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Abstract

This article studies the regularization of inverse problems with a con-

vex prior promoting some notion of low-complexity. This low-complexity

is obtained by using regularizers that are partly smooth functions. Such

functions force the solution of variational problems to live in a low-dim-

ension manifold which is stable under small perturbations of the func-

tional. This property is crucial to make the underlying low-complexity

model robust to small noise. We show that a simple criterion implies

the stability of the active manifold to small noise perturbations of the

observation when the regularization parameter is tuned proportionally to

the noise level. This unifies and generalizes several previous works, where

this theorem is known to hold for sparse, group sparse, total variation and

low-rank regularizations.

Keywords: Inverse problem, partial smoothness, sensitivity analysis,

convexity, sparsity, low-rank.

1 Introduction

1.1 Inverse Problem Regularization

We consider the following observation model

y = y0 + w where y0 = Φx0,

where Φ ∈ R
P×N , x0 ∈ R

N is the vector to recover and w ∈ R
P is some additive

noise.
We use a convex bounded function J in order to regularize this inverse

problem. The recovery of x0 is performed using the following convex variational
problem

min
x∈RN

{

E(x, θ) = J(x) +
1

2λ
||Φx− y||2

}

(Pθ)

1



where λ > 0, and for notation simplicity, we denoted

θ = (λ, y) ∈ Θ = R
+ × R

P

the parameters of the problem. When λ → 0+, we consider the constrained
problem

min
x∈RN

{

E(x, (0, y)) = J(x) + ιHy
(x)

}

(P0,y)

where Hy =
{

x ∈ R
N ; Φx = y

}

where for a closed convex set, its indicator function is

ιC(x) =

{

0 if x ∈ C,
+∞ otherwise.

With these notations, E is defined on the domain R
N ×Θ.

In the following, we assume that

ker(Φ) ∩ ker(J) = {0} (1)

so that both problems (Pθ) and (P0,y) have non-empty bounded sets of solutions.
The goal of this paper is to asses the performance of this generic class of

methods, i.e. to understand how close is the recovered solution of (Pθ) to x0.
We focus here in the low noise regime, i.e. when ||w|| is small enough, and study
not only ℓ2 stability, but also the identifiability of the correct low-dimensional
manifold associated to x0. This unifies and extend a large body of literature
on sparsity and low-rank regularization, which is shown to special cases of the
general theory of partly-smooth regularization.

1.2 Notations

We recall that a C2-manifold M around x ∈ R
n (of codimension m) is a

subset of R
n such that there exists an open set U of R

n and a C2-function
F : U → R

m satisfying

M∩ U = {x̄ ∈ U ; F (x̄) = 0} ,

and F has surjective derivative throughout U . We say that M is a C2-manifold
if M is a C2-manifold around every x ∈ M. If M ⊂ R

N is a C2-manifold
around x ∈ R

n, we denote Tx(M) the tangent space of M at x ∈ R
N defined as

TM(x) = KerDF (p).

We define the tangent model subspace as

Tx = VectHull(∂J(x))⊥.

where the vectorial hull of a convex set C ⊂ R
N is

VectHull(C) =
{

ρ(x− x′) ; (x, x′) ∈ C2, ρ ∈ R
}

.

For a convex set C ⊂ R
N , ri(C) is its relative interior, i.e. its interior for the

topology of its affine hull (the smallest affine space containing C).
For a linear space T , we denote PT the orthogonal projection on T and

ΦT = Φ ◦ PT .
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1.3 Partly-smooth Functions

Toward the goal of studying the recovery guarantees of problem (Pθ), our
central assumption will be that J is a partly smooth function. Partial smooth-
ness of functions was originally defined [24]. Our definition hereafter specializes
it to the case of closed convex functions.

Definition 1. Let J be a bounded convex function. J is partly smooth at x
relative to a set M containing x if

(i) (Smoothness) M is a C2-manifold around x and J restricted to M is C2

around x.

(ii) (Sharpness) The tangent space Tx(M) is Tx.

(iii) (Continuity) The set-valued mapping ∂J is continuous at x relative to M.

J is said to be partly smooth relative to a set M if M is a manifold and J
is partly smooth at each point x ∈ M relative to M. J is said to be locally
partly smooth at x relative to a set M if M is a manifold and there exists a
neighbourhood U of x such that J is partly smooth at each point x′ ∈ M ∩ U
relative to M.

Note that in the previous definition, M needs only to be defined locally
around x, and it can be shown to be locally unique, see [21, Corollary 4.2].
Hence the notation M is unambiguous.

Remark 1 (Discussion of the properties).

• Since J is proper convex continuous, the subdifferential of ∂J(x) is every-
where non-empty and compact and every subgradient is regular. Therefore,
the Clarke regularity property [24, Definition 2.7(ii)] is automatically ver-
ified.

• In view of [24, Proposition 2.4(i)-(iii)], our sharpness property (ii) is
equivalent to that of [24, Definition 2.7(iii)].

• The continuity property (iii) is equivalent to the fact that ∂J is inner
semicontinuous at x relative to M, that is: for any sequence xn in M
converging to x and any η ∈ ∂J(x), there exists a sequence of subgradients
ηn ∈ ∂J(xn) converging to η. This equivalent characterization will be very
useful in the proof of our main result.

