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Abstract

This paper studies least-square regression penalized with partly smooth convex
regularizers. This class of functions is very large and versatile allowing to pro-
mote solutions conforming to some notion of low-complexity. Indeed, they force
solutions of variational problems to belong to a low-dimensional manifold (the so-
called model) which is stable under small perturbations of the function. This prop-
erty is crucial to make the underlying low-complexity model robust to small noise.
We show that a generalized “irrepresentable condition” implies stable model se-
lection under small noise perturbations in the observations and the design matrix,
when the regularization parameter is tuned proportionally to the noise level. This
condition is shown to be almost a necessary condition. We then show that this
condition implies model consistency of the regularized estimator. That is, with a
probability tending to one as the number of measurements increases, the regular-
ized estimator belongs to the correct low-dimensional model manifold. This work
unifies and generalizes several previous ones, where model consistency is known
to hold for sparse, group sparse, total variation and low-rank regularizations.

1 Introduction

1.1 Problem Statement

We consider the following observation model

y = Xβ0 + w,

where X ∈ R
n×p is the design matrix (in statistics or machine learning) or the forward operator (in

signal and imaging sciences), β0 ∈ R
p is the vector to recover and w ∈ R

n is the noise. The design
can be either deterministic or random, and similarly for the noise w.

Regularization is now a central theme in many fields including statistics, machine learning and
inverse problems. It allows one to impose on the set of candidate solutions some prior structure
on the object x0 to be estimated. We therefore consider a positive convex bounded function J to
promote such a prior. This then leads to solving the following convex optimization problem

min
β∈Rp

{

J(β) +
1

2λ
||Xβ − y||2

}

, (1)

where λ > 0 controls the amount of regularization.

To simplify the notations, we introduce the following “canonical” parameters

θ = (µ, u,Γ) =

(

λ

n
,
X∗y

n
,
X∗X

n

)

∈ Θ = R
+ × R

p × R
p×p
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and we denote

ε =
X∗w

n
= u− Γβ0.

In the following, we assume without loss of generality that y ∈ ImX and thus u ∈ Im(Γ).

With these new parameters, the initial problem (1) now reads

min
β∈Rp

{

E(β, θ) = J(β) +
1

2µ
〈Γβ, β〉 −

1

µ
〈β, u〉+

1

2µ
〈Γ+u, u〉

}

. (Pθ)

where A+ stands for the Moore-Penrose pseudo-inverse of a matrix A.

When µ → 0+, we consider the constrained problem

min
β∈Rp

{E(β, θ0) = J(β) + ιHu
(β)} where Hu = {β ∈ R

p ; Γβ = u} (Pθ0 )

where θ0 = (0, u,Γ) and where the indicator function of some closed convex set C is ιC(β) = 0 for
β ∈ C and ιC(β) = +∞ otherwise. With these notations, E is a function on R

p ×Θ.

The goal of this paper is to asses the recovery performance of (Pθ), i.e. to understand how close is
the recovered solution of (Pθ) to β0. We focus here on the low noise regime, i.e. when ε is small
enough, and study not only ℓ2 stability, but also the identifiability of the correct low-dimensional
manifold associated to β0. This unifies and extend a large body of literature, including sparsity
and low-rank regularization, which turn to be a special case of the general theory of partly-smooth
regularization.

1.2 Notations

If M ⊂ R
p is a C2-manifold around β ∈ R

p, we denote Tβ(M) the tangent space of M at β ∈ R
p.

We define the tangent model subspace as

Tβ = VectHull(∂J(β))⊥.

where the linear hull of a convex set C ⊂ R
p is VectHull(C) =

{

ρ(β − β′) ; (β, β′) ∈ C2, ρ ∈ R
}

.

For a convex set C ⊂ R
p, ri(C) is its relative interior, i.e. its interior for the topology of its affine

hull (the smallest affine space containing C). For a linear space T , we denote PT the orthogonal
projection on T and for a matrix Γ ∈ R

p×p, ΓT = PTΓPT .

2 Partly-smooth Functions

Toward the goal of studying the recovery guarantees of problem (Pθ), our central assumption will
be that J is a partly smooth function. Partial smoothness of functions was originally defined [12].
Our definition hereafter specializes it to the case of bounded convex functions.

