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Abstract—In this paper, we propose the implementation of
multiple defect-tolerant techniques on an SRAM-based FPGA.
These techniques include redundancy at both the logic block
and intra-cluster interconnect. In the logic block, redundancy is
implemented at the multiplexer level. Its efficiency is analyzed
by injecting a single defect at the output of a multiplexer,
considering all possible locations and input combinations. While
at the interconnect level, fine grain redundancy is introduced
which not only bypasses defects but also increases routability.
Taking advantage of the sparse intra-cluster interconnect struc-
tures, routability is further improved by efficient distribution of
feedback paths allowing more flexibility in the connections among
logic blocks. Emulation results show a significant improvement of
about 15% and 34% in the robustness of logic block and intra-
cluster interconnect respectively. Furthermore, the impact of
these hardening schemes on the testability of the FPGA cluster for
manufacturing defects is also investigated in terms of maximum
achievable fault coverage and the respective cost.

I. INTRODUCTION

The increasing integration density according to Moore’s law

is being slowed due to economic and physical limits. As yield

goes down, one of the future challenges is to find a way to

use a maximum of fabricated circuits while tolerating physical

defects spread all over the chip. With respect to the defect

tolerance, FPGAs have attained a central focus due to their

reconfigurability which enables to bypass the defective areas

and implement the application on defect-free resources. In the

technical literature, there are several techniques for repairing

FPGAs when they are affected by permanent faults. Most

of these hardening schemes resort to redundancy and can be

classified into software-based and hardware-based techniques.

Software-based techniques avoid defective resources by means

of place-and-route tools which map around the defects [1].

Hence, the efficiency of the software approaches rely on

the performance of such tools. Hardware-based techniques

employ modifications in the basic architecture. In some cases,

extra hardware resources are added, providing redundancy at

different granularity levels. While in some cases, architecture

optimization is done to automate the configuration bits shift

mechanism [2].

Mesh architectures are the most common in academic [3]

and commercial FPGAs [4], because of the simplicity of

their physical layout. Logic blocks are typically arranged in

a grid and are surrounded by horizontal and vertical routing

channels. The routing fabric consists of wiring segments and

programmable switches organized into rows and columns.

The set of switches used to connect a logic block to an

adjacent routing channel is called a connection block. Most

of the FPGA area is occupied by routing resources whose

programmable switches increase the signal propagation delay

[5]. Hence, in order to reduce the interconnect resources,

modern FPGAs gather logic blocks into clusters [6]. Moreover,

the cluster interconnect structure can be depopulated by using

sparse rather than full crossbars [7]. Connection blocks can be

avoided by connecting clusters directly to switch boxes [8].

In [9], we present a mesh of clusters FPGA, where a

depopulated cluster is directly connected to the surrounding

switch boxes. We take this cluster as a reference and the

starting point of all the studies that will be undertaken in this

paper, as it combines all the aforementioned possibilities of

reducing the FPGA interconnect network.

In this paper, we present different defect-tolerant schemes

applied at different levels in the cluster of a mesh FPGA. These

defect-tolerant schemes are classified as logic and intra-cluster

interconnect level redundancy. At the logic level, an exclusive

Butterfly design is incorporated which involves the modifi-

cation of basic Look-Up Table (LUT), whereas the schemes

applied at intra-cluster interconnect incur redundancy at a wire

as well as switch level of the crossbar structure. The main

goal is to analyze these schemes with respect to the degree of

their defect tolerance and their impact on the routability and

testability of the cluster architecture. Results are produced for

the FPGA cluster enriched with each scheme separately as well

as for all the schemes applied simultaneously on the cluster.

The remainder of this paper is organized as follows. Section

II describes the hardening techniques we used to increase the

cluster robustness and routability. Emulation/simulation results

for defect tolerance, routability and testability are presented in

section III. Finally, conclusion is drawn in Section IV.

II. HARDENING THE CLUSTER

A. Redundancy in the logic blocks

We adopted the architecture called Butterfly in its modified

version described in [10]. Such architecture is more robust



than the conventional LUT, and requires a TMR voter after

the last stage of Mux2s. We used the TMR voter introduced

in [11], which is tolerant to single faults.

B. Redundancy in the interconnect blocks

1) Fine-Grain Redundancy (FGR): In this work, we use

the Fine-Grain Redundancy (FGR) introduced in [12] at the

intra-cluster interconnect.

