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We investigate the dynamics of thermal Casimir interactions between plates described within a
living conductor model, with embedded mobile anions and cations, whose density field obeys a
stochastic partial differential equation which can be derived starting from the Langevin equations
of the individual particles. This model describes the thermal Casimir interaction in the same way
that the fluctuating dipole model describes van der Waals interactions. The model is analytically
solved in a Debye-Hückel-like approximation. We identify several limiting dynamical regimes where
the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably
we find a regime with diffusive scaling, even though the charges are confined to the plates and do
not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and
quite unexpected on physical grounds.

PACS numbers:

INTRODUCTION

The quantum Casimir effect is the first and most famous example of what are commonly referred to as the fluctuation
induced interactions [1]. The idea behind the original calculation by Casimir is quite straightforward to describe in
principle but is at the same time mathematically quite technical and, in addition, rather subtle to interpret physically
[2]. The basic point is nevertheless clear: the presence of two conducting plates modifies the ground state energy of
the electromagnetic field [4]. The ground state, or zero point energy, then has a finite component which depends on
the plate separation, but also a divergent contribution which is fortunately independent of the plate separation, thus
leading to a finite force. A physically measurable force is therefore derivable from 1

2~ω, the quantum ground state
energy. This is somewhat embarrassing as physics students are often confidently told that the ground state energy
can be thrown away in condensed matter and quantum field calculations, since only differences in energy should
count. The question as to whether zero point energy has physically measurable consequences is an important one in
cosmology as it is a possible candidate for dark energy [3].

Another query arising from Casimir’s computation, based on zero point energy, is why is the effect then usually
referred to as a fluctuation induced interaction? One computes the ground state energy E0 of a system of harmonic
oscillators which, up to an infinite but constant term, is a function of the plate separation L and the ensuing force
is simply f = −∂E0

∂L . What is fluctuating here? The uncertainty principle tells us the local electromagnetic field
fluctuates but it is not clear physically why such fluctuations should give rise to a force. The fluctuation aspect of
Casimir interactions and their generalization, the van der Waals forces, has been worked out particularly in detail
by Lifshitz. In his landmark paper, Lifshitz used Rytov’s fluctuating electrodynamics to derive the average stress
tensor in a planar geometry bounded by two dielectric and/or conducting bodies [5]. This represents the field view of
fluctuation induced electromagnetic forces, in distinction to the matter view where these interactions are caused by
correlated dipolar fluctuations, yielding the long range van der Waals interactions. It is thus natural and unsurprising
to call van der Waals interactions fluctuation induced interactions [9]. Indeed, Schwinger was unhappy about the
zero-point energy interpretation of the Casimir interaction to such an extent that this led him to formulate the effect
in terms of the currents and sources alone [6]. Physically, and in analogy with the van der Waals dipolar fluctuation
case, this leads to the realization that a conductor has free charges which move in such a way to effectively impose
conducting boundary conditions in Maxwell’s equations and the Casimir effect is thus due to the correlation of the
charge fluctuations between the two plates in just the same way as van der Waals forces are due to correlations
of the dipole fluctuations. Even with these deep insights into the nature of the Casimir effect, and van der Waals
and fluctuation induced interaction in general, the discussion about zero point energy versus charge and current
fluctuations continues unabated to this day [7, 8].

Recently the representation of dielectric bodies in terms of thermalized dipoles has been exploited to study the
classical high temperature behavior of van der Waals forces [10]. The dipole field representation is also useful because
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it allows one to study the dynamics of how the van der Waals interactions evolve in time, as correlations between
two initially uncorrelated dielectric slabs set in (the fluctuations of the force in equilibrium may also be studied [11]).
The input into such a theory is a local Langevin dynamics for the dipole field. The classical equilibrium thermal
interaction between two semi-infinite planar slabs of area A separated by a distance L is given by [9]

f = −kBTAHeq

L3
, (1)

where Heq is the Hamaker coefficient measured in units of kBT . Two initially uncorrelated slabs are then found to
have a time dependent interaction of the form [10]

f = −kBTAH(t)

L3
, (2)

where H(t) is a time dependent Hamaker coefficient with H(0) = 0, corresponding to zero force for initially un-
correlated slabs, and limt→∞H(t) = Heq. One should note however that the factorization of the temporal and
spatial dependence in Eq. (2) is particular to planar geometries and does not have straightforward analogies in other
geometries.

