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Numerical methods for matching for teams and

Wasserstein barycenters

G. Carlier ∗, A. Oberman †, E. Oudet ‡

May 2, 2014

Abstract

Equilibrium multi-population matching (matching for teams) is a prob-
lem from mathematical economics which is related to multi-marginal op-
timal transport. A special but important case is the Wasserstein barycen-
ter problem, which has applications in image processing and statistics.
Two algorithms are presented: a linear programming algorithm and an
efficient nonsmooth optimization algorithm, which applies in the case of
the Wasserstein barycenters. The measures are approximated by discrete
measures: convergence of the approximation is proved. Numerical results
are presented which illustrate the efficiency of the algorithms.

Keywords: matching for teams, Wasserstein barycenters, duality, linear
programming, numerical methods for nonsmooth convex minimization.

1 Introduction

Optimal transport theory has received a lot of attention in the last decades
and is now recognized as a powerful tool in PDEs, geometry, and functional
inequalities (for which we refer to the monographs of Villani [Vil03]-[Vil09]).
Given two Borel probability measures µ1, µ2, on metric spaces X1 and X2,
respectively, and a cost function c ∈ C(X1 × X2,R), the Monge-Kantorovich
optimal transport problem consists in finding the cheapest way to transport µ1

to µ2 for the cost c:

Wc(µ1, µ2) := inf
γ∈Π(µ1,µ2)

∫

X×X

c(x1, x2)γ(dx1, dx2) (MK)

where Π(µ1, µ2) denotes the set of transport plans between µ1 and µ2, i.e. the
set of probability measures on X1×X2 having µ1, µ2, respectively as marginals.
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Since this problem is of linear programming type, under very mild assumptions
(e.g. when X1 and X2 are compact), the least transport cost Wc(µ1, µ2) admits
a dual expression given by the Kantorovich duality formula:

Wc(µ1, µ2) := sup
ϕ∈C(X1)

{∫

X1

ϕ(x1)µ1(dx1) +

∫

X2

ϕc(x2)µ2(dx2)

}
(1.1)

where ϕc denotes the c-transform of ϕ:

ϕc(x2) := min
x1∈X1

{c(x1, x2)− ϕ(x1)}.

A particularly important example is the quadratic case where X1 = X2 = R
d,

µ1 and µ2 have finite second moments, and c(x1, x2) = |x1 − x2|
2. This case

was first solved by Brenier [Bre91], who proved that whenever µ1 is absolutely
continuous, there is a unique optimal transport plan that is given by the gradient
of a convex potential. This important result relates optimal transport to Monge-
Ampère equations. We refer to [BFO14] and the references therein for numerical
methods for optimal transport based on the Monge-Ampère equation.

More generally, costs given by distances or convex power of distances are
important because they lead to the so-called Wasserstein distances. More pre-
cisely, whenX1 = X2 (a metric space with distance d) and c(x1, x2) = d(x1, x2)

p

for some p ≥ 1, the value Wc(µ1, µ2) in (MK) is the p-power of the so-called
p-Wasserstein distance Wp(µ1, µ2) between µ1 and µ2:

Wp(µ1, µ2) :=
(

inf
γ∈Π(µ1,µ2)

∫

X×X

d(x1, x2)
pγ(dx1, dx2)

)1/p

.

In the present article, we are interested in solving numerically the follow-
ing variant of the optimal transport problem which allows for more than two
marginals. Given (compact metric, say) spaces X1, . . . , XI , equipped with Borel
probability measures (µ1, . . . µI) ∈ P(X1) × . . . × P(XI), a (compact metric)
space Z, and cost functions ci ∈ C(Xi×Z,R), we look for a probability measure
ν on Z solving:

inf
ν∈P(Z)

J(ν) :=

I∑

i=1

Wci(µi, ν). (1.2)

This problem was introduced in Carlier and Ekeland [CE10] in the framework
of multi-population matching equlibrium; we will shortly recall in section 2 the
economic interpretation of (1.2). Problem (1.2) is also a special case of multi-
marginal optimal transport (a variant of (MK) where more than two marginals
are prescribed). Multi-marginal optimal transport is currently an active research
field: compared to (two marginals) optimal transport, there are fewer theoret-
ical results, and the complexity of general multi-marginal optimal transport
problems typically increases exponentially in the number of marginals. Regard-
ing the rapidly developing theory of multi-marginal optimal transport, we refer
the reader to the recent papers by Pass [Pas12a], [Pas12b], by Ghoussoub and
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coauthors [GM13], [MG14] and the references therein for costs with special sym-
metry properties, motivated in particular by challenging computational issues
in density functional theory in quantum physics.

We now discuss a special, but important case of (1.2) which has a clear
geometric interpretation. Let all the Xi’s and Z coincide with R

d, the measures
µi have finite second moments, and the costs be quadratic (i.e. ci(xi, z) :=
λi|xi − z|2 for some weights λi > 0, summing to 1 without loss of generality).
In this case (1.2) takes the form:

inf
ν∈P(Rd)

J(ν) :=
I∑

i=1

λiW
2
2 (µi, ν) (1.3)

where W2 denotes the 2-Wasserstein distance. In analogy with the Euclidean
case, a solution to (1.3) will be called a Wasserstein barycenter of the mea-
sures µi with weights λi. Properties of Wasserstein barycenters were studied
by Agueh and Carlier [AC11]. Wasserstein barycenters interpolate between the
measures µi; the idea of interpolating between points of a metric space by min-
imizing some weighted sum of squared distances goes back to the notion of
Fréchet mean. The case I = 2 is well-known. Letting the weights (λ, 1 − λ)
vary, one obtains the classical notion of McCann’s interpolation [McC97] be-
tween two probability measures. This interpolating curve is also a geodesic
for W2, and in their seminal paper [BB00] on the dynamic formulation of op-
timal transport, Benamou and Brenier gave a numerical scheme to compute
this geodesic. Finding barycenters between more than three measures is more
complicated (barycenters are not associative as soon as d ≥ 2). From a Par-
tial Differential Equations problem, this problem requires to solve a system of
Monge-Ampère equations, see (4.9)-(4.8) below. Interestingly, the Wasserstein
barycenter problem recently found natural applications in image processing, see
Peyré et al. [RPDB12] and statistics, see Bigot and Klein [BK12]. Of course,
there are lots of variants of the interpolating scheme given by theW2-barycenter
problem (1.3) and in particular one can replace W2 by Wp for some p ≥ 1 or
even mix different powers of the distance. Slightly abusing the terminology,
we will sometimes refer to barycenters even for these variants and even for the
general form of the problem (1.2).

