
HAL Id: hal-00987395
https://hal.science/hal-00987395

Submitted on 6 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging with the Crowd: a Debug Recommendation
System based on Stackoverflow

Martin Monperrus, Anthony Maia

To cite this version:
Martin Monperrus, Anthony Maia. Debugging with the Crowd: a Debug Recommendation System
based on Stackoverflow. [Research Report] hal-00987395, Université Lille 1 - Sciences et Technologies.
2014. �hal-00987395�

https://hal.science/hal-00987395
https://hal.archives-ouvertes.fr

Debugging with the Crowd: a Debug Recommendation
System based on Stackoverflow

Martin Monperrus, Anthony Maia

University of Lille & Inria

Technical report #hal-00987395, INRIA, 2014

ABSTRACT
Debugging is a resource-consuming activity of software de-
velopment. Some bugs are deeply rooted in the domain logic
but others are independent of the specificity of the applica-
tion being debugged. The latter are “crowd-bugs”: unex-
pected and incorrect output or behavior resulting from a
common and intuitive usage of an API. On the contrary,
project-specific bugs are related to the misunderstanding
or incorrect implementation of domain concepts or logics.
We propose a debugging approach for crowd bugs, which is
based on matching the piece of code being debugged against
related pieces of code on a Q&A website (Stackoverflow).
Based on the empirical study of Stackoverflow’s data, we
show that this approach can help developers to fix crowd
bugs.

1. INTRODUCTION
Debugging is the activity that consists of understanding why
a piece of code does not behave as expected. Developers
may debug the code they have just written, or an old piece
of code for which a user has provided a bug report. The
process of debugging a particular bug is deeply related with
the nature of the bug. For instance, debugging a segmen-
tation fault means focusing on allocation and deallocation
of memory, debugging concurrency errors means focusing on
the interleaving of instructions under a particular schedule.

In this paper, we claim that there exists a class of bugs that
relate to the common misunderstanding of an API. Those
bugs have a common characteristic: they appear again and
again, independently of the problem domain of the buggy
application. For instance, as witnessed by the myriad of re-
lated questions on the web, there are plenty of programmers
who experience that parseInt("08") returns 0. This piece
of code does not behave as expected. We call this class of
issues “crowd bugs”.

The nature of “crowd bugs” has two direct implications.

First, for crowd bugs, it is likely that the crowd bug has
already occurred several times and there exists a descrip-
tion of the problem somewhere on the web, along with its
explanation and fix. In other terms, the crowd has already
identified the bug and its solution. Second, for a program-
mer who experiences again a crowd bug, she can ask the
crowd how to fix the bug. This is what we call “debugging
with crowd”: giving a piece of code to the crowd for obtain-
ing the fix.

Hence, the nature of crowd bugs (same symptom, indepen-
dently of the domain) enables a specific kind of debugging
(asking the crowd). In this setup, the problem statement of
debugging becomes appropriate for a recommendation sys-
tem: the debugger should match as closely as possible a
similar bug and its fix.

This paper contributes in this domain. We present a de-
bugging system for Javascript that is designed as a recom-
mendation system, dedicated for crowd bugs. We build our
debugger based on empirical insights obtained on the data
from Stackoverflow. Stackoverflow is a popular Q&A web-
site that is dedicated to programming questions.

Our contributions are as follows:

• the definition of “crowd bug” and “debugging with the
crowd”;

• the empirical analysis of Stackoverflow data with re-
spect to Javascript crowd bugs (which shows that Stack-
overflow is not good at taking code as input query);

• the empirical proof that code snippets describing crowd
bugs can act as a self-contained and clear description
of the bug under analysis;

• the design of crowd debugger that automatically re-
lates a breakpointed bug and the solution provided by
the crowd.

The remainder of this paper is as follows. Section 2 defines
the notion of“crowd bugs”. Section 3 is an empirical study of
crowd bug occurrences on the Q&A website Stackoverflow.
Section 4 shows that code snippets can act as debug queries.
Section 5 describes the design of a crowd-based debugger.
Section 6 discusses the related work.