Few other results are known about the temporal evolution of fluctuation induced forces. Most results on the
electromagnetic Casimir effect concern steady state out of equilibrium situations where the temperatures of the
bodies in interaction are taken to be different [12–19], these systems are thus in non-equilibrium but steady states.
In addition, the quantum Casimir-Polder interaction between atoms and surfaces has been studied in a number of
out of equilibrium contexts [20–23]. Here one can also study the evolution of a quantum state of the system which is
not a stationary state, as well as the Casimir friction effect due to the motion of the atom [24, 25]. These studies are
more closely related to the one that will be presented here in that we study the evolution of the Casimir force in an
initially out off equilibrium state to its equilibrium value.

In soft matter type systems, where a multitude of fluctuation induced interactions exist, there are only analytical
results for simple Gaussian models of binary mixtures with stochastic non-conserved order parameter (model A)
dynamics. Here the temporal and L dependence of the force are mixed via a diffusive scaling dependence L2/t
[26, 27]. In principle, near critical binary liquid mixtures are ideal systems to observe out of equilibrium Casimir
interactions, due to the critical slowing down of dynamics as a critical point is approached. However, in such systems,
hydrodynamics needs to be taken into account and the problem becomes very difficult, even in the regime of low
Reynolds number where flows can be treated as Stokes flows. The first results for such systems have been obtained
only very recently and require quite sophisticated numerical techniques [28]. As is the case for the electromagnetic
Casimir effect, the critical Casimir effect out of equilibrium can also be studied via the induced drag and diffusion on
insertions which interact with the fluctuating field [28, 29]

In this paper we will examine the interaction between two model conducting surfaces that contain mobile cations
and anions interacting via the three dimensional Coulomb interaction and whose dynamics is governed by a Langevin
equation. This model describes 2D electrolyte layers or thin colloidal layers when hydrodynamic effects can be
neglected, but can be also viewed as a generic classical model of 2D conductors. The dynamics of the system is
treated analogously to the Debye-Hückel (DH) approximation, where fluctuations of the local density of anions and
cations about the average density is taken to be small. The statics of this model in the DH approximation has been
studied in Refs. [30, 31] and the model is called the living conductor model by the authors of [31]. The motivation
for these studies was in fact how to better understand the role of charge fluctuations in conductors and their effect on
the Casimir interaction in order to understand the extrapolation of the quantum Casimir effect, based on perfectly
conducting boundary conditions, to the high temperature limit. The choice of terminology living conductor was chosen
by the authors of [31] to emphasize the presence of real charge distributions in the plates as opposed to conducting
boundary conditions imposed on the electromagnetic field.

In this model, and under the DH approximation, we will study how the Casimir force between two initially uncorre-
lated plates evolves in time. The basic model consists of diffusing ions confined to both plates, each plate representing
a confined 2D electrolyte. The electrolytes have a screening length beyond which electrostatic interactions are weak.
For plate separations much larger than this screening length the equilibrium interaction has a universal, perfect con-
ductor, limit. For separations smaller than the screening length, the interaction is non-universal and depends explicitly
on the screening length. We will present analytical results for the evolution of the Casimir interaction in both the long
range and short range regimes. The temporal evolution for the force is surprisingly rich and is quite different in the
short and long distance regimes. In the long distance universal regime we shall also see that the temporal evolution
of the force is quite different to that of the dipole model studied before [10], despite the fact that the same universal
static limit can be realized in the two models.
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FIG. 1: (Color online) Schematic of system studied - Brownian anions and cations are contained in two parallel plates separated
by distance L in a medium of dielectric constant ε