In the discrete setting, the transportation problem is classical. In fact, this
problem motivated the historical development of optimization, by Kantorovich
in 1939, working on Soviet railway transportation, and in the 1940’s by Hitch-
cock [Sch03, Ch 21]. The “assignment problem” arises in case of integer values
weights, it is a standard combinatorial optimization problem which can be solved
by the Hungarian algorithm) [Sch03, Ch 21]. More generally, the “transporta-
tion problem” is a linear programming problem which arises when the weights
are real-valued, it can be solved by the Hitchcock algorithm, [Sch03, Ch 21], or
by modern commerical general linear programming software. Returning to the
problem with continuous measures, it is natural to approxiate the measure by
weighted sums of delta measures. In theory, the resulting problem can be solved
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using linear programming. However, the number of variables in the linear pro-
gramming problem is quadratic in the number of variables used to represent the
measures. In the discrete setting, current optimization algorithms are limited
to approximately several thousands of variables for each of the measures. This
problem size corresponds to a fairly coarse approximation of a two dimensional
continuous measure. In special cases, or using specific approximations, improve-
ments are available, see [PPO14] for quadratic costs, and for more references.
For example, if each measure is represented by, for example, 402 = 1600 vari-
ables, the linear program has 404 = 2 560 000 which is near the limitations of
linear programming algorithms (we performed experiments using CVX [GB10]
and calling several academic and commercial optimization packages). Enlarg-
ing the resolution of the measures quickly overwhelms the capabilities of the
algorithms.

The problem (1.2) is even more challenging, since it involves multiple marginals
and an additional unknown measure. A reasonable goal is to resolve each of the
measures in two dimensions, with (on the order of, say) 1600 variables. Since we
wish to allow for measures which are separated, this may require a full grid of
size up to 2002. Resolving the barycenter measure on the full grid generally leads
to an intractable problem. Our main contributions regarding numerical schemes
for the general problem (1.2) or the particular case of Wasserstein barycenters
(1.3) are as follows:

• We give a simple linear programming reformulation of (1.2) in subsec-
tion 2.3 whose size is proportional to the number of marginals. Together
with a localization result that bounds the support of the unknown barycen-
ter in subsection 2.2, one then obtains a tractable problem. We discretize
the problem to arrive at a finite dimensional linear programming problem
in subsection 2.4. We prove convergence, in the sense of weak convergence
of measures, in subsection 2.5.

• Numerical results are presented in section 3. These illustrate the validity
of this linear programming approach. Barycenter problems with different
costs are solved, as well as a matching for teams problem.

• The second algorithm which is specialized to the case of Wasserstein
barycenter measures (1.3), is described and implemented in section 4.
This problem uses the dual formulation of the problem explained in sec-
tion 4, and special features of the quadratic cost. The efficient nonsmooth
optimization algorithm is described in subsection 4.3. Large size compu-
tational examples are presented (on grids of size 2002, and for measures
resolved with 1500 points). The examples include barycenter measures
using up to five measures, and a an example in texture synthesis in sub-
section 4.4.

2 Matching for teams and approximation
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In this section, following [CE10], we first derive the generalized barycenter prob-
lem (1.2) as an equivalent reformulation of an equilibrium problem for multi-
population matching arising in economics. Next, we study localization of the
barycenter measure. Then, we present an infinite dimensional linear program-
ming reformulation of (2.5). This is followed by a discretization of the mea-
sures, which results in a finite dimensional linear programming problem that is
tractable for moderate problem sizes. Finally, we address stability issues (in the
sense of weak convergence of measures) when one approximates the measures
µi by some (discrete) measures.

2.1 Variational characterization of matching equilibria

The model of Carlier and Ekeland [CE10] deals with the equilibrium of a market
for a quality good (e.g. house, school, hospitals, . . . ). Producing the good
requires assembling a team consisting of a buyer and a set of producers. For
instance, in the case of houses, the producers could be a plumber, an electrician
and a mason. The quality good has a range of feasible qualities (location,
surface, number of rooms, facilities etc...), denoted by Z which we assume to be
a compact metric space.

Each of the different populations (buyers, plumbers, electricians, masons...)
is indexed by i ∈ {1, . . . , I}. The agents in each population are hetererogeneous,
characterized by a certain type which affects their (quality dependent) cost
function. For example, some masons are used to working with lower quality
bricks, while other work with luxury stone, some electricians leave quite far from
the location of the house they work on, consumers differ in their tastes... To be
precise, for each population i, we are given a compact metric space of types, Xi,
and a continuous cost function ci ∈ C(Xi × Z,R); with the interpretation that
ci(xi, z) is the cost for an agent of population i with type xi to work in a team
that produces good z. The distribution of type xi in population i is known and
given by some Borel probability measure µi ∈ P(Xi).

The goal is to find an equilibrium production line ν ∈ P(Z) (together with
a price system) which clears both the quality good and the labor market. The
equilibrium is described below, and as we shall see, it corresponds to the solution
of the (generalized) barycenter measure problem (2.5). In this setting, one looks
in particular for an equilibrium system of monetary transfers (paid by the buyer
to the producers). A system of transfers is a collection of continuous functions
ϕ1, . . . ϕI : Z → R where ϕi(z) is the amount paid to i by the other members
of the team for producing z. An obvious equilibrium requirement is that teams
are self-financed i.e.

I∑

i=1

ϕi(z) = 0, ∀z ∈ Z. (2.1)

Given transfers, ϕ1, . . . ϕI , an agent from population i with type xi ∈ Xi, gets
a net minimal cost given by the so-called ci-transform of ϕi:

ϕcii (xi) := min
z∈Z

{ci(xi, z)− ϕi(z)}. (2.2)
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By construction, ϕcii (xi) + ϕi(z) ≤ ci(xi, z), and since agents are rational, they
choose cost minimizing qualities, i.e. a z ∈ Z such that

ϕcii (xi) + ϕi(z) = ci(xi, z). (2.3)

The final unknown is a collection of plans, γi ∈ P(Xi × Z), such that γi(Ai ×
A) represents the probability that an agent in population i has a type in Ai,
and belongs to a team that produces a quality in A. At equilibrium, the first
marginal of γi should be µi (this is equilibrium on the i-th labor market) and
the second marginal of γi should not depend on i (this is equilibrium on the
quality good market), this common marginal represents the equilibrium quality
line. An equilibrium can then be formally defined. It consists of a transfer
system (ϕ1, . . . ϕI) ∈ C(Z,R)I , probability measures γi ∈ P(Xi × Z), and a
probability measure ν ∈ P(Z), such that

• teams are self-financed i.e. (2.1) holds,

• γi ∈ Π(µi, ν) for i = 1, . . . , I (equilibrium on the labor markets and on
the good market),

• (2.3) holds on the support of γi for i = 1, . . . , I, (i.e. agents choose cost
minimizing qualities).

