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File S1

Domain of validity for the expressions for pop-

ulation size, numerical and genetic loads and

inbreeding depression

Full expressions for all measured variables (population size, the numerical

and genetic load, and inbreeding depression) can be found in Table S1. These

equations are valid for all values of dominance h between 0 and 1, but not

codominant mutations (h = 0.5); expressions for co-dominant mutations

can be found in Table 2 of the main text. The validity of these equations

depends on the threshold value of the mutation rate µfix = (1−h)s
1−hs for the

deterministic fixation of the deleterious allele a and on the validity of H1 =√
s ((4− 8h)µ+ h2(1 + µ)2s). Figure S1 is a graphical representation of the

domains of validity for each of the limitations. For H1 to be in the domain

of real numbers, and hence for the expressions to be biologically realistic, s

must be greater than (8h−4)µ
h2(1+µ)2

. This limitation does not interfere with the

domain of validity for the expressions, as it is always below the domain of

validity imposed by the deterministic fixation of a (µ > (1−h)s
1−hs ).
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Figure 1: Limitations for the validity of the expressions in Table S1. The area

below the blue (respectively red) curve depicts all values of s and h for which the

expressions are not valid as mutations are deterministically fixed (respectively as

the expression H1 is not in the domain of real numbers) for µ = 10−2.
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File S2

Equations for the change in the number of in-

dividuals

Here we provide the full general equations for the change in the number

of individuals of each genotype for all three models of selection (mating suc-

cess, fecundity and survival). The expressions presented in Table S1 as well

as the genotypic frequencies of X, Y and Z and mutation selection balace

presented below are obtained by solving for the steady state of these differ-

ential equations (dXt

Nt
= dYt

Nt
= dZt

Nt
= 0). These expressions were obtained

using Wolfram’s Mathematica 9.0.
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Selection on mating success

dXt

Nt

=
b

Nt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2 + (1− s)(1− hs)XtYt(1 + µ)

+ (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2
)
− dNt

K
Xt

=
b

Nt

(rX)2 − dNt

K
Xt (S1a)

dYt
Nt

=
b

Nt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ) + 2Z2

t (1− µ)µ

+
1

2
(1− hs)2Y 2

t (1− µ)(1 + µ) + 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− dNt

K
Yt

=
2b

Nt

(rXrY )− dNt

K
Yt (S1b)

dZt
Nt

=
b

Nt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2 + Z2
t (1− µ)2

)
− dNt

K
Zt

=
b

Nt

(rZ)2 − dNt

K
Zt (S1c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S2a)

and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S2b)
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Selection on fecundity

dXt

Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2

+ (1− s)(1− hs)XtYt(1 + µ) + (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2
)

− dNt

K
Xt

=
b

Nt − sXt − hsYt
(rX)2 − dNt

K
Xt (S3a)

dYt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ)

+ 2Z2
t (1− µ)µ+

1

2
(1− hs)2Y 2

t (1− µ)(1 + µ)

+ 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− dNt

K
Yt

=
2b

Nt − sXt − hsYt
(rXrZ)− dNt

K
Yt (S3b)

dZt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2 + Z2
t (1− µ)2

)
− dNt

K
Zt

=
b

Nt − sXt − hsYt
(rZ)2 − dNt

K
Zt (S3c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S4a)

and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S4b)
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Selection on zygote survival

dXt

Nt

=
b(1− s)
Nt

(
X2
t + 2XtZtµ+ Z2

t µ
2 +XtYt(1 + µ) + YtZtµ(1 + µ) +

1

4
Y 2
t (1 + µ)2

)
− dNt

K
Xt

=
b(1− s)
Nt

(rX)2 − dNt

K
Xt (S5a)

dYt
Nt

=
b(1− hs)

Nt

(
XtYt(1− µ) + 2XtZt(1− µ) + 2Z2

t (1− µ)µ+
1

2
Y 2
t (1− µ2)

+ YtZt

(
1 + µ− 2µ2

))
− dNt

K
Yt

=
b(1− hs)