The paper is organized as follows. We first describe the basic model in terms of its statics and dynamics and also
give a simple and explicit expression for the force between the two plates in terms of the charge densities of the
system. The dynamics of the system is then solved by expanding the density fields about their mean values to first
order, in terms of statics this approximation corresponds to the DH approximation. Expressions are then given for
the Laplace transform of the time dependent force between two initially nonconducting plates which pass through
an insulating to conducting transition. From this expression we can easily extract the equilibrium value of the force.
We identify two static limits, a long distance universal limit, where the thermal Casimir force is independent of the
microscopic model for the charges in the plates, and a short distance non-universal regime where the scaling of the
force with separation changes and a dependence on the microscopic parameters of the model appears. There then
follows a rather technical passage where we carry out an asymptotic analysis of the Laplace transform of the force to
extract its short and late time behaviors in both the universal and non-universal regimes. We conclude by discussing
the difference between the results found here and those in other studies of the relaxation of thermal Casimir forces
and further perspectives in this line of study.

THE LIVING CONDUCTOR MODEL AND ITS DYNAMICS

We consider two parallel plates S1 and S2 of area A separated by distance L in the direction we denote by z. A
schematic of the system is shown in Fig. (1). We set S1 at z1 = 0 and S2 at z2 = L. In the problem we consider
cations/anions of several types denoted by α. The ions of type α have a charge qα and are in the plate Sα (Sα = S1 if
the ions of type α are in the plate 1 etc.). Furthermore the ions are Langevin particles with diffusion constant Dα. Each
particle is thus subjected to a thermal white noise plus the electric field generated by the other particles (including
those not in the same plate). The density field for the particles obeys a stochastic partial differential equation which
can be derived starting from the Langevin equations of the individual particles [32] or, as was originally done, from
phenomenological arguments [33]. For a system of different particle types the derivation of [32] can be easily extended
to give

∂ρα(x)

∂t
=
Dα

T
∇|| · ρα∇||

δF

δρα
+∇|| ·

√
2Dαραηα(x) (3)

where x is the two dimensional coordinate in the plane of the plates and ∇|| is the corresponding 2D gradient operator.
The functional F is an effective free energy functional for the density fields given by

F =
1

2

∑
αβ

∫
Sα×Sβ

dxdx′qαqβρα(x)ρβ(x′)G(x− x′, zα − zβ) + T
∑
α

∫
Sα

dxρα(x) ln (ρα(x)) . (4)

The first term above is the electrostatic energy of the system and G is the Green’s function obeying

ε∇2G(x− x′, z − z′) = −δ(x− x′)δ(z − z′) (5)
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with ε the background dielectric constant of the system. The second term in the functional F corresponds to the
entropic contribution −TS due to the ionic distributions.

The term ηα is spatio-temporal Gaussian white noise with correlation function

〈ηαi(x, t)ηβj(x′, t′)〉 = δαβδijδ(x− x′)δ(t− t′). (6)

Note that the diffusive dynamics above conserves the total particle number of each species, in what follows we assume
that each plate is electro-neutral. The force between the two plates as a functional of the densities ρα is then given
by

f = −1

2

∑
αβ:Sα=S1, Sβ=S2

∫
Sα×Sβ

dxdx′qαqβρα(x)ρβ(x′)
∂

∂L
G(x− x′, L), (7)

where only interactions between charges on different plates contribute to the normal force between the plates.
Finally we need to specify the initial conditions from which the system evolves. Quickly moving the plates in close

proximity and then observing the evolution of the force seems difficult to achieve. A different initial condition would be
to start with plates which initially have no free charges and then pass through an insulator/conductor-like transition
by tuning an external parameter such as the temperature. The initial condition we shall consider is therefore one
where the local charge density is initially zero in both plates. More specifically, if the system is initially made up of
bound ion cation pairs, we assume that the initial density of pairs is uniform and the corresponding ionic distributions
upon unbinding are thus initially uniform.