If an equilibrium quality line, ν, was known, then clearly the last two con-
ditions above would imply that the plan γi should be optimal for the Monge-
Kantorovich problem:

Wci(µi, ν) := inf
γ∈Π(µi,ν)

∫

Xi×Z

ci(xi, z)γ(dxi, dz). (2.4)

In fact, it was proved in [CE10] that there is a purely variational charac-
terization of equilibria, which is tightly related to the following convex problem

inf
ν∈P(Z)

J(ν) :=
I∑

i=1

Wci(µi, ν) (2.5)

and its dual (concave maximization) formulation (see [CE10] or section 4 for
details on this duality)

sup

{
I∑

i=1

∫

Xi

ϕcii (xi)µi(dxi) :
I∑

i=1

ϕi = 0

}
. (2.6)

Theorem 2.1. (ϕi, γi, ν) is an equilibrium if and only if:

• ν solves (2.5),

• the transfers (ϕ1, . . . ϕI) solve (2.6),

• for i = 1, . . . , I, γi solves the Monge-Kantorovich problem Wci(µi, ν).
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2.2 Localization

As noted in [CE10], the minimization problem (2.5), which characterizes equi-
librium quality lines, can be reformulated as an optimal transport problem with
multi-marginal constraints, as follows. First define the cost

c(x) := min
z∈Z

I∑

i=1

ci(xi, z), (2.7)

where x = (x1, . . . , xI). Let T (x) ∈ Z be a measurable selection of the solution
of the above minimization, meaning that T (x) ∈ Z satisfies

I∑

i=1

ci(xi, T (x)) = c(x).

Then consider the multi-marginal problem

inf
γ∈Π(µ1,...,µI)

∫

X1×...×XI

c(x)γ(dx), (2.8)

where Π(µ1, . . . , µI) denotes the set of probability measures on X1 × . . . ×XI

having (µ1, . . . , µI) as marginals. It is not difficult to see that if γ solves (2.8)
then ν := T#γ solves (2.5) (where as usual T#γ denotes the push forward of γ
through T , i.e. T#γ(B) := γ(T−1(B)) for every Borel B).

Conversely, one can relate the minimizers of (2.5) to those of (2.8). In-
deed, let ν solve (2.5) and let γi ∈ Π(µi, ν) be an optimal plan for Wci(µi, ν).
Disintegrating γi with respect to ν i.e. writing γi = γzi ⊗ ν and defining
γ ∈ P(X1,× . . .×XI × Z) by:

γ := ⊗Ii=1γ
z
i ⊗ ν

and η as the marginal of γ on the variables (x1, . . . , xI), one easily checks that

• η ∈ Π(µ1, . . . , µI) solves (2.8),

• on the support of γ, spt(γ), one has

I∑

i=1

ci(xi, z) = c(x),

• the previous relation, together with the fact that ν is the Z-marginal
of γ and µi its Xi-marginal then imply a useful localization property:
the support of the barycenter measure, spt(ν), is contained in the set of
minimizers of the following problem.

min
z∈Z

I∑

i=1

ci(xi, z) for some xi ∈ sptµi, i = 1, . . . , I. (2.9)
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Since the support of ν is unknown, which causes difficulties in practice, the
localization property (2.9) gives a practical method for bounding the unknown
support of the barycenter measure. The condition above results in a reduction of
the dimensionality of discretized problems since it gives an a priori information
on the support of the unknown measure, at the expense of solving an optimiza-
tion problem. However this optimization problem is decoupled on the domain
Z: each point (or neighborhood) can be tested by looping through points (or
small neighborhoods) in the domain Z and choices of points in the support sets
spt(µi).

In the case where Xi and Z coincide with some ball of Rd, and the costs
are powers of distance, ci(xi, z) = λi|xi − z|p (with λi > 0 and

∑
λi = 1,

say) for some p ≥ 1, one can easily derive an information on the unknown
support. Indeed, using the optimality condition for the minimization problem
(2.9), one deduces that spt(ν) is included in the convex hull of the supports
of the µi’s. If we particularize further to the the Wasserstein barycenter case,
i.e. to the case p = 2 , the solution of (2.9) is explictly given by the barycenter

z =
∑I
i=1 λixi so that the localization property (2.9) gives the following estimate

on the barycenter measure ν:

spt(ν) ⊂
I∑

i=1

λi spt(µi). (2.10)

2.3 Linear programming formulation

Multi-marginals optimal transport problems such as (2.8) are linear programs.
For discrete marginals, such problems can in principle be solved exactly by the
simplex method. In practice however, the number of variables explodes with
the number of marginals, which makes the problem quickly untractable. We
shall see below that one may take advantage of the fact that c is not any cost
function but has the special structure (2.7). Interestingly, it was already proved
by Pass [Pas12a] in the context of multi-marginal optimal transport that such
costs are much more well-behaved than arbitrary costs of I variables.

To find a more tractable linear programming reformulation of the matching
for teams problem, it is better to go back to the very definition of an equilibrium
in terms of couplings and to reformulate problem (2.5) as

inf
(γ1,...,γI)∈Π

I∑

i=1

∫

Xi×Z

ci(xi, z)γi(dxi, dz) (2.11)

where Π consists of all measures (γ1, . . . , γI) ∈ P(X1 × Z) × . . . × P(XI × Z)
such that

• the marginal of γi on the xi variable is µi i.e.
∫

Xi×Z

ψ(xi)γ(dxi, dz) =

∫

Xi

ψ(xi)µi(dxi), ∀ψ ∈ C(Xi), (2.12)
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• the marginal of γi on the z variable does not depend on i:
∫

Z

ϕ(z)γ1(dx1, dz) = . . . =

∫

XI

ϕ(z)γI(dxI , dz), ∀ϕ ∈ C(Z). (2.13)

Clearly, if the γi’s solve (2.11) then their common marginal ν ∈ P(Z) solves
(2.5) and the γi’s are optimal for the optimal transport problem Wci(µi, ν).
In other words, the γi’s are equilibrium couplings for the matching for teams
problem.