2. CROWD BUGS
To define what a “crowd bug” is, let us start with an exam-
ple. In Javascript, there is a function called parseInt, which
parses a string given as input and returns the correspond-
ing integer value. Despite this apparently simple descrip-
tion and self-described name, this function poses problems
to many developers, as witnessed by the dozens of Q&As
on this topic on Q&A websites1 (this is likely an underes-
timation since we believe that many developers google the
issue before asking a question on a mailing list or a Q&A
website). Many Q&As relate to the same issue: Why does
parseInt("08") produce “0” and not “8”?.

The answer is that if the argument of parseInt begins with
0, it is parsed as octal. Why is the question asked again
and again? We hypothesize that the semantics of parseInt
is counter-intuitive for many people, and consequently, the
very same issue occurs in many development situations, in-
dependently of the domain.

2.1 Definition of “Crowd Bugs”
We define a “crowd-bug” as follows.

Definition: A “crowd-bug” is an unexpected and incorrect
output or behavior resulting from a common and intuitive
usage of an API.

On the contrary, project-specific bugs are related to the mis-
understanding or the incorrect implementation of domain
concepts or logics. Since those domain-independent bugs
occur many times across different teams and projects, we
call them “crowd bugs”.

2.2 Characteristics of Crowd Bugs
Where do crowd bugs come from? Crowd bugs appear when
a developer of an API makes design decisions that go against
the common sense, “common sense” being defined as the
intuition and expectation being hold by many developers.
In the parseInt example, most people expect that par-

seInt("08") returns “8”.

We see two main reasons behind crowd bugs. First, the API
under consideration may seem comprehensible enough for
developers for not reading the documentation. Second, the
API may assume something implicitly. For instance, par-
seInt implicitly assumes that prefixing the string with “0”
means that an octal basis is chosen. There exists a second
version of parseInt, which takes a radix as second parame-
ter. If the short and implicit form with one parameter had
been forbidden, this crowd bug would have likely never ex-
isted. A detailed study of why crowd bugs appear is out of
scope of this paper, it requires inter-disciplinary work be-
tween different fields such as software engineering and psy-
chology.

How to fix crowd bugs? To fix this kind of bug, the developer
first needs to be sure that the observed incorrect behavior is
not domain-specific. Once all domain-specific explanations
are discarded, the common and sensible way to fix the bug is
to search for similar problems over the internet. Since crowd

1http://stackoverflow.com/search?q=[javascript]
+title%3AparseInt&submit=search

bugs are not related to domain-specific knowledge and logics,
they can be debugged by the crowd itself. The description
of the symptom is enough for other developers to recall the
occurrence of the same bug and to give the fix.

To fix a “crowd-bug”, ask the crowd.

For example, on the Q&A site Stackoverflow, all questions
related to this particular unintuitive point of parseInt are
answered. The most voted answer2 has been given only one
minute after the question has been posted.

Crowd-bugs are not really studied in the literature. Only
Carzaniga et al. proved that the web contains some descrip-
tions of “crowd bugs” [3]. Our motivating example about
parseInt showed that Stackoverflow also contains such bugs.
Actually, many instances of Carzaniga et al.’s bugs can be
found on Stackoverflow as well.

3. AN EMPIRICAL STUDY OF CROWD BUGS
In this section, we explore whether the idea of debugging
with the crowd makes sense empirically. We pose a number
of research questions and answer them based on real data
extracted from the Q&A site Stackoverflow.

3.1 To what extent does Stackoverflow contain

“crowd bugs”?
Beyond the anecdotal examples we have just discussed, we
would like to know to which extent Stackoverflow contains
“crowd bugs”. If there are many answered “crowd bugs”
on Stackoverflow, it would make sense use this wealth of
information to ease debugging.

However, it is not possible to manually assess whether the
millions of Q&As of Stackoverflow refer to crowd bugs or not.
Hence, we need an automated technique of finding “crowd
bugs”.