In the crossbars ‘Up’ and ‘Down’, four levels of Mux2s are

added: two levels of upstream Mux2s to avoid the defect by

shifting the signal, and two other downstream levels to restore

the signal. Figure 1 depicts a crossbar ‘Down’ hardened with

FGR technique. The crossed Mux2 in the figure represents a

defective Mux2. It was meant to connect the input I5 to the

output O8. The upstream FGR allows to re-route the I5 signal

to the neighbouring Mux2. Then, the downstream FGR allows

to restore the signal that will be connected to O8. Nonetheless,

the I5 signal can be re-routed only if the neighbouring Mux2

is a spare resource.
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Fig. 1: Crossbar ‘Down’ hardened with FGR technique

2) Distributed Feedbacks (DF): Among the cluster’s twelve

outputs, eight are fedback in pairs to the ‘Down’ linking block

(the four crossbars ‘Down’), and the four other outputs (drawn

in thick blue line in Fig. 2) are fedback to all crossbars ‘Down’.

We call them Distributed Feedbacks (DF).

In fact, in the initial cluster architecture, if a feedback signal

happens to be routed by a defective Mux2 in the crossbar

‘Down’, the connection will not be possible. However, with

the DF technique, the connection can be made via another

Crossbar ‘Down’. That is how a defect can be bypassed.

Thanks to the DF technique, the possibility to route the same

signal is multiplied by 4. As a result, the number of inputs

per crossbar ‘Down’ increases, as well as the size of all

multiplexers.

Like in the aforementioned FGR approach, a defect map is

required to bypass the defects. While configuring the FPGA,

the defective Mux2s inside the crossbar ‘Down’ are bypassed

and all the feedbacks are routed to the other defect-free Mux2s.

The DF method is focused on the improvement of connectivity

within a cluster between logic blocks.
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Fig. 2: Structure of a mesh cluster with Distributed Feedbacks

III. DEFECT TOLERANCE, ROUTABILITY AND

TESTABILITY OF THE CLUSTER

In this section, the impact of the aforementioned techniques

on the defect tolerance, routability and testability of the cluster

is presented. Moreover, similar results for a cluster combinedly

enriched with all these techniques are also analyzed.

Two assumptions were considered througout the analyses.

First, the cluster inputs are fault-free, since our target is

to analyze the cluster’s inherent defect tolerance. Second,

configuration memory is protected against defects by using

error detecting/correcting codes [13].

The designs under study are: the cluster architecture as de-

scribed in [9] (initial version), the one enriched with Butterfly

CLBs in the logic block, the one enriched with FGR in the

‘Down’ and ‘Up’ linking blocks, the one enriched with DF,

and the one enriched with all hardening techniques mentioned

above.

A. Defect tolerance

Defect tolerance is referred to the design’s inherent robust-

ness against a defect. As a matter of fact, for some input

conditions, failures caused by a defect within the cluster appear

in a non-sensitized path and thus can not propagate to the

output. This phenomenon is referred to as logical masking. As

a robustness metric for our study, we resort to logical masking.

1) Methodology: A defect is modeled by a stuck-at 0/1 at

the output of a Mux2, and any Mux2 in the CLBs or crossbars

can be defective. Fault injection is achieved through a platform

that considers all possible input combinations and all possible

locations of a single defect in a given design. Actually, the

platform returns the number of logical maskings. To get the

logical masking rates, the number of logical maskings is

normalized by the total number of tests.

2) Emulation results: Table I shows the emulation results in

terms of logical masking rates for all the cluster architectures

explored in this work. It is worth noting that the use of

the Butterfly structure rendered the cluster CLBs completely



TABLE I: Logical masking emulation results.

Cluster

architecture

Logical masking per block(%)

‘Down’ Logic ‘Up’

Initial 100 85.33 55.55

With Butterfly 100 100 55.55

With FGR 100 85.33 84.21

With DF 100 85.33 55.55

With Butterfly, FGR and DF 100 100 84.21

TABLE II: Defect avoidance and routability results.

Cluster

Architecture

Total

of

Mux2s

Number

of

bypassed

Mux2s

Increase

of

cluster

area

(%)

Routable

with

one

defect

Initial 588 0 0 NO

With DF 708 33 20.4 YES

With FGR 784 36 33.3 YES

With FGR and DF 928 77 57.8 YES

tolerant to single defects. And thanks to the use of FGR in

the interconnect blocks, logical masking rate was increased by

roughly 30%.

Combining both hardening techniques enables to take ad-

vantage of the two gains in logical masking, but at the expense

of area overhead. Indeed, employing FGR in the ‘Down’

linking block is seemingly pointless as long as the ‘Down’

crossbars are already 100% robust against single defects.

And the same remark can be made for the DF technique.