Nt

(rXrZ)− dNt

K
Yt (S5b)

dZt
Nt

=
b

Nt

(
1

4
Y 2
t (1− µ)2 + YtZt(1− µ)2 + Z2

t (1− µ)2
)
− dNt

K
Zt

=
b

Nt

(rZ)2 − dNt

K
Zt (S5c)

where

rX =

(
Xt + Yt

(1 + µ)

2
+ Ztµ

)
(S6a)

and

rZ =

(
Zt(1− µ) + Yt

(1− µ)

2

)
. (S6b)
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Selection on adult survival

dXt

Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2

+ (1− s)(1− hs)XtYt(1 + µ) + (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2
)

− d(1− s)Xt + (1− hs)Yt + Zt
K

Xt

=
b

Nt − sXt − hsYt
(rX)2 − d(1− s)Xt + (1− hs)Yt + Zt

K
Xt (S7a)

dYt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ)

+ 2Z2
t (1− µ)µ+

1

2
(1− hs)2Y 2

t (1− µ)(1 + µ)

+ 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− d(1− s)Xt + (1− hs)Yt + Zt

K
Yt

=
2b

Nt − sXt − hsYt
(rXrZ)− d(1− s)Xt + (1− hs)Yt + Zt

K
Yt

(S7b)

dZt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2 + Z2
t (1− µ)2

)
− d(1− s)Xt + (1− hs)Yt + Zt

K
Zt

=
b

Nt − sXt − hsYt
(rZ)2 − d(1− s)Xt + (1− hs)Yt + Zt

K
Zt (S7c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S8a)
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and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S8b)
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File S3

Genotypic frequencies at equilibrium

Hardy-Weinberg genotypic frequencies at equilibrium

We will prove that in our model, the expectations at Hardy-Weinberg equi-

librium are met when there is no selection or mutation.

Proposition 1. When there is no selection or mutation (s and µ = 0), the

genotypic frequencies in our model at are at Hardy-Weinberg equilibrium.

Proof of Proposition 1. Let q be the frequency of allele a, defined by

q =
2Xeq + Yeq

2Neq

, (S9)

and 1− q is the frequency of A.

First, at Hardy-Weinberg equilibrium the frequency of each genotype is q2,

2q(1 − q) and (1 − q)2 for genotypes aa, Aa and AA respectively. From

the expected genotype frequencies, q can be expressed as a function of the

frequency of heterozygotes (FAa).

From FAa = 2q(1− q) we obtain the expected frequency of a:

p =
1±
√

1− 2FAa

2
(S10)
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Let us consider our model and prove that we have the same frequency of

the allele a. Equilibrium is defined by dVt
dt

= 0, where V represents X, Y and

Z. When there is no mutation or selection, the number of homozygous indi-

viduals in the population (either Xeq or Zeq, both noted Heq) can be written

as a function of the number of number of Yeq (or heterozygous) individuals:

b

Neq

(
H2
eq + YeqHeq +

1

4
Y 2
eq

)
− dNeq

K
Heq = 0.

By using equation 6 from the main text we can simplify the previous

equation to:

Yeq
4Neq

2

+Heq

(
Yeq
Neq

− 1

)
+
Heq

Neq

2

= 0.

This gives us a quadratic equation in Heq with discriminant

∆ =

(
1− 2

Yeq
Neq

)
≥ 0

This gives two possible solutions, corresponding to frequencies of homozygous

individuals greater or smaller than 1
4
Neq:

Heq =
1

2

(
Neq − Yeq ±Neq

√
1− 2

Yeq
Neq

)
(S12)

If we replace Xeq with equation S12 in equation S9, then we find that

q =
Neq ±Neq

√
1− 2 Yeq

Neq

2Neq

.
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Which is equation S10 and the proposition is proved.

Genotypic frequencies at mutation-selection balance

The genotypic frequencies of aa, Aa and AA individuals are given by the

expressions FXmut , F Ymut and FZmut respectively. For each of the models,

we provide the expressions for all values of the dominance h of the deleteri-

ous allele a between 0 and 1 and different than 0.5, as well as the seper-

ate expressions for h = 0.5. The domain of validity of these equations

depends on the threshold value of the mutation rate for the determinis-

tic fixation of the deleterious allele a µfix = (1−h)s
1−hs and on the validity of

H1 =
√
s ((4− 8h)µ+ h2(1 + µ)2s) (see File S1 for more details). These

expressions were obtained using Wolfram’s Mathematica 9.0.

