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This paper aims to reduce noise levels of two-aircraft landing simultaneously on approach. Constraints related to stability, performance and flight safety are taken into account. The problem of optimal control is described and solved by a Sequential Quadratic Programming numerical method 'SQP' when globalized by the trust region method. By using a merit function, a sequential quadratic programming method associated with global trust regions bypasses the non-convex problem. This method used a nonlinear interior point trust region optimization solver under AMPL. Among several possible solutions, it is shown that there is an optimal trajectory leading to a reduction of noise levels on approach.

Introduction

The aim of this work is the development of a theoretical model of noise optimization while maintaining a reliable evolution of the flight procedures of two commercial aircraft on approach. These aircraft are supposed to land successively on one runway without conflict [START_REF] Roux | Modèle de longueur de piste au décollage-atterrissage, Avions de transport civil[END_REF]. It is all about the evolution of flight dynamics and minimization of noise for two similar commercial aircraft landing taking into account the energy constraint. This model is a non-linear and non-convex optimal control. It is governed by a system of ordinary non-linear differential equations [START_REF] Chryssoverghi | Classical and relaxed optimization methods for optimal control problems International Mathematical Forum[END_REF]. The 3-D movement of the two planes is described by a system depending on ordinary non-linear differential equations with mixed constraints. The function to be minimized is the integral describing the overall level of noise emitted by the two aircraft on approach and collected on the ground. We take into account constraints related to joint stability, performance and flight safety.

The problem of optimal control is described and solved by a Trust Region Sequential Quadratic Programming method 'TRSQP' [START_REF] Avdoshin | Optimisation des Systèmes dynamiques hybrides[END_REF][START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires[END_REF][START_REF] Bonnans | Numerical Optimization: Theorical and pratical Aspects[END_REF][START_REF] Christof | SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control[END_REF][START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF]. By using a merit function, a sequential quadratic programming method associated with global trust regions bypasses the non-convex problem. This method is established by following a tangent quadratic problem obtained from the optimality conditions of Karush-Khun-Tucker applied to the problem considering the objective function as the merit function.

The TRSQP methods are suggested as an option by a Nonlinear Interior point Trust Region Optimization solver 'KNITRO' [START_REF] Byrd | KNITRO: An integrated Package for nonlinear optimization[END_REF] under A Mathematical Programming Modeling Language 'AMPL' [START_REF] Fourer | A modelling Language for Mathematical Programming[END_REF][START_REF] Laboratories | AMPL, A modelling Language for Mathematical Programming[END_REF]. The global convergence properties are analyzed under different assumptions on the approximate Hessian. Additional assumptions on the feasibility perturbation technique are used to prove quadratic convergence to points satisfying second-order sufficient conditions.

Details of the two-aircraft flight dynamic, the noise levels, the constraints, the mathematical model of the two-aircraft acoustic optimal control problem and the trust region sequential quadratic programming method processing are presented in section 2, 3 and 4 while the numerical experiments are presented in the last section.

Mathematical Modelization

The motion of each aircraft A i , i := 1, 2 is three dimensional analyzed with 3 frames: the landmark (O,

- → X 1 , -→ Y 1 , - → Z 1 ), the aircraft frame (G i , -→ X Gi , -→ Y Gi , -→ Z Gi
) and the aerodynamic one (G i , -→ X ai , -→ Y ai , -→ Z ai ) where i := 1, 2 [START_REF] Blin | Stochastic conflict detection for air traffic management[END_REF]. The transition between these three frames is shown easily [START_REF] Boiffier | The Dynamics of Flight, The Equations, SUPA ÉRO[END_REF]. In general, the equations of motion of each aircraft are summarized as:

-→

F ext i -dm i dt -→ V a i = m i d -→ V a i dt -→ M ext G i = d dt [I G i -→ Ω i ] d -→ X o dt = d -→ X 1 dt + -→ Ω 10 × -→ X (1) 
The index i = 1, 2 reflects the aircraft. In the system above, -→ F ext i represents the external forces acting on the aircraft, m i (t) the mass of the aircraft, v i the airspeed of aircraft,

-→ M ext G i the moments of each aircraft, J(G i , A i ) the inertia matrix, d -→ X o dt
is the derivative with respect to time of the vector

X in vehicle-carried normal Earth frame R O , d -→ X 1
dt is the derivative with respect to time of the vector X in frame R 1 , Ω i the angular rotation of the aircraft and Ω 10 is the angular velocity of the frame R 1 relative to the frame R O . After transformations and simplifications, the system (1) becomes:
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where j means the engine index, the expressions A = I xx , B = I yy , C = I zz , E = I xz are the inertia moments of the aircraft, ρ is the air density, S is the aircraft reference area, l is the aircraft reference length, g is the acceleration due to gravity,

