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We study global existence, uniqueness and positivity of weak solutions of a class of reaction-diffusion systems of chemical kinetics type, under the assumptions of logarithmic Sobolev inequality and appropriate exponential integrability of the initial data.

Introduction

A mixture one gets after esterification of one mole of ethyl alcohol by one mole of ethanoic acid contains products (ethyl acetate and water), but also reactants. This is an example of a double displacement reaction

CH 3 CH 2 OH + CH 3 COOH ⇋ CH 3 COOCH 2 CH 3 + H 2 O (1) 
(see [START_REF] Mahé | Équilibres chimiques en solution acqueuse[END_REF]).

We consider here chemical reactions between q 2 species A i , i = 1, . . . , q, as follows

q i=1 α i A i ⇋ q i=1 β i A i ,
where α i , β i ∈ N. We assume that for any 1 ≤ i ≤ q, α i -β i = 0 which corresponds to the case of a reaction without a catalyst.

If u = (u 1 , • • • , u q ) denotes the concentration of the species A i then the law of action mass proposed by Waage and Guldberg in 1864 (see again [START_REF] Mahé | Équilibres chimiques en solution acqueuse[END_REF]) implies that the concentrations are solutions of the system, for all i ∈ {1, • • • , q},

d dt u i = (β i -α i )   k q j=1 u α j j -l q j=1 u β j j   ,
where k, l > 0 are the rate constants of the two reactions.

When considering substances distributed in space, the concentrations change not only under the influence of the chemical reactions but also due to the diffusion of the species over the space, one gets the following kinetic model for a chemical reaction-diffusion equation

∂ t u i = L i u i + (β i -α i )   k q j=1 u α j j -l q j=1 u β j j   ,
where for all i = 1, . . . , q, L i is an operator which modelizes how the substance diffuses.

We will assume that L i = C i L for some C i 0 and some reference operator L. Moreover, by a change of variables, one can assume that there exist (a posteriori two) constants λ i > 0 such that the system of reaction-diffusion is given by

∂ t u i = C i Lu i + λ i (β i -α i )   q j=1 u α j j - q j=1 u β j j   , (2) 
where u(t, x) = (u 1 (t, x), • • • , u q (t, x)) with t 0 and x belongs to the underlying space.

The two-by-two system, one of the simplest non trivial example, describes the chemical reaction

A 1 + A 2 ⇋ B 1 + B 2 ,
and the system of equations can by formulated as follow

       ∂ t u 1 = C 1 Lu 1 -λ (u 1 u 2 -v 1 v 2 ) ∂ t u 2 = C 2 Lu 2 -λ (u 1 u 2 -v 1 v 2 ) ∂ t v 1 = C 3 Lv 1 + λ (u 1 u 2 -v 1 v 2 ) ∂ t v 2 = C 4 Lv 2 + λ (u 1 u 2 -v 1 v 2 ) (3) 
where λ, λ > 0 and u i denotes the concentration of the specie A i and v i the concentration of the specie B i for i = 1, 2. To make things even simpler, we will assume later that λ = λ.

More general reaction-diffusion systems, of the following form

∂ t u = C∆ x u + F (t, x, u), t > 0, x ∈ Ω u(0) = u 0 , (4) 
with prescribed boundary conditions, were intensively studied in the past. Here, Ω is a (possibly unbounded sufficiently smooth) domain of R n , u takes values in R q , C is a usually diagonal q × q matrix which can be degenerate, and F (t, x, •) is a vector field on R q . Depending on specific choices for C and F (t, x, •), such systems can present various behaviours with respect to global existence and asymptotic behaviour of the solution. Paragraph 15.4 in [START_REF] Taylor | Partial differential equations[END_REF] is a nice introduction with a lot of classical references.

In the above setting, local existence follows from general textbooks on parabolic type partial differential equations (see [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF], [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], or for fully general boundary value problems [START_REF] Amann | Existence and regularity for semilinear parabolic evolution equations[END_REF]).

Global existence question (or how to prevent blow up) gave rise to extensive efforts and to different methods adapted to specific cases (see [START_REF] Amann | Global existence for semilinear parabolic systems[END_REF], especially remark 5.4. a), [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF], [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF] and references therein). Most of these methods consist in deducing L ∞ bounds on the maximal solution from bounds in weaker norms.

The survey [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF] provides a lot of references, positive and negative results, together with a description of open problems. Its first observation is that, for numerous reaction-diffusion systems of interest in applications, the nonlinearity satisfies two general conditions which ensure respectively positivity and a control of the mass (i.e. the L 1 norm) of a solution. M. Pierre investigates how these L 1 estimates (as well as L 1 bounds on the nonlinearity) help to provide global existence.

Further works provide results on asymptotic behaviour. Spectral gap, logarithmic Sobolev inequality and entropy methods are often used to quantify exponential convergence of the solution of an equation to equilibrium, and in the context of reaction-diffusion equations (mostly of type [START_REF] Amann | Global existence for semilinear parabolic systems[END_REF]) they were used to study the convergence (to constant steady states) in [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF][START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: Slowly growing A-priori bounds[END_REF][START_REF] Desvillettes | About entropy methods for reaction-diffusion equations[END_REF][START_REF] Gentil | Asymptotic behaviour of reversible chemical reaction-diffusion equations[END_REF]. Geometric characteristics and approximations of global and exponential attractors of general reaction-diffusion systems may be found in [START_REF] Zelik | Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity[END_REF][START_REF] Efendiev | Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation[END_REF][START_REF] Zelik | Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains[END_REF] (and references therein) in terms of precise estimates of their Kolmogorov ε-entropy. In these papers, C is of positive symmetric part and the nonlinearity must satisfy some moderate growth bound involving the dimension n to ensure global existence. Other cross-diffusion systems are studied by entropy methods in [START_REF] Carrillo | Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF].

One way or another, local or global existence results in the above setting rely on regularity theory for the heat semigroup, the maximum principle, and Sobolev inequality through one of its consequences, Gagliardo-Nirenberg inequalities or ultracontractivity of the semigroup (as well as Moser estimates). (Note nevertheless that an approach based on a nonlinear Trotter product formula is proposed in [START_REF] Taylor | Partial differential equations[END_REF], but seems to impose some kind of uniform continuity of the semigroup).

The aim of this article is to prove global existence of a non-negative solution of the reaction-diffusion system (2) with unbounded initial data in a setting where Sobolev inequality possibly does not hold, as e.g. in infinite dimensions or when underlying measure does not satisfy polynomial growth condition. We restrict ourselves to some nonlinearities for which in a finite dimensional setting, L ∞ bounds of the solution (and so global existence) come for free, [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF]. Nevertheless, Sobolev inequality has to be replaced by the weaker logarithmic Sobolev inequality (or other coercive inequalities which survive the infinite dimensional limit; see [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF], [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF], [START_REF] Roberto | Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups[END_REF], [START_REF] Bobkov | Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions[END_REF]).

The celebrated paper [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] of L.Gross established equivalence of logarithmic Sobolev inequality and hypercontractivity of the semigroup. No compactness embeddings hold in this context.

For a wide variety of strongly mixing Markov semigroups, logarithmic Sobolev inequality holds for the corresponding Dirichlet form of the generator. For diffusion semigroups on Riemannian manifolds, logarithmic Sobolev inequality follows from positive bound from below of the Ricci curvature (of the generator L), i.e. the so called Bakry-Emery, Γ 2 or CD(ρ, ∞) criterion (see [START_REF] Bakry | Diffusions hypercontractives[END_REF], [START_REF] Bakry | Analysis and Geometry of Markov Diffusion Operators[END_REF], [START_REF] Wang | Functional Inequalities, Markov Semigroups and Spectral Theory[END_REF]). For logarithmic Sobolev inequality and discrete state space Markov chains, see [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF], [START_REF] Miclo | An example of application of discrete Hardy's inequalities. Markov Process[END_REF], [START_REF] Chen | Eigenvalues, inequalities, and ergodic theory[END_REF]. In infinite dimensional spaces, logarithmic Sobolev inequality for spin systems has been extensively studied (see [START_REF] Zegarliński | On log-Sobolev inequalities for infinite lattice systems[END_REF], [START_REF] Stroock | The logarithmic Sobolev inequality for continuous spin systems on a lattice[END_REF], [START_REF] Zegarlinski | The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice[END_REF], [START_REF] Bodineau | The log-Sobolev inequality for unbounded spin systems[END_REF], [START_REF] Yoshida | Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice[END_REF], [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF], [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF], [START_REF] Otto | A new criterion for the logarithmic Sobolev inequality and two applications[END_REF]; and in subelliptic setting, [START_REF] Lugiewicz | Coercive inequalities for Hörmander type generators in infinite dimensions[END_REF], [START_REF] Inglis | Logarithmic Sobolev inequalities for infinite dimensional Hörmander type generators on the Heisenberg group[END_REF], [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF]). In the present paper, logarithmic Sobolev inequality plays a key role to study existence results in an infinite dimensional setting, by a step-bystep approximation approach.

The paper is organized as follows. In the next section we describe the framework and the main result of the paper: in the two-by-two case, assuming 1) that C 1 = C 3 and C 2 = C 4 , 2) that the linear diffusion term satisfies logarithmic Sobolev inequality and 3) that the initial datum f is nonnegative and satisfies some exponential integrability properties (made more precise later), then there exists a unique weak solution of the system of reaction-diffusion equation (3) which is moreover nonnegative. Section 3 presents the iterative procedure we follow to approximate weak solutions of our reaction-diffusion type problem. This is based on some cornestone linear problem which is stated there. The two following sections are devoted to the details of the proof : section 4 to the convergence of the iterative procedure to the unique nonnegative weak solution of the nonlinear Cauchy problem, whereas section 5 focuses on the cornerstone linear problem.

In Section 6 we extend our result to the general case of system (2), and present how operators C i L can be modified. (To give a comprehensive proof we focus in the rest of the paper on the two-by-two case which already contains non trivial difficulty).

We recall or detail tools used in the proof in three appendices: the entropic inequality, basics on Orlicz spaces, and finally some further topics on Markov semigroups and Orlicz spaces.

Framework and main result An abstract Reaction-Diffusion equation

In the following we will consider an underlying Polish space M equipped with a probability measure µ. Let L be a (linear) densely defined selfadjoint Markov operator on L 2 (µ) ≡ L 2 (M, µ), that is the infinitesimal generator of a C 0 Markov semigroup (P t ) t 0 symmetric with respect to µ. It is well known that under these assumptions there exist a kernel p t (x, dy) on (M, B M ), that is a measurable family of probability measures such that, for any t 0, any f ∈ L 1 (µ), and for µ almost every x ∈ M,

P t f (x) = M f (y) p t (x, dy).
(

) 5 
Let us consider the following equation

∂ ∂t u(t) = CL u(t) + G( u(t)) λ, t > 0 u(0) = f (RDP)
where, in the two-by-two case,

• the unknown u(t, x) = (u 1 (t, x), u 2 (t, x), u 3 (t, x), u 4 (t, x)) is a function from [0, ∞) × M to R 4 ; and L u = (Lu 1 , Lu 2 , Lu 3 , Lu 4 ) is defined componentwise. • λ = (λ 1 , λ 2 , λ 3 , λ 4 ) = λ(-1, -1, 1, 1) ∈ R 4 , with λ ∈ R + ;
• the nonlinearity G is quadratic:

G( u) = u 1 u 2 -u 3 u 4 .
• C is a diagonal matrix of the following form

C =     C 1 0 0 0 0 C 2 0 0 0 0 C 3 0 0 0 0 C 4     ,
where we assume that

C 1 = C 3 and C 2 = C 4 .
(This condition is weakened in section 6).

