section allows us to check if

the Meissner state is stable to rather small fluctuations of
the vortex number for the whole range of parameters. We
can also calculate the amplitude of the energy barrier for
vortex penetration to make some estimation of the weak
oscillating magnetic field amplitude used in [20,21,23] for
equilibration of the ferromagnetic and vortex subsystems
in FS.

IV. EQUILIBRIUM VORTEX DENSITY

DISTRIBUTION.

The next two sections are devoted to the effects of the
dense vortex lattice. In this section we calculate the equi-
librium distribution neq(x) of the vortex density which
minimizes the vortex-dependent part (15) of energy and
consider the corresponding minimum value Evol of the
volume energy (2) for the general case of parameters. In
the limiting cases we will demonstrate the difference in
vortex distributions originated from the strong (weak)
intervortex interaction in the thin (thick) films.
Minimizing Eq. (15) for M0 > Mth(l) one can obtain

the equilibrium vortex distribution in the form neq(x) =
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∑∞
m=0 n

eq
q sin(qx), with q = π(2m+ 1)/l and

neq
q =

16M0

Φ0

fq − l2v/8

(2m+ 1)uq
, (23)

with lv given by (16).
The vortex-dependent part EnV of the energy, mini-

mized over the vortex density, takes the form

EnV = − EM

π2λ2

∞
∑

m=0

[

fq − l2v/8
]2

(2m+ 1)2uq
, (24)

with EM = 32πM2
0Lz.

Using the definitions of the functions

uq =
1

q2z

[

1 +
1

λ2qCq

]

, fq =
1

q2z

[

1− q

Cq

]

, (25)

with Cq given by (7) one can obtain the following expres-
sions for their ratios:

λ2

uq
= 1 + λ2q2 −Aq ,

fq
uq

= 1−Aq , (26a)

f2
q

λ2uq
= 1− q2

q2z
+

q3

q2zCq
−Aq , (26b)

with Aq = q2z/(λ
−2 + qCq).

The term λ2q2 in (26a) leads to divergence in both se-
ries for the vortex density and the energy (24). The sum
of this term in both cases is proportional to the number of
summands. In the continuous approximation of the vor-
tex density this divergence should be cut at the momenta
q = π(2m + 1)/l equal to inverse intervortex distances
qv ∼ n(x)1/2 where this approximation stops working.
On the other hand, the intervortex distance qv should be
small compared to the domain size for the dense vortex
lattice qvl ≫ 1. This restricts our consideration to the
values of magnetization far from the threshold value of
the vortex penetration M0 ≫ Mth(l), i.e. lv ≪ lthv . As
we will see below the cutting of Fourier series works very
well even till the threshold for nearly all cases, except the
case of rather thin samples Lz ≪ w̃ and large values of
λ ≫ l.
Nevertheless we can neglect the lv-dependent terms for

estimating the typical inverse intervortex distance qv and
approximate it with the square root of the average vortex
density:

q2v =
1

l

l
∫

0

n(x)dx ≈ 32M0

πΦ0

∞
∑

m=0

fq
(2m+ 1)2uq

.

In other words the maximal harmonics number N in this
approximation takes the form:

N ∼ lqv
2π

=
2pl

πlv

√

√

√

√2
∞
∑

m=0

1−Aq

(2m+ 1)2
, (27)

where we used the definition of lv given by (16) and p =
√

ln(κ̃)/2π3.
Performing the summation over m for divergent terms

we have the following expression for the equilibrium vor-
tex density neq and the vortex-dependent part of energy
EnV :

neq(x) =
16M0

Φ0

[

(1− α)

∞
∑

m=0

1−Aq

2m+ 1
sin(qx)−

−π2l2v
l2

βSN

(πx

l

)

]

. (28)

EnV =
EM

l2

∞
∑

m=0

[

1

q2z
− q

q2zCq
− (1− α)

2 1−Aq

q2

]

−

− EMN

(

l2v
8λl

)2

, (29)

with

SN (z) =
N
∑

m=0

(2m+ 1) sin [(2m+ 1)z] =

=
(2N + 3) sin [(2N + 1)z]− (2N + 1) sin [(2N + 3)z]

4 sin2 z
,

α = l2v/(8λ
2) = Mλ

th/M0, and β = ln κ̃
ln(l/ξ) .