RESOLUTION OF DYNAMICS IN THE DEBYE-HÜCKEL APPROXIMATION

In order to proceed we expand the density field for each species about its mean value, writing

ρα(x) = ρα + nα(x), (8)

the equation of motion for the density fluctuations nα is given by

∂nα(x)

∂t
= Dα∇2

||nα(x)+
Dα

T
∇||

qα(ρα + nα(x))
∑
β

∫
Sβ

dx′∇||G(x− x′, zα − zβ)qβnβ(x′)

+∇||·
√

2Dα(ρα + nα)ηα(x, t),

(9)
where we have assumed that each plate is electroneutral, i.e.

∑
α:Sα=S1/2

qαρα = 0. The dynamical equivalent of

the DH approximation amounts to keeping only terms which are first order in nα/ρα. In the second noise term
this amounts to keeping only the term ρα, as the first linear term has average 0 and will only enter corrections
quadratically. The dynamics in this approximation becomes equivalent to model B conserved dynamics employed in
the study of phase ordering kinetics [34].

The effective equation thus becomes linear and can be written as

∂n

∂t
= − 1

T
RAn + ξ, (10)

where n is the vector with components nα. By RA we denote the composition of operators. The noise ξ has correlation
function

〈ξα(x, t)ξβ(x′, t)〉 = −2δ(t− t′)δαβDαρα∇2
||δ(x− x′) = 2δ(t− t′)Rαβ(x− x′). (11)

From this the dynamical operator R can be read off as

Rαβ = −δαβDαρα∇2
|| (12)

and we also find that

Aαβ =
Tδαβδ(x− x′)

ρα
+ qαqβG(x− x′, zα − zβ). (13)
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It is easy to see that one has

Aαβnβ =
δFDH
δnα

(14)

where FDH is the DH approximation to the free energy functional in Eq. (4) where it is expanded to second order in
nα/ρα. The equal time correlation function Cαβ(x− x′, t) = 〈nα(x, t)nβ(x′, t)〉 is straightforward to compute and we
find (in operator notation where we suppress the spatial dependence of the operators for notational succinctness)

C(t) = exp(− t

T
RA)C(0) exp(− t

T
AR) + TA−1

(
1− exp(−2

t

T
AR)

)
, (15)

where C(0) is the initial correlation function. In the case considered here we start with an initial insulator condition
with nα = 0 in both plates, this means that the initial distribution of each charge type is uniform at the moment
where the dynamics begins. We therefore set C(0) = 0. The average force as a function of time is given by

〈f(t)〉 = −1

2

∑
αβ:Sα=S1, Sβ=S2

∫
Sα×Sβ

dxdx′qαqβCαβ(x− x′, t)
∂

∂L
G(x− x′, L). (16)

Here the only terms present are from charge distributions in different plates so we have

〈f(t)〉 = −1

2

∑
αβ:Sα=S1, Sβ=S2

∫
Sα×Sβ

dxdx′qαqβ

[
TA−1

(
1− exp(−2

t

T
AR)

)]
αβ

(x− x′)
∂

∂L
G(x− x′, L). (17)

As seems to be generic with the dynamics of Gaussian fluctuation induced forces [10, 26], the analysis is greatly
simplified by working with the Laplace transform of the average time dependent force

f̃a(s) =

∫ ∞
0

exp(−st)〈f(t)〉. (18)

This gives in operator notation

f̃a(s) = − T
2s

Tr
∂A

∂L
(A+

1

2
sTR−1)−1, (19)

where we have used Eq. (13) in which only the second term on the right hand side depends on L. We can now write,
as in previous studies [26],

f̃a(s) = − T
2s

Tr
∂As
∂L

A−1s , (20)

where As = A + s
2TR

−1 as the second term dependent on s is independent of L. Note that this result is formally
similar to that found in [26] for general Gaussian fluctuating fields confined between (and not in) the surfaces, however
the physical models and assumptions made are somewhat different.

