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We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency

conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing).

In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in

standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores

(dispersive shock waves) that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by

gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our

experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent

undular bores to collide elastically.

DOI: 10.1103/PhysRevX.4.021022 Subject Areas: Nonlinear Dynamics, Optics, Photonics

I. INTRODUCTION

Under certain regimes, the behavior of light mimics the

dynamics of classical fluids and, in particular, hydrody-

namical phenomena [1–15]. The general ground for such

observation lies on the reduction of Maxwell equations to

the typical models of hydrodynamics, as recognized long

ago for both dissipative (i.e., lasers [1,2]) and conservative

settings [3]. Only recently, however, has the subject

attracted a great deal of interest, propelling important

experimental results as diverse as the first absolute obser-

vation of wave packets predicted in hydrodynamics (i.e.,

Peregrine and Kuznetsov-Ma solitons [6,7]), the study of

classical hydrodynamical instabilities (e.g., Raileigh-Taylor

[8]), the characterization of extreme events such as rogue

waves or tsunamis [9–12], the flow of quantum fluid of

light around defects at low and supersonic speed [13], or

the transition to turbulence in fiber lasers [14]. On one

hand, this allows us to improve the understanding of fluid

phenomena by means of accurate and more easily control-

lable lab experiments; on the other hand, it also stimulates

the transposal to hydrodynamics of concepts, e.g.,

generations of higher-order breathers and supercontinuum

[16–18], that are deeply studied in optics [19,20].

In this framework, another remarkable phenomenon that

allows for establishing an intriguing photon-fluid analogy,

which is of concern in this paper, is the generation of

undular bores (UBs), i.e., the formation of fast oscillating

wave trains that spontaneously emerge from points of

gradient catastrophe (shock formation [21]). In hydro-

dynamics, UB are fascinating structures that develop under

peculiar conditions involving, e.g., atmospheric gravity

waves (e.g., “Morning glory” phenomena [22]), internal

waves in the ocean [23] or, more commonly, large tidal

bores traveling upstream, typically along river estuaries

[24]. A spectacular and famous example of the latter

(among others visible in other parts of the world [24]) is

the so-called “mascaret” of the Dordogne river in France,

ridden by many surfers. The study of such phenomena

started indeed long ago in hydrodynamics [25] and inde-

pendently in the context of strongly rarified (i.e., collision-

less) plasma, where such structures were known as

collisionless shock waves [26–29]. Such studies estab-

lished dispersion as the driving mechanism that, by

regularizing the steep front characteristic of a classical

shock wave, leads to UBs (hence also the expression

“dispersive shock waves”). While the theoretical charac-

terization of such phenomena has improved steadily

[30–40], the field has suffered the lack of reproducible

lab experiments, until the universal role of UB was recently

recognized mainly in the dynamics of quantum superfluids

[41–47] and weakly diffracting light beams in defocusing

media [4,5,48–52], both described by defocusing nonlinear

Schrödinger (NLS, or Gross-Pitaevskii) models. At vari-

ance with such experiments where undulatory breaking

occurs in space, optics also offers the challenging
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possibility to investigate temporal wave breaking, as

realized for intense (hundreds of Watts peak power) pulses

that propagate in optical fibers in the normal group-velocity

(GVD) regime [53–56]. In this context, the aim of this

paper is twofold. First, we report evidence that temporal

breaking and emerging UBs affect a completely novel

realm, namely, frequency conversion processes, and spe-

cifically highly efficient multiple four-wave mixing (FWM)

[57–60], under different pump configurations. Second, we

show that the wave-breaking regime is accessible, in an all-

fiber platform without resorting to intense (psec or fsec)

pulses, using instead a tailorable, nearly periodic signal.

The latter feature is the key to our first observation of post-

breaking multiphase dynamics characterized by unavoid-

able collision of UBs due to the periodic nature of the input.