Comparing Eqs. (8, 29) one can see that the first and
the second terms in brackets of (29) compensate the cor-
responding terms in EMH , therefore the volume energy
in the vortex state takes the form:

Evol = EM

[

α(2− α)

8
−N

(

l2v
8λl

)2

+

+

∞
∑

m=0

(1− α)2 Aq

q2l2

]

, (30)

with Aq = q2z/
[

λ−2 + qqzLz(qz + q coth(qzLz))
]

.
The expressions for the vortex density (28) and for the

volume energy per unit area (30) in the vortex state at
equilibrium are valid in the following assumptions, men-
tioned above: (i) the calculated vortex density is assumed
to be positive neq(x) > 0 in the range 0 < x < l for ap-
plicability of the expression for the (anti)vortex number
(14); (ii) the continuous approximation of n(x) restricts
our consideration of the vortex state to the range of pa-
rameters far from the vortex penetration threshold, i.e.
M0 ≫ Mth(l, λ, Lz) and/or N ≫ 1.
The latter condition results in the fact that our model

gives the best results describing the vortex penetration
in the case of strong shrinking of domains in the Meiss-
ner state13 (w̃ ≪ λ ≪ l ≪ Lz), due to the equilibrium
domain size l in the Meissner state lS is small compared
with the one lvS in the vortex state lS ≪ lvS and we can use
the expression (30) far from the threshold lv ≪ lthv ≃ lvS
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FIG. 3: The space profiles of the vortex density distribution
function for the different parameter values: (a) lv = 10−4Lz,
l = 0.01Lz , (b) lv = 0.01Lz , l = 10Lz ; the plots at panels
(a, b) from bottom to top correspond to the increasing ratio

λ/lv from the threshold value 2−3/2 to the tenth higher value;
(c) lv = 10−4Lz, the plots from bottom to top correspond to
the increasing ratio l/lv from the value 1.6 to the value 10;
(d) lv = 3Lz , the plots from bottom to top correspond to
the increasing ratio l/lv from the value ∼ 80, where neq(x)
becomes positive, to the tenth higher value. Note that plots
at panels (c, d) remain intact for any λ ≫ l.

(20) for l ≪ Lz. Note that the condition (i) can be weak-
ened due to the fact that using the expression (14) for
the number of (anti)vortices in the sample we can only
underestimate the volume energy in the vortex state by
Eq. (30).
In the rest of the section we will present the vortex

density distribution function neq(x) at equilibrium state.
Keeping for simplicity the main terms in (28) we will
focus on the thick Lz ≫ l and the thin Lz ≪ l FS films:
(i) For the thick samples where vortices interact as the

ones in the bulk SC we can neglect the terms with Aq in
(27) and (28) comparing with unity, due to qLz ≫ 1 and
therefore Aq < 1/(qLz) ≪ 1, and obtain

neq(x) ≈
4π

Φ0

[

M0 −Mλ
th − π

2
Mth∗SN

(πx

l

)]

, (31)

with the maximum value of SN(z) of order of Smax
N ∼

N2 at z ∼ 1/πN , Mth∗, Mλ
th are given by (21a) and

(22), respectively, and N ≈ pl/lv with p given after
Eq. (27). The typical vortex density profiles demon-
strated on Figs. 3(a, c) for different ratios l/λ and l/lv
are nearly constant far from the threshold M0 = Mth.
For rather low temperatures l ≫ λ(T ), when the do-

main size l is large compared with penetration depth λ
the vortices penetrate the sample with almost homoge-
neous density straight above the penetration threshold.
Their density changes only in amplitude with increasing
λ/lv ratio (see Fig. 3(a)). The deviations from this aver-
age vortex density originate from the last small term in

(31).

Unlike this in the vicinity of the superconducting phase
transition T . Tc, when l ≪ λ(T ), the latter term in (31)
crucially changes the space profile of the vortex density
(see Fig. 3(c)). Straight above the threshold M0 & Mλ

th
the only one (anti)vortex enters each domain, while far
from the threshold the above-mentioned constant vortex
density neq(x) = 4πM0/Φ0 remains.

(ii) In rather thin FS films the vortices appear as the
Pearl-like structures with long-range repulsive interac-
tion, which leads to the vortex concentration near the
domain walls. Indeed, using the fact that in this case the
sum in (28) converges at q . L−1

z one can approximate
the main term as (1 − Aq)/(qLz) ≈ 1/(1 + qLz) ≈ 1 for
Aq ≈ 1/(1 + qLz). As a result we have

neq(x) ≈
8πLz

Φ0l

[

M0 −Mλ
th

sin(πx/l)
− 8G

π
M∗

thSN

(πx

l

)

]

(32)

and N ≈ 2p
√

lLz ln(l/Lz)/(πlv). Here M∗
th, Mλ

th are
given by (21b) and (22), respectively. One can see that
the typical vortex density profiles shown at Figs. 3(b, d)
for different ratios l/λ and l/lv have the maxima near the
domain walls. For rather low temperatures the spatial
distribution of neq(x) is similar to the case, considered
by Erdin and coauthors in superconductor-ferromagnet
bilayer.14 Straight after the SC phase transition the vor-
tex density is inversely proportional to the sin-function in
each domain and increasing of the ratio λ/lv far from the
threshold value (λ/lv)th = 2−3/2 only scales the vortex
density.