1.4 Examples in Imaging and Machine Learning

We describe below some popular examples of partly smooth regularizers that
are routinely used in signal processing and machine learning.
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ℓ1 sparsity. One of the most popular non-quadratic convex regularization is
the ℓ1 norm

J(x) =
N
∑

i=1

|xi|

which enforces sparsity of the solution of the inverse problem. Indeed, it is easy
to check that J is partly smooth at x for the linear space

M = Tx =
{

u ∈ R
N ; supp(u) ⊆ supp(x)

}

.

The use of sparse regularizations has been popularized in the signal process-
ing literature under the name basis pursuit method [10] and in the statistics
literature under the name Lasso [35].

ℓ1 − ℓ2 group sparsity. To better capture the sparsity pattern of natural
signals and images, it makes sense to structure the sparsity into non-overlapping
blocks B such that

⋃

b∈B b = {1, . . . , N}. This structuration is enforced for
instance by using a mixed ℓ1 − ℓ2 norm

||x||B =
∑

b∈B

||xb||

where xb = (xi)i∈b ∈ R
|b|. We refer to [2] and to the references therein for more

details about group sparsity.
On contrary to the ℓ1 norm, this norm is in general not polyhedral, but is

still partly smooth relative to the linear manifold defined as

M = Tx = {u ; suppB(u) ⊆ suppB(x)} where suppB(x) =
⋃

{b ; xb 6= 0} .

Spectral functions. The natural extension of sparsity to matrix-valued data
x ∈ R

n×n (where N = n2) is to impose a low-rank constraint, which should
be understood as imposing sparsity of the singular values. We denote x =
Vx diag(Λx)U

∗
x an SVD decomposition of x, where Λx ∈ R

n
+. Note that this can

be extended easily to rectangular matrices. The nuclear norm imposes such a
sparsity and is defined as

J(x) = ||x||∗ = ||Λx||1.

It has been used for instance for machine learning applications and matrix com-
pletion [30, 5] and phase retrieval [8].

The nuclear norm can be shown to be partly smooth for the manifold [26,
Example 2]

M = {u ; rank(u) = rank(x)} .

More generally, if j : Rn → R is a permutation-invariant closed convex function,
then one can consider the following function

J(x) = j(Λx)
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which can be shown to be a convex function as well [25]. When restricted to
the linear space of symmetric matrices, j is partly smooth at Λx for a manifold
mΛx

, if and only if J is partly smooth at x relative to the manifold

M = {U diag(Λ)U∗ ; Λ ∈ mΛx
, U ∈ On} ,

where On ⊂ R
n×n is the group of orthogonal matrices, see [11, Theorem 3.19].

This result can be extended to nonsymmetric matrices by requiring that j is an
absolutely permutation-invariant closed convex function, see [11, Theorem 5.3].
The nuclear norm || · ||∗ is a special case where j(Λ) = ||Λ||1.

Analysis regularizers. If J0 : RQ → R is a convex function and D ∈ R
N×Q

is a linear operator, one can consider the following analysis regularizer

J(x) = J0(D
∗x).

A popular example is when taking J0 = || · ||1 and D∗ = ∇ a finite difference
approximation of the gradient of an image. This defines the (anisotropic) total
variation, which promotes piecewise constant images, and is popular in image
processing [33]. It is also possible to define families of sparsity-enforcing prior
by using J0 = || · ||∗ the nuclear norm, see [18, 31].

If J0 is partly smooth at z = D∗x for the manifold M0
z, then it is shown

in [24, Theorem 4.2] that J is partly smooth at x relative to the manifold

M =
{

u ∈ R
N ; D∗u ∈ M0

z

}

.

Note that as J0 is convex and continuous, so is J , and there is no need of the
transversality/regularity condition in [24, Theorem 4.2].

Mixed regularization. Starting from a set of convex functions {Jℓ}ℓ∈L, it is
possible to design a convex function as

Jℓ(x) =
∑

ℓ∈L

ρℓJℓ(x)

where ρℓ > 0 are weights. A popular example is to impose both sparsity and
low rank of a matrix, when using J1 = || · ||1 and J2 = || · ||∗, see for instance [28].

If each Jℓ is partly smooth at x relative to a manifold Mℓ, then it is shown
in [24, Corollary 4.8] that J is partly smooth at x for

M =
⋂

ℓ∈L

Mℓ.

Again, the regularity condition in [24, Corollary 4.8] is in force in our case by
convexity and continuity.
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1.5 Contributions

In the following, we denote T = Tx0
, e = PT (∂J(x0)). The following defini-

tion introduce the central object of this article, which controls the stability of
M when the signal to noise ratio is large enough.

Definition 2 (Astymptotic pre-certificate). Assuming ker(Φ) ∩ T = {0}, we
define

ηF = Φ∗pF where pF = Φ+,∗
T e,

where we have denoted Φ+
T the Moore-Penrose pseudo inverse of ΦT .

Our main contribution is the following theorem, which shows the robustness
of the manifold M = Mx0

associated to x0 to small noise, if λ is well chosen.