Finally we can write

f̃a(s) = − T
2s

∂

∂L
Tr ln(As) =

T

s

∂

∂L
ln(Zs), (21)

where we have introduced the functional integral

Zs =

∫
d[n] exp

−β
2

∑
αβ

∫
Sα×Sβ

dxdx′nα(x)Asαβ(x,x′)nβ(x′)

 (22)

The functional integral is easily evaluated by introducing a scalar field φ which decouples the non-local Coulomb
interaction and, up to a factor of i, corresponds to the electrostatic field, whereby up to an overall constant

Zs =∫
d[n]d[φ] exp

(
−β

2

∑
α

∫
Vα

dx

[
T

ρα
nα(x)2 − sT

2Dαρα
nα(x)∇−2|| nα(x)

]
+ iβ

∑
α

∫
Sα

dxφ(x)qαnα(x)− β

2

∫
drε[∇φ(r)]2

)
.

(23)
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Note that in the above functional integral the last term in the exponential is a volume integral over all space, where
as the other integrals are surface integrals over the planes containing the charge distributions. The integral over the
fields nα can be performed in terms of their Fourier transforms with respect to the in plane coordinates x. This yields

Zs =
∏
k

∫
d[φ(k, z)] exp

(
−βε

2

∫
dz
dφ(−k, z)

dz

dφ(k, z)

dz
+ k2φ(−k, z)φ(k, z)

− βε

2
φ(−k, 0)φ(k, 0)m1(k, s)− βε

2
φ(−k, L)φ(k, L)m2(k, s)

)
(24)

and where the mi(k, s) are k and s dependent inverse effective Debye lengths for the ions in each plate given by

mi(k, s) =
∑

α:Sα=Si

ραq
2
α

εT

1

1 + s
2Dαk2

, (25)

and in the static limit, where s = 0, they are the usual static inverse Debye lengths for systems restricted to two
dimensions.

The functional integrals in Eq. (24) having surface terms can be evaluated using a variety of path integral or
functional integral techniques [35]. This gives an effective free energy Fs = − ln(Zs)/T which, up to bulk and surface
terms independent of the separation of the plates, is given by

Fs =
TA

4π

∫
kdk ln

(
1− m1(k, s)m2(k, s) exp(−2kL)

(2k +m1(k, s))(2k +m2(k, s))

)
, (26)

which gives the Laplace transform of the time dependent force to be

f̃a = −TA
2πs

∫
k2dk

m1(k, s)m2(k, s) exp(−2kL)

(2k +m1(k, s))(2k +m2(k, s))−m1(k, s)m2(k, s) exp(−2kL)
. (27)

This is the main result of this paper. In what follows we analyze this result, and notably carry out the inversion of
the Laplace transform to deduce the temporal evolution of the force.

STATIC LIMIT

In the static limit s→ 0 the equilibrium force is given via the pole at s = 0, we thus find

〈f〉eq = −TA
2π

∫
k2dk

m1m2 exp(−2kL)

(2k +m1)(2k +m2)−m1m2 exp(−2kL)
., (28)

where

mi =
∑

α:Sα=Si

ραq
2
α

εT
. (29)

The mi represent the inverse of length scales li beyond which the interaction between ions in the same plates are
screened. These fix length scales which determine the Casimir interaction between the plates, the large distance limit
where L� li and the short distance limit where L� li.

Long distance universal limit

In the limit where Lmi � 1 we find that

〈f〉eq = − TA

16πL

∫
u2du

m1m2 exp(−u)

(u+m1L)(u+m2L)−m1m2L2 exp(−u)

≈ funi = − TA

8πL3
ζ(3). (30)
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This is the universal limit for conductors in the classical limit. Its value is half that obtained by taking the high
temperature limit of the ideal conductor Casimir limit, however it is the same result as that given by Lifshitz theory.
This subtlety of the high temperature limit of the Casimir effect was in fact what inspired the authors of refs [30] and
[31] to study this living conductor model. The finite distance corrections are easily computed to first order giving

〈f〉eq ≈ funi
[
1− 3

L
(

1

m1
+

1

m2
)

]
, (31)

which agrees with the correction given in [31] where the case m1 = m2 is considered.