Selection on mating success, fecundity and adult survival

For h 6= 0.5:

FXmut =
(2− 4h)µ+ h2(1 + µ)2s− hH1 − hµH1

2(1− 2h)2s

F Ymut =
µ(h(4− s+H1)− 2)− (1− h)(hs−H1)− h2µ2s

(1− 2h)2s

FZmut =
(2− h(6− 5h))s+ h2µ2s− (2− 3h)H1 + µ(2− h(4− 2(1− h)s+H1))

2(1− 2h)2s

13



For h = 0.5

FXmut =
4µ2

(1 + µ)2s2

F Ymut =
4µ(s− µ(2− s))

(1 + µ)2s2

FZmut =
(s− µ(2− s))2

(1 + µ)2s2

Selection on zygote survival

For h 6= 0.5

FXmut =
(1− s) (2µ− 4hµ+ h2(1 + µ)s− hH1)

2(1− 2h)(1−m)s(1− h(2− hs))

F Ymut =
2(1− hs)((1− h)(H1 − hs)− µ(2− h(4− s+H1)))− h2µ2s

(1− 2h)(1− µ)s (2 + h2(1 + µ)s− h(4 +H1))

FZmut =
(2− h(6− 5h))s+ h2µ2s− (2− 3h)H1 + µ(2− h(4− 2(1− h)s+H1))

(1− 2h)(1− µ)s (2 + h2(1 + µ)s− h(4 +H1))

For h = 0.5

FXmut =
4µ2(1− s)
(1− µ2)s2

F Ymut =
2µ(2− s)(s− µ(2− s))

(1− µ2)s2

FZmut =
(s− µ(2− s))2

(1− µ2) s2

14



File S4

Proofs for population size at equilibrium

General expressions for population size at equilibrium found in Table S1 are

obtained using Wolfram’s Mathematica 9.0 by solving for the steady state

solutions of the differential equations dNt

dt
= dXt

dt
= dYt

dt
= dZt

dt
= 0. Expressions

and the proofs for population size at equilibrium without selection and for

recurrent recessive mutations are presented in this section.

No selection

When there is no selection, the expression for population size at equilibrium

Neq is given by equation 6 in the main text.

Proposition 2. At equilibrium and when there is no selection (s = 0), the

equation dNt

dt
= dXt

dt
= dYt

dt
= dZt

dt
= 0 admits a unique attractive non-trivial

solution Neq (equation 6 in the main text).

Proof of proposition 2. Population size is at equilibrium when

RX
t +RY

t +RZ
t −MX

t −MY
t −MZ

t = 0. (S13)

When this condition is met, then population size is noted Neq, and Xeq,

15



Yeq and Zeq are the numbers of individuals carrying each genotype, with

Neq = Xeq + Yeq + Zeq. Equation S13 therefore gives:

b

Neq

(
X2
eq + Y 2

eq + Z2
eq + 2XeqYeq + 2YeqZeq + 2XeqZeq

)
−dNeq

K
(Xeq + Yeq + Zeq) = 0.

leading to equation 6.

Mutation-selection balance

Population size at mutation-selection balance Nmut (s and µ 6= 0) can be

presented as a function of population size at equilibrium with no or neutral

mutations Neq. For each model of selection (mating success, fecundity and

survival), we find two attractive non-trivial solutions, one for a polymorphic

population (with X, Y and Z individuals) and one which is monomorphic as

the deleterious allele a is fixed (for µ ≥ (1−h)s
1−hs ). Proofs for Nmut for recessive

mutations (h = 0) can be found in the following section for selection on

mating success, fecundity and zygote survival.