Theorem 1. We assume that J is locally partly smooth at x0 relative to M
and that

ker(Φ) ∩ T = {0}, and ηF ∈ ri(∂J(x0)) (2)

Then there exists constants (C,C ′) such that if ||w|| 6 C and if λ = C ′||w||, then
the solution xθ of (Pθ) is unique and satisfies

xθ ∈ M and ||xθ − x0|| = O(||w||). (3)

Remark 2 (Identification of the manifold). Theorem 1 guarantees that, under
some hypotheses on (x0, w, λ), xθ belongs to M. For all the regularizations
considered in Section 1.4, one can furthermore show that actually, under these
hypotheses, Mxθ

= M. This is because, for any (x, x′) with x′ ∈ Mx close
enough to x, one has Mx′ = Mx.

The following proposition shows that Theorem 1 is in some sense sharp, since
the hypothesis ηF ∈ ri(∂J(x0)) (almost) characterizes the stability of M.

Proposition 1. We suppose that x0 is the unique solution of P0,y0
and that

ker(Φ) ∩ T = {0}, and ηF /∈ ∂J(x0).

Then there exists C > 0 such that for ||w|| 6 Cλ and any λ small enough, then
any solution xθ of (Pθ) satisfies xθ /∈ M.

In the particular case where w = 0 (no noise), this results shows that the
manifold θ is not correctly identified when solving Pλ,y0

for any λ > 0 small
enough.

The only case not covered by either Theorem 1 or Proposition 1 is when
ηF ∈ rbound(∂J(x0)) (the relative boundary). In this case, one cannot conclude,
since depending on the noise w, one can have either stability or non-stability of
M. We refer to [37] where an example illustrates this situation for the 1-D total
variation J = ||∇ · ||1 (here ∇ is a discretization of the 1-D derivative operator).

6



1.6 Algorithmic Implications

A popular scheme to compute a solution of (Pθ) is the Forward-Backward
splitting algorithm. A comprehensive treatment of the convergence properties
of this algorithm, and other proximal splitting schemes, can be found in the
monograph [3]. Starting from some x0 ∈ R

N , the algorithm implements the
following iteration

xk+1 = ProxτλJ (xk − τΦ∗(y − Φxk)) ,

where the step size satisfies 0 < τ < 2/||Φ||2, and the proximity operator is
defined as, for γ > 0

ProxγJ(x) = argmin
x′∈RN

1

2
||x− x′||2 + γJ(x′).

A close inspection of the proof of Theorem 1 tells us more about the proper-
ties of the vector ηθ = Φ∗ y−xθ

λ
. Indeed, we have ηθ ∈ ri(∂J(xθ)) for the assumed

regime of (||w||, λ). This in turn implies that the assumptions of [20, Theorem
13.7], see also [19, Theorem 2]1, are fulfilled and thus shows the following man-
ifold identification result of the Forward-Backward splitting algorithm.

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Then, for k
large enough, xk ∈ M.

In plain words, the Forward-Backward algorithm correctly identifies the
manifold M after a finite number of iterations. This result sheds some light
on the convergence behavior of this algorithm in the favorable case where con-
dition (2) holds and (||w||, λ) are sufficiently small.

1.7 Relation to Previous Works

Works on linear convergence rates. Following the pioneer work [4] (who
study convergence in term of Bregman divergence), there is a large amount of
works on the study conditions under which ||xθ −x0|| = O(||w||) (so-called linear
convergence rate) where xθ is any solution of (Pθ), see for instance the book [34]
for an overview of these results. The initial work of [17] proves a sharp criteria
to ensure linear convergence rate for the ℓ1 norm, and this approach is further
extended to arbitrary convex functions by [16] and [14] who proves respectively
convergence rate in term of J functional and ℓ2 norm.

These works show that if

ker(Φ) ∩ T = {0} and ∃η ∈ Im(Φ∗) ∩ ri(∂J(x0)) (4)

1The result of [20] applies more generally to variable metric (Newton-like) Forward-
Backward when the smooth term is assumed to be C2. This can be easily adapted to our
case by taking the metric as the identity. Observe also that the result of [19] applies to the
projected gradient algorithm, i.e. when J is the indicator function of a closed convex partly
smooth set, and the proof easily extends also to an arbitrary partly smooth closed convex
function.
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(which is often called the source condition), then linear convergence rate holds.
Note that condition (2) implies (4), but it is stronger. Indeed, condition (4)
does not ensure model consistency (3), which is a stronger requirement. Model
consistency requires, as we show in our work, the use of a special certificate,
the minimal norm certificate η0, which is equal to ηF if ηF ∈ ri(∂J(x0)) (see
Proposition 7).

Works on model consistency. Theorem 1 is a generalization of many pre-
vious works that have appear in the literature. For the ℓ1 norm, J = || · ||1, to
the best of our knowledge, this result was initially stated by Fuchs [15]. In this
setting, the result (3) corresponds to the correct identification of the support,
i.e. supp(xθ) = supp(x0). Condition (2) is known in the statistics literature un-
der the name “irrepresentability condition” [40], and moving to a setting where
both Φ and w are random, it implies model consistency (also known as sparsis-
tency for ℓ1), i.e. the probability that the support is correctly identified tends
to 0 when the dimensions of the problem increases.

