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Abstract

Flight path optimization is designed for minimizing aircraft noise,

fuel consumption and air pollution around airports. This paper gives

theoretical considerations and algorithms solving the Hamilton-Jacobi-

Bellman equation (HJB) of aircraft trajectory optimization. Compar-

isons with direct and indirect methods are carried out. The OCP prob-

lem is transformed into new equalities-constrained as a viscosity prob-

lem. This constitutes an original dynamical system extension where

subsystems are linked to the original dynamics via algebraic coupling

equations. A feedback control method using dynamic programming has

been developed. Comparisons show its fast computing times. It pro-

vides the best optimized �ight paths which could be more suitable for

CDA approach applicability. A two-segment approach is provided by

HJB method which also favors fuel consumption saving. This improved

CDA approach could bene�t both airlines and communities. Because of

the processing speed and e�ciency of the HJB method, it can be bet-

ter interfaced with the in-�ight management system respecting airspace

system regulation constraints.

Subject Classi�cation: xxxxxx
Keywords: Hamilton-Jacobi-Bellman equation, Dynamic programming, Air-
craft, Flight path optimization, environment

1 Introduction

Due to the increase of air tra�c, populations living near airports and the en-
vironment are impacted by commercial aircraft. This is considered to be one
of the most environmental concerns a�ecting people and the physical envi-
ronment [1, 2]. Technology development, airspace management, operational
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improvement and system e�ciency should be considered as an environmen-
tal innovation. There is no justi�cation that air transport will not continue
to progress without improving its environmental impacts [3]. This is because
all types of procedures are not optimized but rather generic in nature, that
new �ight path development, associated to new aircraft design and engines,
is a solution which should contribute to a decrease in aircraft annoyances.
This development cannot be carried out without improvement of the scien-
ti�c knowledge in this �eld, in particular the contribution of modeling. The
latter consists in developing e�cient data processing tools allowing in-�ight
diagnosis and control in real-time taking into account the FMS (�ight man-
agement system) and the AMS (airspace management system) updates. In this
paper, we have suggested a dynamic optimization method solving a model gov-
erned by an ODE system [4, 5, 6]. The cost function of this model describes
aircraft noise and fuel consumption [7, 8, 9, 10, 11]. The ODE depends on
the �ight dynamics of the aircraft and considers �ight safety and stability re-
quirements (constraints and extreme conditions). Numerical methods solving
control problems fall in many categories [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
among which it is necessary to choose, improve or develop a new method. In
this context, this paper gives theoretical considerations and algorithms solv-
ing Hamilton-Jacobi-Bellman equation "HJB" [22, 23] because the problem is
transformed into new equalities-constrained as a viscosity problem. This is
an original system extension where subsystems are linked to the dynamics via
algebraic coupling equations [24, 25]. Among the existing methods, solving
the HJB problem, a feedback control method using dynamic programming has
been developed. The latter is a method used for solving complex problems by
breaking them down into simpler subproblems. To solve the given problem, it
solves subproblems, then combines solutions of them to reach a global solution.
Because subproblems are generally the same, it seeks to solve each subprob-
lem only once reducing the number of the total computations, in particular
when the subproblem number is exponentially large. Comparisons have been
performed between HJB, direct and indirect methods [26, 27, 28, 29] stress-
ing the computing times with the aim of �nding the best aircraft approach
also favoring fuel consumption saving. Indeed, the direct approach has been
used reducing the OCP to a �nite-dimensional nonlinear program which is
solved by a standard nonlinear programming solver. Algorithms are adapted
and modi�ed versus constraints, limits of �ight dynamic parameters, and lo-
cation points on the ground. For the indirect approach, optimality conditions
given by Pontryagin's principle, have been discretized. An AMPL model (A
Modeling Language for Mathematical Programming) [30] combined with NLP
solver [31, 32, 33] has been performed for processing. In-depth details have
been described in previous papers [34, 35, 36, 37, 38]. Technically, we analyze
the processing speed and algorithm e�ciency and their ability to be interfaced
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with the in-�ight management system respecting airspace system regulation
constraints. This has to be �tted with the necessity to compensate both the
growth in air tra�c and the encroachment of airport-neighboring communities.

This paper presents in the �rst two sections an introduction and the opti-
mal control problem of aircraft trajectory minimization (�ight dynamics, con-
straints, and aircraft noise model). For comparison, the third section gives
applied methods (indirect, direct, Hamilton-Jacobi-Bellman). The last two
sections show numerical results followed by the conclusion.

2 Optimal Control Problem

We present in this section a summary of the optimal control problem that will
be solved and methods compared [34, 35, 37, 38]. The system of di�erential
equations commonly employed in aircraft trajectory analysis is the following
six-dimension system derived at the center of mass of the aircraft [34, 35, 37,
39, 40, 41, 42]:

(ED)
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T cosα−D

mg
− sin γ

)

γ̇ =
1

mV
((T sinα + L) cosµ−mg cos γ)

χ̇ =
(T sinα + L) sinµ

mV cos γ

ẋ = V cos γ cosχ

ẏ = V cos γ sinχ

ḣ = V sin γ

where V, γ, χ, α and µ are respectively the speed, the angle of descent, the yaw
angle, the angle of attack and the roll angle. (x, y, h) is the position of the
aircraft. The variables T,D, L,m and g are respectively the engine thrust, the
drag force, the lift force, the aircraft mass and the aircraft weight acceleration
given in previous paper [34, 35, 38, 39, 40, 41, 42, 43]. ED can be written in
the following matrix form:

ż(t) = f(z(t), u(t))
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where

z : [t0, tf ] −→ IR6

t −→ z(t) = [V (t), γ(t), χ(t), x(t), y(t), h(t)] are the state variables
u : [t0, tf ] −→ IR3

t −→ u(t) = [α(t), δx(t), µ(t)] are the control variables

and t0 and tf are the initial and �nal times.
Along the trajectory, we have some safety requirements and comfort con-
straints. For that, we have to respect parameter limits related to the safety of
�ight and the operational modes of the aircraft.