• the initial datum is f = (f 1 , f 2 , f 3 , f 4 ).

Dirichlet form and logarithmic Sobolev inequality

Let (E, D) be the Dirichlet form associated to (L, µ) (see [START_REF] Davies | Heat kernels and spectral theory[END_REF], [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF], [START_REF] Ma | Introduction to the theory of (nonsymmetric) Dirichlet forms[END_REF], [START_REF] Bouleau | Dirichlet forms and analysis on Wiener space[END_REF]; or [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF] for a minimal introduction). For any u ∈ D(L) (the domain of L) and v ∈ D (the domain of the Dirichlet form), one has

E(u, v) = -µ(v Lu).
We will denote E(u) ≡ E(u, u), for any u ∈ D. Recall that D is a real Hilbert space with associated norm

u D = (µ(u 2 ) + E(u)) 1/2 .
We will assume that the Dirichlet structure (E, µ) satisfies logarithmic Sobolev inequality with constant

C LS ∈ (0, ∞), that is Ent µ (u 2 ) ≡ µ u 2 log u 2 µ(u 2 ) ≤ C LS E(u), (6) 
for any u ∈ D.

Classical function spaces

Let I = [0, T ]. For any Banach space (X, • X ), we shall denote by C(I, X) the Banach space of continuous functions from I to X equipped with the supremum norm sup t∈I u(t) X .

Let also L 2 (I, X) be the space of (a.e. classes of) Bochner measurable functions from I to X such that T 0 u(t) 2 X ds < ∞. As for vector valued functions, let L 2 (I, X 4 ) be the space of Bochner measurable functions t ∈ I → (u

1 (t), u 2 (t), u 3 (t), u 4 (t)) ∈ X 4 such that T 0 4 i=1 u i (s) 4 X ds < ∞.
All these are Banach spaces.

We'll furthermore consider the space L ∞ (I, X) of Bochner measurable X-valued functions on I such that ess sup 0≤t≤T u(t) X < +∞.

The reader may refer to [START_REF] Schwabik | Topics in Banach space integration[END_REF] for Bochner measurability, Bochner integration and other Banach space integration topics.

Bochner measurability in an Orlicz space

Let Φ : R → R + given by Φ(x) = exp(|x|) -1 and Φ α (x) = Φ(|x| α ), α 1. These are Young functions and the Orlicz space associated to Φ α is denoted by L Φα (µ). This is the space of measurable functions f such that

µ(Φ α (γf )) < ∞ (7) 
for some γ > 0 (or functions whose α power is exponentially integrable).

An important closed subspace E Φα (µ) of L Φα (µ) consists of those functions such that (7) holds for any γ > 0. This is the closure of the space of simple functions (finitely valued measurable functions) in L Φα (µ).

A stricking property of Markov semigroups is that C 0 property in L 2 (µ) implies C 0 property in any L p (µ); 1 ≤ p < +∞ (see [START_REF] Davies | Heat kernels and spectral theory[END_REF]). We will need the following weakened result in the context of Orlicz spaces.

Proposition 1 Let f ∈ E Φα (µ), α 1.
Then the linear semigroup is Bochner measurable in time in E Φα (µ). More precisely, the mapping t

∈ [0, ∞) → P t f ∈ E Φα (µ) belongs to L ∞ ([0, ∞), E Φα (µ)) and ess sup 0≤t<∞ P t f E Φα (µ) ≤ f E Φα (µ) .
The proof is given in appendix C.3.

First regularity result and weak solutions

The following lemma exhibits the main role the entropic inequality (see appendix A) and the logarithmic Sobolev inequality play to deal with the nonlinearity we consider. In short, the multiplication operator by a function in L Φ 2 (µ) is a bounded operator, mapping the domain of the Dirichlet form D to L 2 (µ). 

C LS ∈ (0, ∞). Let Φ(x) = exp(|x|)- 1 and Φ 2 (x) = Φ(x 2 ). Let u ∈ L 2 (I, D) and v ∈ L ∞ (I, L Φ 2 (µ)). Then uv ∈ L 2 (I, L 2 (µ)
) and the bilinear mapping

(u, v) ∈ L 2 (I, D) × L ∞ (I, L Φ 2 (µ)) → u v ∈ L 2 (I, L 2 (µ)) (8) 
is continuous. Consequently,

(φ, u, v) ∈ L 2 (I, L 2 (µ)) × L 2 (I, D) × L ∞ (I, L Φ 2 (µ)) → φ u v ∈ L 1 (I, L 1 (µ)) (9)
is trilinear continuous.

The reader may note that we will use this lemma to define properly a weak solution of the nonlinear problem below.

Proof ⊳ Note that f ∈ L Φ 2 (µ) iff f 2 ∈ L Φ (µ) and that f 2 Φ = f 2 Φ 2 . ( 10 
)
First we show that the bilinear mapping

(u, v) ∈ D × L Φ 2 (µ) → uv ∈ L 2 (µ) (11) is continuous. Fix 0 < γ < v 2 -1 L Φ (µ))
. Then, µ(exp(γv 2 )) -1 ≤ 1 and so µ(e γv 2 ) ≤ 2. Hence, using the entropic inequality [START_REF] Otto | A new criterion for the logarithmic Sobolev inequality and two applications[END_REF], and then the logarithmic Sobolev inequality, one gets,

µ(u 2 v 2 ) ≤ 1 γ µ u 2 log( u 2 µ(u 2 ) ) + µ(u 2 ) γ log µ(e γv 2 ) ≤ 1 γ C LS E(u) + log 2 µ(u 2 ) ≤ max(log 2, C LS ) γ u 2 D .
Letting γ go to v 2 -1 L Φ (µ)) , using [START_REF] Bouleau | Dirichlet forms and analysis on Wiener space[END_REF] one gets the announced continuity. If now u ∈ L 2 ([0, T ], D) and v ∈ L ∞ ([0, T ], L Φ 2 (µ)), there exist two sequences of simple functions (see [START_REF] Schwabik | Topics in Banach space integration[END_REF] if necessary) (u n ) n ⊂ S I,D and (v n ) n ⊂ S I,L Φ 2 converging to u (resp. v) a.e. in D (resp. L Φ 2 ). The continuity of [START_REF] Carrillo | Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF] shows that (u n v n ) n is a sequence of simple functions with values in L 2 (µ) which converges a.e. in L 2 (µ) to u v. Bochner measurability of u v from I to L 2 (µ) follows.

As for continuity of [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF], what precedes shows that, for any t a.e.,

u(t)v(t) 2 L 2 (µ) ≤ max(log 2, C LS ) v 2 L ∞ ([0,T ],L Φ 2 (µ)) u(t) 2 D .
Integrating w.r.t. t on [0, T ], one gets the result. Finally, continuity of the trilinear mapping follows by Cauchy-Schwarz inequality in L 2 . ⊲ Weak solutions. Let T > 0. We say that a function

u ∈ L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ)) ∩ L ∞ ([0, T ], L Φ 2 (µ)) 4 (12)
is a weak solution of (RDP) on [0, T ] provided, for any φ ∈ C ∞ ([0, T ], D 4 ) and any t ∈ [0, T ),

- t 0 4 i=1 µ(u i (s)∂ s φ i (s)) ds + 4 i=1 µ(u i (t)φ i (t) -u i (0)φ i (0)) = - t 0 4 i=1 C i E(u i (s), φ i (s)) ds + t 0 4 i=1 λ i µ(φ i (s)G( u(s))) ds. (weak-RDP)
When this is satisfied for any T > 0, we'll say that u is a weak solution on [0, ∞).

Main result

Theorem 2.2 Let (L, µ) be a selfadjoint Markov generator satisfying logarithmic Sobolev inequality [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] 

with constant C LS ∈ (0, ∞). Let Φ 2 (x) = exp(x 2 ) -1. Assume f 0 is a nonnegative initial datum and f ∈ (E Φ 2 (µ)) 4 .
Then, for any diffusion coefficients C 1 > 0 and C 2 > 0 and any reaction rate λ > 0, there exists a unique nonnegative weak solution u of (RDP) on [0, ∞).

Moreover, for any α 1, any γ > 0 and any i = 1, . . . , 4, if µ(e γ(f 1 +f 3 ) α ) < ∞ and µ(e γ(f 2 +f 4 ) α ) < ∞, then ∀t a.e. in [0, ∞), µ(e γu α i (t) ) ≤ max µ(e γ(f 1 +f 3 ) α ), µ(e γ(f 2 +f 4 ) α ) .

In section 6, we will state the extension of this theorem to the general problem [START_REF] Amann | Global existence for semilinear parabolic systems[END_REF].

In short, to prove this theorem, we linearize the system of equations by means of an approximation sequence ( u (n) ) n . We show recursively that u (n) (t) is nonnegative, belongs to L ∞ ([0, T ], L Φ 2 (µ)) so that lemma 2.1 guarantees u (n+1) is well defined. This propagation is made precise in a lemma studying the linear cornerstone problem which underlies the recursive approach.

We will first focus our efforts to prove convergence of the approximation sequence in the space

L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ))
4 . Afterwards, we detail a way to study the cornerstone existence lemma.

Remark 2 We will exhibit in appendix B a sufficient condition to ensure that f ∈ E Φα (µ), namely, that there exist β > α and γ > 0 such that µ(e γ|f | β ) < +∞. In particular, it implies that, provided f 0 belongs to (E Φ 2 (µ)) 4 , one may choose γ > 0 large enough such that

4 min(C 1 , C 2 )
λC LS < γ, and

f still satisfies µ(e γf i ) < ∞, i = 1, . . . , 4 (13) 
which will be useful in the proof of existence and uniqueness.

Iterative procedure

Let us define the approximation sequence ( u (n) ) n∈N in the following way. (First of all, note the parenthesis in u (n) has nothing to do with differentiation, and has been introduced to distinguish the index from powers).

• for all n ∈ N,

u (n) (t = 0) = f ∈ (E Φ 2 (µ)) 4 ; • for n = 0, ∂ t u (0) (t) = CL u (0) (t), t > 0;
• for any n 1, and

t > 0,    ∂ t u (n) 1 (t) = C 1 Lu (n) 1 (t) -λ u (n-1) 2 (t)u (n) 1 (t) -u (n-1) 4 (t)u (n) 3 (t) , ∂ t u (n) 3 (t) = C 1 Lu (n) 3 (t) + λ u (n-1) 2 (t)u (n) 1 (t) -u (n-1) 4 (t)u (n) 3 (t) , (RDP n )    ∂ t u (n) 2 (t) = C 2 Lu (n) 2 (t) -λ u (n-1) 1 (t)u (n) 2 (t) -u (n-1) 3 (t)u (n) 4 (t) , ∂ t u (n) 4 (t) = C 2 Lu (n) 4 (t) + λ u (n-1) 1 (t)u (n) 2 (t) -u (n-1) 3 (t)u (n) 4 (t) . Knowing u (n-1) ∈ L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ)) ∩ L ∞ ([0, T ], L Φ 2 (µ))
4 , (which is the case for any T > 0 under our hypothesis for u (0) by proposition 1), this system may be reduced to the four independant affine scalar equations, with t > 0,

         ∂ t u (n) 1 = C 1 Lu (n) 1 -λP C 2 t (f 2 + f 4 ) u (n) 1 + λP C 1 t (f 1 + f 3 )u (n-1) 4 , ∂ t u (n) 3 = C 1 Lu (n) 3 -λP C 2 t (f 2 + f 4 ) u (n) 3 + λP C 1 t (f 1 + f 3 )u (n-1) 2 , ∂ t u (n) 2 = C 2 Lu (n) 2 -λP C 1 t (f 1 + f 3 ) u (n) 2 + λP C 2 t (f 2 + f 4 )u (n-1) 3 , ∂ t u (n) 4 = C 2 Lu (n) 4 -λP C 1 t (f 1 + f 3 ) u (n) 4 + λP C 2 t (f 2 + f 4 )u (n-1) 1 . (14) 
whose existence, uniqueness and positivity on [0, T ] follows from Lemma 3.1 below, with

A(t) = λP C 2 t (f 2 + f 4 ) and B(t) = λP C 1 t (f 1 + f 3 )u (n-1) 4
(or similarly), using proposition 1 and lemma 2.1. Lemma 3.1 (Cornerstone existence lemma) Let L be a Markov generator satisfying logarithmic Sobolev inequality with constant C LS ∈ (0, ∞). Let T > 0 and

A = A(t) ∈ L ∞ ([0, T ], L Φ 2 (µ)) and B ∈ L 2 ([0, T ], L 2 (µ)). Then the Cauchy problem ∂ t u(t) = Lu(t) -A(t) u(t) + B(t), u(0) = f, f ∈ L 2 (µ) (CS)
has a unique weak solution on [0, T ]. Futhermore, provided f , A and B are assumed nonnegative, then the solution u is nonnegative.