More generally, optical FWM is of great interest not only

because it is the fundamental paradigm for parametric

amplification and generation, but also because it is widely

exploitable in different materials and platforms including

planar (on-chip) devices [61–65], and it is the driving

mechanism of more complex phenomena such as super-

continuum generation and wave thermalization [19,20].

Moreover, FWM has made possible a host of modern

photonic applications ranging from ultrafast pulse train

generation [66], full signal regeneration [67], multiwave-

length parametric oscillators [68], stable ultrafast micro-

cavity lasers [69], and bridging of spectral windows [65], to

recent breakthroughs such as the implementation of noise-

less amplifiers for ultrasensitive links [70] and frequency

combs [71–74]. Along with these achievements, more

fundamental aspects related to the spectral dynamics of

FWM have also been the subject of recent studies

[60,73,75]. In this context, the problem of wave breaking,

which has never been addressed experimentally, is of

particular interest since it can affect the FWM in the

regime of weak normal dispersion, which is often exploited

to obtain several multiple signal-idler sideband pairs at

once [73–78]. Here, we report extensive evidence that, in

this regime, FWM unavoidably enters a new scenario in

which the initial modulation undergoes a hydrodynamic

type of instability that deeply affects the mixing process.

The light field indeed behaves as a fluid, though it exhibits

two distinct stages of evolution: the first featuring the

developments of gradient catastrophes typical of shallow-

water dynamics, followed by the onset of fast oscillations

characteristic of UBs of dispersive hydrodynamics.

II. UNDULAR BORES IN FOUR-WAVE MIXING

Two laser pumps (or a single modulated pump) produce,

via Kerr (cubic) nonlinearities, a frequency cascade via

multiple FWM, whose efficiency can be easily calculated in

the limit of zero dispersion [78]. However, even a small

dispersion can qualitatively change the FWM dynamics

[60,73]. Of particular interest is the normal GVD regime

which, since it is not affected by exponentially growing

perturbations (i.e., modulational instability [75,79]), exhib-

its a fluidlike shock-forming type of behavior in the regime

of propagation dominated by Kerr nonlinearity over

dispersion, as recently predicted in the case of a dual

pump [60]. Here, however, we considerably generalize

such a theory by showing that the phenomenon is not

restricted to dual-frequency input. Indeed, any initial

amplitude modulation tends to break when FWM operates

under weak, normal GVD. Specifically, we can treat,

in a unified way, a modulated carrier (triple-frequency

input with pulsations ω0, ω0 � Δω), as well as a suppres-

sed carrier or dual-frequency input at ω0 � Δω=2
(balanced dual-pump nondegenerate FWM or unbalanced

pump-signal configuration). Starting from the real-world

input envelope at central frequency ω0, say, AðZ ¼ 0; TÞ ¼
ffiffiffiffi

P
p

u0ðtÞ, which is modulated at frequency Δf ¼ Δω=2π
and carries total power P [u0ðtÞ is a dimensionless envelope

carrying unit power], these three configurations can be

described by the following general expression for the input

u0ðtÞ ¼
ffiffiffi

η
p þ ffiffiffiffiffiffi

ηþ
p

expðiΩt=mÞ þ ffiffiffiffiffi

η−
p

expð−iΩt=mÞ;
(1)

where, without loss of generality, the normalized time t ¼
T=T0 is measured in units of the characteristic rise time of

the modulation T0 ¼ 1=2Δf, which amounts to keeping

the normalized angular frequency Ω ¼ ΔωT0 ¼ π fixed. η

and η� ¼ ð1 − η� αÞ=2 stand for power fractions at

discrete frequencies ω0 and ω0 � Δω=m, respectively, with

constraint ηþ ηþ þ η− ¼ 1, while α≡ ηþ − η− defines the

input power imbalance. Here and in Eq. (1), m ¼ 1 or

m ¼ 2 for the triple-frequency (η ≠ 0) or dual-frequency

(η ¼ 0) input, respectively, so that Δω designates the

detuning between the input angular frequencies in all three

cases [see also the sketch in Fig. 1(a)].