The constraints above being linear, Π is a convex and weakly star compact
subset of P(X1×Z)× . . .×P(XI×Z) so that (2.11) admits solutions. Moreover
in the case of discrete µi’s and ν supported by N points, the number of variables
in the linear program (2.11) is linear (and not exponential as in the case of the
multi-marginal optimal transport problem) in the number of marginals.

2.4 Discretization

The (a priori) infinite dimensional linear programming problem (2.11) of sub-
section 2.3 can be discretized as follows. Let {Sij}

Ni

j=1 be a partition of spt(µi)

and let {S0
k}
N0

k=1 be a partition of Z (or better, of the support set estimated by
the method of subsection 2.2). Approximate the measures by weighted sums of
atoms

µAi =
∑

j

µji δxi
j
, for i = 1, . . . , I, with µji = µi(S

i
j)

νA =
∑

k

νkδz0
k
, with νk = ν(S0

k)

where xij and z
0
k are representative points in the regions Sij , S

0
k, respectively. It

is well-known, that µAi converges weakly ∗ to µi as the diameter of the partition
{Sij}

Ni

j=1 tends to 0. More precisely, denoting by W1 the 1-Wasserstein distance
(which metrizes the weak ∗ topology on probability measures):

W1(µ
A
i , µi) ≤ max

j=1,...,Ni

diam(Sij). (2.14)

Inserting the approximation defined above into the linear programming prob-
lem (2.11, 2.12, 2.13) results in the following finite dimensional linear program-
ming problem

minimize

I∑

i=1

∑

j,k

ci(x
i
j , z

0
k)γ

i
j,k

subject to:
∑

k

γij,k = µji , for all k = 1, . . . , Ni, and for i = 1, . . . , I

∑

j

γ1j,k = . . . =
∑

j

γIj,k, for all k = 1, . . . , N0.,

(2.15)
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along with the non-negativity constraints γij,k ≥ 0. The (approximated) barycen-

ter is then νA =
∑
k ν

kδz0
k
where the weight νk is given by the common value,

νk =
∑

j

γij,k, for any i = 1, . . . , I.

The linear programming problem above can be implemented in standard soft-
ware packages. The size of the problem above is as follows. The number of
variables is N0 × (N1 + · · · + NI) (or IN2 if each N0 = N1 = · · · = NI = N).
The number of constraints is (N0+1)×(N1+· · ·+NI)+IN0 (that is I(N

2+2N)
when N0 = N1 = · · · = NI = N). The size of this linear programming problem
thus scales linearly with the number of marginals, for a given, fixed value of N
(contrary to the multi-marginal formulation (2.8)).

2.5 Approximation and convergence

Since in practice, one considers approximation by discrete measures just as in
subsection 2.4, we wish now to address the stability of the following convex
problem when one replaces the measures µi by some discrete approximation

inf
ν∈P(Z)

J(ν) :=

I∑

i=1

Wci(µi, ν). (2.16)

To do so, one has to control the dependence of Wc(µ, ν) in its three arguments
(c, µ, ν) ∈ C(X × Z) × P(X) × P(Z). We shall denote by dX and dZ the
distances on X and Z, take now (c, µ, ν) ∈ C(X × Z) × P(X) × P(Z) and
(c̃, µ̃, ν̃) ∈ C(X × Z) × P(X) × P(Z) and let ωX and ωZ be respectively a
modulus of continuity of c and c̃ with respect to x uniform in z and a modulus
of continuity of of c and c̃ with respect to z uniform in x, that is

max(|c(x, z)−c(x′, z)|, |c̃(x, z)−c̃(x′, z)|) ≤ ωX(dX(x, x′)), ∀(x, x′, z) ∈ X×X×Z

and

max(|c(x, z)−c(x, z′)|, |c̃(x, z)−c̃(x, z′)|) ≤ ωZ(dZ(z, z
′)), ∀(x, z, z′) ∈ X×Z×Z.

Obviously, one has

|Wc(µ, ν)−Wc̃(µ, ν)| ≤ ‖c− c̃‖∞. (2.17)

Let ϕ ∈ C(Z) be a solution in the Kantorovich dual of Wc̃(µ, ν), that is

Wc̃(µ, ν) =

∫

X

ϕc̃dµ+

∫

Z

ϕdν

by the Kantorovich duality formula, we have

Wc(µ̃, ν) ≥

∫

X

ϕc̃dµ̃+

∫

Z

ϕdν.
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Hence, for every θ ∈ Π(µ, µ̃), we have

Wc̃(µ, ν)−Wc̃(µ̃, ν) ≤

∫

X

ϕc̃d(µ− µ̃) =

∫

X×X

(ϕc̃(x)− ϕc̃(x′))θ(dx, dx′).

we then observe that ϕc̃(x)− ϕc̃(x′) ≤ ωX(dX(x, x′)) so that

Wc̃(µ, ν)−Wc̃(µ̃, ν) ≤WωX
(µ, µ̃) := inf

θ∈Π(µ,µ̃)

∫

X×X

ωX(dX(x, x′))θ(dx, dx′).

(2.18)
Similarly

Wc̃(µ̃, ν)−Wc̃(µ̃, ν̃) ≤WωZ
(ν, ν̃) := inf

η∈Π(ν,ν̃)

∫

Z×Z

ωZ(dZ(z, z
′))η(dz, dz′).

(2.19)
Putting everything together, we get

|Wc(µ, ν)−Wc̃(µ̃, ν̃)| ≤ ‖c− c̃‖∞ +WωX
(µ, µ̃) +WωZ

(ν, ν̃). (2.20)

We then observe that if µn weakly ∗ converges to µ then WωX
(µ, µn) → 0.

Indeed, it is known to imply that the 1-Wasserstein distance (corresponding to
WωX

for ωX(t) = t) between µn and µ converges to 0, so that there is some
θn ∈ Π(µ, µn) which (up to a non relabeled subsequence) weakly ∗ converges to
some θ supported on the diagonal of X ×X, hence

WωX
(µ, µn) ≤

∫

X×X

ωX(d(x, x′))θn(dx, dx
′) → 0.