Although classical, we recall that u ∈ L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ)) is a weak solution of (CS) provided, for any φ ∈ C ∞ ([0, T ], D), and any 0 ≤ t ≤ T , - t 0 µ(u(s)∂ s φ(s)) ds + µ (u(t)φ(t) -u(0)φ(0)) = - t 0 E(u(s), φ(s)) ds + t 0 µ φ(s) -A(s)u(s) + B(s) ds. (weak-CS)
Recursive equivalence of both systems (RDP n ) and ( 14) may be seen as follows.

Starting from (RDP n ), one easily gets

∂ t (u (n) 1 + u (n) 3 ) = C 1 L(u (n) 1 + u (n) 3 ) ∂ t (u (n) 2 + u (n) 4 ) = C 2 L(u (n) 2 + u (n) 4 )
and writting u

(n) 3 (t) = P C 1 t (f 1 +f 3 )-u (n)
1 (t) (and similarly for the other coordinates) gives the announced decoupled system. Conversely, deducing from the decoupled system that u

(n) 1 + u (n) 3 = P C 1 t (f 1 + f 3 ) (and
similarly) follows by induction and uniqueness in lemma 3.1.

To be able to define u (n+1) , and hence prove that the iterative sequence is well defined, it remains to check that u

(n) i ∈ L ∞ ([0, T ], L Φ 2 (µ))
, for all i = 1, . . . , 4. This is based on results stated in appendix C and can be shown as follows.

We may focus on u 

(n) 1 + u (n) 3 = P C 1 t (f 1 + f 3 )
, the contraction property of the semigroup stated in lemma C.1 implies that, for any γ > 0, for any t a.e.,

µ e γ(u (n) 1 (t)) 2 ≤ µ(e γ(f 1 +f 3 ) 2 ) < +∞. ( 15 
)
So that, in particular, for any t ∈ [0, T ], u

(n) 1 (t) ∈ E Φ 2 (µ). Following lemma C.2, what remains to be checked is Bochner measurability of the mapping t → u (n) 1 (t) ∈ E Φ 2 (µ).
From the corresponding weak formulation (weak-CS) applied to a constant (in time) test function

φ(t) ≡ ϕ ∈ D, µ(u (n) 1 (t)ϕ) = µ(f 1 ϕ) -C 1 t 0 E(u (n) 1 (s), ϕ)ds + t 0 µ ϕ(-λP C 2 s (f 2 + f 4 ) u (n) 1 (s) + λP C 1 s (f 1 + f 3 )u (n-1) 4 (s) ds.
Hence, the function t → µ(u

(n) 1 (t)ϕ) is continuous, for any fixed ϕ ∈ D. Now, D is a dense subspace of the dual space (E Φ 2 ) ′ = L Φ * 2 (µ) (see appendix C), so that weak measurability of t → u (n) 1 (t) ∈ E Φ 2 follows. By Pettis measurability theorem * and separability of E Φ 2 (µ), t ∈ [0, T ] → u (∞) 1 (t) ∈ E Φ 2 (µ) is Bochner measurable. 4 Proof of Theorem 2.2
Convergence of the approximation procedure (RDP n )

From now on, we'll use the notation

| u| 2 = 4 i=1 u 2 i and E( u) = 4 i=1 E(u i ).
The main idea is to show that, with

Σ n (t) = µ(| u (n) -u (n-1) | 2 )(t) + 2κ t 0 E( u (n) -u (n-1) )(s)ds, ( 16 
)
for some κ > 0 (specified later), the supremum sup t∈[0,T ] Σ n (t) goes to 0 exponentially fast as n goes to ∞ provided T > 0 is small enough. From lemma 3.1, u (n) is defined recursively as a weak solution of the cornerstone linear problem. To make things simpler at this stage, we here perform formal computations to get a priori estimates. Getting the estimates rigorously makes use of Steklov regularisation, which we will illustrate in the proof of the next proposition.

Estimate of the L 2 -norm derivative

We will focus on the L 2 -norm of u

(n) 1 . 1 2 d dt µ (u (n) 1 -u (n-1) 1 ) 2 = C 1 µ (u (n) 1 -u (n-1) 1
)L(u

(n) 1 -u (n-1) 1 ) -λµ (u (n) 1 -u (n-1) 1 )(u (n) 1 u (n-1) 2 -u (n) 3 u (n-1) 4 -u (n-1) 1 u (n-2) 2 + u (n-1) 3 u (n-2) 4
) ,

and after natural multilinear handlings, 1 2

d dt µ (u (n) 1 -u (n-1) 1 ) 2 = -C 1 E u (n) 1 -u (n-1) 1 -λµ (u (n) 1 -u (n-1) 1 ) 2 u (n-1) 2 -λµ (u (n) 1 -u (n-1) 1 
)(u

(n-1) 2 -u (n-2) 2
)u

(n-1) 1 +λµ (u (n) 1 -u (n-1) 1 
)(u

(n) 3 -u (n-1) 3 
)u

(n-1) 4

+ λµ (u

(n) 1 -u (n-1) 1
)(u

(n-1) 4 -u (n-2) 4
)u

(n-1) 3

.

Since u (n-1) is nonnegative, using the quadratic inequality ab ≤ a 2 /2 + b 2 /2, one gets

1 2 d dt µ (u (n) 1 -u (n-1) 1 ) 2 ) ≤ -C 1 E u (n) 1 -u (n-1) 1 + λ 2 µ (u (n) 1 -u (n-1) 1 ) 2 u (n-1) 1 + λ 2 µ (u (n-1) 2 -u (n-2) 2 ) 2 u (n-1) 1 + λ 2 µ (u (n) 1 -u (n-1) 1 ) 2 u (n-1) 4 + λ 2 µ (u (n) 3 -u (n-1) 3 ) 2 u (n-1) 4 + λ 2 µ (u (n) 1 -u (n-1) 1 ) 2 u (n-1) 3 + λ 2 µ (u (n-1) 4 -u (n-2) 4
) 2 u

(n-1) 3

.

All the similar terms are then estimated thanks to the relative entropy inequality [START_REF] Otto | A new criterion for the logarithmic Sobolev inequality and two applications[END_REF]. For instance, µ (u

(n) 1 -u (n-1) 1 ) 2 u (n-1) 1 ≤ 1 γ Ent µ (u (n) 1 -u (n-1) 1 ) 2 + 1 γ µ u (n) 1 -u (n-1) 1 
2 log µ e γu (n-1)

1

.

The logarithmic Sobolev inequality [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] and bound [START_REF] Desvillettes | About entropy methods for reaction-diffusion equations[END_REF] give

µ (u (n) 1 -u (n-1) 1 ) 2 u (n-1) 1 ≤ C LS γ E u (n) 1 -u (n-1) 1 + D γ µ (u (n) 1 -u (n-1) 1 ) 2 ,
where

D = max log µ(e γ(f 1 +f 3 ) ), log µ(e γ(f 2 +f 4 ) ) . ( 17 
)
Using the same arguments for all the terms leads to 1 2

d dt µ (u (n) 1 -u (n-1) 1 ) 2 ≤ -C 1 E u (n) 1 -u (n-1) 1 + λC LS 2γ 3E u (n) 1 -u (n-1) 1 + E u (n-1) 2 -u (n-2) 2 + E u (n) 3 -u (n-1) 3 + E u (n-1) 4 -u (n-2) 4 + D λ 2γ 3µ (u (n) 1 -u (n-1) 1 ) 2 + µ (u (n-1) 2 -u (n-2) 2 ) 2 + µ (u (n) 3 -u (n-1) 3 ) 2 + µ (u (n-1) 4 -u (n-2) 4 ) 2 .
Completely similar terms are obtained when dealing with the L 2 -norms of the other components. After summation in all the components, one gets 1 2

d dt µ | u (n) -u (n-1) | 2 ≤ -min(C 1 , C 2 )E u (n) -u (n-1) + λC LS 2γ 4E u (n) -u (n-1) + 2E u (n-1) -u (n-2) + Dλ 2γ 4µ | u (n) -u (n-1) | 2 + 2µ | u (n-1) -u (n-2) | 2 . Let κ ≡ min(C 1 , C 2 )-2λC LS γ
which is positive thanks to the assumed constraint [START_REF] Chen | Geometry of Orlicz spaces[END_REF].

Use the absolute continuity and the positivity of

t 0 E( u (n) -u (n-1) )(s)ds, to get 1 2 d dt µ | u (n) -u (n-1) | 2 + 2κ t 0 E u (n) -u (n-1) (s)ds ≤ D 2λ γ µ | u (n) -u (n-1) | 2 + 2κ t 0 E u (n) -u (n-1) (s)ds + D λ γ µ | u (n-1) -u (n-2) | 2 + C LS D E u (n-1) -u (n-2) .
Reminding the definition ( 16) of Σ n and that u (n) (0) = u (n-1) (0), after integration over [0, t], t ∈ [0, T ], we obtain the following main estimate

Σ n (t) ≤ D 4λ γ t 0 Σ n (s)ds + D 2λ γ t 0 µ | u (n-1) -u (n-2) | 2 (s)ds + C LS D t 0 E u (n-1) -u (n-2) (s)ds . ( 18 
)

Gronwall argument and convergence

Gronwall type arguments applied to the estimate [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF] give for any t ∈ [0, T ],

Σ n (t) ≤ D 2λ γ e D 4λ γ t t 0 µ(| u (n-1) -u (n-2) | 2 )(s)ds + C LS D t 0 E( u (n-1) -u (n-2) )(s)ds , It follows that sup t∈[0,T ] Σ n (t) ≤ η(T ) sup t∈[0,T ] Σ n-1 (t),
where

η(T ) = 2λ γ e D 4λ
γ T (DT + C LS ). Condition [START_REF] Chen | Geometry of Orlicz spaces[END_REF] implies that there exists

T (D) > 0 such that η(T ) < 1 since lim T →0 η(T ) = 4λ γ C LS . Therefore, for this choice of T > 0, ( u (n) ) n∈N satisfies max T 0 E( u (n) -u (n-1) )(s)ds, sup t∈[0,T ] µ(| u (n) -u (n-1) | 2 )(s) ≤ η(T ) n-1 sup t∈[0,T ] Σ 1 (t),
Performing a similar estimate for

1 2 d dt µ((u (n) i (t)) 2 ), one gets the uniform bound ∀n, ∀t ∈ [0, T ], Σ n (t) ≤ e 4λD γ t µ(| f | 2 ). ( 19 
)
It follows that

u (n) -u (n-1) L 2 ([0,T ],D 4 )∩C([0,T ],L 2 (µ) 4 ) ≤ 2e 4λD γ T µ(| f | 2 ) η(T ) n-1 .
Hence, ( u (n) ) n∈N is a Cauchy sequence: it converges to some function u

(∞) ∈ L 2 ([0, T ], D 4 ) ∩ C([0, T ], L 2 (µ) 4 ).