Unfortunately, for rather large temperatures, l ≪
λ(T ), our model fails to get the vortex distribution func-
tion correctly for the parameters not far from the thresh-
old, due to the negative values of neq(x) in this case,
which contradicts to the assumption that the only vor-
tices are in the domain 0 < x < l. The failure of the
model seems to be originated from rather inhomogeneous
vortex density neq(x) with rare vortices in the middle of
the domains and from the rude approximation of neq(x)
by a finite amount of Fourier harmonics. In the Fig. 3(d)
one can see that the vortices for the parameters far from
the threshold are mainly situated near the domain walls
as in the low temperature case. As we will see in the
next section such a problem with calculation of the equi-
librium vortex distribution leads to the failure of consid-
eration of the Meissner/vortex phase transitions in this
limit.

Summarizing, we point out that in all the cases the
equilibrium vortex distribution far from the penetration
threshold is determined by the intervortex interaction de-
pending on the FS film thickness, while the transforma-
tion of neq(x) not far from the threshold is mainly gov-
erned by the stray field screening parameters.
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V. ENERGETICALLY FAVORABLE DOMAIN

CONFIGURATIONS. FIRST ORDER PHASE

TRANSITIONS.

In this section we analyze the transformation of the
ground state of the FS film shown at the energy diagram
in Fig. 1(d) with decreasing temperature T . Without loss
of generality we put the minimum value of the London
penetration depth λ(0) at zero temperature to be small
compared with the film thickness Lz, the domain size l,
and the effective domain wall width w̃.
During this analysis we assume that both the pin-

ning potentials for vortices and domain walls and the
Bean-Livingston barrier are negligibly small and consider
the system phase transitions in terms of the diagram in
Fig. 1(d). In other words we will calculate the minimum
values of the FS film total energy in the Meissner and
the vortex states using Eqs. (8) and (30), respectively,
and will compare which of the states realizes the global
minimum of energy. Using the vortex penetration thresh-
old value derived in Sec. III we can check if the Meissner
state is locally stable for the small fluctuations of the vor-
tex number. The local stability of the vortex state can
be verified within our model only for rather dense vortex
lattices Nv/(lLy) ≫ 1.
The equilibrium domain size lS [lvS ] in the Meiss-

ner [vortex] state of the sample is obtained by mini-
mization of the total energy E(l) = EDW (l) + EMH(l)
[E(l) = EDW (l) + EMH(l) + EnV (l)]. For the temper-
atures T > Tc larger than the superconducting critical
temperature Tc the FS film remains in the normal state
without emerging of the superfluid screening currents.
The volume energy in the this case can be obtained from
Eq. (8) in the limit λ → ∞ or from Eq. (30) in the limit
lv → 0 and λ → ∞. Both these limits lead to the same
equilibrium DS13,24,25 with the following asymptotics:

lN =

√

π2w̃Lz

14ζ(3)
≪ Lz (33)

for w̃ ≪ Lz and

lN = πLz exp[w̃/16Lz − 1/2] ≫ Lz (34)

for w̃ ≫ Lz.
Further we will use the results of the calculation of the

domain size minimizing the total energy in the Meissner
state, which has been previously done in the papers [11,
13]. To calculate the equilibrium DS in vortex state we
discuss below the limiting cases in details. Similarly to
Ref. 13 we consider normalized domain size L = l/Lz

and momenta Q = qLz, Qz = qzLz and obtain for the
limiting cases:
(i) For rather thick FS films Lz ≫ l where domain

size l is essentially smaller than the film thickness Lz we
obtain Aq ≈ 1/2bQ, with b = (1+Q/Qz)/2. In this case
all the terms in Eq. (30) converge at m ∼ 1 with integer
m defined by Q = π(2m + 1)/L, i. e. one can write

the following expression for volume energy in the vortex
state for l ≪ Lz

Evol ≈
EM

8

[

α(2 − α)− pl3v
8λ2Lz

1

L
+

+(1− α)
2 7ζ(3)L

2bπ3

]

, (35)

where we approximate the parameter b by its value at
m = 1: b ≈

[

1 + πλ/
√
π2λ2 + l2

]

/2 and N ≈ pl/lv with
expression for p given after Eq. (27).
(ii) In the opposite case of the thin samples Lz ≪ l

one can use the expression for the last term in the first
line of Eq. (29)

1−AQ

Q2
=

1

Q+ 1

(

1

Q
+

g[Qz]

1 +Q+ g[Qz]Q2

)

,

with g[x] = (x cothx − 1)/x2. The function g[Qz] is
proportional to λ/Lz for λ ≪ Lz and is close to 1/3 for
λ ≫ Lz.
For rather low temperatures, when λ(T ) ≪ Lz,

one can approximate the last term in the brackets as
λ/ [Lz(1 +Q)]. Therefore for λ ≪ Lz ≪ l the volume
part of energy can be written as follows