When dispersion is weak, the modulated field produces a

FWM cascade, i.e., generation of harmonic sidebands at

normalized angular frequencies�nΩ=2 (n ¼ 4; 6; 8…with

triple-frequency input and n ¼ 3; 5; 7… for dual-frequency

input), which is described in terms of the normalized

envelope uðz; tÞ obeying the following NLS equation

(see Ref. [60] and also Ref. [80] for more details on the

normalization):

iε
∂u

∂z
−
ε2

2

∂2u

∂t2
þ juj2u ¼ 0; (2)

where z ¼ Z
ffiffiffiffiffiffiffiffiffiffi

k00γP
p

=T0 is the normalized distance, and it

turns out that the dynamics depends on the single parameter

ε≡ Δf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k00=γP
p

, where k00 ¼ d2k=dω2 and γ denote the

GVD and nonlinear coefficient of the fiber, respectively.

Our experiments address the weakly dispersive regime of

FWM characterized by ε ≪ 1 (ε ¼ 0.04 at the maximum

power reached in the experiment). In this regime, the light

field behaves as an ideal equivalent fluid or gas, where the
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smooth input modulation undergoes strong steepening

driven by the Kerr effect (cubic term in NLS equation [81]),

eventually forming shock waves through a gradient catas-

trophe. The latter is a universal mechanism that occurs

whenever the wave velocity becomes a function of the wave

elevation, as illustrated in Fig. 1(b) for a real field uðz; tÞ
obeying the prototypical Hopf or inviscid Burger equation

uz þ uut ¼ 0. [Here, we implicitly assume that t stands for
a retarded time in a frame moving at linear group velocity

vg as in the NLS equation (2). This means that the

deformation illustrated in Fig. 1(b) takes place, in the

lab frame, on top of a rigid translation with linear velocity

vg]. Since this model implies that portions of a waveform

with larger elevations move faster, a smooth envelope such

as, e.g., a Gaussian is deformed on propagation as shown in

Fig. 1(b), until it develops an infinite time gradient

(gradient catastrophe) at a finite distance zb, and a traveling
vertical front afterwards. The latter is a classical shock

wave that normalizes the post-catastrophe overtaking while

obeying the integral conservation law associated with the

differential model [21].

A similar mechanism, as we show here, occurs in FWM,

owing to the fact that the input field u0ðtÞ develops a self-
phase modulation that stems from the dominant nonlinear

term in Eq. (2). The acquired phase is proportional to

ju0ðtÞj2, in turn implying an instantaneous frequency

deviation (chirp) δωðtÞ ¼ ∂tϕðtÞ ¼ ∂tju0ðtÞj2 [54]. Such

a chirp is turned into an instantaneous change of velocity

δvðtÞ ∝ −δωðtÞ since in a normally dispersive medium the

velocity decreases for increasing frequency. As a result, the

instantaneous velocity turns out to be directed along

the outward direction around the maxima and along the

inward directions around the minima of the modulation, as

exemplified in Fig. 1(c) for the triple-frequency modulated

input with η ¼ 0.8, α ¼ 0. Therefore, compressional waves

are created that tend to steepen the initially smooth modu-

lation fronts around the intensity minima. In turn, the

steepening causes an additional increase in the modulus

of the opposite velocities across the minima, thus producing

further steepening, until the process leads to gradient

catastrophes at a finite distance. Formally, this can be seen

by applying the Wentzel-Kramers-Brillouin (WKB) or

Madelung transformation uðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ρðz; tÞ
p

exp ½i
ε
sðz; tÞ�

to Eq. (2), which allows us to map the original NLS equation

into the following quasilinear system of equations [3],

ρz þ ðρvÞt ¼ 0; vz þ vvt þ ρt ¼ 0; (3)
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FIG. 1. (a) Sketch of the input in frequency domain showing

the triple-frequency (solid blue arrows) and dual-frequency

(dashed brown arrows) cases, respectively. (b) Generic mecha-

nism of wave breaking via a gradient catastrophe (length of the

arrows is proportional to the local velocity at the point of

application over the input; the dashed vertical line is the classical

shock wave). (c) Initial power profile ju0ðtÞj2 and instantaneous

incremental velocity δvðtÞ resulting from the nonlinear self-

phase modulation for triple-frequency input [η ¼ 0.8, α ¼ 0,

m ¼ 1 in Eq. (1)].