Global existence of the weak solution

Let T > 0 fixed as in the previous computation. We will first prove that the limit u (∞) is a weak solution of (RDP) in [0, T ]. Let φ ∈ C ∞ ([0, T ], D) and use the weak formulation of (RDP n ) for φ ≡ (φ, 0, 0, 0). For any t ∈ [0, T ],

- t 0 µ(u (n) 1 (s)∂ s φ)ds + µ(u (n) 1 (t)φ(t)) -µ(f 1 φ(0)) = -C 1 t 0 E(φ, u (n) 1 )(s)ds -λ t 0 µ(φu (n) 1 u (n-1) 2 
)(s)ds + λ t 0 µ(φu (n) 3 u (n-1) 4 
)(s)ds.

We now show we can pass to the limit n → ∞ in all the terms. (Dealing with other coordinates u

(n) i is similar by symmetry). Thanks to the continuity of the scalar product in L 2 ([0, T ], D), we have

lim n→∞ t 0 µ(u (n) 1 ∂ s φ)(s)ds = t 0 µ(u (∞) 1 ∂ s φ)(s)ds and lim n→∞ t 0 E(φ, u (n) 1 )(s)ds = t 0 E(φ, u (∞) 1 )(s)ds.
Moreover, as the convergence also holds in C([0, T ], L 2 (µ)), then lim n→∞ µ(u

(n) 1 φ)(t) = µ(u (∞) 1 φ)(t) and µ(f 1 φ(0)) = lim n→∞ µ(u (n) 1 φ)(0) = µ(u (∞) 1 φ)(0).
Dealing with the convergence of the term t 0 µ(φu

(n) 1 u (n-1) 2
)(s)ds (and similarly of t 0 µ(φu

(n) 3 u (n-1) 4 
)(s)ds) is more intricate. The difficulty is to show that u (∞) 1 belongs to L ∞ ([0, T ], E Φ 2 ) which will follow indirectly. The details are as follows.

By lemma 2.1,

τ n ≡ τ (12) n ≡ µ(φu (n) 1 u (n-1) 2 
) ∈ L 1 ([0, T ]). Let us show that this sequence is Cauchy, and so converges to, say, τ (12) in L 1 ([0, T ]). Indeed,

τ n -τ m 1 ≤ t 0 µ(|φ(s)| • |u (n) 1 u (n-1) 2 (s) -u (m) 1 u (m-1) 2 (s)|)ds ≤ t 0 µ(|φ| • |u (n) 1 -u (m) 1 | • |u (n-1) 2 |)(s)ds + t 0 µ(|φ| • |u (n-1) 2 -u (m-1) 2 | • |u (m) 1 |)(s)ds.
But by [START_REF] Desvillettes | About entropy methods for reaction-diffusion equations[END_REF], and again entropic and log-Sobolev inequalities,

t 0 µ(|φ| • |u (n) 1 -u (m) 1 | • |u (n-1) 2 |)(s)ds ≤ max(C LS , log M γ ) γ φ L 2 (I,L 2 (µ)) u (n) 1 -u (m) 1 L 2 (I,D) (20) 
with M γ ≡ max µ(e γ(f 1 +f 3 ) 2 ), µ(e γ(f 2 +f 4 ) 2 ) . This goes to 0 as n, m → +∞.

Now, for any

t ∈ [0, T ], u (n) 1 (t) → u (∞) 1 (t) in L 2 (µ)
, so that along a subsequence it converges µ a.s.. Hence first u (∞) 1 (t) is nonnegative (µ a.s.) and secondly by Fatou lemma µ(e γ(u (∞) (12) (s)ds + λ t 0 τ (34) (s)ds.

1 (t)) 2 ) ≤ lim inf n µ(e γ(u (n) 1 (t)) 2 ) ≤ M γ < ∞
- t 0 µ(u (∞) 1 (s)∂ s φ)ds + µ(u (∞) 1 (t)φ(t)) -µ(f 1 φ(0)) = -C 1 t 0 E(φ, u (∞) 1 )(s)ds -λ t 0 τ
In particular, choosing φ(t) = ϕ ∈ D, the mapping t ∈ [0, T ] → µ(ϕu

(∞) 1 (t)) ∈ R is continuous. Then, arguments detailed on page 9 ensure that u (∞) 1 ∈ L ∞ (I, L Φ 2 ). Furthermore, t 0 µ(φu (n) 1 u (n-1) 2 )(s)ds - t 0 µ(φu (∞) 1 u (∞) 2 )(s)ds ≤ t 0 µ(|φ| • |u (n) 1 -u (∞) 1 | • |u (n-1) 2 |)(s)ds + t 0 µ(|φ| • |u (n-1) 2 -u (∞) 2 | • |u (∞) 1 |)(s)ds.
Letting separately n (resp. m) to +∞ in [START_REF] Efendiev | Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation[END_REF] shows that t 0 µ(φu

(n) 1 u (n-1) 2 )(s)ds → t 0 µ(φu (∞) 1 u (∞) 2 )(s)ds.
All this implies that

u (∞) = (u (∞) 1 , u (∞) 2 , u (∞) 3 , u (∞) 4 ) ∈ L 2 (I, D) ∩ C(I, L 2 (µ)) ∩ L ∞ (I, E Φ 2 )
4 is a nonnegative weak solution of (RDP).

From the local existence in [0, T ] to a global existence in [0, ∞) it is enough to prove that we can repeat the method on the interval [T, 2T ]. This follows from the estimate µ(e γ(u (∞) 1 +u (∞) 3

) 2 (T ) ) ≤ µ(e γ(f 1 +f 3 ) 2 ).

See lemma C.1.

Proposition 4.1 (Uniqueness) Let f 0 such that, for some γ > 0,

M ≡ max µ(e γ(f 1 +f 3 ) ), µ(e γ(f 2 +f 4 ) ) < ∞.
Assume the diffusion coefficients C 1 and C 2 , the logarithmic Sobolev constant C LS of L, the reaction rate λ and the exponential integrability parameter γ are linked by the constraint

4 λC LS min(C 1 , C 2 ) ≤ γ.
Then a weak solution of the Reaction-Diffusion problem (RDP) with initial datum f is unique.

We recall basics on Steklov calculus (see [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] for instance), i.e. appropriate time regularization to deal with weak solutions. For any Banach space X, and any v ∈ L 2 ([0, T ], X), the Steklov average, defined by

a h (v)(t) = 1 h t+h t v(τ ) dτ , 0 ≤ t ≤ T -h, 0 , T -h < t ≤ T converges to v in L 2 ([0, T ], X) when h goes to 0. Moreover, provided v ∈ C([0, T ], X), a h (v) ∈ C 1 ([0, T -h], X), d dt a h (v)(t) = 1 h (v(t + h) -v(t)
) in X, and a h (v)(t) converges to v(t) in X, for every t ∈ [0, T ]. The space X will be here L 2 (µ) or D depending on the context.

Proof of Proposition 4.1 ⊳ Let u and v be two weak solutions of (RDP) with the same initial datum f 0. Let M ∈ (0, ∞) such that, ∀i = 1, . . . , 4, µ(e γ|u i (t)| ) ≤ M , t a.e., (and similarly for v). Let w ≡ u -v and a h (w i )(t) the Steklov average of the i component of w as defined before. Integrating

1 2 d ds µ (a h (w i )(s)) 2 = µ(a h (w i )(s)∂ s a h (w i )) one gets µ (a h (w i )(t)) 2 = µ (a h (w i )(0)) 2 + 2 t 0 dsµ a h (w i )(s) 1 h (w i (s + h) -w i (s)) . (21) 
We then use the definition of a weak solution with the constant test function

a h (w i )(s) ∈ D on the interval [s, s + h] to get µ(a h (w i )(s) 1 h (w i (s + h) -w i (s))) = -C i 1 h s+h s E(a h (w i )(s), w i (τ ))dτ + λ i 1 h s+h s dτ µ a h (w i )(s) (u 1 u 2 -u 3 u 4 )(τ ) -(v 1 v 2 -v 3 v 4 )(τ ) Now, first, 1 h s+h s E(a h (w i )(s), w i (τ ))dτ = E(a h (w i )(s), a h (w i )(s)).
And the other term is bounded from above by

λ h 2 [s,s+h] 2 dτ dτ ′ µ |u i -v i |(τ ′ ) |u 1 -v 1 |(τ )|u 2 |(τ ) + |v 1 |(τ )|u 2 -v 2 |(τ )+ |u 3 -v 3 |(τ )|u 4 |(τ ) + |v 3 |(τ )|u 4 -v 4 |(τ ) .
We can deal with the four similar terms by the same way: let us focus on the first one. One first uses

µ |u i -v i |(τ ′ )|u 1 -v 1 |(τ )|u 2 |(τ ) ≤ 1 2 µ (u i -v i ) 2 (τ ′ )|u 2 |(τ ) + (u 1 -v 1 ) 2 (τ )|u 2 |(τ ) .
Once gain, entropic inequality followed by logarithmic Sobolev inequality give

λ h 2 [s,s+h] 2 dτ dτ ′ µ |u i -v i |(τ ′ )|u 1 -v 1 |(τ )|u 2 |(τ ) ≤ ≤ λ 2γ 1 h s+h s C LS E(u i -v i )(τ ′ ) + log M µ((u i -v i ) 2 (τ ′ )) dτ ′ + λ 2γ 1 h s+h s C LS E(u 1 -v 1 )(τ ) + log M µ((u 1 -v 1 ) 2 (τ )) dτ.
Note that, up to a constant, the first term of the RHS is the Steklov average of the

L 1 ([0, T ]) function C LS E(u i -v i )(•) + log M µ((u i -v i ) 2 (•)
), so that, as h → 0, it converges in L 1 ([0, T ]) to that function. Going back to [START_REF] Evans | Partial differential equations[END_REF] and performing all the explained bounds before passing to the limit h → 0, one gets the estimate (note that w i (0) = 0)

µ(w 2 i (t)) ≤ 2 t 0 ds -C i E(w i )(s)+ λC LS 2γ 4E(w i )(s)+E( w)(s) + λ log M 2γ 4µ(w 2 i (s))+µ( w 2 )(s)
Summing over all i's, one gets

µ( w 2 )(t) ≤ 2 (-min(C 1 , C 2 ) + 4 λC LS γ ) t 0 dsE( w)(s) + 8 λ log M γ t 0 dsµ( w 2 )(s) ≤ 8 λ log M γ t 0 dsµ( w 2 )(s)
provided the announced constraint 4 λC LS γ ≤ min(C 1 , C 2 ) is satisfied. Uniqueness follows by Gronwall arguments. ⊲ 5 Proof of Lemma 3.1

Our approach to study the cornerstone linear problem introduced in lemma 3.1 will be as follows. We first complete regularity lemma 2.1 by another preliminary lemma (relative to differentiability) which allow us to perform a recursive approximation of the solution of a mollified problem (with a small action of the semigroup on the extra affine term). On the way, we show a priori estimates which will be useful later to remove the mollification and get a solution of our initial problem. Uniqueness and preservation of positivity are tackled in specific sections.

Such an approach was already proposed in [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF], and computations look quite similar. The main difference consists in the fact that, as A(t) ∈ L Φ 2 (µ), then one has µ(e γ|A(t)| ) < ∞ for any γ (see appendix B), so that, using of the entropic inequality, contribution of the affine extra term may be made small enough to be dominated by the log-Sobolev constant without further constraint.