Aircraft modeling continues to meet the increased demands associated with
aviation and airport expansion. Aircraft noise footprints are commonly used
for forecasting the impact of new developments, quantifying the noise trends
around airports and evaluating new tools. Thus, aircraft models have be-
come more sophisticated and their validation complex. A number of them are
entirely based on empirical data [44]. Because of this complexity [45], such
models are not characterized by a given analytical form describing noise at
reception points on the ground. This paper uses the basic principles of aircraft
noise modeling. The cost function may be chosen as any of the usual aircraft
noise indices, which describes the e�ective noise level of the aircraft noise event
[46, 47, 48, 49]. This study is limited to minimize the index Leq,∆T using a
semi-empirical model of jet noise [7, 8, 10, 11, 50, 51, 52, 53, 54]. The cost
function is expressed in the form:

J : C1([t0, tf ], IR
6)× C1([t0, tf ], IR

4) −→ IR

J(X(t), U(t)) =

∫ tf

t0

(ℓ(X(t), U(t)) + Φ(X(t), tf − t0))dt

where J is the criterion which optimizes noise levels and fuel consumption.
The cost function can be written in the following integral function form:

J : C1([t0, tf ], IR
6)× C1([t0, tf ], IR

3) −→ IR

J(z(t), u(t)) =

∫ tf

t0

(ℓ(z(t), u(t)) + ϕ(z(t), (tf − t0)))dt

where J is the criterion to be optimized. Finding an optimal trajectory can
be stated as an optimal control problem as follows (t0 = 0):
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(OCP )















































min J(z, u) =

∫ tf

0

(ℓ(z(t), u(t)) + ϕ(z(t), tf ))dt

ż(t) = f(z(t), u(t)), ∀t ∈ [0, tf ]

zI1(0) = c1, zI2(tf ) = c2

a ≤ C(z(t), u(t)) ≤ b

where J : IRn+m → IR, f : IRn+m → IRn and C : IRn+m → IRq correspond
respectively to the cost function, the dynamic of the problem possessing a
unique state trajectory and the constraints. The second equation giving the
trajectory is a nonlinear system with states in IRn. At tf , terminal conditions
are imposed. tf can be �xed or unspeci�ed. In this paper terminal conditions,
describing the boundary conditions, are speci�ed and their values are given.
tf is also �xed. In the next section, we present di�erent methods solving the
presented (OCP ) (optimal control problem) problem. There is no practical
theoretical limitations to using those methods that cannot be guaranteed to
provide a global solution. We assume that the OCP has an optimal trajectory
solution with the optimal cost. Subsequently, to reduce notations of l and ϕ,
together, are called (replaced by) l.

3 Applied resolution methods

In this paper, we have applied three di�erent approaches solving the OCP
problems: direct, indirect, and dynamic approaches [12, 13, 18, 55, 56, 57, 58].
The direct method discretized the OCP for obtaining a �nite-dimensional pa-
rameter optimization problem and solving the resulting nonlinear program-
ming problem [59, 60, 61, 62]. It is well appropriated because of the domain
of convergence and the e�cient handling of constraints and the de�ned lim-
its. It is opposed to the indirect approach based on Pontryagin's principle
[63, 64, 65, 66, 67, 68] based on the assessment of variations requiring solu-
tions of two-point boundary values problem. It provides a very fast computing
times, in particular, in the vicinity of the optimal solution. Inequality con-
straints are carried out by Pontryagin's maximum principle. Another way can
be suggested avoiding problems of constraints handling by transforming ade-
quately the OCP in a new unconstrained OCP formulation that can be solved
by a standard unconstrained numerical methods. Because of this change, a
new unconstrained OCP is obtained having the same system dimension with
new states and variables. The third method is based on the dynamic pro-
gramming method [55, 56, 57, 58] than can be used to �nd the optimal state,
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costate and the control variables which is focusing on the optimal function
value [69]. Dynamic programming is a method for solving complex problems
by breaking them down into simpler subproblems. To solve a given problem,
it solves di�erent parts of the problem called subproblems, then combines so-
lutions of the subproblems to reach a global solution. Because of subproblems
are generally the same, it seeks to solve each subproblem only once reducing
the number of the total computations, in particular when subproblem number
is exponentially large.

The �rst-order partial di�erential equation is derived using the Hamilton-
Jacobi-Bellman equation which uses the principle of Optimality of bellman.
The optimal value of the control vectors depending on the the date, the state
and the parameters of the control problems is obtained. This way is called
the feedback or the closed-loop form of the control. The Open-loop, where the
form of the optimal control vector ca be obtained by the necessary conditions
of optimal control theory can be used. The optimal value of the control vector
can be obtained as a function of the independent variable time, the di�erent
used parameters and initial/�nal conditions of the cost function and the state
vector. The optimal solution can be given for any period and for any possible
state.