Definition 1. Let J be a bounded convex function. J is partly smooth at β relative to a set M
containing β if

(i) (Smoothness) M is a C2-manifold around β and J restricted to M is C2 around β.

(ii) (Sharpness) The tangent space Tβ(M) is Tβ .

(iii) (Continuity) The set-valued mapping ∂J is continuous at β relative to M.

J is said to be partly smooth relative to a set M if M is a manifold and J is partly smooth at each
point β ∈ M relative to M. J is said to be locally partly smooth at β relative to a set M if M
is a manifold and there exists a neighbourhood U of β such that J is partly smooth at each point
β′ ∈ M∩ U relative to M.

Note that in the previous definition, M needs only to be defined locally around β, and it can be
shown to be locally unique, see [9, Corollary 4.2].

Remark 1 (Discussion of the properties). Since J is proper convex continuous, the subdifferential
of ∂J(β) is everywhere non-empty and compact and every subgradient is regular. Therefore, the
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Clarke regularity property [12, Definition 2.7(ii)] is automatically verified. In view of [12, Propo-
sition 2.4(i)-(iii)], our sharpness property (ii) is equivalent to that of [12, Definition 2.7(iii)]. The
continuity property (iii) is equivalent to the fact that ∂J is inner semicontinuous at β relative to M,
that is: for any sequence βn in M converging to β and any η ∈ ∂J(β), there exists a sequence of
subgradients ηn ∈ ∂J(βn) converging to η. This equivalent characterization will be very useful in
the proof of our main result.

2.1 Examples in Imaging and Machine Learning

We describe below some popular examples of partly smooth regularizers that are routinely used in
machine learning, statistics and imaging sciences.

ℓ1 sparsity. One of the most popular non-quadratic convex regularization is the ℓ1 norm J(β) =
∑p

i=1 |βi|, which promotes sparsity. Indeed, it is easy to check that J is partly smooth at β relative
to the subspace

M = Tβ = {u ∈ R
p ; supp(u) ⊆ supp(β)} .

The use of sparse regularizations has been popularized in the signal processing literature under the
name basis pursuit method [5] and in the statistics literature under the name Lasso [20].

ℓ1 − ℓ2 group sparsity. To better capture the sparsity pattern of natural signals and images, it is
useful to structure the sparsity into non-overlapping blocks/groups B such that

⋃

b∈B b = {1, . . . , p}.

This group structure is enforced by using typically the mixed ℓ1 − ℓ2 norm J(β) =
∑

b∈B ||βb||,

where βb = (βi)i∈b ∈ R
|b|. We refer to [23, 2] and references therein for more details. Unlike the

ℓ1 norm, and except the case |b| = 1, the ℓ1 − ℓ2 norm is not polyhedral, but is still partly smooth at
β relative to the linear manifold defined as

M = Tβ = {β′ ; suppB(β
′) ⊆ suppB(β)} where suppB(β) =

⋃

{b ; βb 6= 0} .

Spectral functions. The natural spectral extension of sparsity to matrix-valued data β ∈ R
p0×p0

(where p = p20) is to impose a low-rank prior, which should be understood as sparsity of the singular
values. Denote β = Vβ diag(Λβ)U

∗
β an SVD decomposition of β, where Λβ ∈ R

p0

+ . Note that this

can be extended easily to rectangular matrices. The nuclear norm is defined as J(β) = ||β||∗ =
||Λβ ||1. It has been used for instance in machine learning applications [2], matrix completion [17,
3] and phase retrieval [4]. The nuclear norm can be shown to be partly smooth at x relative to the
manifold [14, Example 2] M = {β′ ; rank(β′) = rank(β)}. More generally, if j : Rp0 → R is
a permutation-invariant closed convex function, then one can consider the function J(β) = j(Λβ)
which can be shown to be a convex function as well [13]. When restricted to the linear space of
symmetric matrices, j is partly smooth at Λβ for a manifold mΛβ

, if and only if J is partly smooth
at β relative to the manifold

M =
{

U diag(Λ)U∗ ; Λ ∈ mΛβ
, U ∈ Op0

}

,

where Op0
⊂ R

p0×p0 is the group of orthogonal matrices, see [6, Theorem 3.19]. This result can be
extended to non-symmetric matrices by requiring that j is an absolutely permutation-invariant closed
convex function, see [6, Theorem 5.3]. The nuclear norm || · ||∗ is a special case where j(Λ) = ||Λ||1.