Bach proves respectively in [1] and [2] Theorem 1 (in fact a variant since
he considers randomized Φ and w) for ℓ1 − ℓ2 and nuclear norm gauges, in the
special case where Φ has full rank (i.e. is injective). Our results thus shows that
the same condition ensures rank consistency with the additional constraint that
ker(Φ) ∩ T = {0}.

Vaiter et al. proves Theorem 1 in [37] for a ℓ1 analysis prior, i.e. J(x) =
||D∗x||1 where D ∈ R

N×Q is an arbitrary linear operator. This includes, as a
special case, the discrete anisotropic total variation prior, when using D∗ = ∇
a finite difference approximation of the gradient operator. This was further
generalized in [36] for partly smooth function J where the manifolds M are
linear spaces (and hence M = Tx). This includes as special cases analysis
ℓ1 − ℓ2 gauges J(x) = ||D∗x||1,2 such as the isotropic discrete total variation.
This also includes polyhedral functions such as ℓ∞. Note that the nuclear norm
(and composition of it with linear operators as proposed for instance in [18, 31])
does not fit into this framework, but is partly smooth, and thus is covered by
Theorem 1. Lastly, a similar result was proved in [13] for an infinite dimensional
sparse recovery problem over space of measures, when J the total variation of a
measure. In this setting, a interesting finding is that, when η0 ∈ ri(∂J(x0)), η0
is not equal to ηF but to a difference certificate (called “vanishing derivative”
certificate in [13]) that can also be computed by solving a linear system.

Condition (2) is often used when Φ is drawn from the Gaussian matrix
ensemble to asses the performance of compressed sensing recovery with ℓ1 norm,
see [38, 12]. This is extended to a more general family of decomposable norms
(including in particular ℓ1 − ℓ2 norms and the nuclear norm) in [7], but only in
the noiseless setting. Our result shows that this analysis extends to the noisy
setting as well, and ensures model consistency at high signal to low noise levels.
The same condition is used to asses the performance of matrix completion (i.e.
the operator Φ is a random masking operator) in a noiseless setting [5, 9]. It
was also used to ensure ℓ2 robustness of matrix completion in a noisy setting [6],
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and our findings shows that these results also ensure rank consistency for matrix
completion at high signal to low noise levels.

Sensitivity analysis. Theorem 1 can be seen as a sensitivity analysis of the
minimizers of the function f at the point (x, θ) = (x0, θ0) where θ0 = (0, y0).
Classical sensivity analysis of non-smooth functions seeks condition to ensure
continuity of the map θ 7→ xθ, see for instance [32]. This is usually guaranteed
by the source condition (4), which, as already exposed, ensures linear conver-
gence rate, and hence Lipschitz behavior of this map. The analysis proposed
by Theorem 1 goes one step further, by assessing that Mx0

is a stable mani-
fold (in the sense of [39]), since the minimizer xθ is unique and stays in Mx0

for small θ. Our main source of inspiration for this analysis is the notion of
partly smooth function introduced by Lewis [24] in order to ensure the exis-
tence of stable manifolds. For convex functions (which is the setting considered
in our work) this corresponds to the notion of U -Lagrangian, introduced in [23].
Loosely speaking, a partly smooth function behaves smoothly as we move on
the identifiable manifold, and sharply if we move normal to the manifold. In
fact, the behaviour of the function and of its minimizers (or critical points)
depend essentially on its restriction to this manifold, hence offering a powerful
framework for sensitivity analysis theory. In particular, critical points of partly
smooth functions move stably on the manifold as the function undergoes small
perturbations [24, 27]. A important and distinctive feature of our result is that,
while the regularized J is assumed to be partly smooth, the function f is not
partly smooth at (x, θ) = (x0, θ0) relative to the manifold Mx0

× Θ because
of the indicator function (constrained problem) appearing in E(·, (0, y)) when
λ = 0. Thus one cannot apply Theorem 5.7 of [24]. We refer to Section 3.1 for
a discussion about this point.

2 Primal and Dual Problems

In this section, we do not assume that J is partly smooth. We first recall
some fundamental properties of both the primal and dual problems. In partic-
ular, we study the convergence of the solutions to these problems when λ → 0.
While these properties are not used for the proof of Theorem 1 (Section 3), they
are crucial to understand the rationale behind the hypotheses of this theorem,
and in particular to introduce the key concept of minimal norm certificate.

2.1 Convergence of the Primal Problem

We first show the convergence of the solution of the primal problem to-
ward x0.

Proposition 2. We denote xθ any solution of (Pθ). If x0 is the unique solution
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of (P0,y0
), then

xθ −→ x0 when

{

λ −→ 0,
||y − y0||

2/λ −→ 0.
(5)

Remark 3. The notations in statement (5) should be understood as follow: if
θn = (λn, yn) is a sequence such that λn → 0 and ||yn − y0||

2/λn → 0, then
xθn → x0. We will make use of this slight abuse of notation in the remaining
part of this section to ease the exposition.

Proof. This is a classical result, whose proof can be found for instance in [22,
Theorem 3.5]. We recall it by sake of clarity.