Nevertheless, FGR in the ‘Down’ linking block is useful from

a routability and defect bypassing viewpoint. So is the DF

technique. This will be explained in the next subsection.

B. Routability and Defect avoidance

Routability of an FPGA is defined by the number of routing

solutions it offers for an application to be mapped on it. Higher

routability makes it easier to bypass the defects by providing

spare resources.

1) Methodology: A defect, modeled by an Undefined value

at the Mux2 output in Modelsim, is injected within the

crossbar ‘Down’, which makes the cluster unusable. Then,

the cluster is reconfigured to use either spare connections

inside the defective crossbar thanks to FGR or another crossbar

‘Down’ thanks to DF. Hence, the defective Mux2 is bypassed

and the cluster functionality is restored.

Since the inner architecture of the logic blocks has no im-

pact on routability and defect avoidance, it is useless analyzing

the Butterfly structure in this subsection.

2) Simulation results: Table II shows the maximum number

of defective Mux2s that can be bypassed for each cluster

design and the area overhead with respect to the initial

architecture.

As far as the architecture with DF is concerned, it is possible

to increase the number of distributed feedbacks but this would

increase the cluster area by more than 20.4%. Moreover, it is

worth noticing that DF and FGR allow to bypass virtually the

Fig. 3: Comparison of fault coverage for the cluster with

Butterfly, FGR and DF

same number of Mux2s (33 for the DF versus 36 for the FGR

which represents a gain of only 0.5% in the overall cluster).

However, FGR causes about 13% of additional area overhead

as compared to DF. Thus, if solely one hardening technique

had to be used in the interconnect blocks, one would elect the

DF over the FGR.

DF and FGR techniques can be used together in the cluster

which allows to bypass 77 Mux2s, that is more than the sum

of bypassed Mux2s in the architectures using either FGR (36

bypassed Mux2s) or DF (33 bypassed Mux2s), but the cluster

area is then increased by more than the sum of the overheads.

C. Testability

To scale the efficiency and performance of the defect toler-

ant schemes, testability of the given architectures is calculated

in terms of fault coverage which is defined as a ratio between

detected faults and the total number of potential faults in the

given circuit. The other metrics of testability include test time

and the number of corresponding test vectors.

1) Methodology: To analyze the testability aspects of the

cluster architecture, internal scan design is utilized which is the

most popular Design For Testability (DFT) technique [14]. To

incorporate the testing mechanism in the cluster architectures,

multiplexed Flip-Flop scan style is used and single scan chain

is inserted which serially connects all CLBs of the cluster.

In this experiment, metrics of testability such as fault cov-

erage and test cost are determined for each cluster architecture

using an Automatic Test Pattern Generation (ATPG) tool.

To generate the test patterns, deterministic algorithm is used

which is based on path sensitization mechanism in which a

vector is generated and a complete set of faults on the path

activated by this vector is detected. In our case, it requires a

sequence of test vectors to activate and propagate the targeted

fault in sequential logic. However, it is assumed that for a

particular test vector, no other fault masks the targeted fault

such that it cannot be detected.

2) Simulation results: The effect of each hardening tech-

nique on the testability of the cluster is analyzed. For this

purpose, stuck-at fault model is considered to determine the

test and fault coverage. Faults are injected at gate level and

the metrics of testability are measured for dominant faults.



TABLE III: Testability metrics.

Cluster

Architecture

Fault

coverage

(%)

Number

of

test

patterns

Test

cycles

Initial 97.99 808 10517

With FGR 99.52 923 12012

With DF 98.82 858 11167

With Butterfly 83.68 898 11697

With Butterfly, FGR and DF 78.22 761 9906

Figure 3 depicts a comparison of the fault coverage and the

respective test cost attained for different cluster architectures

considered in this paper. In the plot, fault coverage curves

of FGR and DF techniques shot up at the beginning as the

large number of faults are detected with a fewer number of

test patterns, thanks to the deterministic algorithm of pattern

generator. Later on, the ratio of the number of detected faults

to the number of required test patterns decreases which gives

a relatively slower increase in fault coverage. In other words,

for a limited period of test time, high density of detected faults

at the beginning is favourable.

FGR and DF, both techniques give considerably high fault

coverage. However, FGR dominates if test cost and robustness

is taken into consideration. Table III shows the summary of

the testability metrics for each hardening technique where

the maximum achievable fault coverage and the respective

number of required test patterns are given. Although feedback

paths make fault detection costly in terms of computational

time for test pattern generation as well as the number of

required test patterns, DF technique gives a better trade-off in

terms of testability. For approximately the same fault coverage,

DF costs 7% less test time as compared to FGR. The main

reason for this concession is the addition of potential nodes

and devices in case of FGR which dramatically increases the

number of faulty sites. The reason for the lower fault coverage

in case of BF is the requirement of high computational effort

to generate effective test patterns such that faults at the LUT

can be propagated through the complex Butterfly structure,

which in turn requires large number of test cycles for relatively

lower number of injected faults as compared to DF or FGR.