C D = C D0 + kC 2 L is the drag coefficient, C yi = C yβ β + C yp pl V + C yr rl V + C Y δ l δ l +C Y δn δ n is the lateral forces coefficient, C Li = C Lα (α a -α a0 )+C Lδm δ m + C LM M + C Lq q b a l V is the lift coefficient, C li = C lβ β + C lp pl V + C lr rl V + C lδ l δ l + C lδn δ n is the rolling moment coefficient, C mi = C m0 + C mα (α -α 0 ) + C mδm δ m is the pitching moment coefficient, C ni = C nβ β +C np pl V +C nr rl V +C nδ l δ l +C nδn δ n is the yawing moment coefficient, (x b Mij , x b Mij , x b Mij ) is the position of the engine in the body frame, F = (F xi , F yi , F zi ) is the propulsive force, V ai = (u i , v i , w i ) is the aerodynamic speed, (ΔA i u , ΔA i v , ΔA i w )
is the complementary acceleration, (u w , v w , w w ) is the wind velocity, β mij is the yaw setting of the engine and α mij is the pitch setting of the engine. The mass change is reflected in the aircraft fuel consumption as described by E. Torenbeek [START_REF] Roux | Pour une approche analytique de la dynamique du[END_REF] where the specific consumption is

C SR i = 2.01 × 10 -5 (Φ -μ -K i ηc ) √ Θ 5η n (1 + η tf i λ) G i + 0.2M 2 i η d i η tf i λ -(1 -λ)M i
with the generator function G:

G i = (Φ -K i ηc )(1 - 1.01 η ν-1 ν i (K i +μ i )(1- K i Φηcη t ) ) K i = μ i ( ν-1 ν c -1) μ i = 1 + ν-1 2 M 2 i
The Nomenclature of engine performance variables are given by G the gas generator power function, G0 the gas generator power function (static, sea level), K i the temperature function of compression process, M i the flight Mach number, T4 the turbine Entry total Temperature, T0 the ambient temperature at sea level, T the flight temperature, while the nomenclature of engines yields is η c = 0.85 the isentropic compressor efficiency,

η d i = 1 -1.3( 0.05 Re 1 5
) 2 ( 0.5 M i ) 2 L D , the isentropic fan intake duct efficiency, L the duct length, D the inlet diameter, Re the reynolds number at the entrance of the nozzle, η f i = 0.86 -

3.13 × 10 -2 M i the isentropic fan efficiency, η i = 1+η d i γ-1 2 M 2 i 1+ γ-1 2 M 2 i
the gas Generator intake stagnation pressure ratio, η n = 0.97 the isentropic efficiency of expansion process in nozzle, η t = 0.88 the isentropic turbine efficiency η tf i = η t η f i , c the overall pressure ratio (compressor), ν the ratio of specific heats ν = 1.4, λ the bypass ratio, μ i the ratio of stagnation to static temperature of ambient air, Φ the nondimensional turbine entry temperature Φ = T 4 T and Θ the relative ambient temperature Θ = T T 0 . The expressions

α ai (t), β ai (t), θ i (t), ψ i (t), φ i (t), V a i (t), X G i (t), Y G i (t), Z G i (t), p i (t), q i (t), r i (t), m i (t)
are respectively the attack angle, the aerodynamic sideslip angle, the inclination angle, the cup, the roll angle, the airspeed, the position vectors, the roll velocity of the aircraft relative to the earth, the pitch velocity of the aircraft relative to the earth, the yaw velocity of the aircraft relative to the earth and the aircraft mass.

Transforming the system (2) in state function, one has:

dy i (t) dt = f i (y i (t), u i (t)), i = 1, 2 ( 3 ) 
where the state vector is:

y i (t) : [t 0 , t f ] -→ R 13 y i (t) = (α ai (t), β ai (t), θ ai (t), ψ ai (t), φ i (t), V a i (t), X G i (t), Y G i (t), Z G i (t), p i (t), q i (t), r i (t), m i (t)) (4) The control vector is u i (t) : [t 0 , t f ] -→ R 4 t -→ u i (t) = (δ l i (t), δ m i (t) , δ n i (t), δ x i (t)) (5) 
where the expressions δ l i (t), δ m i (t) , δ n i (t), δ x i (t) are respectively the roll control, the pitch control, the yaw control and the thrust one. The dynamics relationship can be written as:

ẏi (t) = f i (y i (t), u i (t), t), ∀t ∈ [0, T ], y i (0) = y i0 (6)
The angles γ a i (t), χ a i (t), μ a i (t) corresponding respectively to the aerodynamic climb angle (air-path inclination angle), the aerodynamic azimuth (air-path track angle) and the air-path bank angle (aerodynamic bank angle) are not taken as state in this model.