Analysis regularizers. If J0 : Rq → R is a convex function and D ∈ R
p×q is a linear operator,

one can consider the analysis regularizer J(β) = J0(D
∗β). A popular example is when taking

J0 = || · ||1 and D∗ = ∇ a finite difference approximation of the gradient of an image. This defines
the (anisotropic) total variation, which promotes piecewise constant images, and is popular in image
processing [19]. It is also possible to define families of sparsity-enforcing prior by using J0 = || · ||∗
the nuclear norm, see [8, 18]. If J0 is partly smooth at z = D∗β for the manifold M0

z , then it is
shown in [12, Theorem 4.2] that J is partly smooth at β relative to the manifold

M =
{

β′ ∈ R
p ; D∗β′ ∈ M0

z

}

.
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Mixed regularization. Starting from a set of convex functions {Jℓ}ℓ∈L, it is possible to design
a convex function as Jℓ(β) =

∑

ℓ∈L ρℓJℓ(β), where ρℓ > 0 are weights. A popular example is

to impose both sparsity and low rank of a matrix, when using J1 = || · ||1 and J2 = || · ||∗, see for
instance [15]. If each Jℓ is partly smooth at β relative to a manifold Mℓ, then it is shown in [12,
Corollary 4.8] that J is also partly smooth at β for M =

⋂

ℓ∈L Mℓ.

3 Main results

In the following, we denote T = Tβ0
, e = PT (∂J(β0)) ∈ R

p. Before stating our main contribu-
tions, we first introduce a central object of this paper, which controls the stability of M when the
signal to noise ratio is large enough.

Definition 2 (Linearized pre-certificate). For some matrix Γ ∈ R
p×p, assuming ker(Γ) ∩ T = {0},

we define ηΓ = ΓΓ+
T e.

3.1 Deterministic model consistency.

We first consider the case where X and w (or equivalently Γ and u) are fixed and deterministic.
Our main contribution is the following theorem, which shows the robustness of the manifold M
associated to β0 to small perturbations on both the observations and the design matrix, provided that
µ is well chosen.

Theorem 1. We assume that J is locally partly smooth at β0 relative to M and that there exists

Γ̃ ∈ R
p×p such that

ker(Γ̃) ∩ T = {0}, and ηΓ̃ ∈ ri(∂J(β0)). (2)

Then, there exists a constant C > 0 such that if

max
(

||Γ− Γ̃||, ||ε||µ−1, µ
)

6 C, (3)

the solution βθ of (Pθ) is unique and satisfies

βθ ∈ M and ||βθ − β0|| = O(||ε||). (4)

This theorem is proved in Section 4.1.

The following proposition, proved in Section 4.3, shows that Theorem 1 is in some sense sharp,
since the hypothesis ηΓ ∈ ri(∂J(β0)) (almost) characterizes the stability of M.

Proposition 1. We suppose that β0 is the unique solution of P(0,Γ̃β0,Γ̃)
and that

ker(Γ̃) ∩ T = {0}, and ηΓ̃ /∈ ∂J(β0). (5)

Then there exists C > 0 such that if (3) holds, then any solution βθ of (Pθ) for µ > 0 satisfies
βθ /∈ M.

In the particular case where ε = 0 (no noise) and Γ̃ = Γ, this result shows that the manifold θ is not
correctly identified when solving P(µ,Γβ0,Γ) for any µ > 0 small enough.

Remark 2 (Critical case). The only case not covered by either Theorem 1 or Proposition 1 is when
ηΓ̃ ∈ rbound(∂J(β0)) (the relative boundary). In this case, one cannot conclude, since depending
on the noise w, one can have either stability or non-stability of M. We refer to [22] where an
example illustrates this situation for the 1-D total variation J = ||∇ · ||1 (here ∇ is a discretization
of the 1-D derivative operator).