FIG. 2. Breaking mechanism for an input modulated carrier (three-wave input, η ¼ 0.8 and α ¼ 0). (a) Normalized power ρ ¼ juj2 and
velocity v at wave-breaking distance z ¼ zb ≃ 0.37 from the reduced hydrodynamical model [Eqs. (3)]; the dashed curves stand for the

input. (b) Surface plot of power juðz; tÞj2 evolving according to the NLS equation [Eq. (2)] for ε ¼ 0.04. (c) Normalized breaking

distance zb vs pump power fraction η.
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where terms of higher orders in power of ε have been

discarded. Equations (3) are equations of the hydrodynamic

type, which can be integrated, up to the point where a

singularity appears, by means of the so-called hodograph

transformation [21]. Indeed, Eqs. (3) are identical to those

governing 1D shallow-water waves (or isentropic gas

dynamics), with the roles of space and time inverted, and

ρðz; tÞ ¼ juðz; tÞj2 and vðz; tÞ ¼ −∂tsðz; tÞ being the water

elevation and horizontal velocity, respectively. According to

this model, the light behaves as an equivalent fluid whose

instantaneous velocity is determined by the accumulated

chirp. The evolution of the fluid leads to the formation of an

array of twin shock points symmetrically located around the

minima of the input modulation, as shown in Fig. 2(a),

obtained by numerical integration of Eqs. (3). We point out

that this mechanism takes place regardless of the modulation

depth, though the breaking distance zb increases rapidly as

the modulation depth decreases (η → 1), as shown in

Fig. 2(c). Importantly, however, beyond zb, Eqs. (3) cease
to be valid because the GVD becomes important near the

vertical fronts, causing the onset of fast nonstationary

oscillations that fill characteristic shock fans. This is

displayed in Fig. 2(b), which is obtained by numerical

integration of the NLS equation. As shown, these structures,

namely, UBs (or dispersive shock waves), naturally collide

because of the periodic nature of the input. A similar

dynamics also takes place for the carrier-suppressed modu-

lation (two-wave input, η ¼ 0), which still leads to two

distinct points of breaking for each period of the modulation

in the imbalanced case (α ≠ 0). These points merge exactly

in the null points of the modulation in the limit α ¼ 0, as

discussed in more detail in Ref. [60].

III. EXPERIMENTAL IMPLEMENTATION

Our experiment was carefully designed in order to

succeed with two major challenges raised by the observa-

tion of the phenomenon discussed above: (i) to access the

highly nonlinear regime without using pulses, which would

unavoidably corrupt the visibility of the UBs; (ii) to

reproduce the evolution dynamics using a fixed fiber

length. To this end, in our setup, displayed in Fig. 3,

we make use of an L ¼ 6 km-long nonzero dispersion-

shifted fiber (NZDSF) with low normal dispersion D ¼
−2.5 ps=nmkm (k00 ¼ −Dλ20=2πc ¼ 3.2 ps2=km) and

nonlinear coefficient γ ¼ 1.7 W−1 km−1. We point out that

the choice of this value of dispersion arises from a tradeoff

between opposite requirements. On the one hand, the GVD

must be sufficiently low to enter the weakly dispersive

regime at the central frequency and at the power levels

involved in the experiment, while on the other hand, the

GVD needs to be large enough so that third-order

dispersion (as well as successive orders) remains negli-

gible. We inject the field Að0; TÞ ¼
ffiffiffiffi

P
p

u0ðtÞ, which is

obtained by starting from an external cavity laser (ECL)