Short distance non-universal limit

Now in the opposite limit where the plate separation is smaller than both their individual screening lengths,
Lmi � 1, we find

〈f〉eq = −TAm1m2

16πL
, (32)

giving a completely different scaling form when compared with the long distance limit. We first note that the
interaction force in this limit is not universal, but depends on m1,m2. The inter-surface distance scaling can be
understood as follows: monopolar charge fluctuations between two point-like charge distributions give a free energy
that goes as the inverse first power of the separation squared, just as the dipolar fluctuations scale as the inverse third
power of the separation squared; a Hamaker-like summation of the inverse second power forces, distributed uniformly
over two apposed planar surfaces, then yields a net force that scales as the inverse first power of the separation
between the planar layers. A crucial point leading to Eq. (32) is however that the monopolar charge fluctuations are
correlated leading to an attractive force.

EARLY TIME RELAXATION OF THE FORCE

The very short time behavior of the force is easy to extract. In this limit we assume that for all α that L2/Dαt ∼
sL2/Dα � 1. This means that we can take mi(k, s)� 1 in Eq. (27) and we find

f̃a ≈ −
TAµ1µ2

8πs3

∫
k4dk exp(−2kL), (33)

where µi =
∑
α:Sα=Si

2Dαραq
2
α

εT and thus

f̃a ≈ −
3TAµ1µ2

32πs3L5
. (34)

The inversion of the Laplace transform in this large s limit corresponds to short times and we find

〈f(t)〉 ≈ −3TAµ1µ2t
2

64πL5
. (35)

As is seen for systems of interacting dipoles, the growth of the force as t2 is a signal of the fact that it is correlation
induced and thus in a sense is second order in time. However, the short time scaling with L is quite different to the
dipole case as is seen in Eq (2). We also see straight away that, in contrast with the dipole case, the time scales for
the evolution of the force are dependent on L. This is somewhat surprising as, in common with the dipole case, the
effective interaction is again generated by an instantaneous Coulomb interaction (in the dipole case the interaction
between the partial charges on the dipoles is of course Coulombic).

LATE TIME RELAXATION OF THE FORCE

Here we consider how the force evolves at late times to its static value. As there are two distinct regimes for the
statics determined by the relative values of L and li we need to consider them separately.
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Late time evolution in the short distance regime

As in the static case we consider the change of variables k = u/L and we recall that s ∼ 1/t so that late time, or
large t, dynamics corresponds to small s. The dynamical inverse screening lengths behave as

mi(k, s) =
∑

α:Sα=Si

ραq
2
α

εT

1

1 + sL2

2Dαu2

∼
∑

α:Sα=Si

ραq
2
α

εT

1

1 + L2

2Dαu2t

. (36)

An expansion taking mi(k, s) small is thus valid if

u

L
�

∑
α:Sα=Si

ραq
2
α

εT

1

1 + L2

2Dαu2t

. (37)

The presence of the exponential in the integrand, and the fact that the integral vanishes for small u means that the
integral is dominated by u ∼ O(1) and thus we must have

L
∑

α:Sα=Si

ραq
2
α

εT

1

1 + L2

2Dαt

� 1. (38)

Now in the late time regime defined by Dαt/L
2 � 1 the above reduces to the condition to be in the short range static

regime Lmi � 1. In this regime the Laplace transform of the force is given by

f̃a ≈ −
TA

8πs

∫
dk m1(k, s)m2(k, s) exp(−2kL). (39)

In this form the Laplace transform for the time derivative of the force can be inverted to give

d

dt
〈f(t)〉 ≈ −TA

4π

∫
dk

′∑
αβ

mαmβDαDβk
2

Dβ −Dα
(exp(−2Dαk

2t)− exp(−2Dβk
2t)) exp(−2kL). (40)

the prime in the sum indicating that α and β are species in different plates and we have defined mα = ραq
2
α/εT .