By optimality of xθ one has f(xθ, θ) 6 f(x0, θ) and hence

||Φ(xθ − x0)− w||2 6 ||w||2 + 2λJ(x0), (6)

J(xθ) 6
||w||2

2λ
+ J(x0). (7)

Thanks to (1), these bounds shows that the sequence {xθ}θ is bounded if
||w||2/λ and λ are bounded. We let x⋆ be any accumulation point.

For the considered asymptotics, (6) implies that Φx⋆ = Φx0, while (7) im-
plies that J(x⋆) 6 J(x0). This shows that x

⋆ is a solution of (P0,y0
) and hence

x⋆ = x0.

2.2 Convergence of the Dual Problem

For λ > 0, the Fenchel-Rockafellar dual problem associated to (Pθ) reads

pθ = argmin
p∈RP

g(p, θ) = J∗(Φ∗p)− 〈y, p〉+
λ

2
||p||2 (Dθ)

where J∗ is the Legendre transform of J , defined as

∀u, J∗(u) = max
x

〈x, u〉 − J(x).

Note that pθ is uniquely defined because g(·, θ) is strictly convex.
The following proposition recalls the primal-dual relationships.

Proposition 3. For any xθ solution of (Pθ), one has

pθ =
y − Φ∗xθ

λ
and ηθ = Φ∗pθ ∈ ∂J(xθ).

Proof. Since J is a bounded function, strong duality holds, hence the result
using Fenchel-Rockafellar duality.

For λ = 0, the dual problem associated to (P0,y) reads

S0,y = Argmin
p∈RP

g(p, (0, y)) = J∗(Φ∗p)− 〈y, p〉. (D0,y)

Note that in general S0,y is not a singleton. The following proposition shows
how S0,y relates to solution of the primal problem.
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Proposition 4. For any solution x0,y of (P0,y), one has

S0,y =
{

p ∈ R
P ; Φ∗p ∈ ∂J(x0,y)

}

.

Proof. Similarly to Proposition 3, strong duality holds between (P0,y) and
(D0,y), and the primal-dual relationships states that (x0,y, p0,y) form a solu-
tion to these problems if and only if Φ∗p0,y ∈ ∂J(x0,y).

The following definition singles out a particular solution of the dual problem.

Definition 3 (Minimal norm certificate). We define

p0,y = argmin
p∈S0,y

||p||. (8)

Note that p0,y is well defined because it is the projection of 0 on the closed
convex set S0,y. In the following, we make use of the following notations

p0 = p0,y0
and η0 = Φ∗p0.

The following proposition gives the limit of pθ when θ → 0 in a certain sense.

Proposition 5. One has

||pθ − p0|| 6
||y − y0||

λ
+ ε(λ)

where ε(λ) → 0 when λ → 0.

Proof. This result is already proved in [13] in a special case of functional J .
Formulation (Dθ) shows pθ is the proximal operator of the function J∗(Φ∗·)/λ
applied at the point y/λ. This shows that y/λ 7→ pθ is 1-Lipschitz, and hence

||pθ − p0|| 6 ||pθ − pλ,y0
||+ ||pλ,y0

− p0|| 6
||w||

λ
+ ||pλ,y0

− p0||.

We now prove that

pθ
λ→0
−→ p0,y,

which gives the desired result when setting y = y0 in the previous formula.
Since p0,y is a solution of (D0,y), one has

−〈p0,y, y〉 6 −〈pθ, y〉. (9)

By optimality of pθ, one has g(pθ, θ) 6 g(p0,y, θ), and thus

−2〈pθ, y〉+ λ||pθ||
2
6 −2〈p0,y, y〉+ λ||p0,y||

2
6 −2〈pθ, y〉+ λ||p0,y||

2

and thus
||pθ|| 6 ||p0,y||. (10)
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This shows that {pθ}λ is bounded. Let p⋆ be any cluster point. Operating as
in the proof of Proposition 2, we have ∀x̄ ∈ {x ; y = Φx}

||y − Φxθ||
2
6 2λJ(x̄) and J(xθ) 6 J(x̄).

Letting λ → 0, we get by continuity that

x0,y ∈ {x ; y = Φx} and J(xθ) 6 J(x̄) ,

or equivalently, that x0,y is a minimizer of (P0,y). Morever, from the primal-
dual extremality relationships, we have Φ∗pθ ∈ ∂J(xθ). Since J is a proper
closed convex function, the graph of ∂J is sequentially closed, which yields
Φ∗p⋆ ∈ ∂J(x0,y), i.e. p⋆ ∈ S0,y. Now (10) implies that ||p⋆|| 6 ||p0,y|| and hence
p⋆ = p0,y, which shows that pθ is converging to p0,y.

2.3 Uniqueness Sufficient Conditions

The following result is the extension of a classical result from ℓ1 minimization
to arbitrary J functionals, see for instance [15].

The result below follows the strategy of proof already used in [36]. However,
to simplify the exposition of the proof, we assume that J is partly smooth at
xθ a solution of (Pθ). We start by the following lemma.

Lemma 1. Let C be a non-empty closed convex set and f a proper lsc convex
function. Let x be a minimizer of minz∈C f(z). If

f ′(x, z − x) > 0 ∀z ∈ C, z 6= x ,

then, x is the unique solution of f on C.

The proof is deferred to Appendix A. We now state the uniqueness result.