Evol ≈ EM

[

1

8
− (1− α)2

2πL
[ln(L/π) + γ]

]

−

− EM
λ

Lz

[

(1 − α)2

2πL
+

pα3/2

√
2π

√
lnL

L3/2

]

(36)

with N ≈ 2p
√

lLz ln(L)/(πlv) and Euler constant γ ≈
0.57722.
In the vicinity of the superconducting phase transition

T . Tc, when Lz ≪ λ(T ) (cf. the previous section),
one can expand function g over small parameter Lz/λ

as follows g[Qz] ≈ g[Q] + g′[Q]
L2

z

2λ2Q using the fact that

g′[x]/(2xg[x]) < 0.2 for any x, therefore

Aq ≈ 1− e−2Q

2Q
+

+
1

2λ2q2

[

e−Q +
1− e−4Q

4Q
− (1− e−2Q)2

2Q2

]

,

and one can write the following expression for volume
energy in the vortex state for Lz ≪ l, λ

Evol ≈ EM

[

1

8
− (1− α)

2 ln(L/π) + 3/2

2πL

]

+

+ EM
L2
z

λ2

[

(1 − α)2
c

πL
− pl3v

32πL3
z

√
lnL

L3/2

]

, (37)

with c = (17/4− 6 ln 2)/15 ≈ 0.006.
Comparing the minimum values ǫS and ǫv of the total

energy normalized to EM in the Meissner and the vortex
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states, respectively, using Eq. (8) and Eqs. (35, 36, 37)
one can calculate the domain size value which realize the
global minimum of the total energy (EDW + Evol)/EM

for different amplitudes of magnetization M0. As was
mentioned in the Sec. I in the typical situation for rather
large λ(T ) the vortex state is stable, while the Meissner
state is fully unstable for any DS value, and the DS at
equilibrium lvS is almost equal the normal DS lvS ≈ lN .
As it will be discussed below with decreasing temper-
ature at the certain critical London penetration depth
λS the Meissner state becomes locally stable, i.e. the
vortex penetration threshold Mth(λS , lS(λS)) at the DS
l = lS realizing the minimum of energy in the Meissner
state becomes higher than the magnetization M0. But
the vortex state still realizes the global minimum of the
energy. For λ < λm < λS smaller than another criti-
cal value λm [when ǫS(lS(λm)) = ǫV (l

v
S(λm))] the total

energy minimum of the FS film realizes in the Meissner
state E/EM = ǫS(lS) with the domain size l = lS . Note
that in general case λm 6= λS . As we will see below
the described scenario corresponds to the type I phase
transition between the vortex and the Meissner states in
the case λm < λS even for neglecting the effects of the
Bean-Livingston barrier.

Note that we can’t use Eqs. (35, 36, 37) as exact en-
ergy profiles near the vortex penetration threshold, due
to breakdown of the approximation (14). However, we
can underestimate the volume energy in the vortex state
by Eq. (30). As a result comparing the minimum val-
ues ǫS(lS) and ǫv(l

v
S) of free energies in the Meissner and

the vortex states in this case in addition to calculation of
the Meissner state instability threshold λS we can make
lower estimate of λm by ǫS(lS) < ǫv(l

v
S).

For clarity of presentation further we consider the
regimes of large (w̃ ≫ Lz) and small (w̃ ≪ Lz) values of
the effective domain wall width comparing with the FS
film thickness Lz separately. As we know from Eqs. (33,
34) these cases correspond to the large (lN ≫ Lz) and
small (lN ≪ Lz) values of the DS in the normal state,
respectively.

A. Thick films with Lz ≫ lN .

When the effective domain wall size w̃ is small com-
pared with the FS film width Lz the Meissner screening
currents can change the equilibrium DS l crucially for
certain penetration depth values. For weak magnetiza-
tion amplitudes M0 < Mth∗(lN ) with Mth∗(l) given by
(21a) the vortex penetration threshold can’t be reached
for any λ values. In other words for these magnetization
values the Meissner state realizes the equilibrium state
and scenario of domain shrinkage discussed in [13] takes
place.

Using the results of [13] one can write down the ex-
pression for the Meissner state free energy in the vicinity

of the superconducting phase transition λ ≫ l

ǫ =
EDW + EMH

EM
=

7ζ(3)

16π3

[

L+
L2
N

L

]

+
L2

96Λ2
, (38)

with Λ = λ/Lz.
The the minimum value of Eq. (38) for λ ≫ (lNLz)

1/2

ǫS(l
∗
S) ≈

7ζ(3)LN

8π3
+

L2
N

96Λ2
. (39)

realizes at the equilibrium DS

l∗S = lN

√

1− π3lNLz

21ζ(3)λ2
≃ lN , (40)

while in the opposite limit of w̃ ≪ λ ≪ (lNLz)
1/2 the

minimization of free energy (38) leads to

ǫS(lS∗) ≈
L2
S∗

32Λ2
+

7ζ(3)LS∗

8π3
≈ L2

S∗

32Λ2
(41)

reaching for rather small domain width

lS∗ =

(

21ζ(3)λ2l2N
π3Lz

)1/3

≪ lN , λ . (42)