This technique is meant to be more qualitative than quan-
titative. What we need to know is whether there are many
answered crowd bugs on Stackoverflow. We do not need
their exact number or even a precise estimation of their pro-
portion. Knowing that there exist plenty of them is enough
to motivate a crowd-based debugger. Consequently, it is
not an issue if the identification technique yields some false
positives (Q&A that are identified as crowd bugs while they
are not) or false negatives (Q&A that are not identified as
crowd bugs while they are).

We propose the following criteria to identify Q&As as us-
able “crowd bug”. First, it must contain one snippet in the
question since crowd-debugging consists of understanding a
piece of code being debugged. Second, they should be lim-
ited to a particular language (for sake of analysis). Third,
they should have an accepted answer to be sure that the
crowd was able to solve the bug.

2http://stackoverflow.com/questions/850341/
how-do-i-work-around-javascripts-parseint-octal-behavior

http://stackoverflow.com/search?q=[javascript]+title%3AparseInt&submit=search
http://stackoverflow.com/search?q=[javascript]+title%3AparseInt&submit=search
http://stackoverflow.com/questions/850341/how-do-i-work-around-javascripts-parseint-octal-behavior
http://stackoverflow.com/questions/850341/how-do-i-work-around-javascripts-parseint-octal-behavior

With respect to the second point, we focus in this paper on
Javascript-related Q&As due to the inspiration of Carzaniga
et al. [3]. To select Javascript crowd bugs, we use a filter on
the tagging metadata of the question: we select questions if
and only if they are tagged by [javascript].

The Dec. 2011 dump of Stackoverflow Q&As3 contains 7, 397, 507
Q&As. By applying the 3 filters aforementioned (contains
code, javascript, answered), we obtain 70, 060 Q&As. To
our opinion, 70, 060 is a large number, validating our in-
tuition that there is a wealth of information in crowd bugs
on Stackoverflow. In the rest of this paper, we will refer to
those Q&As as dataset D1, “the initial dataset”.

There exists a large number of Q&As that satisfy the
our “crowd-bug” criteria.

3.2 What is the shape of answered stackover-

flow Crowd-Bugs ?
We now study the characteristics of the snippets of the
70, 060 crowd-bugs of dataset D1.

In Stackoverflow, code is put in <code> or <pre> HTML
tags. First, Stackoverflow users may have split their prob-
lems into several snippets (resulting in several pairs of<code>
or <pre> HTML tags). This happens when the user thinks
it would simplify the problem statement. We have com-
puted the distribution of the number of snippets per initial
question of dataset D1. Figure 1 (top) represents the box-
plot of the distribution: the median number of snippets per
question is 2, which is low. Actually, 29, 159/70, 060 (41%)
of the crowd bugs contain only 1 snippet. In other words,
the majority of Stackoverflow users asks questions with no
pre-analysis of the problem statement in different snippets.

Second, we have computed the number of lines of those
29, 159 single-snippet questions. Figure 1 (bottom) repre-
sents the boxplot of the distribution of snippets and lines:
the median number of lines is 8 and 75% of those snippets
have less than 17 lines of code. This shows that the code
describing crowd-bugs is usually short.

It is interesting to know whether we can reason on the ab-
stract syntax of the snippets. For this, we have measured
the number of snippets that are parsable with a Javascript
parser. In total, 48% (14,087/29,159) snippets are parsable.
This relatively high number motivates us to study systems
based on the abstract syntax trees of Stackoverflow snippets.
Those 14, 087 Q&As containing a single parsable Javascript
snippet form the SPJ dataset.

Many “crowd-bugs” are described with a short, parsable
code snippet.

4. CODE SNIPPETS AS STACKOVERFLOW

QUERIES
3http://www.clearbits.net/torrents/1881-dec-2011,
file stackoverflow.com.7z

1 2 3 4 5 6

70060 posts

Snippets

0 10 20 30 40

29159 snippets

Lines

Figure 1: Descriptive statistics of our Selected
Q&As from Stackoverflow

We have seen that many crowd-bugs are indeed described
with code snippets. Our intuition is the following.