Getting back to the approximation of (2.5), take sequences cni ∈ C(Xi×Z),
µni ∈ P(Xi), and ci ∈ C(Xi × Z), µi ∈ P(Xi), such that

‖cni − ci‖∞ → 0, µni ⇀
∗ µi (2.21)

and set:

J(ν) :=

I∑

i=1

Wci(µi, ν), Jn(ν) :=

I∑

i=1

Wcn
i
(µni , ν), ∀ν ∈ P(Z). (2.22)

Denoting by ωiXi
and ωiZ common continuity modulus of the cni (the first one

in xi uniformly in z and the second in z, uniformly in xi just as above) we then
have:

Proposition 2.2. For every (ν, νn) ∈ P(Z)× P(Z) :

|J(ν)− Jn(νn)| ≤
I∑

i=1

‖ci − cni ‖∞ +
I∑

i=1

[Wωi
Xi

(µni , µi) +Wωi
Z
(νn, ν)] (2.23)

this implies in particular
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• Jn(νn) → J(ν) whenever νn ⇀
∗ ν,

• a quantitative estimate for the stability of values:

| inf
P(Z)

J − inf
P(Z)

Jn| ≤
I∑

i=1

‖ci − cni ‖∞ +

I∑

i=1

Wωi
Xi

(µni , µi) (2.24)

• if νn minimizes Jn then, up to a subsequence, it weakly ∗ converges to a
minimizer of J .

Proof. The statements directly follow from estimate (2.20) and the already
observed fact that the right-hand side of (2.23) converges to 0 as soon as
νn ⇀

∗ ν.

In the case where the cost functions ci = cni are Lipschitz and the approxi-
mated measures µni satisfy (for the usual 1-Wasserstein distance) W1(µ

n
i , µi) ≤

C
n , (2.23) above just takes the form

|J(ν)− Jn(νn)| ≤
I∑

i=1

Lip(ci)
(C
n

+W1(ν
n, ν)

)
.

3 Numerical simulations: Linear Programming

In this section, we present various numerical simulations using the Linear Pro-
gramming approach of sections 2.3 and 2.4. The localization method of 2.2 is
used to approximate the support of the barycenter measure. An alternate ap-
proach to approximating the support of the barycenter measure, which can be
combined with localization is a a two stage solution approach: the first stage,
using a coarse grid, gives an approximation of the support of the barycenter,
the second stage gives a more accurate representation of the barycenter using
information on the support obtained in the first stage.

All computations in this section were performed in MATLAB on a Mid
2011 MacBook Air laptop. To solve (2.15) we use the software package CVX
[GB10] [GB08] which is callable from MATLAB. The CVX language allows for a
very concise description of the convex optimization problem, and allows for the
use of multiple solver libraries (e.g. MOSEK, Gurobi). The numerical solution
obtained is the correct up to tolerances near numerical precision.

3.1 Geodesic paths between measures in the plane

We considered two measures in the plane, and by varying the weights in the
quadratic cost function, we computed three points on the geodesic path (or
McCann interpolant) represented in figure 1. The computational time was less
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1
Barycentre computed on support

support size: 204, full grid size:  576
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Barycentre computed on support

support size: 212, full grid size:  576
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Barycentre computed on support

support size: 217, full grid size:  576

Figure 1: Given measures in black. Figure left, centre, right: solution of the
geodesic problem with weights .25, .5, .75, respectively.

than a minute. The measures are illustrated by a circle centered on the atom
(middle of the corresponding square) and a radius proportional to the weight.
Both the shape of the support (square, diamond) and the density of the measure
are illustrated in the figure: the interpolated measures are influenced by both
properties. Figure 2 illustrates the two-stage support refinement strategy.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Barycentre using full grid

grid size: 256, support size: 62
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Barycentre computed on support

support size: 366, full grid size:  1024

Figure 2: Refinement for the geodesic problem. Left: solution on full grid.
Right: solution on the implied support, but more resolved. The size of the
problems is the same, but the resolution is increased by a factor of three.

3.2 Comparing different cost functions

For the next set of examples, we took two uniform measures, the first corre-
sponding to a vertically oriented rectangle, and the second corresponding to
an horizonal rectangle. These measures are shown in Figure 3. First, we com-
pared the convergence of the solutions for different grid sizes in Figure 4. Notice
that the general support of the computed measures seems stable, but there are
oscillations in the density, for different resolutions.

Next, we computed the barycenter with various power cost functions C(x, y) =
|x−y|p, for p = 1, 2, 3, 4. The solutions we computed use grids of size 502. Com-
putational time was close to two minutes. A second run using grid size of 1002

and a localization of the support, took 30 to 45 minutes. See figure 5. The
densities are plotted using a grayscale which corresponds to the relative values,
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however the grayscale is different for each figure. We also include another view
of the density for p = 1 in Figure 6.

The solutions have a complicated geometry. For the cost with p = 1, the sup-
port of the barycenter is the entire convex hull of the supports of the measures,
although the density is highly concentrated at the intersection of the measures.
The density ranges from about 0.01 at the edges to 0.12 in the center.

For the case p = 2, the density is supported on a square, but wider than
the width of the rectangle. The density has some oscillations, but it strictly
positive (taking values in the range [.005,.004]). For the case p = 3, the density
is supported on a small octagonal shape, with zero density in the middle, and
with larger oscillations. For the case p = 4, a much larger octagonal shape
appears with a large zero density hole in the middle. The supports of the
barycenter measures are close to the ones estimated by localization.

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

Figure 3: The measures m1,m2,m3,m4 used in the examples which follow.

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

Figure 4: Comparison of the numerical barycenter for measures m1,m2 using
cost C(x, y) = |x − y|4 on different grid sizes: 252, 502 and 1002. Note the
general shape of the solutions are similar, but the density has more oscillations
at higher resolution.

Finally, we computed the barycenters using all four measures from figure 3,
see figure 7.

3.3 Matching for teams

We considered the matching for teams problem and used measures and costs
as follows, also see Figure 8. Set the quality domain Z = [0, 1]2 and write
z = (z1, z2) for points in Z. SetM0,M1,M2 to be measures which have constant
density on their support, and let their supports be [1, 2]2, [1.25, 1.75] × [1, 2],
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Figure 5: Barycenters of two rectangles m1,m2, with cost C(x, y) = |x− y|p for
p = 1, 2, 3. Using grid size 1002.
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Figure 6: Surface plot of the barycenter corresponding to p = 1.
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Figure 7: Barycenters of the measures m1,m2,m3,m4 (four rotated rectangles)
with cost C(x, y) = |x− y|p for p = 1, 2, 3. Using grid size 502.

15



and [1, 2]× [1.25, 1.75], respectively. The corresponding cost functions are

c0(x, z) = −5.5(x1z1 + x2z2)

c1(x, z) = c2(x, z) = (x1 + z1)
2 + (x2 + z2)

2.