Similar is the case with architecture where all above mentioned

hardening schemes are combined.

IV. CONCLUSION AND FUTURE WORK

This paper presents different defect-tolerant schemes aiming

at different levels in the cluster of an FPGA. At logic level,

Butterfly design is used to enhance the logical masking up to

100% at the expense of 21% increase in cluster area and about

14% reduction in testability whereas, at the intra-cluster inter-

connect level, Fine Grain Redundancy (FGR) and Distributed

Feedback (DF) schemes are applied. Results have shown that

FGR at intra-cluster interconnect improves logical masking

to about 84% and testability to 99.5% respectively, giving

an increment of 33.3% and 12.5% in cluster area and test

cost respectively. DF does not improve any logical masking.

However, increase in routability improves the testability to

98.8% at the cost of 5.8% as compared to the initial cluster

architecture. By combining all the defect-tolerant schemes (BF

at logic, DF and FGR at interconnect level), the cluster can be

made more robust to the permanent faults as it gathers all the

pros of logical masking but at the expense of area overhead

of 78.23% and testability degradation of 21%.

Future work includes the analysis of defect tolerance for

switch box of the FPGA along with the cluster. We plan to

extend this study for multiple manufacturing defects using

other models like bridging and delay faults.

ACKNOWLEDGMENT

This work is a part of the project Robust FPGA ANR 11

INS-02, funded by The French National Research Agency and

The Pole Systematic.

REFERENCES

[1] W.-J. Huang and E. McCluskey, “Column-based precompiled configu-
ration technique for FPGA fault tolerance,” IEEE Field Programmable

Custom Computing Machines Symp., 2001.
[2] A. Doumar, S. Kaneko, and H. Ito, “Defect and fault tolerance FPGAs

by shifting the configuration data,” IEEE Defect and Fault-Tolerance

Symp., pp. 377–385, 1999.
[3] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Kluwer Academic Publishers, January 1999.
[4] Altera. FPGA - field-programmable gate array. [Online]. Available: http:

//www.altera.com/devices/fpga/stratix-fpgas/stratix10/stx10-index.jsp
[5] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Optimized local interconnect

for cluster-based mesh FPGA architecture,” in Microelectronics, 2008.

ICM 2008. International Conference on, dec. 2008, pp. 15 –18.
[6] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,

D. Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev,
S. Reddy, J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose, “The
Stratix II logic and routing architecture,” in Proceedings of the 2005

ACM/SIGDA 13th international symposium on Field-programmable gate

arrays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 14–20.
[7] W. Feng and S. Kaptanoglu, “Designing efficient input interconnect

blocks for LUT clusters using counting and entropy,” ACM Trans.

Reconfigurable Technol. Syst., vol. 1, no. 1, pp. 6:1–6:28, Mar. 2008.
[8] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Programmable gate array,

switch box and logic unit for such an array,” Patent 7 795 911, Septem-
ber, 2010.

[9] A. Ben Dhia, L. Naviner, and P. Matherat, “Analyzing and alleviating
the impact of errors on an SRAM-based FPGA cluster,” in On-Line

Testing Symposium (IOLTS), 2012 IEEE 18th International, june 2012.
[10] A. Dhia, L. Naviner, and P. Matherat, “Comparison of Fault-Tolerant

Fabless CLBs in SRAM-based FPGAs,” in IEEE Latin American Test

Workshop (LATW), april 2013.
[11] T. Ban and L. de Barros Naviner, “A simple fault-tolerant digital voter

circuit in TMR nanoarchitectures,” in NEWCAS Conference (NEWCAS),

2010 8th IEEE International, june 2010.
[12] A. Yu and G. Lemieux, “Defect-tolerant FPGA switch block and

connection block with fine-grain redundancy for yield enhancement,”
IEEE Field Programmable Logic and Applications Proc., 2005.

[13] F. Monteiro, S. Piestrak, H. Jaber, and A. Dandache, “Fault-secure
interface between fault-tolerant RAM and transmission channel using
systematic cyclic codes,” in On-Line Testing Symposium, 2007. IOLTS

07. 13th IEEE International, july 2007, pp. 199 –200.
[14] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architec-

tures: Design for Testability (Systems on Silicon). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2006.