3.1 Indirect method

We set H : IRn × IRm × IRn × IRq × IRq −→ IR the hamiltonian function of the
problem (OCP ):

H(z, u, p, λ, µ) = ℓ(z, u)+ϕ(z, tf )+ptf(z, u)+λt(C(z, u)−a)+µt(b−C(z, u))

where λ, µ are the multiplicators associated to the constraints and p is the
costate vector.
We describe now the optimality conditions (OC) for the (OCP ) problem:

(OC)























ż(t) = f(z(t), u(t))
ṗ(t) = −Hz(z(t), u(t), p(t), λ(t), µ(t))
u(t) = ArgminwH(z(t), w, p(t), λ(t), µ(t))
0 = λ.(C(z(t), u(t)− a), λ ≥ 0
0 = µ.(b− C(z(t), u(t)), µ ≤ 0

In this paper, we have used the interior point method [14, 20, 21] discretiz-
ing the optimality conditions of the system. The method which solved the
(OC) problem is described below. We explain the transformation of the (OC)
problem into a sequence of problems. We also show that the solution of the
optimality conditions is a solution of the (OCP ) problem: discretization used
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an Euler scheme and the resolution the Newton method [70].

By perturbing the last two equations (the complementary conditions) by a
positive parameter ε we obtain the following system:

(OCε)























ż(t) = f(z(t), u(t))
ṗ(t) = −Hz(z(t), u(t), p(t), λ(t), µ(t))
u(t) = ArgminwH(z(t), w, p(t), λ(t), µ(t))
1ε = λ.(C(z(t), u(t))− a), λ ≥ 0
−1ε = µ.(b− C(z(t), u(t))), µ ≤ 0

The previous system can be interpreted as the optimality conditions for the
following problem:

(Pε)















min

∫ tf

0

(ℓε(z(t), u(t)) + ϕε(z(t), tf ))dt

ż(t) = f(z(t), u(t)), t ∈ [0, tf ]

where ℓε is the barrier logarithmic of (Pε), de�ned by:

ℓε(z, u) + ϕε(z, tf ) = ℓ(z, u) + ϕ(z, tf )− ε
∑

i

[log(Ci(z, u)− ai) + log(bi − Ci(z, u))]

− εD(z)

To solve (OC), we have to solve a sequence of problems (OCε) by tending ε
to zero. When ε decreases to 0, the solution of optimal conditions (OCε) is
a solution of (OC). To compute the solution of the continuous optimal con-
ditions, we �rst discretized them. We obtained a set of non-linear equations,
which has to be solved for the discretized control, state and costate vectors
using a Newton method [21, 71, 72]. For the discretization, we have chosen an
Euler schema [59, 70, 73, 74] providing for (OCε) the following system:























zk+1 = zk + hf(uk, zk), k = 0, . . . , N − 1
pk+1 = pk − hHz(zk, uk, pk, λk, µk), k = 0, . . . , N − 1
0 = Hu(uk, zk, pk, λk, µk), k = 0, . . . , N
1ε = λk.(C(zk, uk)− a), λk ≥ 0, k = 0, . . . , N
−1ε = µk.(b− C(zk, uk)), µk ≤ 0, k = 0, . . . , N

We have obtained a set of equations to be solved under the boundary con-
straints corresponding to the multiplicators:

(Nε)







Fε(X) = 0
λk ≥ 0
µk ≤ 0
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where Fε is the set of optimal conditions, and X = (zk, uk, pk, λk, µk) the
variable vector. OCP is then successfully solved for decreasing ε with a non-
growth of the cost.

3.2 Direct method

To solve (OC) problems, many methods exist in the open literature [75, 76,
77, 78]. In this section, we have used a direct optimal control technique. We
discretize the control and the state for reducing the dimension of the optimal
control problem. Then, we solve the resulting nonlinear programming problem
using a standard NLP solver. The paragraph below gives discretization steps
which used Euler scheme where the continuous set of the obtained equations
is replaced by a discretized control problem which is solved thereafter.

To solve (OC), we have used in this section a direct optimal control technique.
We discretize the control and the state for reducing the dimension of the op-
timal control problem. Then, we solve the resulting nonlinear programming
problem using a standard NLP solver. We use an equidistant discretization of
the time interval as:

tk = t0 + kh, k = 0, ..., N and h =
tf − t0
N

Then we consider that u(.) is parameterized as a piecewise constant function:

u(t) := uk for t ∈ [tk−1, tk[

and we use an Euler scheme to discretize the dynamic:

zk+1 = zk + hf(zk, uk), k = 0, . . . , N − 1

The new cost function can be written as:

N
∑

k=0

(ℓ(zk, uk) + ϕ(zk))

The continuous set of equations is replaced by the following discretized control
problem:

(NLP )



























min
(zk,uk)

N
∑

k=0

(ℓ(zk, uk) + ϕ(zk))

zk+1 = zk + hf(zk, uk), k = 0, . . . , N − 1
z0I1 = c1, zNI2

= c2
a ≤ C(zk, uk) ≤ b, k = 0, . . . , N
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3.3 Hamilton-Jacobi-Bellman method