Further decreasing of the penetration depth λ results
in the decreasing of domain size to the minimum value
lmin ≈ 0.59(w̃/π) at λmin ≈ k · λc with λc = w̃/(8π)
and k ∼ 1.3 − 1.6. In the range λc . λ < λmin the DS
increases with decreasing λ as follows:13

lS =
πλ2

L
1/2
z [πλ− 2I(λ)− w̃/8]

1/2
, (43)

with

I(λ) =

∞
∫

0

Lzqdq

q3z(qz + q coth qz)
, (44)

which takes the form I(λ) ≈ λ2(1 − ln 2)/Lz ≪ λ at
w̃ ≪ Lz. For λ . λc the FS film goes to the monodomain
state (l → Lx ≫ Lz in considering case)10,11,13.
If the magnetization value is larger than the critical one

M0 > Mth∗(lN ) vortices penetrate the sample and realize
the global minimum of the energy for λ > λm. Moreover
the vortex state is the only stable one for λ > λS . One
can minimize the total energy ǫ = (EDW +Evol)/EM in
the vortex state (when it is stable) with Evol given by
(35) and obtain the minimal value

ǫv(l
v
S) =

7ζ(3)LN

8π3

√

(1− α)2

b

(

1− π3lNLz

21ζ(3)λ2
rN

)

+

+
α(2 − α)

8
, (45)
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realized at the domain size

lvS = lN

√

b

(1− α)2

(

1− π3lNLz

21ζ(3)λ2
rN

)

, (46)

with α = l2v/8λ
2, b ≈

[

1 + πλ/
√

π2λ2 + l2N

]

/2, and

small parameter rN = 3pl3v/(4l
3
N) ≪ 1. Further we con-

sider some typical scenarios of domain size variation with
decreasing λ(T ) for different magnetization values.
(i) In the vicinity of the critical magnetization value

M0/Mth∗(lN ) − 1 ≪ 1 the vortex penetration thresh-
old is achieved in vicinity of the superconducting phase
transition, with the relatively small domain size shrink-
age λ ≫ (lNLz)

1/2, see (40). In this case the vortex
state realizes at least at λ > λS , when the Meissner state
becomes unstable, with

λS =

[

π3lNLz

21ζ(3)(1− l2v/l
2
N )

]1/2

(47)

derived from (21a) l∗S(λS) = lv.
Using Eqs. (40) and (46) one can easily obtain that

both DS in the vortex

lvS ≈ lN

√

1− π3lNLz

21ζ(3)λ2
rN ∼ lN

and the Meissner states l∗S ∼ lN are very close to its nor-
mal state value. Therefore in this case the vortex state
becomes globally stable near the penetration threshold
and we can’t compare the energy profiles ǫS(L) and ǫV (L)
in this case to say explicitly if the phase transition be-
tween the vortex and the Meissner states is the type I or
type II transition. The only information about the vor-
tex state we can get is that for λ ≫ λS the vortex state
is the only stable one and the minimum value of the total
energy gives

ǫV (l
v
S) ≈

7ζ(3)LN

8π3
+

L2
N

96Λ2

3Mth∗

M0

[

1− p

2

√

Mth∗

M0

]

,

derived from (45).
For λ < λS the Meissner state is surely stable if the

lower estimation of the minimum free energy value in the
vortex state given by latter expression is larger than the
one in the Meissner state (41). This inequality can be
reached for some l < lN at M0 < 3Mth∗(l) for p ≪ 1 and
M0 < Mth∗(l) for p . 4/3. For lower penetration depths
the Meissner state realizes the global energy minimum.
(ii) In the most interesting case of Mth∗(lN ) ≪ M0 ≪

Mc, where Mc = 4Φ0 ln κ̃/w̃
2, the vortices realize the

only minimum of the total energy for λ > λS with

λS =

[

π3l3vLz

21ζ(3)l2N

]1/2

. (48)

Note that l ≪ λS ≪
√
lNLz, because for these λ the

vortices start penetrate to the sample even with the dense
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FIG. 4: (a) Domain size l normalized to the film thickness
Lz at equilibrium state vs the penetration depth Λ = λ/Lz.
The solid green line corresponds to the DS which realizes the
global minimum of the total energy, while the dashed blue
(dash-dotted red) line corresponds to the numerically calcu-
lated DS in the vortex (Meissner) state. The dotted pink line
is the analytical DS in the vortex state given by (46). The
London penetration depths, where the state which realized
total energy minimum changes (Λm), where the minimum of
DS reached (Λmin), and where the DS is diverged (Λc), are
shown by arrows; (b) Comparative plot of the total energies in
the vortex (solid blue line) and the Meissner (dash-dotted red
line) states vs the domain size l/Lz for λ = λm. For both plots
parameters are following w̃/Lz = 10−4 and lv/Lz = 10−3.