Preliminaries

We recall that L 2 (µ) may be continuously embedded in the dual space D ′ of the domain D. From lemma 2.1, it follows that the multiplication operator by a function v ∈ L ∞ ([0, T ], L Φ 2 (µ)) is a particular case of a Lipschitz continuous operator from L 2 ([0, T ], D) to L 2 ([0, T ], D ′ ). The following lemma may be stated in this more general context (an example of which was studied in [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF]).

Lemma 5.1 (Absolute continuity, differentiability a.e. and weak solutions)

Let z ∈ L 2 ([0, T ], D ′ ), f ∈ L 2 (µ) and ε > 0. Define u(t) = P t f + t 0 P t-s+ε z(s)ds. Then u belongs to L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ))
and is (strongly) absolutely continuous from [a, T ] to L 2 (µ), for any 0 < a < T . And consequently, the continuous function

t ∈ [0, T ] → µ(u 2 (t)) ∈ R is absolutely continuous on [a, T ].
Moreover, for all t a.e. in [0, T ], u(t) is differentiable w.r.t. t in L 2 (µ), belongs to the domain of L, and satisfies

∂ ∂t u(t) = Lu(t) + P ε (z(t)), t a.e. u(0) = f. ( 22 
)
As a consequence, u ∈ L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ)) is a weak solution of (22) i.e., for any φ ∈ C ∞ ([0, T ], D), - t 0 µ(u(s)∂ s φ(s)) ds + µ (u(t)φ(t) -u(0)φ(0)) = - t 0 E(u(s), φ(s)) ds + t 0 µ (φ(s)P ε z(s)) ds. ( 23 
)
Proof ⊳ Let us first note that the Markov semigroup itself satisfies all the announced assertions. We only focus on absolute continuity.

Let ([a i , b i ]) i=1,...,N be a finite collection of (non empty) non overlapping subintervals of [a, T ]. Then,

P b i f -P a i f = b i -a i 0 P τ LP a i f dτ so that P b i f -P a i f L 2 (µ) ≤ (b i -a i ) LP a i f L 2 (µ) .
Strong absolute continuity follows as, by spectral theory, for any α > 0 and any f ∈ L 2 (µ),

LP α f 2 L 2 (µ) = µ (-L)P α f 2 = µ (-L) 2 P 2α f f = 1 α 2 ∞ 0 (αξ) 2 e -2αξ ν f (dξ) ≤ C α 2 µ(f 2 ), ( 24 
)
for some constant C > 0. Note that, one also has

E(P ε f ) ≤ C ε µ(f 2 ) for any f ∈ L 2 (µ). It follows that P ε f D ≤ 1 + C ε f L 2 (µ) . By duality, f L 2 (µ) ≤ f D ′ , then P ε z L 2 (µ) ≤ 1 + C ε z D ′ ∈ L 2 ([0, T ]).
We'll write z ≡ P ε z ∈ L 2 ([0, T ], L 2 (µ)) (or even sometime z ≡ P ε/2 z).

We now turn our attention to the second term,

Ψ ε (z)(t) ≡ t 0 P t-s+ε z(s)ds, (ε > 0). First, we show absolute continuity on [0, T ] of Ψ ε (z) in L 2 (µ). With ([a i , b i ]) i=1,...,N a finite collection of non overlapping subintervals of [0, T ], Ψ ε (z)(b i ) -Ψ ε (z)(a i ) L 2 (µ) = b i a i P b i -s+ε (z(s))ds + a i 0 ds[P b i -s -P a i -s ](P ε z(s)) L 2 (µ) ≤ b i a i P ε z(s) L 2 (µ) ds + a i 0 ds b i -s a i -s P τ L(P ε z(s)) L 2 (µ) ≤ b i a i z(s) L 2 (µ) ds + C ε (b i -a i ) T 0 z(s) D ′ ds
by another use of ( 24). (Strong) Absolute continuity follows.

Continuity of u at t = 0 in L 2 (µ) follows by C 0 property of the semigroup. Indeed, Ψ ε (z)(t) L 2 (µ) ≤ t 0 z(s) L 2 (µ) ds which goes to 0 as t goes to 0. To prove that, for any t a.e., Ψ ε (z)(t) ∈ D and T 0 E(Ψ ε (z)(t))dt < +∞, we will use spectral theory. One has

E( t 0 P t-s+ε (z(s))ds, t 0 P t-τ +ε (z(τ ))dτ ) ≤ [0,t] 2
ds dτ E(P t-s+ε (z(s)), P t-τ +ε (z(τ ))) ≤ t t 0 E(P t-s+ε (z(s)))ds thanks to Cauchy-Schwarz inequality. Hence,

T 0 E(Ψ ε (z)(t))dt ≤ T T 0 dt t 0 ds E(P t-s (z(s))) = T T 0 ds T s dt E(P t-s (z(s)))
by a first use of Fubini-Tonelli theorem. Then, noting that

E(P t-s (z(s))) = ∞ 0 ξe -2(t-s)ξ ν z(s) (dξ)
and using once again Fubini-Tonelli theorem for dt ⊗ ν z(s) (dξ) at fixed s, one gets

T 0 E(Ψ ε (z)(t))dt ≤ T T 0 ds ∞ 0 ν z(s) (dξ) ξ T s e -2(t-s)ξ dt ≤ T T 0 ds ∞ 0 ν z(s) (dξ) ξ 1 -e -2(T -s)ξ 2ξ ≤ T 2 T 0 dsµ(z 2 (s)) < ∞.
Now, we show that provided ε > 0, Ψ ε (z)(t) is differentiable in L 2 (µ) for any t a.e. in [0, T ] and,

∀t a.e, ∂ ∂t Ψ ε (z)(t) = P ε (z(t)) + t 0 P t-s LP ε z(s)ds = P ε (z(t)) + L(Ψ ε (z)(t)).
Let h > 0 (the case when h < 0 can be dealt with in the same way). Let us consider (in L 2 (µ)) the difference between the associated differential ratio and the expected derivative

1 h t+h 0 P t+h-s+ε z(s)ds - t 0 P t-s+ε z(s)ds - t 0 P t-s LP ε z(s)ds -P ε z(t).
We split it into three terms. First,

(I) = 1 h t+h t P t+h-s -Id P ε z(s)ds.
Secondly,

(II) = 1 h t+h t P ε z(s)ds -P ε z(t).
And third, (III) = t 0 ds (P t+h-s+ε -P t-s+ε ) h z(s) -P t-s LP ε z(s) .

Now, these three terms all go to 0 in L 2 (µ) as 0 < h goes to 0.

Indeed, we deal with the first term as for absolute continuity of Ψ ε (z) above. One has

1 h t+h t [P t-s+h -Id] P ε z(s)ds L 2 (µ) ≤ 1 h t+h t ds t+h-s 0 P τ LP ε z(s) L 2 (µ) dτ ≤ C ε t+h t t + h -s h z(s) L 2 (µ) ds ≤ C ε t+h t ds z(s) L 2 (µ) ,
which goes to 0 as h → 0.

Convergence of (II) to 0 in L 2 (µ), and this for any t a.e., follows from the easy part of the fundamental theorem of calculus for Bochner integrable functions with values in L 2 (µ) (proved via comparison with strongly Henstock-Kurzweil integrable functions and Vitali covering arguments in [41, Theorems 7.4.2 and 5.1.4.] for instance).

Finally, we focus on (III). For any s a.e., as 0 < h goes to 0,

(P h+ε -P ε ) h z(s) → LP ε z(s)
in L 2 (µ) as P ε z(s) ∈ D(L). And we can use dominated convergence theorem as, for g ε (τ, s) ≡ P τ (P ε z(s)),

∂ ∂τ g ε (τ, s) 2 L 2 (µ) = P τ (-L)P ε z(s) 2 L 2 (µ) ≤ C ε 2 z(s) 2 L 2 (µ)
still using [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF].

At the end of the day, u is a solution a.e. of [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF]. Deducing that u is a weak solution is easy. If φ ∈ C ∞ ([0, T ], L 2 (µ)), by bilinearity, uφ is absolutely continuous in L 1 (µ) on [a, T ], 0 < a < T , and so is the real valued function t → µ(u(t)φ(t)). The weak formulation follows when a → 0 in the integration by parts formula

t a dsµ(∂ s u φ(s)) = µ(u(t)φ(t)) -µ(u(a)φ(a)) - t a dsµ(u(s) ∂ s φ).
The proof is complete. ⊲ 

A mollified problem

. So T > 0 is fixed, A(t) ∈ L ∞ ([0, T ], L Φ 2 (µ)) and B(t) ∈ L 2 ([0, T ], L 2 (µ)).
Let us fix ε > 0 and let us consider the following mollified problem

∂ t u (ε) (t) = Lu (ε) (t) + P ε -A(t) u (ε) (t) + B(t) , u (ε) (0) = f, f ∈ L 2 (µ) (CS ε )
We will prove that, for any ε > 0 (and with some more work still at the limit ε → 0), the problem

(CS ε ) has a weak solution in [0, T ] that is u (ε) ∈ L 2 ([0, T ], D) ∩ C([0, T ], L 2 (µ)) and, for any φ ∈ C ∞ ([0, T ], D), and any 0 ≤ t ≤ T , - t 0 µ(u (ε) (s)∂ s φ(s)) ds+µ u (ε) (t)φ(t) -u (ε) (0)φ(0) = - t 0 E(u (ε) (s), φ(s)) ds + t 0 µ φ(s)P ε -A(s)u (ε) (s) + B(s) ds. (weak-CS ε )
To handle this problem, let us consider the following iteration scheme which, as we will prove later, converge to the unique weak solution u (ε) of our problem (CS ε ). Initially,

∂ t u (ε) 0 = Lu (ε) 0 u (ε) 0 |t=0 = f and then define u (ε) n+1 (t) ≡ P t f + t 0 P ε+t-s (-A(s)u (ε) n (s) + B(s))ds. ( 25 
)
It follows from Lemmas 2.1 and 5.1 that, for any f ∈ L 2 (µ), u

(ε) n+1 ∈ C([0, T ], L 2 (µ)∩ L 2 ([0, T ], D)
, and that for any t a.e. in [0, T ], u

(ε) n+1 (t) is differentiable in L 2 (µ) and    ∂ t u (ε) n+1 = Lu (ε) n+1 (t) + P ε -A(t)u (ε) n (t) + B(t) , u (ε) n+1 |t=0 = f, (26) 
The convergence scheme we detail below is adapted from the one presented in [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF] in another context.

Proposition 4 (Uniform bound) Fix ε > 0 and f ∈ L 2 (µ). Let u (ε)
n be the recursive solution of the mollified problem introduced above.