Proposition 6. Let xθ be a solution of (Pθ) (resp. a feasible point of (P0,y)).
Assume that there exists a dual vector p such that η = Φ∗p ∈ ri(∂J(xθ)), and
such that

ker(Φ) ∩ T = {0},

where T = Tx. Assume also that J is partly smooth at xθ relative to the manifold
M. Then xθ is the unique solution of (Pθ) (resp. (P0,y)).

Proof. One has

η ∈ ri(∂J(xθ)) ⇔ J ′(xθ, δ) > 〈η, δ〉 ∀δ such that J ′(xθ, δ) + J ′(xθ,−δ) > 0.

Applying this with η = Φ∗p ∈ ri(∂J(xθ)), we obtain

Φ∗p ∈ ri(∂J(xθ)) ⇔ J ′(xθ, δ) > 〈p, Φδ〉 ∀δ such that J ′(xθ, δ)+J ′(xθ,−δ) > 0.

Now, since J is sharp (Definition 1(ii)) at x, using [24, Proposition 2.4], we have

J ′(xθ,−δ) > J ′(xθ, δ) for ∀δ ∈ NM(xθ) \ {0}.
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Hence,

Φ∗p ∈ ri(∂J(xθ)) ⇒ J ′(xθ, δ) > 〈p, Φδ〉 ∀δ ∈ NM(xθ) \ {0}.

Since NM(xθ) = T⊥
x , we have

Φ∗p ∈ ri(∂J(xθ)) ⇒ J ′(xθ, δ) > 0 ∀δ ∈ KerΦ \ {0},

which concludes the proof using Lemma 1.

Proposition 7. Suppose J is partly smooth at x0 for the manifold M. Under
the hypothesis ker(Φ) ∩ T = {0}, one has

ηF ∈ ri(∂J(x0)) =⇒ η0 = ηF, (11)

η0 ∈ ri(∂J(x0)) =⇒ η0 = ηF. (12)

These conditions implies that x0 is the unique solution of (P0,y0
).

Proof. We first remark that the first order condition of (P0,y0
) reads

x0 solution of (P0,y0
) ⇐⇒ ∃η ∈ Im(Φ∗) ∩ ∂J(x0).

This shows that the left hand side conditions of both (11) and (12) implies that
x0 is a solution of (P0,y0

).

Proof of (11) Under the condition ker(Φ)∩T = {0}, one has, from the definition
of Φ∗,+

T , that
pF = argmin

p
{ ||p|| ; Φ∗

T p = e} (13)

Using Proposition 4 for w = 0 with x0 being solution of (P0,y0
), one sees that

the constraint of problem (13) includes the constraint of problem (8). Indeed,
one has

∀ η ∈ ∂J(x), PTx
(η) = ex.

If pF ∈ ri(∂J(x0)), then it is a feasible point of problem (8) when w = 0.
Hence, necessarily p0 = pF.

Proof of (12) Since x0 is a solution of (P0,y0
), according to Proposition 4, one

has that
p0 = argmin

p

{

||p||2 ; Φ∗
T p = e,Φ∗

Sp ∈ U
}

where we have denoted S = T⊥ and U = PS(∂J(x0)). The first order conditions
of this problem state the existence of q ∈ R

N and u ∈ R
N such that

p0 +ΦT q +ΦSu = 0 where

{

Φ∗
T p0 = e,

u ∈ NU (Φ
∗
Sp0).

The condition Φ∗p0 ∈ ri(∂J(x0)) implies that Φ∗
Sp0 ∈ ri(U) and thusNU (Φ

∗
Sp0) =

T . This implies ΦSu = 0 and hence one has the equation

Φ∗
T p0 +Φ∗

TΦT q = e+Φ∗
TΦT q = 0

which leads to p0 = (ΦT )
+,∗e = pF.

Proof of uniqueness. See Proposition 6.
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3 Proofs

3.1 Sensitivity of the Lagrangian Problem

Before diving into the proof of Theorem 1, we first show how the theory of
partly smooth functions introduced in [24] can be directly applied to study the
sensitivity of (Pθ).

Theorem 3. Let xθ be a solution of (Pθ). We assume that J is locally partly
smooth at xθ relative to a set M. If

ker(Φ) ∩ Txθ
= {0} and ηθ ∈ ri(∂J(xθ)) (14)

where we have denoted

ηθ = Φ∗pθ =
1

λ
Φ∗(y − Φxθ),

then for θ′ close enough from θ, the solution xθ′ of (Pθ) is unique and satisfies

xθ′ ∈ M.

Proof. This is an straightforward application of [24, Theorem 5.7]. Indeed,
by the smooth perturbation rule [24, Corollary 4.7], the function E is partly
smooth at (xθ, θ) relative to the manifold M×Θ, and condition (14) is exactly
equivalent to xθ being a strong minimizer of E(·, θ), see [24, Definition 5.6].

Condition (14) is not very useful because it depends on the solution xθ and
not on the data to recover x0. The rationale behind Theorem 1 is to make θ
tends to 0, and under the constraints

λ → 0 and w/λ → 0,

Propositions 2 and 5 ensure that

xθ → x0 and ηθ → η0.