The main idea behind this section is how to reduce an in�nite-period opti-
mization problem to a two-period or some-period optimization problem. Di�-
culties appear when the optimization problem is continuous. Two approaches
to dynamic optimization: the Pontryagin approach which is Hamiltonian and
the Bellman approach [55, 56, 57, 58]. Dynamic programming method solves
a complex problem by dividing it into simpler subproblems solving di�erent
parts of the problem reducing the processing steps in particular for large di-
mensions. The global solution is reached by combining solutions of the sub-
problems. When used, the method is faster compared to other existing meth-
ods. Top-down or bottom-up dynamic programming exist. The �rst record
the stages of calculation which are used thereafter, and the second reformulate
the problem by a recursive series which calculations are where the processing
are made easy. On the one hand, a candidate trajectory called the candidate
solution is an element of a set of possible solutions for the given problem.
Usually, a candidate solution could not be the best solution of the considered
problem. It is the solution satisfying constraints. On the other hand the solu-
tion must belong the feasible region (solution space). The existence of the the
trajectory solution is con�rmed by Weierstrauss theorem which states that in
a compact set the maximum and minimum values are reached for continuous
or semi-continuous functions. Necessary conditions for optimality have been
con�rmed. Indeed, optima of the suggested inequality-constrained problem is
instead found by the Lagrange multiplier method. A system of inequalities or
the Karush-Kuhn-Tucker conditions, calculating the optimum, are met.

Su�cient conditions for optimality are met. First derivative tests identify
the optima without di�erences between the minimum or the maximum. We
assume that the cost function is twice di�erentiable. By controlling the second
derivative or the Hessian matrix in the transformed unconstrained problem or
the matrix of second derivatives of the cost function and the constraints / the
bordered Hessian, we can easily distinguish maxima and minima from station-
ary points. It should be remembered that methods commonly used to eval-
uate Hessians (or approximate Hessians) are Newton's method or Sequential
quadratic programming. The second is particulary used for small-medium scale
constrained problems. Some versions exist and can handle large-dimensional
problems. A bordered Hessian is performed for the second derivative test in
�ight path constrained optimization problem. This could be in relationship
with the suggested further research described in the last section making pos-
sible the generalization method. If we consider m constraints, 0 of the above
matrix is a m*m block of zeroes, m border rows at the top and m border
columns at the left; positive de�nite and negative de�nite can not apply here
since a bordered Hessian can not be de�nite, we have z'Hz=0 if the vector z
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has non-zero as its �rst element followed by zeroes. The second derivative test
consists of restrictions of the determinants of a set of n-m sub-matrices of the
bordered Hessian. A constraint reduction of the problem by one with n-m free
variables.
If we consider:

f : Rn −→ R
m

f(x1, x2, . . . , xn) = (f1, f2, f3, . . . , fn)

the array of the second partial derivatives is not a nxn matrix but a tensor of
order 3 or a multi-dimensional array mxnxn which can be reduced to a usual
Hessian matrix with m=1. A Riemannian manifold and its Levi-Civita con-
nection could be used for considerations using a Hessian tensor.

Dynamic methods approximate continuous systems to discrete systems lead-
ing to recurrence relations making easier the processing. One approach that
should be considered as alternative transforms the OCP system to a non-linear
partial di�erential equations, often called the Hamilton-Jacobi-Bellman equa-
tion [79, 80, 81].

The following state equation can be written as:

ż(t) = f(z(t), u(t)), ∀t ∈ [0, tf ]

It minimizes:

J(z, u) =

∫ tf

0

(ℓ(z(t), u(t)) + ϕ(z(t), tf ))dt

J(z,u) can be transformed as:

J = κ(z(tf ), tf ) +

∫ tf

0

ℓ(z(τ), u(τ))dτ

where f and κ are given functions, and tf is �xed. When we use imbedding
principle, we can �rst give the following weak modi�cation of the suggested
problem at the moment t (less than tf ) at any acceptable state z(t) to make
more large:

J(z(t), u(τ)t≤τ≤tf ) = κ(z(tf ), tf ) +

∫ tf

t

ℓ(z(τ), u(τ))dτ

Optimization process depends on numerical values of the state at t moments
and the optimal control history in the considered time intervals. For a per-
formed acceptable state for all t ≤ tf , we can assess controls minimizing the
cost function J. This minimum can be written as:

J∗(z(t), t) = min[u(τ),t≤τ≤tf ]{κ(z(tf ), tf ) +

∫ tf

t

ℓ(z(τ), u(τ))dτ}



Dynamic optimization modeling 11

Dividing the main interval in in�nitesimal intervals, we can write:

J∗(z(t), t) = min[u(τ),t≤τ≤tf ]{κ(z(tf ), tf ) +

∫ t+∆t

t

ℓ(z(τ), u(τ))dτ

+

∫ tf

t+∆t

ℓ(z(τ), u(τ))dτ}

Application of the optimality principle gives:

J∗(z(t), t) = min[u(τ),t≤τ≤t+∆t]{J
∗(z(t+∆t), t+∆t), t)+

∫ t+∆t

t

ℓ(z(τ), u(τ))dτ}

We expressed the cost function versus the minimum cost function for the in-
terval t + ∆t ≤ τ ≤ tf where initial state is z(t + ∆t). Good mathematical
conditions are �lled, the second partial derivatives exist and are limited. The
Taylor series development of J∗ gives:

J∗(z(t), t) = min[u(τ),t≤τ≤t+∆t]{

∫ t+∆t

t

ℓ(z(τ), u(τ))dτ

+ J∗(z(t), t), t) + [
∂J∗

∂t
(z(t), t), t)]∆t

+ [
∂J∗

∂t
(z(t), t), t)]T [z(t+∆t)− z(t)]

+ higher orders}

For in�nitesimal ∆t, as small as we can use, depending on the computer facil-
ities during the processing step, we can write:

J∗(z(t), t) = minu(t){l(z(t), u(t)∆t) + J∗(z(t), t)

+ J∗
t (z(t), t)∆t+ J∗T

z (z(t), t)[f(z(t), u(t), t)]∆t

+ o(∆t)}

where o(∆t) ∼= o(∆t)p higher orders of (∆t)2 following from integral approx-
imations and the stop order of terms of Taylor series (dichotomy of Taylor
series). Simpli�cation f the last equation and tending ∆t −→ 0, we obtain:

J∗
t (z(t), t) +minu(t)l(z(t), u(t), t) + J∗T

z (z(t), t)[f(z(t), u(t), t)] = 0

t = tf provides the limit of this partial di�erential equation and then:

J∗(z(tf ), tf ) = κ(z(tf ), tf )

Writing the Hamiltonian as:

H(z(t), u(t), t, J∗
z (z(t), t)) , l(z(t), u(t), t) + J∗T

z (z(t), t)[f(z(t), u(t), t)]
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and

H(z(t), u∗(z(t), J∗
z , t), J

∗
z , t) = minz(t)[H(z(t), u(t), t, J∗

z (z(t), t))]

We �nally obtain the following Hamilton-Jacobi equation which can be called
Hamilton-Jacobi-Bellman equation because it is based on the continuous time
recurrence equation of Bellman [82, 83, 84, 79, 80, 81]:

J∗
t (z(t), t) +H(z(t), u∗(z(t), J∗

z , t), J
∗
z , t) = 0

The necessary optimality condition has then been �lled because the cost func-
tion J∗

t (z(t), t) satis�es the Hamilton-Jacobi-Bellman equation. We notice for
the boundary conditions that some variables can be kept free. The Hamilton-
Jacobi-Bellman equation will always function and can be solved. We can
generally conclude that if the function satis�es the Hamilton-Jacobi-Bellman
equation then it is the minimum cost function. This is proven and con�rmed
[85, 86]. Solutions are obtained using appropriate solvers. Discrete approxi-
mations of the given continuous OCP problem are established and solutions
obtained using recurrence relations. Exact solutions of the discrete approx-
imation of the the Hamilton-Jacobi-Bellman equation are obtained in the
state-time space regions. The latter cannot be known since the beginning
of the recurrence processing solving the Hamilton-Jacobi-Bellman equation.
The question is to know if we obtain an exact solution of the discretized prob-
lem or an approximate solution of the exact optimization equation. The major
assumption are: the state and the control variables are constrained, the �nal
time tf is �xed and z(tf ) is free.

In practice, it is important to solve the equation numerically, if an analyti-
cal solution is not possible. The equation can be solved explicitly. In general,
it is di�cult to calculate the solution. Numerical method based on viscosity
solutions to the Hamilton-Jacobi-Bellman equation is performed in this section
[87]. First order of the Hamilton-Jacobi-Bellman equation is perturbed by an
added di�usion term; a singular perturbation parameter is used. Time and
variables are discretized.

There are many methods existing in the open literature solving the Hamilton-
Jacobi-Bellman equation which can be considered as e�cient. We have choose
a feedback control method for the computation which solve the previous Hamilton-
Jacobi-Bellman equation using the dynamic programming. The Hamilton-
Jacobi-Bellman equation can be expressed as:

−
∂v

∂t
+ supu∈U[−∇zv.f(z, u, t)− l(z(t), u(t), t)] = 0
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We consider a �nite region Ξ for z included R
n+m, U the control set, and the

initial condition v(tf , z(tf )) = κ(z(z(tf ), tf ) or the value function or the bound-
ary condition, and −∇zv the gradient of v related to z. v and u are unknown.
To assess gradients or approximate gradients (or even subgradients), the �nite
di�erence methods can be used: Quasi-Newton methods, Conjugate gradient
methods, Interior point methods (a large class of methods for constrained op-
timization. Some interior-point methods use only (sub)gradient information,
and others of which require the evaluation of Hessians), Gradient descent, Bun-
dle method of descent, Ellipsoid method, Reduced gradient method (Frank-
Wolfe), ... Finding a feedback control for the OCP is equal to solve the initial
value problem. Many works are performed showing the existence and the unic-
ity of the solution of this problem well know as a viscosity solution [87, 88, 89].
The extreme value theorem of Weierstrass or Weierstrauss theorem states that
a continuous real-valued function on a compact set attains its maximum and
minimum value. More generally, a lower semi-continuous function on a com-
pact set attains its minimum; an upper semi-continuous function on a compact
set attains its maximum.