If the fault being debugged is actually a crowd-bug,
there should be similar snippets on popular Q&A sites
such as Stackoverflow.

“Crowd debugging”means out-sourcing pieces of code being
debugged to the crowd. A “crowd-based debugger” selects
excerpts of code, sends them to a Q&A web site, and re-
trieves the posts in which there is a very similar snippet.

4.1 What is the efficiency of Stackoverflow in

response to code snippet queries?
We would like to know whether the search engine of Q&As
websites, such as Stackoverflow, is able to well handle code
snippets as input. Feeding a Q&A website with a code snip-
pet simulates a user having a problem, and querying Stack-
overflow with the problematic code (such as parseInt("08")).
Our idea is to feed the Stackoverflow search engine with a
code snippet that already exists on Stackoverflow.

We consider that the Q&A website handles well the snippet
if the post from which the code comes from is ranked high in
the search engine results. This corresponds to the case where
a developer posts a snippet describing the same crowd-bug
and gets the correct answer.

On the contrary, if the Q&A website does not recognize that
there is actually this problem on its own database, this is a
piece of evidence that the Q&A website is bad at answering
code snippet queries. In this case, a crowd-based debugged
would not be very useful and a special indexing technique
would need to be invented.

To answer our research question, we have conducted the
following experimental process. For each Q&A of a given
dataset, we query Stackoverflow with the snippet of the ques-
tion and we observe the result. There are three possible
outcomes.

http://www.clearbits.net/torrents/1881-dec-2011

First, Stackoverflow may consider that the query is invalid:
this happens when the snippet query is too long or contains
special characters. Second, it happens that Stackoverflow
returns no result at all (although the exact text of the snip-
pet comes from Stackoverflow itself). Third, the expected
Q&A may be found, and in that case, we collect its rank.
Note that Stackoverflow restricts the number of automated
queries; consequently, 1000 queries take in average 3 hours.

Eventually, we measure to what extent Stackoverflow is able
to rank the Q&A containing the snippet high in its result
list. Stackoverflow does not document how they index the
questions and whether they specifically handle the content of
code snippets. If a majority of Q&As are correctly retrieved
with snippets as input, it means that Stackoverflow handles
well code snippets.

Out of the 70, 060 of dataset D1 aforementioned Stackover-
flow, we have randomly extracted 1000 posts and their re-
spective code snippet. We call this dataset D2, it is available
upon request. For the corresponding 1000 queries to Stack-
overflow, the results are as follows:

• 377/1000 (38%) snippets are considered as non-valid
queries.

• 374/1000 (37%) snippets yield no results (the expected
Q&A is not found).

• 146/1000 (15%) snippets yield a perfect match (the
expected Q&A is ranked #1).

• 235/1000 (23% incl. the 15% below) snippets yield a
good match (the expected Q&A is ranked ≤ 10).

• 14/1000 snippets yield a good match at rank > 10.

To us, those results are surprising. First, although we give
verbatim content taken from Stackoverflow as query, 38 +
37 = 75% of the queries are not answered at all. This is
a large number showing that Stackoverflow is not good at
taking code as input query.

Second, for those snippets where the Q&A is found, Stack-
overflow is not able to rank the corresponding Q&A as #1.
This means that there are many similar Q&As for this par-
ticular input: this is again a piece of evidence regarding the
existence of crowd bugs (many instances of the same bug
are posted).

Stackoverflow is not good at handling code snippets as query.
This motivates us to: 1) improve the performance of crowd-
bug matching by preprocessing the code snippets; 2) build
a dedicated index that would yield better results.

4.2 Improving Crowd Bug Search
We have seen in 4.1 that Stackoverflow’s search engine is not
really good at handling code snippets as input. Let us now
discuss ways for improving snippet-based search on Stack-
overflow. First, we explore the efficiency of pre-preprocessing
techniques to improve the response of Stackoverflow. Sec-
ond, we study how to build our own index, a specific index

dedicated to handling code snippets of crowd-contributed
Q&As.