To simplify the model, the atmosphere standards conditions are considered. The engine angles, the complementary acceleration and the aerodynamic sideslip angle are negligible because the wind is constant and there is no engine failure. With some complex mathematical transformations, the dynamic system (2) becomes:
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By the combination of this system with the aircraft control, one has the twoaircraft dynamic flight model as shown in [START_REF] Blin | Stochastic conflict detection for air traffic management[END_REF]. The state vector is

y i (t) : [t 0 , t f ] -→ R 12 y i (t) = (α ai (t), θ ai (t), ψ ai (t), φ ai (t), V a i (t), X G i (t), Y G i (t), Z G i (t), p i (t), q i (t), r i (t), m i (t)) (8) 
This will be added to the cost function and constraint function for the aircraft optimal control problem as shown in the following paragraphs.

The objective function model. In this paper, the considered cost function is the Sound Exposure Level 'SEL' [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Harris | How do we Describe Aircraft Noise?[END_REF][START_REF] Martin | Noise monitoring in the vicnity of airports,DSNA-DTI[END_REF]:

SEL = 10log 1 t o t 10 0.1L A1,dt (t) dt (9)
where t o is the time reference taken equal to 1 s and t the noise event interval.

[t 10 , t 1f ] and [t 20 , t 2f ] are the respective approach intervals for the first and the second aircraft, the objective function is calculated as:

SEL 1 = 10log 1 to t 20 t 10 10 0.1L A1,dt (t) dt , t ∈ [t 10 , t 20 ] SEL 12 = SEL 11 ⊕ SEL 21 = 10 log[ 1 to t 1f t 20 10 0.1L A1,dt (t) dt + 1 to t 1f t 20 10 0.1L A2,dt (t) dt], t ∈ [t 20 , t 1f ] SEL 2 = 10 log 1 to t 2f t 1f 10 0.1L A2,dt (t) dt , t ∈ [t 1f , t 2f ] SEL G = (t 20 -t 10 )SEL 1 ⊕(t 1f -t 20) SEL 12 ⊕(t 2f -t 1f )SEL2 t 2f -t 10 = 10 log{ 1 t 2f -t 10 [(t 20 -t 10 ) t 20 t 10 10 0.1L A1 (t) dt +(t 1f -t 20 ) t 1f t 20 10 0.1L A1 (t) dt + (t 1f -t 20 ) t 1f t 20 10 0.1L A2 (t) dt +(t 2f -t 1f ) t 2f t 1f 10 0.1L A2 (t) dt, ]}, t ∈ [t 10 , t 2f ] ( 10 
)
where SEL G is the cumulated two-aircraft noise and the operator ⊕ means the acoustic adding. Expressions L A1 (t), L A2 (t) are equivalent and reflect the aircraft jet noise given by the formula [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Groesbeck | An improved prediction method for noise generated by conventional profile coaxial jets[END_REF]:

L A1 (t) = 141 + 10 log ρ 1 ρ w + 10 log V e c 7.5 + 10 log s 1 +3 log 2s 1 πd 2 1 + 0.5 + 5 log τ 1 τ 2 +10 log ⎡ ⎢ ⎢ ⎢ ⎣ 1 - v 2 v 1 me + 1.2 1 + s 2 v 2 2 s 1 v 2 1 4 1 + s 2 s 1 3 ⎤ ⎥ ⎥ ⎥ ⎦ -20 log R + ΔV + 10 log ρ ρ ISA 2 c c ISA 4
where v 1 is the jet speed at the entrance of the nozzle, v 2 the jet speed at the nozzle exit, τ 1 the inlet temperature of the nozzle, τ 2 the temperature at the nozzle exit, ρ the density of air, ρ 1 the atmospheric density at the entrance of the nozzle, ρ ISA the atmospheric density at ground, s 1 the entrance area of the nozzle hydraulic engine, s 2 the emitting surface of the nozzle hydraulic engine, d 1 the inlet diameter of the nozzle hydraulic engine,