domain structure l = lS∗ (42). Therefore for λ > λS the
equilibrium domain size l = lvS can be rewritten from (46)
as follows (b ≈ 1, α ≪ 1):

lvS = lN

√

1− 3p

4
r3λ , (49)

with rλ = lv/lS∗ = (λS/λ)
2/3 and the minimum total

energy (45)

ǫV (l
v
S) ≈

7ζ(3)LN

8π3

√

1− 3p

4
r3λ +

L2
S∗

32Λ2
r2λ ≈ L2

S∗

32Λ2
r2λ ,

(50)

where the first term is small compared with the second
one and can be neglected. Note that our considerations
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FIG. 5: Domain size l normalized to the film thickness Lz at
equilibrium state vs the penetration depth Λ = λ/Lz . The
solid green line corresponds to the DS which realizes the min-
imum of the total energy, while the dashed blue (dash-dotted
red) line corresponds to the numerically calculated DS in the
vortex (Meissner) state. The dotted cyan line is the analytical
DS in the vortex state given by (46). The thin dashed, dotted
and dash-dotted straight lines correspond to the normal DS
value l = lN , to the minimum DS value in the vortex state
l = lN/

√
2 and to the low temperature limit of the vortex

penetration depth lv = λ/
√
8, respectively. The parameters

are following (a) w̃/Lz = 10−4, lv/Lz = 1.5 · 10−5 and (b)
w̃/Lz = 10−4, lv/Lz = 10−6.

works well only far from the threshold lvS ≫ lv, i.e.,

l2S∗

l2N
r2λ ≪ 1− 3p

4
r3λ ,

at least it leads to r3λ < 4/(3p). However, in the case of
lvS ≫ lS∗ we can describe the phase transition between
the Meissner and the vortex states explicitly.
Keeping the main terms in (41) and (50) one can see

that the penetration depth value λm, where the minimum
values of energies ǫS and ǫv become equal, is very close
to the one λS (rλ ≃ 1), where the Meissner state turns to
metastable one [see Fig. 4(a)]. Note that strictly speak-
ing if we consider further terms in (41) and (50) we can
conclude that with increasing temperature firstly the rare
vortex lattice penetrates the Meissner state at rλ = 1 and
after that at a bit higher temperature (corresponding to
rλ . 1, see dashed black line in Fig. 4(a)) the global en-
ergy minimum realizes at the state with the dense vortex
lattice.
One can sum expressions (8) and (30) numerically and

obtain the following parameters of the phase transition:
(a) the λ-dependent domain size at equilibrium which re-
alizes the minimum of the total energy abruptly changes
at λ = λm from the vortex state one (49) to the Meissner
one (42) [see Fig. 4(a)]; (b) comparing the L - dependen-
cies of the total energies in the vortex and the Meissner
state for λ = λm [see Fig. 4(b)] one can see that λS ≃ λm.
The essential difference of the DS in the vortex andMeiss-
ner states gives us a hint that in the case of small domain
wall widths w̃ ≪ Lz and for moderate magnetization val-
ues Mc ≪ M0 ≪ Mth∗ the transition between the vortex
and the Meissner states vs London penetration depth λ
(or equivalently vs magnetization amplitude M0) is type

I phase transition.
Note that the decrease of analytical (dotted pink) plot

lvS(λ) in the Fig. 4(a) for λ lower than λm relates to the
escape of the vortices from the vortex state and to the
restoration of the Meissner DS for rather rare vortex lat-
tice.
(ii) The scenario is very similar for the magnetiza-

tion of order of critical one M0 . Mc, when the phase
transition occurs near the minimum values of lS(λ) [see
Fig. 5(a)] and therefore instead of decrease of lvS(λ) with
decreasing λ < λm one can observe the increasing vortex
state domain size (blue dashed line) tending to the rather
large value of lS(λ) ≫ Lz (red dash-dotted line under the
solid green line).
Far from the vortex penetration threshold in this case

the domain size in the vortex state

lvS = lN
√
b ,

is of order of the normal state one lN and it shrinks to the
value lN/

√
2 at the penetration depth values λ of order

of lN .
(iii) For even stronger magnetization amplitudes M0 >

Mc the only vortex state is stable in multidomain case
(l ≪ Lx) in the sample and the domain size l = lvS in this
case

lvS =
lN

√
b

(1− α)
,

behaves similar to the previous case. For λ ∼ lN the
domains also shrink to lN/

√
2 and keep intact till the

divergence at the threshold Hc1(Λ) = 4πM0, due to limit
α → 1 [see Fig. 5(b)].
As a result we can see that for the thick samples the

vortex matter can essentially change the domain size
comparing with the Meissner state one. The transition
between these two states is proved to be type I phase
transition.