The heuristic underlying the hypotheses of Theorem 1 is that the conditions
in (14) converge toward those of (2). Indeed, according to Proposition 7, con-
dition (2) implies η0 = ηF. This is precisely what we need to prove to make the
statement of the theorem correct.

3.2 Proof of of Theorem 1

Constrained problem. We consider the following non-convex constrained
minimization problem

x̃θ ∈ Argmin
x∈M

E(x, θ) (15)

We aim at showing that for (||w||/λ, λ) small enough, x̃θ is the unique solution
of (Pθ).
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The proof of Proposition 2 carries over verbatim to this constrained problem,
which shows that

x̃θ → x0 when

{

λ −→ 0,
||w||2/λ −→ 0 ,

(16)

where convergence is in M. In the following, for ease of notations, we denote
T̃ = Tx̃θ

.

Convergence of the tangent model subspace. By definition of the con-
strained problem (15), x̃θ ∈ M. Moreover, since E(·, θ) is partly smooth at x0

relative to M, the sharpness property Definition 1(ii) holds at all nearby points
in the manifold M [24, Proposition 2.10]. Thus as soon as (||w||/λ, λ) is small
enough, we have T̃ = Tx̃θ

(M). Using the fact that M is of class C2, we get

T̃ = Tx̃θ
(M) −→ Tx0

(M) = T when

{

λ −→ 0,
||w||2/λ −→ 0,

(17)

where the convergence should be understood over the Grassmannian of linear
subspaces with the same dimension (or equivalently, as the convergence of the
projection operators PT̃ → PT ). Since ker(Φ) ∩ T = {0}, (17) implies that for
(||w||2/λ, λ) small enough,

ker(Φ) ∩ T̃ = {0}, (18)

which we assume from now on.

First order condition. Local partial smoothness of J , hence of E(·, θ) by the
the smooth perturbation rule, at x0 relative to M implies that for (||w||2/λ, λ)
sufficiently small, E(·, θ) is partially smooth at x̃θ ∈ M relative to M. There-
fore, [24, Proposition 2.4(a)-(b)] applies, and it follows that x̃θ is a critical point
of (15) if, and only if,

0 ∈ Aff(∂E(x̃θ, θ)) =
1

λ
Φ∗(Φx̃θ − y) + Aff(∂J(x̃θ))

=
1

λ
Φ∗(Φx̃θ − y) + ex̃θ

+ T̃⊥.

The first equality comes from the fact that E(·, θ) is a closed convex function
and the second one from the decomposability of the subdifferential. Projecting
this relation onto T̃ , we get

Φ∗
T̃
(Φx̃θ − y) + λex̃θ

= 0, (19)

since ex̃θ
∈ T̃ .

Convergence of the primal variables. Since both x̃θ and x0 belong to M,
and partial smoothness implies that M is a manifold of class C2 around each of
them, we deduce that each point in their respective neighbourhoods has a unique
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projection on M [29]. In particular, x̃θ = PM(x̃θ) and x0 = PM(x0). Moreover,
PM is of class C1 near x̃θ [26, Lemma 4]. Thus, continuous differentiability
shows

x̃θ − x0 = PM(x̃θ)− PM(x0) = DPM(x̃θ)(x̃θ − x0) + o (||x̃θ − x0||) .

where DPM(x̃θ) is the derivative of PM at x̃θ. Using [26, Lemma 4], and
recalling that T̃ = Tx̃θ

(M), the derivative DPM(x̃θ) is given by

DPM(x̃θ) = PT̃ .

Inserting this in (19), we get

Φ∗
T̃
Φ(x̃θ − x0) = Φ∗

T̃
ΦT̃ (x̃θ − x0) + o (||x̃θ − x0||) = Φ∗

T̃
w − λex̃θ

.

Using (18), ΦT̃ has full rank, and thus

x̃θ − x0 = Φ+

T̃
w − λ(Φ∗

T̃
ΦT̃ )

−1ex̃θ
+ o (||x̃θ − x0||) . (20)

Altogether, we obtain the bound

||x̃θ − x0|| = O(||w||, λ).

Convergence of the dual variables. We define

η̃θ = Φ∗p̃θ where p̃θ =
y − Φx̃θ

λ
.

Arguing as above, and using (20) we have

λp̃θ = Φ(x0 − x̃θ) + w

= ΦT̃ (x0 − x̃θ) + w + o (||x̃θ − x0||)

= PIm(ΦT̃ )⊥w + λΦ+,∗

T̃
ex̃θ

+ o (||x̃θ − x0||) .

We thus arrive at

||p̃θ − pF|| = O

(

||w||

λ
, ||Φ+,∗

T̃
ex̃θ

− Φ+,∗
T e||

)

.

Since M is a C2 manifold, and by partial smoothness x 7→ ex is C1 on M
(recall that J is C2 on M), one has

||ex̃θ
− e|| = O(||x̃θ − x0||).

Since A 7→ A+,∗ is smooth at A = ΦT along the manifold of matrices of constant
rank, one has

||Φ+,∗

T̃
− Φ+,∗

T || = O(||ΦT̃ − ΦT ||) = O(||PT̃ − PT ||||Φ||) = O(||x̃θ − x0||).