The solution concentrates mass at the boundary, and especially at the cor-
ners of the domain.
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0

10

20

30

40

Figure 8: Solution of the matching for teams problem. Top: the three mea-
sures, and the solution. Bottom: surface plot of the solution. The solution
concentrates mass mostly on the corners with some mass on the edges.

4 Dual formulation

4.1 Duality and optimality conditions

Let us now explain why the variational problem (2.6) can be naturally be seen
as a dual formulation of (2.11) (see [CE10] for more details on this duality). To
that end, let us observe that (γ1, . . . , γI) ∈ Π if and only if (2.12) holds for every
i (these are the fixed µi marginals constraints) and

∫

XI×Z

I∑

i=1

ϕi(z)γi(dxi, dz) = 0, as soon as

I∑

i=1

ϕi(z)dz = 0, ∀z ∈ Z. (4.1)

Indeed, clearly if the γi’s have the same marginal on Z then (4.1) holds. Con-
versely assume (4.1), let i 6= j and ϕ ∈ C(Z) then applying (4.1) to the potentials
ϕi = ϕ, ϕj = −ϕ and ϕk = 0 for k /∈ {i, j} we see that

∫
Xi×Z

ϕ(z)γi(dxi, dz) =∫
Xj×Z

ϕ(z)γj(dxj , dz). This proves that (4.1) characterizes the fact that the

γi’s share the same marginal on Z. This enables us to rewrite (2.11) in inf-sup
form:

inf
γi≥0

sup

{
L((γi)i, (ψi)i, (ϕi)i) : ψi ∈ C(Xi), ϕi ∈ C(Z) :

I∑

i=1

ϕi = 0

}
(4.2)
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where the Lagrangian L is given by

L((γi)i, (ψi)i, (ϕi)i) :=
I∑

i=1

∫

Xi×Z

(ci(xi, z)− ψi(xi)− ϕi(z))γi(dxi, dz)

+

I∑

i=1

∫

Xi

ψi(xi)µi(dxi).

To obtain the desired dual formulation, we formally switch the inf and the sup
(again, we refer to [CE10] for a rigorous derivation):

sup
(ψi,ϕi),

∑
ϕi=0

inf
γi≥0

L((γi)i, (ψi)i, (ϕi)i).

We next observe that

inf
γi≥0

L((γi)i, (ψi)i, (ϕi)i) =
I∑

i=1

∫

Xi

ψi(xi)µi(dxi)

+

I∑

i=1

inf
γi≥0

∫

Xi×Z

(ci(xi, z)− ψi(xi)− ϕi(z))γi(dxi, dz)

and the latter infimum is 0 when

ci(xi, z) ≥ ψi(xi) + ϕi(z), ∀(xi, z) ∈ Xi × Z (4.3)

and −∞ otherwise. The dual of (2.11) therefore consists in maximizing

I∑

i=1

∫

Xi

ψi(xi)µi(dxi)

subject to the constraints (4.3) and
∑I
i=1 ϕi = 0. For fixed ϕi, the maximal ψi

that satisfies (4.3) being ψi = ϕcii , we see that that the dual can be equivalently
formulated as

sup

{
I∑

i=1

∫

Xi

ϕcii (xi)µi(dxi) :

I∑

i=1

ϕi = 0

}
(4.4)

which is exactly (2.6). For the existence of solutions and the equality between
the infimum in (2.11) and the supremum in (4.4) (which is obtained by a slightly
different argument), we again refer to [CE10]. Now the optimality conditions
for (2.11) and (4.4) are summarized by the equivalence between the following
assertions:

• (γi)i ∈ Π solves (2.11) and (ϕi)i such that
∑I
i=1 ϕi = 0 solves (4.4),

• ((γi)i, (ϕ
ci
i )i, (ϕi)i) is a saddle point of L,
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• for every i, one has

ϕcii (xi) + ϕi(z) = ci(xi, z) (4.5)

γi-almost everywhere on Xi × Z or, equivalently, by continuity, on the
support of γi.

4.2 The case of Wasserstein barycenters

From now on, we restrict ourselves to the quadratic case where all the Xi’s and
Z are some ball B (say) of Rd and the costs ci are quadratic:

ci(xi, z) :=
λi
2
|xi − z|2

where the λi’s are positive coefficients which we normalize in such a way that
they sum to 1. In this case, (2.5) corresponds to

inf
ν∈P(B)

I∑

i=1

λiW
2
2 (µi, ν) (4.6)

where W 2
2 stands for the squared 2-Wasserstein distance. This problem has

been studied in details in [AC11] where uniqueness (under the assumption that
one of the measures does not give mass to small sets), characterization, Lp or
L∞ regularity results are established for Wasserstein barycenters as well as a
close connection with the quadratic multimarginal optimal transport problem of
Gangbo and Świȩch [GS98]. Since Wasserstein barycenters constitute a natural
way to interpolate between an arbitrary number of measures, they therefore also
find applications in image processing [RPDB12] and statistics [BK12].

Let us now informally give the optimality conditions for the barycenter using
once again the dual formulation (4.4) (see [AC11] for details). In the present
quadratic setting, the formula for the ci-transform takes the form

ϕcii (xi) = inf
z

{
λi
2
|xi − z|2 − ϕi(z)

}
,

which, defining

ui(xi) :=
1

2
|xi|

2 −
ϕcii (xi)

λi

can conveniently be rewritten as

ui =
(1
2
|.|2 −

ϕi
λi

)∗

(where ∗ denotes the standard Legendre transform). In particular, ui is convex
(hence differentiable outside of a small set). Moreover the optimal coupling γi
is concentrated on the set where equality (4.5) holds which setting vi = u∗i is
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equivalent to the relation ui(xi) + vi(z) = xi · z i.e. z = ∇ui(xi) (provided ui is
differentiable at xi which is the case µi a.e. as soon as µi does not charge small
sets...). This implies that the barycenter which is also the marginal ν that is
common to all the γi’s is actually given by ν = ∇ui#µi for every i and ∇ui is
the optimal transport between µi and ν for W 2

2 . We then have

1

2
|.|2 −

ϕi
λi

≥
(1
2
|.|2 −

ϕi
λi

)∗∗

= u∗i = vi. (4.7)

But one can rewrite the fact that γi-almost everywhere equality (4.5) holds as
the fact that for γi-almost every (xi, z), one has

1

2
|z|2 −

ϕi(z)

λi
= xi · z − ui(xi) ≤ u∗i (z) = vi(z).

With (4.7), we then deduce that for ν-a.e. z, one has

1

2
|z|2 −

ϕi(z)

λi
= vi(z).