B. Thin films with Lz ≪ lN .

Similarly to the case of the thick FS samples discussed
above we present the known results for the Meissner
state. In the vicinity of the superconducting phase tran-
sition, when the effective penetration depth λ∗ is large
compared with domain size l, the Meissner state free en-
ergy takes the form13

ǫS =
w̃

32πl
+

1

8
− ln(L/π) + 3/2

2πL
+

+
1

Λ2

[

1

8
− 2 ln(L/π)

3πL

]

(51)

and reaches its minimum value

ǫS(LS) ≈
1

8

(

1 + Λ−2
)

− 1

2πLN
, (52)
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with the equilibrium DS

lS = Lz exp

[

1 +
w̃/16Lz − 3/2 + lnπ

1 + 4L2
z/3λ

2

]

≈

≈ lN

(

1− w̃Lz

12λ2

)

. (53)

Note that lS . lN .
In the other limiting case of Lz, λ ≪ l the total free

energy in the Meissner state is following:13

ǫS ≈ 1

8
+

1

4πl

(

w̃

8
− πλ+ 2I(λ)

)

+
πλ4

12Lzl3
≈

≈ 1

8
+

1

2πL

(

w̃

16Lz
− ln

Λ2

2
− 11

12

)

+
πΛ4

12L3
, (54)

where we use the expression for I(Λ) given by (44) for
λ, w̃ ≫ Lz. Here mentioned above critical penetration
depth takes the form λc =

√
2Lz exp(w̃/32Lz− 11/24) =

√

2lNLz/π exp(−5/24), i.e. λ∗
c ∼ lN .

The minimization of free energy (54) leads to

ǫS(LS) ≈
1

8
− πλ4

6Lzl3S
(55)

reaching at the large domain width (43)

lS =
πλ2

2Lz

√

ln(λ/λc)
. (56)

Note that lS ≫ λ∗, Lz, therefore the latter expressions
work well for λ/λc−1 ≪ 1. As in the previous subsection
for λ < λc the FS film goes to the monodomain state
(l → Lx ≫ Lz, λ

∗ in considering case)10,11,13.
The vortices can penetrate the thin sample with the

certain domain size l at the critical magnetization given
by (21a) or (22) depending on the ratio λ∗/l. Due to the
fact that the shrinking of the DS in the Meissner state
is very weak, see (53), and the crossover between the
thresholds (21a) and (22) occurs at the penetration depth
λ2 ∼ lLz of order of the critical penetration depth λc,
one can estimate the vortex penetration threshold into
the Meissner state as lth∗v (lN ) = (4/π)

√
2GlNLz (21a)

for all multidomain states (λ > λc).
While λc ∼ (LzlN)1/2 ≫ Lz we can restrict our con-

sideration to the case λ ≫ Lz, where the expression (37)
for the volume energy in the vortex state works. In this
case the minimum value of the total energy

ǫV (l
v
S) ≈

1

8
− (1 − α̃)2

2πLv
S

(57)

reached at the domain width

lvS ≈ πLz√
e
exp

[

w̃

16Lz(1− α̃)2

]

. (58)

10
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FIG. 6: Domain size l at equilibrium state vs the penetration
depth λ. The solid green line corresponds to the DS which re-
alizes the minimum of the total energy, while the dashed blue
(dash-dotted red) line corresponds to the vortex (Meissner)
state. The black dashed line corresponds to l = λ∗ and its
intersection with the green line demonstrates that the phase
transition occurs at l ≃ λ∗. The parameters are following
w̃/Lz = 50 and lv/Lz = 5.3.

For further consideration it is useful to note that far from
the vortex stability threshold α ≪ 1 the minimum energy
value reduces to

ǫV (l
v
S) ≈

1

8
− exp[−αw̃/8Lz]

2πLN
(59)

with the domain size value

lvS ≈ lN exp

[

αw̃

8Lz

]

. (60)

Note that the vortex state DS is larger than the normal
state value lvS & lN .
Let’s consider firstly the vicinity of the superconduct-

ing phase transition, when λ∗ ≫ lN (λ ≫ λc). After com-
parison of Eqs. (52, 59) one can come to conclusion that
the dense vortex lattice is stable only for rather strong
magnetization

M0 > Mc = M∗
th(lN )

Gw̃

4π3Lz
, (61)

which is essentially larger than the critical value M∗
th(lN )

by the factor ∼ w̃/Lz. Note that this critical magneti-
zation Mc is independent on λ and consequently on the
temperature.
As a result for magnetization amplitudes stronger than

the threshold one

M0 > M∗
th(lN ) =

Φ0 ln(lN/ξ)

64KtLzlN
∼ Φ0w̃

L3
z

exp

[

− w̃

32Lz

]