3.2 Probabilistic model consistency.

We now turn to study consistency of our estimator. In this section, we work under the classical
setting where p and β0 are fixed as the number of observations n → ∞. We consider that the
design matrix and the noise are random. More precisely, the data (ξi, wi) are random vectors in
R

p × R, i = 1, · · · , n, where ξi is the i-th row of X , are assumed independent and identically
distributed (i.i.d.) samples from a joint probability distribution such that E (Wi|ξi) = 0, finite
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fourth-order moments, i.e. E
(

W 4
i

)

< +∞ and E
(

||ξi||
4
)

< +∞. Note that in general, Wi and ξi
are not necessarily independent. It is possible to extend our result to other distribution models by
weakening some of the assumptions and strenghthening others, see e.g. [11, 24, 2]. Let’s denote

Γ̃ = E(ξ∗ξ) ∈ R
p×p, where ξ is any row of X . We do not make any assumption on invertibility

of Γ̃.

To make the discussion clearer, the canonical parameters θ will be indexed by n. The es-
timator βθn obtained by solving (Pθn) for a sequence θn is said to be consistent for β0 if,
limn→+∞ Pr (βθn is unique) → 1 and βθn converges to β0 in probability. The estimator is said
to be model consistent if limn→+∞ Pr (βθn ∈ M) → 1, where M is the manifold associated to β0.

The following result ensures model consistency for certain scaling of µn. It is proved in Section 4.2

Theorem 2. If conditions (2) hold and

µn = o(1) and µ−1
n = o(n1/2). (6)

Then the estimator βθn of β0 obtained by solving (Pθn) is model consistent.

3.3 Relation to Previous Works

Theorem 1 is a generalization of a large body of results in the literature. For the Lasso, i.e. J = ||· ||1,

and when Γ = Γ̃, to the best of our knowledge, this result was initially stated in [7]. In this setting,
the result (4) corresponds to the correct identification of the support, i.e. supp(βθ) = supp(β0).
Condition (2) for J = || · ||1 is known in the statistics literature under the name “irrepresentable
condition”, see e.g. [24]. [11] have shown estimation consistency for Lasso for fixed p and β0 and
asymptotic normality of the estimates. The authors in [24] proved Theorem 2 for J = || · ||1, though
under slightly different assumptions on the covariance and noise distribution. A similar result was
established in [10] for the elastic net, i.e. J = || · ||1 + ρ|| · ||22 for ρ > 0. In [1] and [2], the
author have shown Theorem 2 for two special cases, namely the group Lasso nuclear/trace norm

minimization. Note that these previous works assume that the asymptotic covariance Γ̃ is invertible.
We do not impose such an assumption, and only require the weaker restricted injectivity condition

ker(Γ̃) ∩ T = {0}. In a previous work [22], we have proved an instance of Theorem 1 when Γ = Γ̃
and J(β) = ||D∗β||1, where D ∈ R

p×q is an arbitrary linear operator. This covers as special cases
the discrete anisotropic total variation or the fused Lasso. This result was further generalized in [21]

when Γ = Γ̃, and J belongs to the class of partly smooth functions relative to linear manifolds M,
i.e. M = Tβ . Typical instances encompassed in this class are the ℓ1 − ℓ2 norm, or its analysis
version, as well as polyhedral gauges including the ℓ∞ norm. Note that the nuclear norm (and
composition of it with linear operators as proposed for instance in [8, 18]), whose manifold is not
linear, does not fit into the framework of [21], while it is covered by Theorem 1.

4 Proofs

4.1 Proof of Theorem 1

In order to prove Theorem 1, we consider any sequence θk = (µk, uk = Γkx0 + εk,Γk)k where
Xk ∈ R

nk×p. Assume that
(

Γk, εk µ
−1
k , µk

)

−→ (Γ̃, 0, 0) . (7)

Then proving Theorem 1 boils down to showing that for k large enough, the solution βk of (Pθk) is
unique and satisfies βk ∈ M.