There exists β ∈ (0, +∞) and 0 < T 0 ≤ T both independent of ε and of the initial condition f such that for any n ∈ N,

sup 0≤t≤T 0 µ((u (ε) n ) 2 (t)) + t 0 E(u (ε) n )(s)ds ≤ β µ(f 2 ) + ||B(•)|| 2 L 2 ([0.T ],L 2 (µ)) . ( 27 
)
Proof ⊳ We use the notation ũ(ε)

n = P ε u (ε)
n . For any t a.e., 1 2

d dt µ((u (ε) n+1 ) 2 ) = µ(u (ε) n+1 Lu (ε) n+1 ) -µ(A(t)ũ (ε) n+1 u (ε) n ) + µ(B(t)ũ (ε) n+1 ) ≤ -E(u (ε) n+1 ) + 1 2 µ(|A(t)|((ũ (ε) n+1 ) 2 + (u (ε) n ) 2 ) + µ(B 2 (t)) 1 2 µ(ũ (ε) n+1 ) 2 1 2 ≤ -E(u (ε) n+1 ) + 1 2 µ(|A(t)|((ũ (ε) n+1 ) 2 + (u (ε) n ) 2 ) + 1 2 1 γ µ(ũ (ε) n+1 ) 2 + γµ(B 2 (t)) . Let M γ ≡ ||µ(e γ|A|(•) )|| L ∞ ([0,T ]) . (28) 
Note that 1

≤ M γ < ∞ for any γ > 0 since A ∈ L ∞ ([0, T ], L Φ 2 (µ)).
By a similar argument, the entropic and the logarithmic Sobolev inequalities give

µ(|A(t)|(ũ (ε) n+1 ) 2 ) ≤ 1 γ Ent µ ((ũ (ε) n+1 ) 2 ) + µ((ũ (ε) n+1 ) 2 ) γ log µ(e γ|A(t)| ) ≤ C LS γ E(ũ (ε) n+1 ) + µ((ũ (ε) n+1 ) 2 ) γ log M γ ,
and similarly for the other term. So that 1 2

d dt µ((u (ε) n+1 )) 2 ≤ -E(u (ε) n+1 ) + C LS 2γ [E(ũ (ε) n+1 ) + E(u (ε) n )] + 1 + log M γ 2γ [µ((ũ (ε) n+1 ) 2 ) + µ((u (ε) n ) 2 )] + γ 2 µ(B 2 (t)).
Using E(ũ

(ε) n+1 ) ≤ E(u (ε) n+1 ) and µ((ũ (ε) n+1 ) 2 ) ≤ µ((u (ε) n+1 ) 2
) and integrating with respect to t, µ((u

(ε) n+1 ) 2 (t)) + 2(1 - C LS 2γ ) t 0 E(u (ε) n+1 )(s)ds ≤ µ(f 2 ) + 1 + log M γ γ t 0 µ((u (ε) n+1 ) 2 )(s)ds + 1 + log M γ γ t 0 µ((u (ε) n ) 2 )(s)ds + C LS γ t 0 E(u (ε) n )(s)ds + γ||B(•)|| 2 L 2 ([0.T ],L 2 (µ)) . Choosing γ > C LS 2 , κ γ ≡ 1 -C LS 2γ > 0 and setting θ n (t) = µ((u (ε) n ) 2 )(t) + 2κ γ t 0 E(u (ε) n )(s)ds,
the above inequality implies

θ n+1 (t) ≤ µ(f 2 ) + γ||B(•)|| 2 L 2 ([0.T ],L 2 (µ)) + 1 + log M γ γ t 0 θ n+1 (s)ds + 1 + log M γ γ t 0 θ n (s)ds + C LS 2γκ γ θ n (t).
Hence, by Gronwall type arguments, one gets

θ n+1 (t) ≤ e 1+log Mγ γ t α + 1 + log M γ γ t 0 θ n (s)ds + C LS 2γκ γ θ n (t) , where α = µ(f 2 ) + γ||B(•)|| 2 L 2 ([0.T ],L 2 (µ)) . It gives, for any 0 < T 0 ≤ T , sup t∈[0,T 0 ] θ n+1 (t) ≤ e 1+log Mγ γ T 0 α + e 1+log Mγ γ T 0 1 + log M γ γ T 0 + C LS 2γ -C LS sup t∈[0,T 0 ] θ n (t) Let us denote Z n = sup t∈[0,T 0 ] θ n (t). Now, provided we choose γ > C LS , C LS 2γ-C LS < 1, so that, for T 0 > 0 small enough, η T 0 = e 1+log Mγ γ T 0 1 + log M γ γ T 0 + C LS 2γ -C LS < 1.
we end up with

Z n+1 ≤ e 1+log Mγ γ T 0 α + η T 0 Z n ,
Hence, by induction,

Z n ≤ αe 1+log Mγ γ T 0 (1 + • • • + η n-1 T 0 ) + η n T 0 Z 0 .
Note that

Z 0 = sup t∈[0,T 0 ] µ(P t (f ) 2 ) + 2κ γ t 0 E(P s (f ))ds ≤ sup t∈[0,T 0 ] µ(P t (f ) 2 ) + 2 t 0 E(P s (f ))ds ≤ µ(f 2 ) ≤ α, since the map s → µ(P t (f ) 2 ) + 2 t 0 E(P s (f ))ds is decreasing. It follows that, for any n 0, Z n ≤ αe 1+log Mγ γ T 0 (1 + • • • + η n T 0 ) ≤ αe 1+log Mγ γ T 0 1 1 -η T 0 ,
which is the expected bound. ⊲ Proposition 5 (Existence for mollified problem; ε > 0) For any ε > 0 and any initial datum f ∈ L 2 (µ), there exists a weak solution u (ε) on [0, T ] of the mollified problem (CS ε ) as defined in (weak-CS ε ).

Proof ⊳ Let w (ε) n+1 = u (ε) n+1 -u (ε) 
n and w(ε)

n = P ε (w (ε) 
n ). For any t 0 a.e., 1 2

d dt µ((w (ε) n+1 ) 2 ) = -E(w (ε) n+1 ) -µ( w(ε) n+1 A(t)w (ε) n ).
Again thanks to the entropic and the logarithmic Sobolev inequalities, 1 2

d dt µ((w (ε) n+1 ) 2 ) ≤ -E(w (ε) n+1 ) + C LS 2γ E( w(ε) n+1 ) + E(w (ε) n ) + log M γ 2γ µ(( w(ε) n+1 ) 2 ) + µ((w (ε) n ) 2 ) ,
where M γ were defined in the proof of Proposition 4. By the same arguments as before, µ((w

(ε) n+1 ) 2 (t)) + 2κ γ t 0 E(w (ε) n+1 )(s)ds ≤ log M γ γ t 0 µ((w (ε) n+1 ) 2 )(s)ds + log M γ γ t 0 µ((w (ε) n ) 2 )(s)ds + C LS γ t 0 E(w (ε) n )(s)ds,
with again κ γ = 1 -C LS 2γ > 0 provided we choose γ > C LS 2 . Fixing 0 < T0 ≤ T 0 , where T 0 has been defined in the previous proposition, and mimicking what we have done to prove that proposition, this leads to

sup t∈[0, T0 ] { θn+1 (t)} ≤ η T0 sup t∈[0,T ] { θn (t)},
where θn (t) = µ((w

(ε) n+1 ) 2 ) + 2κ γ t 0 E(w (ε) n+1 )(s)ds and where η T0 = (M γ ) T0 γ log M γ γ T0 + C LS 2γ -C LS .
If we choose γ > C LS , we may take 0 < T0 ≤ T 0 small enough (and independent of the initial condition f ) so that η T0 < 1.

Iterating and using uniform bound [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF] for n = 1 (and n = 0), one gets

sup t∈[0, T0 ] { θn+1 (t)} ≤ β µ(f 2 ) + ||B(•)|| 2 L 2 ([0.T ],L 2 (µ)) ηn T0 .
It follows that (u

(ε) n ) n∈N is a Cauchy sequence in L 2 ([0, T0 ], D) ∩ C([0, T0 ], L 2 (µ)
). It converges to some u (ε) which is a weak solution in [0, T0 ] of (CS ε ) (see page 12, but note that things are much simpler here). As T0 does not depend on f , one easily extends the solution to the entire interval [0, T ]. ⊲

Uniqueness

We now state uniqueness of a weak solution for both cases : with or without a mollification.

Proposition 6 (Uniqueness) For any ε 0, a weak solution u (ε) on [0, T ] of the problem (CS ε ) with initial datum f ∈ L 2 (µ) is unique.

We omit the proof which is quite similar to the one of proposition 4.1.

Existence for the cornerstone linear problem

Recall remark 3:

T > 0 is fixed and A(t) ∈ L ∞ ([0, T ], L Φ 2 (µ)) and B(t) ∈ L 2 ([0, T ], L 2 (µ)).
Proposition 7 (Removing the smoothing) Let f ∈ L 2 (µ). There exists 0 < T 0 ≤ T (independent of f ) such that the weak solution u (ε) , ε > 0, of the mollified problem (CS ε ), (with the same initial datum f ) converges as ε goes to 0, to some limit function u in L 2 ([0, T 0 ], D) ∩ C([0, T 0 ], L 2 (µ)). Moreover, u may be extended to a weak solution of the cornerstone linear problem (CS), with initial datum f , on [0, T ].

Proof ⊳ Let ε 1 > ε 0 > 0 and let u 0 = u (ε 0 ) and u 1 = u (ε 1 ) be the associated solutions of the mollified problem (weak-CS ε ). Using Steklov calculus as in the previous proof, we get the same estimate as if we were dealing with strong solutions. Here we avoid such technicalities to focus on the main arguments. Let us denote w = u 1 -u 0 and w = P ε 1 w. One has

1 2 d dt µ(w 2 ) = -E(w) + µ(w[P ε 1 (-A(t)u 1 + B(t)) -P ε 0 (-A(t)u 0 + B(t))]) = -E(w) + µ wP ε 1 (-A(t)w) (I) +µ w(P ε 1 -P ε 0 )(-A(t)u 0 + B(t)) .
Term (I) is bounded by C LS γ E(w(t))+ log(Mγ ) γ µ(w 2 (t)) as in the previous proof. After integration, using symmetry of the semigroup, one gets , (which is the estimate we would get rigorously after letting h → 0 in the Steklov regularisation). After using Gronwall type arguments and taking the supremum over t ∈ [0, T 0 ], 0 < T 0 ≤ T , we note that, if we prove term (II) goes to 0 as ε 1 > ε 0 > 0 both go to 0, then (u (ε) ) ε>0 is Cauchy (as ε goes to 0) in the Banach space L 2 ([0, T 0 ], D) ∩ C([0, T 0 ], L 2 (µ)). Now, by Cauchy-Schwarz inequality, (II)

≤ t 0 dsµ [(P ε 1 -P ε 0 ) (w(s))] 2 1 2 1 2 t 0 dsµ A 2 (s)u 2 0 (s) + B 2 (s) 1 2 
.

Following lemma 2.1,

t 0 dsµ A 2 (s)u 2 0 (s) + B 2 (s) ≤ Au 0 2 L 2 ([0,T ],L 2 (µ)) + B 2 L 2 ([0,T ],L 2 (µ)) ≤ max(log(2), C LS ) A 2 L ∞ ([0,T ],L Φ 2 (µ)) u (ε 0 ) 2 L 2 ([0,T ],D) + B 2 L 2 ([0,T ],L 2 (µ)) .
Choosing T 0 as in Proposition 4, one may pass to the limit n → ∞ in the uniform bound [START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF] to get that, for any ε > 0,

u (ε) 2 L 2 ([0,T ],D) ≤ β (T 0 + 1) (µ(f 2 ) + B 2 L 2 ([0,T ],L 2 (µ)) . (30) 
So the second factor of ( 29) is bounded uniformly in ε 0 . In order to prove convergence to 0 of the other factor t 0 dsµ [(P ε 1 -P ε 0 ) (w(s))] 2 when ε 1 > ε 0 > 0 both go to 0, one makes use of spectral theory and the above uniform bound [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]. Details are given in [START_REF] Fougères | Sub-gaussian measures and associated semilinear problems[END_REF]Theorem 4.10].

Eventually, the limit u of (u (ε) ) ε>0 (as ε goes to 0) in L 2 ([0, T 0 ], D)∩C([0, T 0 ], L 2 (µ)) is a weak solution, which can be extended to a weak solution on the entire interval [0, T ] as T 0 doesn't depend on the initial datum f . ⊲

Non-negativity

We prove here that, provided A and B are nonnegative, the weak solution u of problem (CS), with a nonnegative initial datum f , is nonnegative.