,

the global minimum of the total energy seems to be re-
alized in the vortex state with rare lattice, while the
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Meissner state doesn’t realize even local minimum of en-
ergy and the state with the dense vortex lattice have the
larger energy in this case. Note that the Meissner state
is unstable to formation of the rare vortex lattice even
for λ < λc due to Mλ

th(λc) ≃ Mth∗(lN ). Thus, as was
mentioned in the Sec. IV our model fails in the case of
rather thin FS films with large values of the penetration
depth λ∗ ≫ lN , due to rude approximation for the vortex
density neq(x).
Further we will assume that rather rare vortex lattice

doesn’t change crucially the magnetic domain structure
and will use the Meissner energy values as an approxi-
mation of the energy of rare vortex lattice to estimate
the parameter values at the transition between rare and
dense vortex states.
In the vicinity of the critical λc one can compare (55)

with λ ≃ λc

ǫS(lS) ≈
1

8
− 2e5/12

3πLN
[ln(λ/λc)]

3/2

and (57) and conclude that the dense vortex lat-
tice can realize the global minimum only for M0 &
Mc ln[ln(λ/λc)

−3/2] ≫ M∗
th(LN ), which is even larger

than the critical magnetization at λ∗ ≫ lN .
As a result we prove for thin FS samples Lz ≪ w̃ that

in the ranges λ ≃ λc and λ2 ≫ lNLz the state with
the dense vortex lattice can realize the global minimum
of the total energy for rather strong magnetization val-
ues M0 > Mc and this state remains to have the global
minimum energy value till the monodomain state. Un-
fortunately for weaker magnetization values our model
fails to describe the inhomogeneous vortex lattice which
is rather rare in the middle of the domains.
Finally, for M0 . Mc we consider numerically the

middle region of temperatures, when λ2 ∼ lNLz and
λ/λc − 1 & 1, where our analytical approximations fail.
One can see from Fig. 6 that in this case type I phase
transition from the Meissner (read “rare vortex lattice
state”) to the vortex state with dense lattice occurs in
this region.

VI. DISCUSSION

Within the model described above we have investigated
the equilibrium vortex density distribution and the equi-
librium state of the ferromagnetic superconductor sample
with stripe-structured magnetic domains and have found
that the type I phase transitions between the Meissner
and the vortex states occur in the sample with decreasing
temperature.
For describing the vortex state we use a continuous

model, which is valid for the dense vortex lattices and
not so close to the vortex penetration threshold. In the
above-mentioned restrictions our consideration gives the

best results for rather thick samples Lz ≫ w̃ in the range

of moderate penetration depths w̃ ≪ λ ≪ w̃1/4L
3/4
z ,

when domains shrink strongly in the Meissner state (see
Fig. 4).11 In this case the validness of our consideration
near the vortex threshold in the Meissner state is pro-
vided by a very large ratio lS∗/l

v
S ≫ 1 of the domain size

in the Meissner lS∗ and the vortex lvS states.
Throughout the paper we neglected all the pinning

potentials both for the domain walls and for the vor-
tices. However, we can easily take into account strong
domain pinning potential (neglecting the vortex pinning
effects) by considering the energy for fixed domain size
l without minimization over l. For many experimental
situations it is the typical case that the magnetic do-
mains pinning strongly overcome the vortex pinning. In
such a case in each ferromagnetic domain the vortex con-
centration should be equal to an equilibrium one. It is
interesting to note that applying rather small magnetic
field H along the magnetization (H ‖ Oz) one can ob-
tain paramagnetic response of the vortices. Indeed, for
the domain with codirectional the magnetization and the
external field the total internal field is 4πM + H and
the diamagnetic contribution to the moment equals to
4πδM c = −Φ0/(8πλ

2)[ln(ηHc
c2/(4πM +H))], (see, e.g.,

[16,28]), where η is the demagnetization coefficient and
Hc2 is the upper critical field along z axis. For the do-
mains with an opposite orientation of magnetization the
internal field is H − 4πM , i.e. it is opposite to the weak
applied field and the corresponding diamagnetic moment
4πδM c = Φ0/(8πλ

2)[ln(ηHc
c2/(4πM − H))]. Assuming

that the applied field H is smaller than the coercive
field the size of the up and down domains should be the
same and the averaged magnetic moment due to the vor-
tices is positive 4π 〈δM c〉 = +Φ0/(8πλ

2)H/(4πM), for
H ≪ 4πM . Note that for the fields higher than the coer-
cive field the size of the “parallel” domains should grow
and this would decrease the paramagnetic response and
eventually switch it to the diamagnetic one.
On experiments [7] in UCoGe the diamagnetic re-

sponse was observed and this may be explained by the
strong vortex pinning - the vortex configuration is frozen
and only the surface Meissner current contributes to the
screening.
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