emitting at wavelength λ0 ¼ 1555 nm, modulated by

means of a LiNbO3 intensity modulator (IM#1) at

Δf ¼ 28 GHz. By suitably driving the modulator, we

can select a dual-frequency (carrier-suppressed) or three-

frequency input modulation, depending on its bias operat-

ing point (see Ref. [80] for further technical details). The

peak power is then raised by means of further slicing in the

time domain (using modulator IM#2) and amplification in

an erbium-doped fiber amplifier (EDFA). The final input

signal consists of a burst of eight periods of the initial

28-GHz harmonic signal encapsulated into a 1∶4 duty-

cycle slower signal at 7-GHz (see inset in Fig. 3), which

allows us to reach the power P ¼ 37 dBm (P≃ 5 W)

without a significant impact from the spontaneous emission

of the EDFA and stimulated Brillouin backscattering within

the fiber under test. It is important to emphasize that the

eight-beats sequence is long enough to ensure that

the observed dynamics is, at least over the central periods

of the sequence, essentially that of the temporal infinite

beat signal. At the output, the temporal ultrafast waveform

can be observed directly over a triggered optical sampling

oscilloscope (OSO). In Fig. 3, we display traces of the input

and the output in the regime of UB formation, as seen on

the OSO display. Importantly, even if we use a fixed fiber

length L, the spatial dynamics along z is mimicked by

varying the input power P, recalling that z ¼ L
ffiffiffiffiffiffiffiffiffiffi

k00γP
p

=T0.

FIG. 3. Experimental setup. ECL: external cavity laser; IM: intensity modulators; PM: phase modulator; PPG: pulse pattern generator;

OSO: optical sampling oscilloscope; OSA: optical spectrum analyzer; NZDSF: nonzero dispersion shifted fiber. The insets show traces

of the input and output, as seen on the OSO.
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IV. EXPERIMENTAL RESULTS

The outcome of the experiments is illustrated in Figs. 4–6

under different input configurations of FWM. Figure 4

summarizes the results obtained for the case of balanced

dual-frequency input (symmetric pump beams, η ¼ α ¼ 0).

The experimental maps of the temporal dynamics vs input

power, reported both as a 3D surface [Fig. 4(a)] and a color-

level plot [Fig. 4(b)], clearly show the signature of UBs in

the evolution. Furthermore, the measured data are in

excellent quantitative agreement with the outcome of the

numerical integration of the NLS equation reported in

Fig. 4(c), without any adjustable parameter. Note that such

results are obtained from a set of numerical simulations of

the NLS equation in dimensional units [80], performed at

fixed physical length and variable power. In this configu-

ration, the input modulation is a cosine, and breaking is

expected through the formation of cusplike structures exactly

at the nulls of the input intensity pattern [60]. We observe

such behavior at the power level P ¼ 25.6 dBm, as shown

explicitly by the OSO trace reported in Fig. 4(d). After

breaking, strong oscillations characteristic of UBs start to

appear on a faster scale (few ps) compared with the input

periodicity Tm ¼ 1=Δf ¼ 35.7 ps. The undular bores are

nucleated from the breaking points at nulls and expand

outwards in a nonstationary and symmetric fashion until

wave trains from adjacent periods of the input beat signal

start to collide, as clearly shown also by the trace in Fig. 4(e).

We remark that the temporal structure of the overlapping

regions can be clearly observed, thanks to the nearly periodic

nonpulsed nature of the input, since the use of pulses would

hamper its visibility, as one can easily verify through

numerical simulations of the pulsed regime (not shown).

The signature of the fast oscillatory UB structure in the

frequency domain is a dramatic spectral broadening. In

Fig. 4(f), we compare the output spectrum before breaking

(blue trace, P ¼ 13 dBm) with that arising in the regime

where the UB is fully developed (red trace, P ¼ 34.6 dBm).