Let us first briefly explain what is indexing and how this
matters in our context. Indexing provides users with a real-
time search experience over a database of millions of Q&As.
The standard technique of indexing-based search consists of
two transformation functions tindex and tquery. The first
function tindex transforms the documents (the Q&As) into
terms, and the second function tquery transforms the query
into terms as well. The ranking consists of matching the
document terms against the query terms, possibly with some
weighting strategies. tindex and tquery are not necessarily
identical, since the nature of documents (style, structure,
etc.) is often different from the nature of queries.

The results discussed in section 4.1 actually proves that
Stackoverflow uses different tindex and tquery since 75% queries
made with an exact fragment taken in the text of Q&As
yield no result at all. This is not a bug, as explained above,
there are many reasons for which tindex and tquery may be
different. This result only shows that Stackoverflow’s search
engine has not been designed to handle code-based queries.

4.2.1 Improving Crowd-based Debugging By Prepro-

cessing Code Snippets
The poor results of Stackoverflow is due to a misalignment
between tindex and tquery with respect to code-based queries.
Our idea is to introduce a pre-processing pp function in or-
der to reduce the misalignment. This function takes a code
snippet as input and returns a string as output that is ap-
propriate for a query to Stackoverflow.

That is, tquery ◦ pp should produce terms that better corre-
spond to terms produced by tindex of Stackoverflow. This
is directly measurable: the use of pp should decrease the
number of not valid and not found Q&As.

How efficient is it to pre-preprocess Javascript code snip-
pets? We have experimented different pre-processing func-
tions, we present here the ones that best improve the ca-
pability of Stackoverflow to respond to code-based queries.
The first pre-processing function is called pp1, it matches
all alphanumerical sequences in the snippet, with the regu-
lar expression “[0-9a-zA-Z $]+”. As a side effect, this pre-
processing function removes all punctuation characters. The
second pre-processing function is called pp2 and works in a
more semantic way, it parses the Javascript snippet, and
returns the list of values contained in abstract syntax tree
nodes (AST nodes) representing names (e.g. variable names)
and string literals.

With those two pre-processing functions, we follow the same
evaluation process as described in Section 4.1. For the 1000
Q&As, we pre-process the snippets the of the question, and
then query Stackoverflow. We then observe whether the
source Q&As is given in the results (and at which rank).
Table 1 gives the results of this process. In this table, SOF
refers to StackOverF low, hence tindex = SOF means that
the indexing function is that of Stackoverflow. Both pre-
processing functions enable us to find more Q&As (there are
less “not valid” and “not found”). They also both improve
the average ranking of the perfect answer.

Not-valid Not-found Rank#1 Rank≤10 Rank≤250
tindex = SOF ,
tquery=Raw

337 374 146 235 289

tindex = SOF

,tquery=pp1

308 338 208 288 333

tindex = SOF

,tquery=pp2

343 338 208 290 324

tindex=pp2,
tquery=pp2

5 130 511 758 865

Table 1: Using Stackoverflow Snippets as Code-based Queries (SOF refers to StackOverF low, hence tindex =
SOF means that the indexing function is that of Stackoverflow, “Raw”means that no pre-processing is used)

Of the two pre-processing functions, the one that is based on
the AST (pp2) is slightly better. This is due to the fact that
the terms produced by pp1 also contains language keywords
(e.g. “for” or “if”), which somehow distort the matching
against document terms. The AST based pre-processing
(pp2) does not suffer from this issue.

Preprocessing code snippets that describe crowd bugs is
able to improve crowd-based debugging.

4.2.2 Improving Crowd-based Debugging with a Spe-

cific Index
Now that we have explored a better tquery, let’s study the
effect of tindex. We build our own index of the Stackover-
flow data and use again the evaluation process described in
Section 4.1 and 4.2.1. We use an off-the-shelf indexing tech-
nology called Lucene4 for this. We use the same function
for tindex and tquery: pp2, because that was the champion
according to the experiment presented in Section 4.2.1.