16



Selection on mating success

Proposition 3. There are two expressions for Nmut when mutations are

recessive:

Nmut = Neq(1− µ ∧ s)2 (S15)

µ ∧ s = min(µ, s)

Proof of proposition 3. At equilibrium, dNt

dt
= dXt

dt
= dYt

dt
= dZt

dt
= 0. From

equations S1 and S2 in File S2, we find:

0 =
b

Nmut

((rX)2 + 2(rX)(rZ) + (rZ)2)− d(Xmut + Ymut + Zmut)
Nmut

K

⇔0 =
b

Nmut

(rX + rZ)2 − dN
2
mut

K

⇔0 =
b

Nmut

((1− s)Xmut + Ymut + Zmut)
2 − dN

2
mut

K

⇔0 =
b

Nmut

(Nmut − sXmut)
2 − dN

2
mut

K

Nmut = 0 is a trivial solution, else Nmut satisfies

Nmut =
bK

d
(1− sXmut

Nmut

)2. (S16)

A second equation for Nmut can be obtained by finding an expression for

the change in the number of A alleles at mutation-selection dNA

dt
= 0, where

17



NA = 2Zt + Yt. From equations S1 and S2, and for Zmut + Ymut 6= 0 we find:

0 =
b

Nmut

2rZ(rX + rZ)− d(2Zmut + Ymut)
Nmut

K

⇔0 =
b(1− µ)

Nmut

(2Zmut + Ymut)(Nmut − sXmut)− d(2Zmut + Ymut)
Nmut

K

⇔0 = (2Zmut + Ymut)(b(1− µ)(1− sXmut

Nmut

)− dNmut

K
)

⇔0 = (b(1− µ)(1− sXmut

Nmut

)− dNmut

K
)

⇔ Nmut =
bK

d
(1− µ)(1− sXmut

Nmut

). (S17)

Using equations S16 and S17 we find:

b(1− sXmut

Nmut

)2 = b(1− µ)(1− sXmut

Nmut

)

which implies

(1− sXmut

Nmut

) = (1− µ).

By using this equality in equation S16 or S17, we obtain equation S15

If Nmut = Xmut, we consider that there is fixation of the a allele. Using

this information in equation S16, we find that

Nmut = Neq(1− s)2 (S19)

as proposed in equation S15.

18



Selection on fecundity

Proposition 4. When selection is on fecundity

Nmut = Neq(1− µ ∧ s) (S20)

Proof of proposition 4. Using similar calculations as in Proposition 3, we find

an expression for Nmut using the expression for NA. From equations S3 and

S8 we find:

0 = 2(RZ
mut − dZmut

Nmut

K
) + (RY

mut − dYmut
Nmut

K
)

⇔0 =
b(1− µ)

Nmut − sXmut

(2Zmut + Ymut)(Nmut − sXmut)− d(2Zmut + Ymut)
Nmut

K

⇔0 = (2Zmut + Ymut)(b(1− µ)− dNmut

K
)

which implies for Zmut + Ymut 6= 0

Nmut = Neq(1− µ). (S21)

If Nmut = Xmut, then the mutant allele a has gone to fixation, implying that

Zmut = Ymut = 0. This gives

0 =
b

(1− s)Xmut

((1− s)Xmut)
2 − dX

2
mut

K

⇔0 = b(1− s)− dXmut

K
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Nmut = Neq(1− s) (S22)

as proposed in equation S20.

Selection on zygote survival

Proposition 5. When mutations are recessive

Nmut = Neq(1− µ ∧ s) (S23)

Proof of proposition 5. The number of A alleles is noted NA and expressed

using equation ?? and as in Proposition 3, from equations S5 and S6 we find:

0 =
b

Nmut

2rZ(rX + rZ)− d(2Zmut + Ymut)
Nmut

K

⇔0 = b(1− µ)(2Zmut + Ymut)− d(2Zmut + Ymut)
Nmut

K

⇔b(1− µ) = d
Nmut

K

providing Nmut = Neq(1− µ).

If we consider that there is fixation of the a allele, then the entire popu-

lation is made of X individuals, then Ymut and Zmut = 0,

0 =
b

Nmut

(1− s)N2
mut − d

N2
mut

K
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gives

Nmut = Neq(1− s) (S24)

if Nmut 6= 0.
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