Constrained problem. We consider the following non-smooth,in general non-convex, constrained
minimization problem

βk ∈ Argmin
β∈M∩K

E(β, θk) (8)

where K is an arbitrary fixed convex compact neighbourhood of β0.

The following lemma first show the convergence of βk.

Lemma 1. Under condition (7), βk → β0.
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Proof. We denote ||u||2Γ = 〈Γu, u〉 for any non-negative definite matrix Γ. We first note that (2) im-
plies that β0 is the unique solution of (P0,Γ̃β0,Γ̃

). By optimality of βk one has E(βk, θk) 6

E(β0, θk) and hence

1

2
||βk||Γk

− 〈βk, Γkβ0 + εk〉+ µkJ(βk) 6
1

2
||β0||Γk

− 〈β0, Γkβ0 + εk〉+ µkJ(β0)

which is equivalently stated as

1

2
||βk − β0||

2
Γk

− 〈βk − β0, εk〉+ µkJ(βk) 6 µkJ(β0). (9)

Since βk ∈ K, the sequence (xk)k is bounded, and we let β⋆ be any accumulation point. Taking

the limit k → +∞ in (9) and using (7) and continuity of the inner product shows that Γ̃β⋆ = Γ̃β0.
Furthermore, since 1

2 ||βk−β0||
2
Γk

> 0, (9) yields −〈βk−β0,
εk
µk

〉+J(βk) 6 J(β0). Taking the limit

k → +∞ shows that J(β⋆) 6 J(β0). Combining this with the previous claim that β⋆ is a feasible
point of (P0,Γ̃x0,Γ̃

) allows to conclude that β⋆ is a solution of (P0,Γ̃x0,Γ̃
). Since β0 is unique, this

leads to β⋆ = β0.

We now aim at showing that for k large enough, βk is the unique solution of (Pθk). In order to do
so, we make use of the following classical result, whose proof can be found for instance in [22].

Proposition 2. Let β ∈ R
p such that

u−Γβ
µ ∈ ri(∂J(β)) and ker(Γ) ∩ Tβ = {0}. Then β is the

unique solution of (Pθ).

Convergence of the tangent model subspace. By definition of the constrained problem (8),
βk ∈ M. Moreover, since E(·, θk) is partly smooth at β0 relative to M, the sharpness property
Definition 1(ii) holds at all nearby points in the manifold M [12, Proposition 2.10]. Thus as soon
as k is large enough, we have Tk = Tβk

(M). Using the fact that M is of class C2, we get

Tk = Tβk
(M) −→ Tβ0

(M) = T (10)

when (7) holds, where the convergence should be understood over the Grassmannian of linear sub-
spaces with the same dimension (or equivalently, as the convergence of the projection operators

PTk
→ PT ). Since ker(Γ̃) ∩ T = {0}, (10) implies that for k large enough, when (7) holds,

ker(Γk) ∩ Tk = {0}, (11)

which we assume from now on.

First order condition. Let’s take K = Br(β0) for r sufficiently large. For any δ > 0, ∃Kδ > 0
such that ∀k > Kδ , βk ∈ Bδ(β0). Thus, for k large enough, i.e. δ sufficiently small, we indeed have
βk ∈ int(K). Furthermore, it is easy to see that ιK is locally partly smooth at β0 relative to K. Since
is J is also locally partly smooth at β0 relative to M, the sum rule [12, Corollary 4.6] shows that,
for all sufficiently large k, when (7) holds and βk ∈ int(K), J + ιK is locally partly smooth at βk

relative to M∩K, and then so is E(·, θk) + ιK by the smooth perturbation rule [12, Corollary 4.7].
Therefore, [12, Proposition 2.4(a)-(b)] applies, and it follows that βk is a critical point of (8) if, and
only if,

0 ∈ Aff(∂E(βk, θk) +NK(βk)) =
Γkβk − uk

µk
+Aff(∂J(βk)) =

Γkβk − uk

µk
+ eβk

+ Tk
⊥.