Fortunately the right hand side of Eq (40) can also be written as a temporal derivative and so we obtain

〈f(t)〉 ≈ 〈f〉eq +
TA

8π

∫
dk

′∑
αβ

mαmβDαDβ

Dβ −Dα
(

1

Dα
exp(−2Dαk

2t)− 1

Dβ
exp(−2Dβk

2t)) exp(−2kL). (41)

The integral over k can be expressed in terms of the complementary error function

erfc(u) =
2√
π

∫ ∞
u

du exp(−u2) (42)

as

〈f(t)〉 ≈ 〈f〉eq +
TA

16
√

2πt

′∑
αβ

mαmβDαDβ

Dβ −Dα

 1

D
3
2
α

exp(
L2

2Dαt
)erfc(

L√
2Dαt

)− 1

D
3
2

β

exp(
L2

2Dβt
)erfc(

L√
2Dβt

)

 . (43)

The late time correction term is positive so the magnitude of the average force approaches its equilibrium value from
below with diffusive scaling. The appearance of diffusive scaling is interesting in itself. Even though Dαt represents
the distance diffused by an ion of type α, the ions diffuse in the plates, not across the gap between the plates and the
Coulomb interaction is instantaneous ! The ions thus have to diffuse a distance of the order of the distance between
the plates in order for the force to reach its equilibrium value, however this distance, in this limit, is less than the
screening length.

In the limit where L/
√
Dαt� 1 we can use Taylor expansion of ercf(u),

erfc(u) ≈ 1− 2√
π
u+O(u2) (44)
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to find

〈f(t)〉 ≈ 〈f〉eq +
TA

16
√

2πt

′∑
αβ

mαmβDαDβ

Dβ −Dα

 1

D
3
2
α

− 1

D
3
2

β

 . (45)

so the late time correction is independent of L and decays as 1/
√
t, this is reminiscent of the late time correction for

Gaussian binary liquids where the force decays to its equilibrium value with a power law in time, independent of the
plate separations [26, 27].

LATE TIME EVOLUTION IN THE LONG RANGE REGIME FOR THE PERFECTLY SYMMETRIC
CASE

The asymptotic inversion of the Laplace transform is quite subtle in the long range limit where Lmi � 1. In order
to consider a system with only one intrinsic length scale and one intrinsic time scale we consider a perfectly symmetric
system where all ions and anions have the same value of mα = m0 and the same diffusion constant Dα = D. Hence
we consider the case where all the ions are cations are identical up to a change in the sign of their charge. As a
consequence we can write

mi(k, s) =
m

1 + s
2Dk2

, (46)

where m = Nsm0 with Ns the number of cations and anions in the (identical) plates. In this case we find

f̃a = −TA
2πs

∫
k4dk

m2D2 exp(−2kL)

[s+ 2Dk2 +mDk(1 + exp(−kL))][s+ 2Dk2 +mDk(1− exp(−kL))]
, (47)

and the Laplace transform develops poles which are easy to find analytically and so it can be inverted to give

〈f(t)〉 = −TA
4π

∫
k2dk m exp(−kL)

[
1− exp [−Dtk(2k +m−m exp(−kL))]

(2k +m−m exp(−kL))
−

1− exp [−Dtk(2k +m+m exp(−kL))]

(2k +m+m exp(−kL))

]
. (48)

From this we can easily verify the results for short time regime in this special case. As the final static result is known,
it is easiest to study the force dynamics via the temporal derivative

d〈f(t)〉
dt

= −TADm
4π

∫
k3dk exp(−kL) (exp [−Dtk(2k +m−m exp(−kL))]− exp [−Dtk(2k +m+m exp(−kL))]) .