What if one aligns tindex and tquery? The last row of Ta-
ble 1 gives the result. Out of 1000 queries, only 135 are
not answered within the first 250 results, and 511 snippets
are ranked first. Compared to the first row (basic query
to Stackoverflow), this is a real improvements: unanswered
queries drop from 75% to 13%, top rank queries increase
from 14.6% to 51.1%.

Building a specific index of Q&As by aligning tindex and
tquery yields a real improvement of crowd-based debug-
ging.

If a Q&A website such as Stackoverflow wants to support
code snippet queries pp2 is a good candidate for tindex and
tquery.

4.3 Summary
We have shown in this section that Stackoverflow does not
well handle code queries as input. This is not surprising
since StackOverflow is designed for mostly handling text
queries. However, we have also shown is that one can 1)
improve crowd-based debugging by preprocessing the code
snippets; 2) or build a dedicated index to obtain even better

4https://lucene.apache.org/, last accessed Feb 26 2013

Figure 2: A screenshot of our prototype crowd-
enhanced Javascript debugger. The button
AskCrowd selects the snippet surrounding the
breakpoint in order to quickly find an answer (the
breakpoint is a red circle at line 11 in the left hand
side margin of the program).

results. This is will be used in the design of a crowd-based
debugger that we will present in Section 5.

5. DESIGN AND PROTOTYPE OF A CROWD-

BASED DEBUGGER
We know that: 1) Q&As websites such as Stackoverflow con-
tain Q&As related to generic crowd bugs; 2) those Q&As
often contain a snippet that describes the bug; 3) it is possi-
ble to achieve a good accuracy when matching code snippets
against each others.

Consequently, we propose a crowd based debugger as follows.
The developer sets a breakpoint on the line of the crowd
bug and then asks the crowd by clicking on the button “Ask
the crowd”. The debugger extracts the n lines around the
breakpoint and preprocesses them with a function f . This
results in a query q. The debugger then sends the query
to a server and retrieves a list of potential answers to the
problem. Those potential answers are those for which the
snippet of the question closely matches the snippet of the
query. Figure 2 shows a tentative user interface for such a
debugger.

We have implemented such a prototype system for Javascript.
The prototype extends Firebug, a Javascript debugger for
Firefox. For the parseInt example, the developer retrieves
the perfect answer in just one click. This prototype system
decreases the time of debugging crowd bugs. The debugger
is only parametrized by n, the number of lines taken around

https://lucene.apache.org/

the breakpoint. The optimal value of n depends on the pro-
gramming language. In our implementation we set it to 85,
the median size of code snippets describing crowd-bugs on
Stackoverflow (see Figure 1 in Section 3.2).

A crowd-based debugger extracts some pieces of code
and runtime state from the bug under analysis and re-
trieves relevant information from a database of crowd
provided information.

6. RELATED WORK
Barua et al. [2] analyze the topics of Q&As on Stackoverflow.
Their analysis has a different scope from ours: they do not
discuss the nature of the questions, they do not put Q&As
in action as we do.

Hartmann et al [4] invent a recommendation system for fix-
ing compiler errors. Their system is fed with monitoring
data. Kallenbach [5] extends the system for runtime errors
in Ruby. Contrary to setting up a database of specific data,
our system is fed with data obtained from Q&As looked up
in websites.

Treude et al [6] present an empirical study of Stackover-
flow Q&As. Their key result with respect to our debugging
system is that question with code snippets are more often
answered that others. In other words, the Stackoverflow is
already driven by code snippets and the Stackoverflow data
base continuously includes more and more crowd bugs.

Zagalsky et al. [8] also focus the intrinsic value of code
snippets of Q&As websites such as Stackoverflow. They use
those snippets to build a search engine dedicated to code
snippets. We use in a different context: at debugging time,
integrated with breakpoints.