Numerical approximations are need for initial value problem for solving the
original OCP, which are di�cult to �nd in the open literature in particular
e�cient algorithms. If we disturb the latter equation by a di�usion term ε∇2v
where ε << 1 a singular perturbating parameter, we can write the viscosity
approximation of previous equation whose principal mathematical properties
are shown by Zhou [89]:

ε∇2v−
∂v

∂t
+ supu∈U[−∇zv.f(z, u, t)− l(z(t), u(t), t)] = 0

This initial value problem can be solved explicitly by a time stepping schemes.
tf is �xed and no information is available on v. After domain extension of Ξ
which is necessary for �nding the exact solution, we can write:

ε∇2v−
∂v

∂t
−∇zv.f(z, u

∗, t)− l(z(t), u∗(t), t) = 0

with

u∗ = arg sup
u∈U

[−∇zv.f(z, u, t)− l(z, u, t)]

tf could not be exactly reach and the extension domain is a transitional region
where the solution satis�es the arti�cial boundary conditions of the solutions
of the Hamilton-Jacobi-Bellman equation. Finally, we obtain the following
equations:

l(z(t), u∗(t), t) = ε∇2v− {
∂v

∂t
+∇zv.f(z, u

∗, t)}



14 S.Khardi

u∗ = arg sup
u∈U

[−∇zv.f(z, u, t)− l(z, u, t)]

To solve, by approximation, the previous equations (having the form of the
convection-di�usion equation), we initially simplify the writing form of those
equations:

l(z(t), u∗(z, tn), tn) = ε∇2v− {
v(x̄, tn−1)− v(x, tn)

∆t

u∗(z, tn) = arg sup
u∈U

[−∇zv.f(z, u(z, t
n), tn)− l(z, u(z, tn), tn)]

the approximation of the solution at tn = 1 − n∆t (∆t > 0) with x̄ =
x + f(t, z, u(z, tn))∆t, and vt + f.∇v is an operator acting terms of the given
equations which can express the di�erentiation in the characteristic direction
ζ = ζ(x) so that we can write:

l(z(t), u∗(t), t) = ε∇2v− {
∂v

∂t
+∇zv.f(z, u

∗, t)}

l(z(t), u∗(t), t) = ε∇2v− [1 + |f(z, u, t)|2]
1

2

∂v

∂ζ(z)

with:

∂

∂ζ(x)
∼= [

1

[1 + |f(z, u, t)|2]0.5
][
∂

∂t
+ f(z, u∗, t).∇]

The problem is the assessment of v(x̄, tn−1). This achieved by an extrapolation
of u(z, tn) during processing. This discretization in time associated with the
new form of those equations is called the continuous in space MMOC (the
modi�ed methods of characteristics) procedure of the original coupled and
nonlinear system of equations. The idea behind this method [90, 91, 92] is to
use a small extension of the domain. This method of characteristics usually
solves partial di�erential equations. It is generally performed for �rst-order
equations. The method can also be applied for any hyperbolic partial di�er-
ential equation. Its power allows, inter alia, a reduction a partial di�erential
equation to a family of ordinary di�erential equations where the solution can
be obtained when initial data are given.

MMOC development by Huang et al. and by Cheng and Wang, provided
the approximation of the characteristic derivative as:

[[1 + |f(z, u, t)|2]0.5]
∂v

∂ζ(x)
∼= [[1 + |f(z, u, t)|2]0.5]

v(x̄, tn−1)− v(x, tn)

[|x̄− x|2 + (∆t)2]0.5
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and

[[1 + |f(z, u, t)|2]0.5]
v(x̄, tn−1)− v(x, tn)

[|x̄− x|2 + (∆t)2]0.5
=

v(x̄, tn−1)− v(x, tn)

∆t

They suggested the use of the operator splitting technique providing calcula-
tion of variables of the �rst equation from the second one approximating ∇v
and ∇2v. For any (i, j, n):
xi,j = (−1− a+ iκ,−1− a+ jκ)
For a function σ, σn

i,j = σ(zi,j, t
n)

a. κ is given
b. tn = 1− n∆t
c. ∆t = 1

N

d. z̄i,j = z + fn
i,j∆t

e. w̄n−1
i,j = w(z̄i,j)

f. wn
i,j and yni,j are approximated values of the solution (v,u)

The de�nite discretization of the last Hamilton-Jacobi-Bellman equation given
by the previous nonlinear system is:

lni,j = εδ2wn
i,j −

w̄n−1
i,j − wn

i,j

∆t

zni,j = arg sup
yn∈U

[−δwn
i,j.f

n
i,j − lni,j]

Terms lni,j and wn−1
i,j made the system strongly coupled. It is dissociated

by replacing fn
i,j by fn−1

i,j and lni,j by ln−1
i,j . Now, we can write the dissoci-

ated terms, during numerical processing, using the following algorithm steps
[12, 13, 18, 19]:
1. Give w0

i,j = κi,j.
2. Calculate y0i,j = arg supy0∈U[−δw0

i,j.f
0
i,j − l0i,j)].

3. n ∈ [1, N ] for a given total processing number N, calculate wn
i,j from:

ln−1
i,j = εδ2wn

i,j −
w̄n−1
i,j − wn

i,j

∆t

4. Calculate yni,j = arg supyn∈U[−δwn
i,j.f

n
i,j − lni,j)].

The processing stages are carried out led with an high calculation rate. The
main remarks are given below.

* Discretization scheme given previously is coherent, consistent and stable.
It is a copy of Euler's method.
* The matrix of the system is symmetric and positive with 1

∆t
≫ ε.