(49)
If we measure both the distance between the plates and the diffusion constant in terms of the screening length 1/m,
i.e. we write L = L̃/m and D = D̃/m2, then we find

d〈f(t)〉
dt

= − TAm3

4πD̃3t4

∫
u3du

(
exp

[
−g̃−(u, D̃t, α)

]
− exp

[
−g+(u, D̃t, α)

])
. (50)

where

g±(u, D̃t, α) = u(
2u

D̃t
+ α+ 1± exp(−uα)), (51)

and α = L̃/D̃t. In the late time limit D̃t� 1 the functions g± simplify to

g±(u, α) = u(α+ 1± exp(−uα)), (52)

and so the temporal derivative of the force has the scaling form

d〈f(t)〉
dt

= − TAm3

4πD̃3t4
Q(α). (53)
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We see that in this limit the behavior of the force evolution is not diffusive and is determined by the ballistically scaled
parameter α = L/mDt rather than the diffusively scaled one L2/Dt.

In the limit α→ 0 one can show

Q(α) ≈ 1/2α2 (54)

which leads to

d〈f(t)〉
dt

≈ − TAm3

8πD̃t2L̃2
. (55)

Subsequently at late times

〈f(t)〉 ≈ − TA

8πL3

(
ζ(3)− L

mDt

)
. (56)

In the opposite limit α→∞ we find asymptotically

Q(α) ≈ 48/(1 + 2α)5 ≈ 3/2α5, (57)

the first term being a much better approximation for α ∼ 10 for numerical verification of our analytical asymptotic
estimates. In the regime of α large we thus find

〈f(t)〉 ≈ −3TAm2D2t2

16πL5
. (58)

This agrees with the general short time result given by Eq. (35).
In this large distance regime we see that while the static behavior has a well defined universal limit, independent

of the microscopic details of the charges in the plates, the temporal behavior is strongly non-universal and depends
on the parameters of the surface charges.

CONCLUSION

We have studied the thermal fluctuation induced interaction between two plates that are modeled as 2D conductors
containing mobile anions and cations. We analyzed the static limit as well as the dynamical approach to this limit.
The attractive interaction is found to be not surprisingly a consequence of the build-up of correlations between the
charge distributions on the two plates. Our results are however significantly different from those found between
dielectric slabs studied in detail before [11]. While the static thermal Casimir interaction in the universal limit can
also be obtained by approximating the interaction between dielectric slabs with diverging dielectric constants, the
dynamics of the two systems is radically different and can not be extracted from this simplification. The late time
relaxation of the van der Waals force between dielectric slabs is typically given by a simple exponential relaxation of
the effective Hamaker coefficient (unless one invokes a power law distribution of dipole relaxation times) while the
dynamics of the thermal Casimir effect in the model here has a much richer phenomenology.

In fact, for plates with mobile anions and cations the behavior of the force is a complicated function of plate
separation L and time t. Several regimes were identified. In the short distance regime, where effective charge
fluctuations appear monopolar, the relaxation to the equilibrium force exhibits diffusive scaling. In the large separation
regime the static result is universal, and the dynamical behavior exhibits a ballistic-like scaling. Results obtained
from the model A (non-conserved order parameter) dynamics for Gaussian binary mixtures exhibit a diffusive scaling
in the evolution of the Casimir force to its equilibrium value [26, 27]. However, the dynamics in this case occurs in the
medium between the two plates, the only influence of the plates is to impose boundary conditions. The appearance
of the scaling variable L2/t is thus natural as the fluctuations of the order parameter in the z direction between the
plates obey a randomly (thermally) forced diffusion equation and relax over a region of size L. In the model considered
here, nothing actually diffuses in the medium between the plates, all diffusion being confined within the plates and
so in the living conductor model the diffusive scaling is not as easy to anticipate and is quite unexpected on physical
grounds.

Finally we note that the dynamics of the living conductor model is also a possible test bed for other non-equilibrium
studies of the Casimir effect, for instance one could model plates held at different temperatures by taking a different
amplitude of the thermal noise in each plate. One could also explore the effect of non-thermal driving on the dynamics
of the ions in the plates. The influence of hydrodynamics, due to the presence of a solvent, on the dynamics of the
charges would also be interesting to examine.
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