Recalling that the ϕi have to sum to 0, we deduce that

I∑

i=1

λivi(z) =
|z|2

2
(4.8)

on the support of ν. The optimality conditions for the barycenter ν = ∇ui#µi =
∇vi

∗
#µi therefore, at least formally take the form of the system of Monge-

Ampère equations

ν = µi(∇vi) det(D
2vi), i = 1, . . . , I (4.9)

which is supplemented with equation (4.8) on the support of ν. We shall see in
the next paragraph how to compute numerically in an efficient way the potentials
ϕi.

4.3 An efficient algorithm for Wasserstein barycenters

Discretization of the dual problem. We assume in all this section that
the sets Xi’s and Z are subsets of Rd for some d = 1, 2 or 3. As described in
the previous section, the computation of one Wasserstein quadratic barycenter
is equivalent in its dual form to the maximization of

I∑

i=1

∫

Xi

ϕcii (xi)µi(dxi) (4.10)

where

ϕcii (xi) = inf
z

{
λi
2
|xi − z|2 − ϕi(z)

}
,
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under the linear constraint
∑I
i=1 ϕi(z) = 0 for all z ∈ Z. This formulation

leads to the following natural discretization of Wasserstein quadratic barycenter
computation. Suppose (yji , ν

j
i )j=1,...,Ni

⊂ Xi ×R+ is a convergent quantization
of the measures µi. More explicitly, we assume that for all i = 1, . . . , I

lim
Ni→∞

c(Ni)

Ni∑

j=1

νji δyj
i
= µi

in the sense of the weak convergence of measures. In order to only consider
probability measures, we set c(Ni) = (

∑Ni

j=1 ν
j
i )

−1. Additionally, we suppose
that (zk) is a dense countable family of points of Z. Based on (4.10) and previous
quantizations, for a given Nk ∈ N, our discrete optimization problem of I ×Nk
variables reads

Φ((ϕk1), . . . , (ϕ
k
I )) =

I∑

i=1

c(Ni)

Ni∑

j=1

νji min
k=1,...,Nk

{
λi
2
|yji − zk|

2 − ϕki

}
(4.11)

under the Nk pointwise linear constraints:

∑

i

ϕki = 0, ∀k = 1, . . . , Nk. (4.12)

This optimization problem in its dual form can be seen as a large scale non-
smooth concave maximization problem. We discuss in the next paragraph al-
ternatives that have been developed to solve numerically this type of problems.

Non smooth algorithms. Many different approaches have been introduced
in the last decades to approximate optimal solution of non-smooth concave (or
convex) problems, e.g. gradient sampling methods [BLO05] and bundle methods
[LMfASA78]. These algorithms make use of a partial or complete description
of superdifferentials in order to identify ascent directions (see next paragraph).
Even though Proposition 4.1 describes explicitly the whole superdifferential,
finding an effective ascent direction in practice is made difficult by the large
dimension of some superdifferentials. Additionally, those approaches are essen-
tially of order one and follow the singular parts of the graph of the cost function.
These two facts could explain a slow rate of convergence when starting from an
initial point far away from any optimal vector.

One surprisingly efficient alternative for minimizing non-smooth functions is
the use of quasi-Newton methods. It is known [Pow76] that if the maximized
function, Φ, is twice continuously differentiable and the suplevel set Φ ≥ Φ(x0)
is bounded, then the sequence of function values generated by the BFGS method
with inexact Armijo-Wolfe line search, starting from x0 converge to the max-
imal value of Φ. More recently, it has been pointed out by different authors
[HUL96, LO09, LO08] that variable metric algorithms may produce in some
cases sequences which converge to an optimal point in the sense of Clarke. The
mathematical analysis of this good behavior has just been initiated in recent
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papers of Overton [LO09, LO08]. This efficiency could be explained heuristi-
cally by the fact that the approximated inverse of the Hessian matrix has a
spectral decomposition in two subspaces which describe the two different local
behaviors of the cost Φ: a subspace associated to the regular directions of the
cost function Φ, and the subspace of eigenvectors whose eigenvalues are small
in absolute value, which correspond to the singular directions of Φ.

It has been observed in simple situations that L-BFGS algorithms are some-
times able to converge to an optimal point. In more standard examples, where
concentration can occur for instance, L-BFGS approach fails to converge. This
expected behavior for strongly non-smooth functions illustrates the need for
using more specific non-smooth techniques close from the optimal point. The
costly, but reliable, bundle type algorithms have demonstrated their efficiency
in this context.

We will not give here a detailed study of quasi Newton methods applied to
optimal transportation which would be out of the scope of this paper. We only
point out that the L-BFGS (low memory version of Broyden-Fletcher-Goldfarb-
Shanno algorithm) algorithm combined with a bundle approach gives a rather
efficient way to solve this type of problem. We refer to [HMM07] for a careful
study and an efficient implementation of this kind of hybrid algorithm.

Gradient computation. The previous approach relies on the capability of
providing at every iteration one supergradient vector of the current iterate. It
is straightforward to obtain the following characterization of the supergradient
of the discrete dual cost Φ:

Proposition 4.1. Let (ϕk1), . . . , (ϕ
k
I ) ∈ R

Nk×I . Then

((vk1 ), . . . , (v
k
I )) ∈ ∂Φ((ϕk1), . . . , (ϕ

k
I ))

if and only if it is a convex combination of the finite set of extremal vectors

defined in the following way. Let ϕ
k(i,j)∗

i be any selection of minimizing values
involved in the dual cost. That is ∀i, j

ϕ
k(i,j)∗

i ∈ argmink=1,...,Nk

{
λi
2
|yji − zk|

2 − ϕki

}
. (4.13)

Then, the set of extremal vectors is the finite collection of all vectors

(ek
∗

) = (
∑

j

∑

k

−c(Ni)ν
j
i δk(i,j)∗(k)) (4.14)

for any selection (k(i, j)∗).

A crucial observation that has been raised in [MO12] is the fact that the
computation of a vector of the superdifferential does not require generically an
order of I × Nk ×

∑
Ni operations. Actually the following formulation makes

it possible to use a special data structure called kd-tree which in most cases
reduces the complexity of finding one vector of ∂Φ((ϕk1), . . . , (ϕ

k
I )).
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Let i, j be given and assume we want to evaluate the minimal value

M = min
k

{
λi
2
|yji − zk|

2 − ϕki

}
.

Let us then define ci = maxk ϕ
k
i and

M = −ci +min
k

{
λi
2
|yji − zk|

2 + ci − ϕki

}
.