* High dimensions could be easily performed with those latter properties.
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* The OCP dimension is then reduced to a �nite-dimensional nonlinear pro-
gram.
* The large nonlinear program is solved by a standard a robust NLP solver
according to the discretized variables.
* To solve the obtained NLP problem, we developed an AMPL model.
* The viscosity coe�cient ε = 10−12 is used with this value in processing
steps.
* M = 81, a and b can be choose in a random way. They are dimension-
independent. Domain extension must gradually increase by steps of 10−3.
* ∆ t=2.5 10−3 sec is the used time step. We have also performed calculation
with a time step of ∆t = 0.5 sec because radar data are updated every 0.5
sec. Our algorithms could be then interfaced with in �ight and on the ground
radars controlling aircraft �ight paths.
* Asymptotic convergence has been reached because decoupling variables as
described.

To conclude, the starting OCP problem is described by a Hamilton-Jacobi-
Bellman equation which is transformed to being a convection-di�usion equa-
tion. The modi�ed method of characteristics approximating the solution is
used. It is then solved the problem in time and a �nite-di�erence in the state
space with a high accuracy.

In addition, Lie-Ovsyannikov in�nitesimal approach applied for reduction of
the corresponding Bellman equation has been described �rst by Garaev [97, 98]
and the Noether theory of invariant variation problems. It could be suggested
for the problem of optimum control [93, 94, 95, 96]. In the open literature, it
is not usually considered. This approach is new in the area of optimal control
problem related to aircraft annoyances minimization. The Bellman equation
corollary can be obtained in the form of a linear partial di�erential equation.
The use of the equation simpli�es the construction of synthesizing controls.
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4 Numerical results

We consider an aircraft landing by �xing initial and �nal �ight conditions:

180m/s = Vmin ≤ V ≤ Vmax = free
0.2 = δxmin

≤ δx ≤ δxmax
= free

−10◦ = γmin ≤ γ ≤ γmax = free
0◦ = αmin ≤ α ≤ αmax = +20◦

−5◦ = χmin ≤ χ ≤ χmax = +5◦

−5◦ = µmin ≤ µ ≤ µmax = +5◦

−5◦ = ϕmin ≤ ϕ ≤ ϕmax = +5◦

−60 km = xmin ≤ x ≤ xmax = 0 km
−10 km = ymin ≤ y ≤ ymax = +10 km
3500m = hmin ≤ h ≤ hmax = free
tmin = 0 ≤ t ≤ tmax = +10min

Vmin represents the aircraft velocity (stall velocity). As shown, some of these
parameters are kept free. Once the processing steps and calculation e�ciency
are con�rmed, their limit values are found and given. These inequalities are
represented by:

a ≤ C(z(t), u(t)) ≤ b

where a and b are constant vectors. The used data in this optimization model
are from an Airbus A300. The three-dimensional analysis is useful in enhancing
the reliability of the optimization model applied in automatic detection of
aircraft noise and in the aircraft noise features. We consider R the distance
aircraft-observer:

R = (x− xobs)
2 + (y − yobs)

2 + h2

where (xobs, yobs, 0) is the coordinates of the observer on the ground. OCP
is discretized along its state z = (V, γ, χ, x, y, h) and control u = (α, δx, µ)
variables.

P1 to P12 are the considered observers on the ground for which noise lev-
els have to be calculated:
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Locations xobs(m) yobs(m)

P1 10000 2500

P2 10000 2000

P3 10000 3000

P4 5000 1250

P5 5000 1000

P6 5000 1500

P7 4000 1000

P8 4000 800

P9 4000 1200

P10 2000 500

P11 2000 400

P12 2000 600

Location points P2 and P3 are symmetrical compared to P1 and are regarded
as side points. P5-P6, P8-P9 and P11-P12 are considered as side points com-
pared respectively to P4, P7 and P10. P1, P4, P7 and P10 are under the �ight
path on the ground. We minimize noise levels in the cost function previously
described. The problem to solve is written as follows :

(OCP )3























minϑ
ϑ >= Jobsj
ż(t) = f(z(t), u(t))
zI1(0) = c1, zI2(tf ) = c2
a ≤ C(z(t), u(t)) ≤ b

(1)

where Jobsj are noise levels corresponding to j �xed observers. For several
observers, the method is applied; SNOPT found a solution with a very high
accuracy.

The discretization parameter is N = 100 points because the solution stability.
Results will con�rm this state. To solve the Nε and NLP problems, we have
used the AMPL model [30] and a robust solver SNOPT [35, 36, 31, 32, 33].
They have been chosen after numerous comparisons among other standard
solvers available on the NEOS optimization platform. We have used the call-
by-need mechanism which memorized automatically the result of the cost func-
tion in order to speed up call-by-name evaluation ().

The (OCP ) is transformed with the direct method into a NLP problem. The
algorithm is adapted, it changes rules, and initializes points. The objective
function has been minimized using 897 variables, 503 constraints, 500 non-
linear equalities, and 3 inequalities. The number of nonzeros are respectively
3975 in Jacobian, and 80693 in Hessian. A locally optimal solution of the ob-
jective function has been found: the �nal objective value is 196.7 with a �nal
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feasibility error (abs / rel) of 3.18 10-3 / 1.8 10-9, and a �nal optimality error
(abs / rel) equal to 4.92 10-6 / 7.50 10-7) through 38 function evaluations,
39 gradients and 38 Hessian evaluations. The total program time is equal to
4.341 sec (4.344 CPU time / standard PC).