The latter involves tens of FWM harmonic pairs while

presenting significant deviations from the monotonic decay

(in log scale) characteristic of the low-power regime that

stems from the high frequencies corresponding to the

oscillatory structures. It is also interesting to highlight the

fact that in the experiment, the post-breaking undulations

clearly exhibit solitonlike features. Indeed, they present

negligible temporal spreading while moving with character-

istic velocity inversely proportional to their darkness and

colliding elastically. The main feature of the optical UB is, in

this case, the formation of a still temporal filament possess-

ing the features of a black soliton [the central filament in

Figs. 4(b) and 4(c)], which arises from the presence of null

FIG. 4. Measured UB dynamics for symmetric dual-pumped FWM (cosine type of input, η ¼ α ¼ 0). (a) 3D surface of output power

vs time and input power. (b),(c) Color-level plot from the output power profiles at different input powers from measured data (b),

compared with numerical simulations of the dimensional NLS equation [(c), color level plot of juj2]. (d),(e) Temporal OSO traces at

power levels: (d) P ¼ 25.6 dBm, close to breaking; (e) P ¼ 34.6 dBm, beginning of UB collision (the input is reported as a solid blue

line). (f) Output spectra in the low-power (P ¼ 13 dBm, preshock) and high-power (P ¼ 34.6 dBm, postshock) regimes.
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intensity points in the initial modulation. Gray solitons with

opposite velocity appear in pairs around the latter, progres-

sively filling a characteristic shock fan, at the edges of which

the oscillations (solitons) become progressively more shal-

low. Colliding shock fans form regions of so-called multi-

phase dynamics [37] characterized by very complicated

temporal dependence determined by the overlap of oscil-

lations arising from adjacent UBs. In this respect, the

dynamics is completely different from other schemes pro-

posed in the past for the generation of dark soliton trains

[34,56] and the related generation of broadband emission

[82]. Indeed, in these schemes, the use of powerful pulses is

mandatory, and the spectrum is not characterized by a

discrete-line (comb) structure. In addition, the asymptotic

state tends to a clean train of dark solitons, which is never the

case in any of our FWM experiments (see also the discussion

in the last paragraph of this section). Importantly, our data

show a remarkable degree of symmetry, both temporally

[Fig. 4(b)] and spectrally [Fig. 4(f)], giving evidence of the

negligible role of third-order dispersion in our experiment.

Indeed, it is easy to show that third-order dispersion would

induce temporal symmetry breaking (for instance, in this

configuration the central filament would acquire a velocity,

no longer possessing a zero-intensity dip) and resonant

enhancement of a low-frequency part of the spectral FWM

comb [73]. The absence of these effects proves that our

experiment is accurately described by the NLS equation (2)

with no extra term, despite the fact that GVD is weak.

We have also assessed, experimentally, the effect of an

input imbalance over the dual-frequency carrier-suppressed

configuration, where FWM is first responsible for the

generation of the idler (the spectral image of the weaker

input signal) and then for all the harmonics of the signal-

idler pair. As shown in Fig. 5, an imbalance α ¼ 0.3

introduced in the input causes the input waveform to break

at two distinct instants (per period) around the intensity

minima. From such a pair of breaking points, two asym-

metric undular bores emerge which fill shock fans pointing

in opposite directions. These fans, arising from adjacent

periods, then naturally collide. In this case, the input

waveform does not have intensity nulls, and the leading-

order oscillations (inner edges of the fans) are grey solitons

that possess different nonzero velocities, as shown in the

trace in Fig. 5(c). The data in Fig. 5(b) and the simulations

in Fig. 5(d) are in remarkably good agreement in this

case, too.

Finally, Fig. 6 illustrates the case of a modulated carrier

with symmetric sidebands corresponding to η ¼ 0.7,

α ¼ 0. In this case, breaking occurs, as already illustrated

in Fig. 2, at two distinct instants that, in this case, are

symmetrically located around the minima of the modula-

tion and occur at the same finite distance. The undular

bores reflect the symmetry of the problem, leading to two

symmetric shock fans with inner (leading) edges featuring

the deepest oscillations. Since the input waveform does not

vanish in this case either, these inner edges behave as a pair

of gray solitons traveling with opposite (low) velocities.