The first equality comes from the fact that E(·, θ) is a closed convex function, and that the normal
cone of K at βk vanishes on the interior points of K, and the second one from the decomposability
of the subdifferential. Projecting this relation onto Tk, we get, since eβk

∈ Tk,

PTk
(Γkβk − uk) + µkeβk

= 0. (12)

Convergence of the primal variables. Since both βk and β0 belong to M, and partial smoothness
implies that M is a manifold of class C2 around each of them, we deduce that each point in their
respective neighbourhoods has a unique projection on M [16]. In particular, βk = PM(βk) and
β0 = PM(β0). Moreover, PM is of class C1 near βk [14, Lemma 4]. Thus, C2 differentiability
shows that

βk − β0 = PM(βk)− PM(β0) = DPM(βk)(βk − β0) +R(βk)

6



where R(βk) = O(||βk − β0||
2) and where DPM(βk) is the derivative of PM at βk. Using [14,

Lemma 4], and recalling that Tk = Tβk
(M) by the sharpness property, the derivative DPM(βk) is

given by DPM(βk) = PTk
. Inserting this in (12), we get

PTk
Γk (PTk

(βk − β0) +R(βk))− PTk
εk + µkeβk

= 0.

Using (11), Γk,Tk
has full rank, and thus

βk − β0 = Γ+
k,Tk

(εk − µkeβk
− ΓkR(βk)) , (13)

where we also used that Tk
⊥ ⊂ ker(Γ+

k,Tk
). One has Γ+

k,Tk
→ Γ̃+ so that Γ+

k,Tk
Γk = O(1) and

Γ+
k,Tk

= O(1). Altogether, we thus obtain the bound

||βk − β0|| = O (||εk||, µk) . (14)

Convergence of the dual variables. We define ηk = uk−Γkβk

µk
. Arguing as above, and using (13)

we have

µkηk = εk + Γk(β0 − βk) = εk − ΓkΓ
+
k,Tk

(εk − µkeβk
− ΓkR(βk))

= εk − ΓkPTk
Γ+
k,Tk

(εk − µkeβk
− ΓkR(βk))

= PV ⊥

Tk

εk + PVTk
ΓkR(βk) + µkΓkΓ

+
k,Tk

eβk
,

where we denoted VTk
= Im(ΓkPTk

), and used that Im(Γ+
k,Tk

) ⊂ Tk. We thus arrive at

||ηk − ηΓ̃|| = O
(

||εk||µ
−1
k , ||ΓkΓ

+
k,Tk

eβk
− ηΓ̃||, ||Γk||||βk − β0||

2µ−1
k

)

.

Since M is a C2 manifold, and by partial smoothness (J is C2 on M), we have β 7→ eβ is C1 on
M, one has

||eβk
− e|| = O(||βk − β0||). (15)

Using the triangle inequality, we get

||ΓkΓ
+
k,Tk

− Γ̃Γ̃+
T || 6 ||Γ+

k,Tk
||||Γk − Γ̃||+ ||Γ̃||||Γ+

k,Tk
− Γ̃+

T ||.

Again, since Γ+
k,Tk

→ Γ̃+
T , we have ||Γ+

k,Tk
|| = O(1). Moreover, A 7→ A+ is smooth at A = ΓT

along the manifold of matrices of constant rank, and M is a C2 manifold near β0. Thus

||Γ+
k,Tk

− Γ̃+
T || = O(||Γk,Tk

− Γ̃T ||) = O(||Γk − Γ̃||, ||PTk
− PT ||) = O(||Γk − Γ̃||, ||βk − β0||).

This shows that
||ΓkΓ

+
k,Tk

− Γ̃Γ̃+
T || = O(||Γk − Γ̃||, ||βk − β0||). (16)

Putting (15) and (16) together implies ||ΓkΓ
+
k,Tk

eβk
− ηΓ̃||O(||Γk − Γ̃||, ||βk − β0||). Altogether, we

get the bound

||ηk − ηΓ̃|| = O
(

||εk||µ
−1
k , ||βk − β0||, ||Γk − Γ̃||, ||Γk||||βk − β0||

2µ−1
k

)

.