Carzaniga et al. [3] also handle Javascript bugs. However,
they handle the bugs from the perspective of the user who
is provided with alternatives in order to complete some re-
quests. On the contrary, we provide alternative recommen-
dations to the developer who has set up a breakpoint in her
code.

Bacchelli et al. [1] are among the first to set up an integra-
tion of Q&As data within the IDE for sake of productivity.
Their system enables developers to browse and comment
Q&As in tight integration with the source code under de-
velopment. We are along the line of integrating Q&As data
in the IDE. Bacchelli et al. do not consider involving the
crowd in the debugger directly for debugging activities.

Popescu and colleagues explicitly bridged the intelligence of
the crowd with error diagnosis and repair [7]. They target
the understanding of compiler errors of Java programs. We
address another kind of errors: runtime errors in Javascript.
Consequently, their prototype system is integrated into an
IDE (BlueJ) while ours is integrated into a debugger (Fire-
bug).
5Future work will study the influence of the value of n on
the results. This requires setting a realistic corpus of client
code that contain crwod bugs. Creating such a corpus is a
hard problem.

7. CONCLUSION
In this paper, we have presented a new approach to debug-
ging. This approach states the debugging problem as a rec-
ommendation system problem. We show that there exists a
class of bugs, called “crowd bugs”, for which our debugging
approach is relevant. We present an empirical study show-
ing that Stackoverflow is not good at taking code as input
query. Then, we design a new debug system founded on em-
pirical insights obtained from 70, 060 Q&As extracted from
Stackoverflow. This system embeds the crowd of a Q&A
website such as Stackoverflow in the debugger directly. Fu-
ture work will explore whether the crowd-provided fixes can
be automatically assessed and integrated, without the need
for human intervention.

8. ACKNOWLEDGMENTS
We would like to thank Maria Gomez Lacruz and Luca Pon-
zanelli for their valuable feedback on this paper.

9. REFERENCES
[1] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing

stack overflow for the ide. In Proceedings of the
Recommendation Systems for Software Engineering,
pages 26–30, 2012.

[2] A. Barua, S. W. Thomas, and A. E. Hassan. What are
developers talking about? an analysis of topics and
trends in stack overflow. Empirical Software
Engineering, pages 1–36, 2012.

[3] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic workarounds for web applications. In
Proceedings of the 2010 Foundations of Software
Engineering Conference, pages 237–246, 2010.

[4] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do:
suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1019–1028, 2010.

[5] M. Kallenbach. Crowdsourcing suggestions to
programming problems for dynamic, interpreted
languages. Master’s thesis, RWTH Aachen University,
2011.

[6] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web? In
Proceedings of the 33rd International Conference on
Software Engineering, pages 804–807, 2011.

[7] C. Watson, F. B. Li, and J. Godwin. Bluefix: Using
crowd-sourced feedback to support programming
students in error diagnosis and repair. In Advances in
Web-Based Learning - ICWL 2012, pages 228–239.
Springer Berlin Heidelberg, 2012.

[8] A. Zagalsky, O. Barzilay, and A. Yehudai. Example
overflow: Using social media for code recommendation.
In International Workshop on Recommendation
Systems for Software Engineering (RSSE), pages 38–42,
2012.

	Introduction
	Crowd Bugs
	Definition of ``Crowd Bugs''
	Characteristics of Crowd Bugs

	An Empirical Study of Crowd Bugs
	To what extent does Stackoverflow contain ``crowd bugs''?
	What is the shape of answered stackoverflow Crowd-Bugs ?

	Code Snippets as Stackoverflow Queries
	What is the efficiency of Stackoverflow in response to code snippet queries?
	Improving Crowd Bug Search
	Improving Crowd-based Debugging By Preprocessing Code Snippets
	Improving Crowd-based Debugging with a Specific Index

	Summary

	Design and Prototype of a Crowd-based Debugger
	Related Work
	Conclusion
	Acknowledgments
	References