As in previous cases, the fans from adjacent periods of the

input modulation naturally collide, as also shown in the

snapshot in Fig. 6(c). We point out that, not only do we

obtain a close quantitative agreement between the data and

the numerics in this case, but the estimated breaking

distance zb ¼ 0.36 from Fig. 2(c) agrees well with the

measured value of power for breaking P ¼ 24.5 dBm,

which corresponds to z ¼ 0.364.

FIG. 5. Measured UB dynamics for the pump-signal input configuration (asymmetric dual-pumped FWM, η ¼ 0, α ¼ 0.3). (a) 3D

surface of measured output power vs time and input power. (b),(d) Color-level plot of the output power profile at different input powers

from measured data (b) and numerical simulations of the dimensional NLS equation (d). (c) Temporal OSO trace at P ¼ 30.6 dBm,

showing the onset of asymmetric oscillations (the solid blue line stands for the input).
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Before concluding, it is worth specifying in what sense one
can talk about solitons with reference to the fast wave trains
associated with the UB structure observed in Figs. 4–6. First,
it is interesting to note that our experiment, especially in
the configuration of Fig. 3 where the input is a cosine,
represents the realization, though in the framework of a
different model, of the conceptual numerical experiment
made in the celebrated paper published nearly 50 years ago
by Zabusky and Kruskal [27], which led them to coin the
word “solitons” to indicate nonlinear modes nucleated by
wave breaking of a sinusoidal input. Generally speaking,
however, an input wave packet that undergoes breaking and
forms dispersive shocks or UBs cannot be considered to be a
soliton phenomenon (with exceptions constituted by specific
examples; see, e.g., Ref. [38]). Indeed, UBs also manifest
themselves from breaking of waveforms that do not contain
any soliton at all (solitons are meant here in the strict sense of
integrable models, i.e., discrete eigenvalues of the input
potential in the scattering problem associated with the
evolution equation). Conversely, UBs are generally described
as a nonstationary slow modulation of nonlinear periodic
solutions (so-called cnoidal waves) [29]. Specifically, for the
case of periodic input waves treated in this paper, the inverse
scattering formulation of the NLS equation cannot be made in
terms of solitons but rather in terms of so-called finite-band
solutions [83]. Nevertheless, the term soliton, which is
introduced so as to illustrate the features of the post-
catastrophe dynamics in Figs. 4–6, finds, in this context,
its justification in the following argument. In the limit ε → 0,
the number of finite bands diverges while they tend to shrink
around their central value, thus reducing to equivalent
discrete eigenvalues that are characteristic of solitons on
the infinite line [34] (more details on this point, which is
evidently an issue of theoretical interest, will be given in a
future publication).

V. CONCLUSIONS

Thanks to the transposition based on the light-fluid

analogy, all-fiber platforms allow the scientific com-

munity to perform repeatable experiments on striking

and universal-wave phenomena whose exploration in

large-scale hydrodynamics remains, to date, extremely

challenging, at the same time revealing novel regimes of

light propagation. In this contribution, we have focused on

the first absolute demonstration of spontaneous temporal

wave breaking occurring in the most typical and exploited

frequency-conversion processes. More precisely, by means

of a specifically designed fiber experiment, we have

reported the direct observation of the generation of multiple

optical dispersive shocks or undular bores and their natural

interactions, under different four-wave mixing configura-

tions. These results thus provide a better understanding of the

rich scenarios offered by FWM interactions, especially in

connection with the several applications that make use of

FWM in the high-efficiency regime. Furthermore, at a

fundamental level, our experiment can have a deep impact

on the ability to understand dispersive shock waves. These

are indeed fascinating and ubiquitous phenomena, though

generally challenging to reproduce and characterize in their

original environment, as their long-standing history suggests.
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