This implies

||Φ+,∗

T̃
ex̃θ

− Φ+,∗
T e|| 6 ||Φ+,∗

T̃
− Φ+,∗

T ||||ex̃θ
||+ ||ex̃θ

− e||||Φ+,∗
T || = O(||x̃θ − x0||).

Altogether, we get the bound

||η̃θ − ηF|| = O(||w||/λ, λ). (21)
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Convergence inside the relative interior. Using the hypothesis that ηF ∈
ri(∂J(x0)), we will show that for (||w||/λ, λ) small enough,

η̃θ ∈ ri(∂J(x̃θ)). (22)

We follow the line of proof of [24].
Let us suppose this does not hold. Then there exists a sequence (θn =

(λn, wn))n, with (wn/λn, λn) tending to 0, such that

η̃n ∈ rbound(∂J(x̃n)) (23)

where we used the shorthand notations

x̃n = x̃θn and η̃n = η̃θn .

According to (21) and (16),

(x̃n, η̃n) → (x0, ηF). (24)

Condition (23) is equivalently stated as, for each n

∃zn ∈ T⊥
x̃n
, ∀ η ∈ ∂J(x̃n), 〈zn, η − η̃n〉 > 0, (25)

where one can impose the normalization ||zn|| = 1. Up to a sub-sequence (that
for simplicity we still denote zn with a slight abuse of notation), since zn is in
a compact set, we can suppose that zn → z⋆.

Since T⊥
x̃n

→ T⊥ because M is a C2 manifold, one has that z⋆ ∈ T⊥. We
now show that

∀ v ∈ ∂J(x0), 〈z⋆, η − ηF〉 > 0. (26)

Indeed, let us consider any v ∈ ∂J(x0). In view of the continuity property
in Definition 1(iii) (see also the discussion in Remark 1), ∂J is continuous at
x0 along M, so that since x̃n → x0 there exists vn ∈ ∂J(x̃n) with vn → v.
Applying (25) with η = vn gives

〈zn, vn − η̃n〉 > 0.

Taking the limit n → +∞ in this inequality leads to (26), which contradicts the
fact that ηF ∈ ri(∂J(x0)).

In view of (22) and (18), using Proposition 6 shows that x̃θ = xθ is the
unique solution of (Pθ).

3.3 Proof of of Proposition 1

Let xθ be a solution of (Pθ). Suppose that xθ ∈ M. In particular, xθ

is a solution of the non-convex minimization (15). Arguing as in the proof of
Theorem 1, we get the bound (21), i.e.

||ηθ − ηF|| = O(||w||/λ, λ) where ηθ = Φ∗ y − Φxθ

λ
. (27)

17



Since x0 is the unique solution of (P0,y), p0 is well defined, hence Φ∗p0 ∈ ∂J(x).
Thus, there exists K > 0 (for instance K = d(ηF, ∂J(x))) such that ||ηF− η0|| >
K. Moreover,

||ηF − η0|| 6 ||ηF − ηθ||+ ||ηθ − η0||.

According to (27) and (5), one has

||ηF − ηθ|| → 0 and ||ηθ − η0|| → 0.

This leads to a contradiction, hence xθ 6∈ M.

4 Conclusion

In this paper, we provided a unified analysis of the recovery performances of
partly smooth regularizations of linear inverse problems. A distinctive feature
of our analysis is that we provided for the first time a criterion to ensure the
correct identification of the low-complexity manifold associated to the input
data. This criterion requires that a specific certificate (that we coined “minimal
norm”) is non-degenerate. This condition can be checked by making use of a
pre-certificate (that we coined “linearized”), which can be computed in closed
form from the input data.
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A Directional Derivative and Uniqueness

Proof of Lemma 1. We first show that t 7→ (f(x+ t(z − x))− f(z)) /t is non-
decreasing on (0, 1]. Indeed, let g : [0, 1] → R a convex function such that
g(0) = 0. Let (t, s) ∈ (0, 1]2 with s > t. Then,

g(t) = g (s(t/s)) = g (s(t/s) + (1− t/s)0)

6 t
g(s)

s
+ (1− t/s)g(0)

= t
g(s)

s
,

which proves that t ∈ (0, 1] 7→ g(t)
t

is non-decreasing on (0, 1]. Since f is convex,
applying this result shows that the function

t ∈ (0, 1] 7→ g(t) = f(x+ t(z − x))− f(z)

is such that g(0) = 0 and g(t)/t is non-decreasing.

18



Assume now that that f ′(x, z − x) > 0. Then, for every x ∈ C,

g(1) = f(z)− f(x) > f ′(x, z − x) > 0, ∀z ∈ C, z 6= x ,

which is equivalent to x being the unique minimizer of f on C.
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[37] S. Vaiter, G. Peyré, C. Dossal, and M.J. Fadili. Robust sparse analysis
regularization. IEEE Transactions on Information Theory, 59(4):2001–
2016, 2013.

[38] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy spar-
sity recovery using ℓ1-constrained quadratic programming (lasso). IEEE
Transactions on Information Theory, 55(5):2183–2202, 2009.

[39] S. J. Wright. Identifiable surfaces in constrained optimization. SIAM Jour-
nal on Control and Optimization, 31(4):1063–1079, 1993.

[40] P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach.
Learn. Res., 7:2541–2563, December 2006.

21