Let us define u -= (-u) + = max(-u, 0). Then, formally, 1 2

d dt µ((u -(t)) 2 ) = -µ(u -(t)∂ t u) = -µ((u -(t)Lu(t))+µ(u -(t)A(t)u(t))-µ(u -(t)B(t)) ≤ -µ A(t) (-u) + (t)(-u)(t) =((-u) + (t)) 2
+ E(u -(t), u(t)) ≤ 0 using positivity of A(•) and B(•), and E(u

-(t), u(t)) ≤ -E(u -(t), u -(t)) ≤ 0.
Rigorous arguments to get this are as follows. We consider the Steklov average a h (u)(t) and its negative part a - h (u)(t) ≡ max(0, -a h (u)(t)). Recall that, as h goes to 0, for any t ∈

[0, T ], a - h (u)(t) → u -(t) in L 2 (µ) and a h (u) → u in L 2 ([0, T ], D). It follows that a - h (u) → u -in L 2 ([0, T ], D).
Namely, from any sequence going to 0, extract a subsequence (h n ) such that, for any t a.e. in [0, T ], a hn (u)(t) → u(t) in D. By continuity of contractions [START_REF] Ancona | Continuité des contractions dans les espaces de Dirichlet[END_REF], it follows a - hn (u)(t) → u -(t) , in D, t a.e. and one may check easily that the sequence ( a - hn (u

)(t) -u -(t) 2 D ) n is uniformly integrable in L 1 ([0, T ]).
Moreover, in W 1,2 ((0, T ), L 2 (µ)),

∂ s a - h (u)(s) = -∂ s a h (u)(s)χ {a h (u)(s)≤0} = - 1 h (u(s + h) -u(s))χ {a h (u)(s)≤0}
where χ denotes the indicator function. Hence, using the definition of a weak solution (with the constant test function a - h (u)(s) ∈ D), we get

1 2 µ a - h (u)(t) 2 = 1 2 µ a - h (u)(0) 2 + 1 2 t 0 ds ∂ s µ a - h (u)(s) 2 = 1 2 µ a - h (u)(0) 2 - t 0 ds µ a - h (u)(s) 1 h (u(s + h) -u(s)) = 1 2 µ a - h (u)(0) 2 + t 0 ds 1 h s+h s dτ E a - h (u)(s), u(τ ) + µ a - h (u)(s) A(τ )u(τ ) -B(τ ) = 1 2 µ a - h (u)(0) 2 + t 0 ds E a - h (u)(s), a h (u)(s) + µ a - h (u)(s) a h A(•)u(•) -B(•) (s)
We can pass to the limit with h → 0 which yields (as µ (f -) 2 = 0)

1 2 µ u -(t) 2 = t 0 ds E(u -(s), u(s)) + µ u -(s) (A(s)u(s) -B(s) ≤ 0,
for the same reason as above.

The proof of Lemma 3.1 is complete.

Extension to the general case

The chemical reactions we consider here are of the following form

i∈F α i A i ⇋ i∈F β i A i ,
for some given integers α i = β i , for any i ∈ F . F = {1, . . . , q} is a finite set. The associated reaction-diffusion equation is (after appropriate change of variables)

∂ t u i = L i u i + λ i (β i -α i ) q j=1 u α j j -q j=1 u β j j u i|t=0 = f i , i ∈ F ( 31 
)
This equation is a particular form of the abstract equation (RDP) on page 4 with constant vector λ i (β i -α i ), i = 1, . . . , q and nonlinearity G( u) = q j=1 u α j j -q j=1 u β j j . The method we detailed for the two-by-two case may be adapted to this general situation provided the following assumptions hold.

Linearity assumptions

We assume that i. F may be partitioned as F = ⊔ k∈K F k so that, L i only depends on which F k , k ∈ K, the index i belongs to. We denote by Lk the common operator for any i ∈ F k . For any k ∈ K, one has the following:

ii. Lk is a Markov generator with (selfadjoint in the L 2 space associated with the) invariant probability measure µ k on (M, B M ) (with the same assumptions as in page 4).

iii. ( Lk , µ k ) satisfies logarithmic Sobolev inequality with constant C k .

iv. The measures (µ k ) k∈K are mutually equivalent in the strong sense that there exists a measure µ on (M, B M ) and C ∈ (1, +∞) such that

∀k ∈ K, 1 C ≤ dµ k dµ ≤ C.

Nonlinearity assumptions

Let F - k = {i ∈ F k , β i -α i < 0} and F + k = {i ∈ F k , β i -α i > 0}.
We assume that, for any k ∈ K, F - k and F + k are not empty. (Note that this replaces, in the present context, the hypothesis we made in the two-by-two case that C 1 = C 3 and C 2 = C 4 .)

Initial data assumptions

We assume the following common exponential integrability on the initial data.

Common integrability assumption. We assume that, for any i = 1, . . . , q, f i ∈ E Φ 2θ (µ), where θ ≡ max( q i=1 α i , q i=1 β i ) -1.

Iterative sequence

We now define an approximation sequence ( u (n) (t)) n∈N which converges to the solution of problem [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF]. It is obtained recursively as solutions of the following linear problems.

Lemma 8 Assume p 1 , . . . p q r > 0 such that 1

p 1 + • • • + 1 pq = 1 r . Let Φ(x) = exp(|x|) -1 and recall Φ β (x) = Φ(|x| β
), for any β 1. Then, for any α > 0 such that αr 1, the q-linear mapping

(u 1 , . . . , u q ) ∈ L Φαp 1 (µ) × • • • × L Φαp q (µ) → u 1 . . . u q ∈ L Φαr (µ) is continuous.
Proof ⊳ Assume u i = 0, for all i = 1, . . . , q and denote γ i ≡ u i -1

L Φαp i . Then one has ∀i = 1, . . . , q, µ q j=1 u α j j - q j=1 u β j j exp |γ i u i | αp i ≤ 2.
The result will follow if we show that µ exp |γ 1 . . . γ q u 1 . . . u q | αr ≤ 2.

Recall Young inequality: for any a 1 , . . . , a q 0,

1 r a r 1 . . . a r q ≤ a p 1 1 p 1 + • • • + a pq q p q .
Hence, using also Hölder inequality,

µ e (γ 1 |u 1 |) αr ...(γq|uq|) αr ) ≤ µ e r p 1 (|γ 1 u 1 | αp 1 ) . . . e r pq |γquq| αpq ) ≤ µ e |γ 1 u 1 | αp 1 ) r p 1 . . . µ e |γquq| αpq ) r pq ≤ 2 r p 1 +•••+ r pq = 2.

⊲

To prove recursively that the sequence ( u (n) ) n is well defined, we have to split the cornerstone existence lemma into the following two lemmas. Lemma 6.1 (Matrix cornerstone existence lemma) Let (L, µ) be a Markov generator satisfying logarithmic Sobolev inequality with constant C LS ∈ (0, ∞). Let T > 0 and A = A(t) be an N × N matrix with coefficients in L ∞ ([0, T ], L Φ 2 (µ)) and B ∈ (L 2 ([0, T ], L 2 (µ))) N . Then the Cauchy problems

∂ t u(t) = L u(t) + A(t) u(t) + B(t), u(0) = f , f ∈ (L 2 (µ)) N (MCS) and ∂ t u(t) = L u(t) + A(t) u + (t) + B(t), u(0) = f , f ∈ (L 2 (µ)) N , (MCS + )
with u + = ((u 1 ) + , . . . (u q ) + ), both have a unique weak solution on [0, ∞)

Note that we use that u → u + is a contraction so that it contracts both the L 2 (µ) norm and the Dirichlet form E.

In the system defined by ( 32) and ( 33) only blocks made of some i ∈ F + k and j's in ν -1 k (i) interact. We now focus on these coordinates. The following lemma ensures that positivity and Bochner measurability [START_REF] Mahé | Équilibres chimiques en solution acqueuse[END_REF] propagate along the approximation sequence. Lemma 6.2 (Positivity and propagation of measurability.) Let N 2 and let δ 1 , . . . , δ N -1 0 such that Z ≡ N -1 i=1 δ i > 0. Assume furthermore B(t) = 0 and A(t) is of the following form

A(t) =       -a 1 (t) 0 0 . . . 0 δ 1 a N (t) 0 -a 2 (t) 0 . . . 0 δ 2 a N (t) • • • . . . • • 0 0 . . . 0 -a N -1 (t) δ N -1 a N (t) 1 Z a 1 (t) 1 Z a 2 (t) 1 Z a 3 (t) . . . 1 Z a N -1 (t) -a N (t)       (35) 
where a i ∈ L ∞ ([0, T ], E Φ 2 (µ)), i = 1, . . . , N , are all nonnegative. Assume the initial datum f ∈ (L 2 (µ)) N is nonnegative. Then the solution u of (MCS) is nonnegative. Moreover, one has

N -1 i=1 u i (t) + Zu N (t) = e tL N -1 i=1 f i + Zf N and consequently, provided f ∈ E Φ 2θ (µ), then u ∈ L ∞ ([0, T ], E Φ 2θ (µ)).
It is easy to check that v(t) ≡ N -1 i=1 u i (t) + Zu N (t) satisfies ∂ t v = Lv(t). We detail a bit positivity argument (the remaining is similar to the two-by-two case).

Let v be the unique weak solution of problem (MCS + ) with initial condition f . We now show v is nonnegative and so it coincides to the unique solution of (MCS) with initial condition f . Thanks to Steklov calculus, the following computation is made rigorous. We focus on the last component (which is the most complicated

one). Let v - N ≡ max(-v N , 0). One has 1 2 d dt µ((v - N ) 2 ) = -µ(v - N ∂ t v N ) = -µ(v - N Lv N ) + µ(a N (t)v + N v - N ) -µ( N -1 i=1 a i Z v + i v - N ). Fisrt, -µ(v - N Lv N ) = -E((-v N ) + , -v N ) ≤ 0 as for any u ∈ D, 0 ≤ E(u + , u + ) ≤ E(u + , u). Secondly, µ(a N v + N v - N ) = 0.
And the third term is trivially nonpositive as the a i 's are assumed nonnegative. Hence, µ(

(v - N ) 2 ) ≤ µ((f - N ) 2 ) = 0.

Comparison of norms

We often have to compare Orlicz norms associated to different Young functions. We already have seen in a footnote that any Young function Φ satisfies |x| Φ(x). It leads to the following lemma.

Lemma B.1 Any Orlicz space may be continuously embedded in L 1 (µ). More precisely, let M and τ in (0, ∞) such that |x| ≤ τ Φ(x) for any |x| M . Then, for any

f ∈ L Φ , f 1 ≤ (M + τ ) f Φ . (39) 
Consequently, if Φ and Ψ are two Young functions satisfying, for some constants A, B 0, Φ(x) ≤ A|x| + BΨ(x), then Conversely, Ψ(x) ≡ |x|+ Φ(x) is a Young function, so that Ψ(x)

f Φ ≤ max 1, A Id L Ψ →L 1 + B f Ψ . (40 
x is non decreasing on (0, ∞) and ∀x > 0, Ψ(x) x Ψ ′ (0 + ) 1. Hence, for any 0 < x ≤ x 0 , Φ(x) Ψ(x) = Φ(x)

x x Ψ(x) ≤1 ≤ Φ(x) x ≤ Φ(x 0 ) x 0 .
The result follows with A = max(C, Φ(x 0 ) x 0 ). We will also need to deduce bounds on conjugate functions (as defined in ( 42)) from bounds on Young functions. Lemma B.4 ( [START_REF] Rao | Theory of Orlicz spaces[END_REF], Proposition II.2) Let Φ and Ψ be Young functions and Φ * and Ψ * their conjugate functions. Assume there exits x 0 0 such that ∀x x 0 , Φ(x) ≤ Ψ(x).