Concerning the indirect method, a sequence of Nε problems (tending ε to
zero). We initialize the problem Nε by centering the state and the control.
Then, we initialize the Lagrange multiplicators as follows:

λ = ε(C(z, u)− a)−1, µ = ε(b− C(z, u))−1

For the implementation of the penalty parameter ε and computation, we used
the following strategy [99]:

εk+1 = εk/a, a > 1

Table below summarizes the obtained results for ε.

ε Feasible error

1 5.6e− 12

0.2 4.0e− 12

0.04 7.3e− 14

0.008 8.8e− 12

0.0016 1.1e− 11

0.000032 2.3e− 07

6.4e− 05 2.5e− 07

1.28e− 05 2.1e− 07

Table 1 : The calculated feasibility errors versus ε

For each iteration of the interior point method, the algorithm found an op-
timal solution. First, it should be remembered that direct and indirect meth-
ods (DIM) provided the same optimal trajectory and the same throttle setting
δx. The solution trajectory (optimal trajectory) and the control δx are shown
in �gure 1. The optimization processing found a constant throttle setting δx
which corresponds to a stabilization �ight or a constant �ight level for the
three applied methods (DIM and JHB). δx is bang-bang between its bounds,
in particular for DIM methods where its increase is made in only once to 0.6
lasting slightly more with JHB that DIM. The altitude H, having a predom-
inant role in the noise level behavior called the cost function, decreased with
three soft slopes for DIM and two for JHB. These provided three and two
constant �ight segments in favor of the JHB method. One trajectory stage is
observed for JBH before alignment on the runway with a slope of 3 degrees
accompanied by a reduction of the power settings. Angles of descent are stable
as recommended by ICAO and aircraft certi�cation [100, 101, 102] in favor for
JHB method because the continuous descent approach with one constant stage
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Figure 1: Obtained solution for 100 discretization points

showing the e�ciency and performance of the aircraft approach. On the one
hand, noise level decrease is con�rmed. 6.5 to 9.3 dB reduction is obtained
in favor of JHB method. On the other hand, when we compare the measured
noise J0 at a distance of 2 km under the �ight path for a standard trajec-
tory approach with the level J obtained with the optimal trajectory given by
JHB, change varies with the altitude of approach between 4% to 11% of J0−J

J0
.

This is because optimization model, in particular the cost function, does not
integrate all non-propulsive noise sources and because of optimization model
makes noise reduction possible. The �ight rate descent is varying between 896
and 1165 ft/mn which is close to the one recommended by ICAO and prac-
ticed by the airline companies (1000 ft/mn). The obtained JHB trajectory
could be accepted into the airline community for a number of reasons. The
soft JHB one-segment approach puts the aircraft in an appropriate envelope
with margins for wind uncertainties and errors. There is no question of vortex
separation and problems of intercepting a false glide-slope, given that it must
be intercepted from above. With autopilot or �ight director coupling, this
approach would be acceptable for use in regular air carrier service.
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Comparison between the described methods applied to our optimal control
problem, con�rms that the feasible errors are between e− 07 and e− 09 (table
2). Indeed, in terms of analysis of aircraft noise reduction because of the tra-
jectory is optimal, the problem is more in favor of the case of several observers
and the JHB method.

Feasible error (Direct method) 7.39e− 07

Feasible error(Indirect method) 5.6e− 012to1.50e− 07

HJB computed errors 2.3e− 09

Table 2 : Comparison of feasible errors

Although computing power has increased substantially making complex prob-
lems more practical for large projects, JHB optimization method o�ers a sub-
stantial advantage in detail over DIM methods with much less computer time
and less discretization complexity. Optimization model is expected to replace
empirical models for well-established applications such as predicting noise con-
tours around airports and fuel saving. It is, now, practical for a wide range
of situations where additional details are necessary. To conclude, the obtained
results con�rmed the good formulation of this problem of optimization and its
e�ective resolution. They also provided good values, in particular for the �ight
parameters whose maximum values were maintained free during the process-
ing. Further research is needed to include airframe noise sources, and air-brake
systems. The cost function must integrate objectives like reduction of pollu-
tant emissions linked to fuel consumption and air tra�c constraints.

5 Conclusion

The objective of this paper, qualifying the best applied numerical method
solving commercial aircraft trajectory optimization model taking into account
noise sources, fuel consumption, constraints and extreme limits, has been
reached. First, we described detailed theoretical considerations and algorithms
solving the obtained Hamilton-Jacobi-Bellman HJB equation. Second, we car-
ried out comparisons with direct and indirect methods. The OCP problem was
transformed into new equalities-constrained as a viscosity problem constituting
an original dynamic system extension. Among the existing methods solving the
HJB equation a feedback control method using dynamic programming has been
developed. Compared to the direct and indirect methods, we show that HJB
dynamic method is characterized by its fast computing times and its e�ciency.
It provides the best optimized �ight paths called the Shortest and Fastest
Continuous Descent Approach (SF-CDA) which is able to reduce commercial
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aircraft annoyances and fuel consumption. It is a two-segment approach con-
�rmed as an optimized �ight path reducing aircraft environmental impacts.
Results show that the HJB method is well appropriated for aircraft trajec-
tory optimization problem and could be implemented. Technically, because
of its processing speed and algorithm e�ciency, it can be better interfaced
with the in-�ight management system respecting airspace system regulation
constraints. SF-CDA approach could bene�t both airlines and communities.
Further research is needed to consider non-propulsive sources and air tra�c
regulation.
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