Since the latter term is positive:

M = −ci +min
k

||P ji −Qki ||
2

where P ji = (

√
λi
2
yji , 0) is a fixed vector of Rd+1, Qki = (

√
λi
2
zk,

√
ci − ϕki ) and

||.|| stands for the standard euclidean norm of Rd+1. Thus our supergradient re-
quest reduces to identify one closest point of P ji among points of (Qki )k. Observe
that the family (Qki )k does not depend of the parameter j. This task is a stan-
dard operation in computational geometry which can be performed efficiently
with kd-tree structures. By using such tools, we can reduce the complexity of
the supergradient request in the generic case to an order of I × logNk ×

∑
Ni

operations. Observe that if the Ni’s and Nk are of same order N , one request
is generically of complexity of order I2N logN .

Numerical quantization and localization. We suppose that all the mea-
sures µi are compactly supported. We use the discretization of Section 2.4.
The support of the unknown barycenter measure is bounded using the results
of Section 2.2, in particular, (2.10)

Reconstruction of the barycenter density. One additional difficulty asso-
ciated to the dual formulation is the fact that optimal dual vectors only give an
implicit description of the barycentric measure. In order to recover the support
and the density of the barycentric measure, we introduce the following least
square procedure.

Every optimal dual vector (ϕki )k must be associated to an optimal transport
from µi to the barycentric measure. A crucial observation is the fact that
every associated map transports the µi to the same measure. We exploit this
optimality condition to recover the barycentric measure through the coefficients
f j,ki which describe the mass transported from yji to zk. By optimality, some

mass can be transported from yji to zk if and only if

Gi,j(ϕ
k
i ) = min

k′=1,...,Nk

Gi,j(ϕ
k′

i ). (4.15)

where Gi,j(ϕ
k′

i ) = λi

2 |yji − zk|
2 − ϕk

′

i . Let us fix some parameter ε > 0. Based

on the previous observation, we only consider the unknown coefficients f j,ki for
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Figure 9: Classical McCann interpolation between translated measures

which Gi,j(ϕ
k
i ) is less than the optimal value (4.15) plus ε. In order to recover

the barycentric measure, we look for the set of coefficients which generate the
same measures in an optimal least square sense. More precisely, we solve the
sparse least square problem:

min
fj,k

i

∑

l,m

∑

k

(
∑

j

f j,kl νjl −
∑

j′

f j
′,k
m νj

′

m)2 (4.16)

among non negative coefficients less than one which satisfy the linear constraints

∀i, j,
∑

k

f j,ki = 1.

4.4 Numerical results

As detailed in the previous paragraphs, our approach relies first on a non smooth
optimization step using an hybrid LBFGS/Bundle algorithm and a fast com-
putation of supergradient vectors. In a second phase, a sparse least square
problem is solved in order to recover an approximation of barycentric density.
Let us point out that in all the following examples, the first optimization step
was stopped after one hour of computation on a standard PC. This costly step
could be dramatically sped up in using a straightforward parallelized cost eval-
uation.

We validate our approach by considering different test cases for which ana-
lytic descriptions of barycenters are available. The simplest situation is the case
of the barycenters of a measure of density ρ(.) and a translated measure of den-
sity ρ(.+V ) where V is some fixed vector. In this trivial case, the isobarycentric
measure is of course the measure of density ρ(.+ V/2). We display in figure 9,
the barycentric measure obtained by our located approximation scheme applied
to ρ = χc where χc is the characteristic function of a unit square. In this exper-
iment, we used a grid of size 200×200 and a recovering parameter ε = 10−5. In
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the least square optimization problem (4.16), we obtain an error of order 10−4

for every quadratic term.
Next we applied our approach to the case of Gaussian measures. A complete

description of barycenters of Gaussian measures has been given in [AC11]: con-
sider a family of Gaussian measures µi(mi, Si) of means (mi)i and covariance
matrices (Si)i. Then, the barycentric measure associated to the non-negative
weights (λi)i is a Gaussian measure of mean the barycenter of the (mi, λi)i.
Moreover, its covariance matrix is the only definite positive matrix S solution
of the equation ∑

i

λi(S
1/2SiS

1/2)1/2 = S. (4.17)

Figure 10: Isobarycenter computation of three gaussian measures by a global
(first row) and a localized approach (second row).

We denote by N (mi, σi) a Gaussian of mean mi and of covariance matrix
equal to σ2

i Id. We considered two different test cases and applied for both our
global and localized approaches. In all the experiments the number of sampling
points of the given measures and of the barycentric measure have been fixed
for the global approach to ∀i, Ni = Nz = 15× 103. For the localized approach
by Minkowski sum, we imposed ∀i, Ni = Nz = 5 × 103. The first test case
consists in approximating the isobarycenter of the three Gaussian measures of
random standard variations N ((0.1, 0.8), 1/49.75), N ((−0.9,−1), 1/35.89) and
N ((1,−0.9), 1/74.63). The resulting barycenter and the given measures are
presented in figure 10. Our second test case is related to the approximation of
the barycenter of the five gaussian measures (N (mi, σi), λi)i=1,...,5 where the mi

are the vertices of a regular pentagon with σi = 1/50 and λi = 1/7 if i is odd
and σi = 1/100 and λi = 2/7 otherwise. The resulting barycenter and the given
measures are drawn in figure 11. Observe that in the localized illustrations,
the support of the unknown measure is not anymore centered due to the loss
of symmetry in Minkowski’s sum. To conclude the study of those test cases,
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we provide in table 4.4, the errors between the theoretical and computed means
and covariance matrices. As expected, even if the number of degree of freedom
is smaller, the results obtained by the located approach are significantly better
than the ones obtained by the first algorithm.

To conclude our numerical experiments, we provide large scale examples in
which we interpolate three textures of images of size 150 × 150. This type of
applications have been first studied in the framework of optimal transportation
in [RPDB12]. The texture mixing problem consists in synthesizing a texture
from a family of given textures. The interest of using Wasserstein barycenters
in this context is due to the spatial nature of Wasserstein distance which pro-
vides a more natural interpolation process than the naive pointwise means (see
figures 12 and 13). We carried out similar experiments as the one depicted in
[RPDB12]. Our contribution with respect to [RPDB12] lies in the fact that
we do not replace the quadratic Wasserstein distance by the easier to handle
so-called sliced Wasserstein distance (which is an average over directions of one
dimensional Wasserstein distances). We obtained by our method an approxi-
mation of the original model up to an error of 10−3 for every quadratic term of
(4.16).
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