Since ||βk − β0|| is bounded according to (14), we arrive at

||ηk − ηΓ̃|| = O
(

||Γk − Γ̃||, ||εk||µ
−1
k , µk

)

. (17)

Convergence inside the relative interior. Using the hypothesis that ηΓ̃ ∈ ri(∂J(β0)), we will
show that for k large enough,

ηk ∈ ri(∂J(βk)). (18)

Let us suppose this does not hold. Then there exists a sub-sequence of ηk, that we do not relabel for
the sake of readability of the proof, such that

ηk ∈ rbound(∂J(βk)) . (19)
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According to (17) and Lemma 1, under (7), (βk, ηk) → (β0, ηΓ̃). Condition (19) is equivalently
stated as, for each k

∃zk ∈ T⊥
βk
, ∀ η ∈ ∂J(βk), 〈zk, η − ηk〉 > 0, (20)

where one can impose the normalization ||zk|| = 1 by positive-homogeneity. Up to a sub-sequence
(that for simplicity we still denote zk with a slight abuse of notation), since zk is in a compact set,
we can assume zk approaches a non-zero cluster point z⋆.

Since T⊥
βk

→ T⊥ because M is a C2 manifold, one has that z⋆ ∈ T⊥. We now show that

∀ v ∈ ∂J(β0), 〈z⋆, η − ηΓ̃〉 > 0. (21)

Indeed, let us consider any v ∈ ∂J(β0). In view of the continuity property in Definition 1(iii)
∂J is continuous at β0 along M, so that since βk → β0 there exists vk ∈ ∂J(βk) with vk → v.
Applying (20) with η = vk gives 〈zk, vk − ηk〉 > 0. Taking the limit k → +∞ in this inequality
leads to (21), which contradicts the fact that ηΓ̃ ∈ ri(∂J(β0)). In view of (18) and (11), using
Proposition 2 shows that βk is the unique solution of (Pθ).

4.2 Proof of Theorem 2

It is sufficient to check that (3) is in force with probability 1 as n → +∞. Owing to classical
results on convergence of sample covariances, which apply thanks to the assumption that the fourth

order moments are finite, we get Γn − Γ̃ = OP

(

n−1/2
)

and 1
n 〈ξi, w〉 = OP

(

n−1/2
)

, where used

the assumption that E (〈ξi, w〉) = 0. As p is fixed, it follows that ||Γn − Γ̃|| = OP

(

n−1/2
)

and

||εn|| = OP

(

n−1/2
)

. Thus under the scaling (6), we get

(

||Γn − Γ̃||, ||εn||µ
−1
n , µn

)

=

(

OP (n
−1/2),

1

µnn1/2
OP (1), o(1)

)

=
(

OP (n
−1/2), o(1)OP (1), o(1)

)

=
(

OP (n
−1/2), o(1), o(1)

)

,

which indeed converges to 0 in probability. This concludes the proof.

4.3 Proof of Proposition 1

Let βk be a solution of (Pθk). Suppose that βk ∈ M. In particular, βk is a solution of the non-convex
minimization (8). Arguing as in the proof of Theorem 1, we get the bound (17), i.e.

||ηk − ηΓ̃|| = O(||Γk − Γ̃||, ||εk||/µk, µk) where ηk =
uk − Γkβk

µk
. (22)

In particular, ||ηk − ηΓ̃|| → 0. Defining K = d(ηΓ̃, ∂J(β)), one has K > 0 since ηΓ̃ 6∈ ri ∂J(β0).
Choosing k large enough, the convergence of ηk to ηΓ̃ implies that

d(ηk, ∂J(β0)) > K/2 (23)

where 2 can be changed to any arbitrary value. Using the outer semi-continuity of the subdifferential,
we get that

∀ε, ∃k0, ∀k > k0, ∂J(xk) ⊆ ∂J(β0) +B(0, ε).

In particular, ηk ∈ ∂J(β0)+B(0, ε) which implies that d(ηk, ∂J(β0)) 6 ε, which is a contradiction
to (23). Hence, βk 6∈ M.

5 Conclusion

In this paper, we provided a unified analysis of the recovery performance when partly smooth func-
tions are used to regularize linear inverse problems. This class of functions encompass all popular
regularizers used in the literature. A distinctive feature of our work is that we provided for the first
time a unified analysis together with a generalized “irrepresentable condition” to guarantee stable
and correct identification of the low-complexity manifold underlying the original object.
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