Then, there exists y 0 0 such that ∀y y 0 , Ψ * (y) ≤ Φ * (y).

Exponential type Young functions and their conjugates

Let us recall we considered Young functions of exponential type Φ α (x) = exp(|x| α ) -1, α 1.

A direct computation shows that, for y 0, Φ * 1 (y) = 0 if y ≤ 1 y log y -y + 1 if y 1 As a consequence, Φ * 1 (y) ≃ h(y) ≡ y log + y and Φ * 1 is ∆ 2 . Here log + y = max(log y, 0). Using lemmas B.4 and B.1, it follows that, provided 1

≤ α ≤ β < ∞ Φ * β Φ * α h x 2 so that • Φ * β • Φ * α • h • 2 (41) 
More on E Φα (µ)

One may change parameters in Young inequality to get: for any α > 1 and any δ, r > 0, one has ∀s 0, exp(δs) ≤ exp( α-1 α (rα/δ α ) 1 1-α ) exp(rs α ). It follows that, for any α 1, ∪ β>α L Φ β (µ) ⊂ E Φα (µ).

Lemma B.5 (Separability) Assume M is a separable metric space. Then, for any Young function Φ, E Φ (µ) is separable.

(Use that B M is countably generated, monotone class theorem and density of simple functions).

Duality

What follows may be found in [START_REF] Chen | Geometry of Orlicz spaces[END_REF].

A Young function Ψ : R → R is said to satisfy the ∆ 2 condition if there exists K ∈ (0, ∞) and x 0 0 such that, for any x x 0 , Ψ(2x) ≤ KΨ(x).

In the case of Young functions with rapid growth (as the Φ α 's introduced before), ∆ 2 condition fails. Consequently E Φ (µ) is a proper Banach subspace of L Φ (µ) (assuming the support of µ is infinite) and L Φ (µ) is not separable.

Recall that the conjugate function Ψ * of a Young function Ψ is the Young function defined by Ψ * (y) ≡ sup

x 0

(x|y| -Ψ(x)). ( 42)

The dual space of E Ψ (µ) is E Ψ (µ) ′ = L Ψ * (µ). But when ∆ 2 condition fails, the dual space of L Ψ (µ) is more complicated: this is a direct sum of L Ψ * (µ) with some nontrivial subspace made of singular linear forms. As a consequence, neither L Φα (µ), E Φα (µ) nor L Φ * α (µ) is reflexive.

C Markov Semigroups and Orlicz spaces C.1 Contraction property

Lemma C.1 Let Φ : R → R + be a nonnegative convex function. Let (P t ) t 0 be a Markov semigroup on L 2 (µ), for a probability measure µ, as introduced in section 2. Then, for any f ∈ L 1 (µ) and any t 0, µ(Φ(P t f )) ≤ µΦ(f ). [START_REF] Taylor | Partial differential equations[END_REF] In particular, in the case when Φ is a Young function (with domain R), provided f ∈ L Φ (µ), then P t f ∈ L Φ (µ) and (P t ) t 0 is a contraction semigroup on L Φ (µ).

Proof ⊳ Let f ∈ L 1 (µ), t 0 and Φ : R → R + be convex. Nonnegativity of Φ allows to use Jensen inequality for the Markov probability kernels p t (x, dy). Indeed, for µ almost every x ∈ M (such that the representation (5) holds) and any y ∈ M, by convexity, Φ(f (y)) Φ(P t f (x)) + Φ ′ ((P t f (x)) + ) (f (y) -P t f (x)).

Integrating w.r.t. p t (x, dy) leads to P t (Φ(f ))(x) Φ(P t f (x)) 0.

Then [START_REF] Taylor | Partial differential equations[END_REF] follows by integration w.r.t. µ and invariance property of P t .

Let now Φ be a Young function. Assume f = 0 in L Φ (µ)(⊂ L 1 (µ)). Recall [START_REF] Rao | Theory of Orlicz spaces[END_REF] and choose 0 < γ ≤ f -1 L Φ . Applying [START_REF] Taylor | Partial differential equations[END_REF] to Φ(γ•) instead of Φ shows that µ(Φ(γP t f )) ≤ 1 so that γ ≤ P t f -1 L Φ . And the announced contraction property follows. ⊲

C.2 Density of the Dirichlet domain

Using comparison [START_REF] Schwabik | Topics in Banach space integration[END_REF], one gets continuous embedding

D ֒→ L 2 (µ) ֒→ L Φ * α (µ), (44) 
for any α 1. As Φ * α is ∆ 2 , the space of simple functions, and so L 2 (µ) as well, is dense in L Φ * α (µ). Now, D is dense in L 2 (µ), and so in L Φ * α (µ).

C.3 Bochner measurability

Let X be a Banach space. Recall that an X-valued function u : I → X defined on a compact interval I is Bochner measurable provided it is an a.e. limit of a sequence of X-valued simple functions on I (see [START_REF] Schwabik | Topics in Banach space integration[END_REF] for instance).

The L ∞ ([0, T], L Φ (µ)) space Lemma C.2 Let Φ : R → R be a Young function, (M, B M , µ) a probability space and u ∈ C([0, T ], L 2 (µ)). We assume that x 2 Φ(x). Then u ∈ L ∞ ([0, T ], L Φ (µ)) iff u : t → u(t, •) ∈ L Φ (µ) is Bochner measurable and there exist γ, M ∈ (0, ∞) s.t., for any t a.e. in [0, T ], µ(Φ(γu(t))) ≤ M. In which case, one has, for any t a.e., u(t) L Φ (µ) ≤ max(M,1) γ . This is just rewritting the definitions. In particular, provided M 1, and µ(Φ(γu(t))) ≤ M , then by convexity, µ(Φ( γ M u(t))) ≤ 1 M µ(Φ(γu(t))) ≤ 1 so that u(t) L Φ (µ) ≤ M γ .

Lemma 2 . 1 (

 21 Regularity property) Assume the Dirichlet structure (µ, E) satisfies logarithmic Sobolev inequality with constant

  ) by symmetry. By positivity of the u (n) i 's and constraint u

Remark 3

 3 In sections 5.2 to 5.4 below, we use notation introduced in the statement of lemma 3.1

µ (P ε 1 -

 1 P ε 0 )(w) (-A(s)u 0 (s) + B(s)) ds (II)

) Definition B. 2 (

 2 Comparison of Young functions) Let us denote Φ(x) Φ(x) if there exist x 0 0 and C ∈ (0, +∞) such that ∀x x 0 , Φ(x) ≤ C Φ(x). Furthermore, Φ(x) ≃ Φ(x) will mean Φ(x) Φ(x) and Φ(x) Φ(x).Remark B.3 Let Φ and Φ be two Young functions. The existence of a constant A such that ∀x 0, Φ(x)≤ A |x| + Φ(x)is equivalent to the comparisonΦ(x) Φ(x).The previous lemma then claims briefly that comparison of Young functions induces comparison of norms.Indeed, first assume ∀x 0, Φ(x) ≤ A |x| + Φ(x) . As |x| = O( Φ(x)) as x goes to +∞, there exist x 0 and B s.t. ∀x x 0 , |x| ≤ B Φ(x). So that ∀x x 0 , Φ(x) ≤ A(B + 1) Φ(x).

  for any t a.e. in [0, T ]. And this for any γ > 0. Consequently, for any t a.e.,u (∞) (t) ∈ E Φ 2 .From lemma C.2, what remains to do is to prove E Φ 2 Bochner measurability.Let us summarize what we obtained. One has after taking limit n → +∞,

* see[START_REF] Yosida | Functional analysis. Die Grundlehren der Mathematischen Wissenschaften[END_REF],[START_REF] Diestel | Vector measures[END_REF] or[START_REF] Schwabik | Topics in Banach space integration[END_REF] for a proof,[START_REF] Evans | Partial differential equations[END_REF], appendix E.5, theorem 7, for a statement.

We can state the following theorem. Theorem 6.3 Let L i , i = 1, . . . q, be Markov generators satisfying the linearity assumptions described before. Assume the nonlinearity assumptions are satisfied as well and that f 0 belongs to E Φ 2θ (µ), with θ as in the initial data assumption.

Then, for any reaction rates λ i > 0, there exists a unique nonnegative weak solution u of problem (31) on [0, ∞).
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Let us fix a nonnegative initial datum f satisfying the integrability assumptions introduced before.

For any n 0, we will impose u (n) (0) = f and, for n = 0, ∂ t u

i , i = 1, . . . , q.

k (the other case is similar by symmetry). Let us label elements of F ± k in the following way

We consider an onto mapping ν k :

Define furthermore, for any i, j ∈ F , α

and similarly for β's. Let us note here that, for any i ∈ F + k and j ∈ F - k , β i > 0 and α j > 0. Finally, let

The iterated sequence is then defined as follows † . In the case i ∈ F - k ,

(u

(u

And, in the case i ∈ F + k ,

where

Why the sequence is well defined.

Recall the sequence starts with the heat semigroups associated to the L i 's

It follows from appendix C.3 that under our assumptions on f , u

). We hence assume we have proved, u (n-1) is well defined, for some n 1 and that

for any T ∈ (0, +∞). Lemma 8 below ensures that, for any i ∈ F , the mapping

(and similarly for β's). † We recommend to translate at first reading the following general case in the simpler two-by-one case A 1 + A 2 ⇋ A 3 with the same diffusion operator.

Appendix A The entropic inequality

Let µ be a probability measure. Let f 0 be a measurable function s.t. f = 0 µ-a.e. Then the two following assertions are equivalent:

Let us extend L 1 (µ) to the space L 1,- ext (µ) of measurable functions f such that µ(f + ) < +∞ and define µ(f

Lemma A.1 (Entropic inequality) Let µ be a probability measure and let f and g be two measurable functions. Assume f 0 (excluding f = 0 µ-a.e.) such that f log + f ∈ L 1 (µ) and µ(e γg ) < +∞ for some γ > 0. Then f g ∈ L 1,- ext (µ) and

The proof is based on the following inequality ∀x ∈ R + , ∀y ∈ R, x y ≤ x log xx + e y .

B Basics on Orlicz spaces

Classical properties of Orlicz spaces can be found in [START_REF] Rao | Theory of Orlicz spaces[END_REF].

Young functions

Let Φ be a Young function, that is Φ : R → R convex, even such that Φ(0) = 0 and Φ is not constant. Note that from this, it follows that Φ(x) 0, that Φ(x) → +∞ when x → ∞ and that Φ is an increasing function on [0, +∞).

Associated Orlicz spaces

The space L Φ (µ) = {u ∈ L 0 (µ) : ∃ε > 0 s.t. µ(Φ(εu)) < ∞} is a vector subspace of L 0 (µ).

Gauge norm

From these properties, it follows that the gauge norm

The space (L Φ (µ), • Φ ) is a Banach space.

Proof of proposition 1

By density of L 2 (µ) in L Φ * α and contraction of P t in L Φ * α , C 0 property of P t in L Φ * α follows from C 0 property in L 2 (µ). Indeed, let f ∈ L Φ * α . ε > 0 being fixed, let g ∈ L 2 (µ) such that f -g Φ * α < ε 3 . Then

allows to conclude. As a consequence, provided f ∈ E Φα , t → P t f ∈ E Φα is weakly continuous, and so Bochner measurable as E Φα is separable, following Pettis measurability theorem (see page 9 for references).