V e = v 1 [1 -(V /v 1 ) cos(α p )] 2/3
the effective speed (α p is the angle between the axis of the motor and the axis of the aircraft), R the source observer distance, w the exponent variable defined by: w = 3(V e /c) 3.5 0.6 + (V e /c) 

ΔV = -15log(C D (M c , θ)) -10log(1 -Mcosθ), means the Doppler convection when C D (M c , θ) = [(1 + M c cosθ) 2 + 0.04M 2 c ], M the aircraft Mac Number, M c the convection Mac Number: M c = 0.62(v 1 -V cos(α p )) c, θ is the Beam angle.
Formula above leads to the objective function J G12 (y(t), u(t

), i = 1, 2) = t g(y(t), u(t), t, i = 1, 2)dt.
Constraints. The considered constraints concern aircraft flight speeds and altitudes, flight angles and control positions, energy constraint, aircraft separation, flight velocities of aircraft relative to the earth and the aircraft mass:

1. The vertical separation given by

Z G 12 = Z G 2 -Z G 1 where Z G 1 , Z G 2 are
respectively the altitude of the first and the second aircraft and Z G 12 the altitude separation. [START_REF] Dgac | Mémento à l'usage des utilisateurs des procédures d'approche et de départ aux instruments[END_REF][START_REF] Dgac | Méthodes et minimums de séparations des aéronefs aux procédures[END_REF][START_REF] Sors | Séparation et contrôle aérien[END_REF] where X G 1 , X G 2 are horizontal positions of the first and the second aircraft and their separation distance.

The horizontal separation

X G 12 = X G 1 -X G 2
3. The aircraft speed V a i must be bounded as follows 1.3V s ≤ V a i ≤ V if where V s is the stall speed,V if is the maximum speed and V io = 1.3V s the minimum speed of the aircraft A i [START_REF] Dominique | Cisaillement de vent ou Windshear[END_REF][START_REF] Roux | Pour une approche analytique de la dynamique du[END_REF], the roll velocity of the aircraft relative to the earth p i ∈ [p i0 , p if ], the pitch velocity of the aircraft relative to the earth q i ∈ [q i0 , q if ] and the yaw velocity of the aircraft relative to the earth

r i ∈ [r i0 , r if ] .
4. On the approach, the ICAO standards and aircraft manufacturers require flight angle evolution as follows: attack angle

α a i ∈ [α io , α if ], the inclination angle θ i ∈ [θ i0 , θ if
] and the roll angle

φ i ∈ [φ io , φ if ]. 5. The aircraft control δ(t) = (δ l i (t), δ m i (t) , δ n i (t), δ x i (t)
) keeps still between the position δ li0 and δ lif for the roll control, δ mi0 and δ mif for the pitch control, δ ni0 and δ nif for the yaw control and δ xi0 and δ xif for the thrust.

The mass m i of the aircraft

A i is variable: m i0 < m i < m if , i = 1, 2.
This constraint results in energy consumption of the aircraft [START_REF] Boiffier | Dynamique de vol de l'avion, SupAéro, Départements des Aéronefs[END_REF][START_REF] Ifrance | Fiches techniques[END_REF].

On the whole, the constraints come together under the relationship:

k 1i (y i (t), u i (t)) ≤ 0 k 2i (y i (t), u i (t)) ≥ 0 ( 11 
)
where

k(t) :R 12 × R 4 -→ R 16 , (y i (t), u i (t)) -→ k i (y i (t), u i (t)) k 1i (y i (t), u i (t)) = (α i (t) -α if , θ i (t) -θ if , ψ i (t) -ψ if , φ i (t) -φ if , V a i (t) -V aif , X G i (t) -X Gif , Y G i (t) -Y Gif , Z G i (t) -Z Gif , p i (t) -p if , q i (t) -q if , r i (t) -r if , δ l i (t) -δ l i f , δ m i (t) -δ mif , δ n i (t) -δ nif , δ x i (t) -δ xif , m i (t) -m if ) k 2i (y i (t), u i (t)) = (α i (t) -α i0 , θ i (t) -θ i0 , ψ i (t) -ψ i0 , φ i (t) -φ i0 , V a i (t) -V ai0 , X G i (t) -X Gi0 , Y G i (t) -Y Gi0 , Z G i (t) -Z Gi0 , p i (t) -p i0 , q i (t) -q i0 , r i (t) -r i0 , δ l i (t) -δ l i 0 , δ m i (t) -δ mi0 , δ n i (t) -δ ni0 , δ x i (t) -δ xi0 , m i (t) -m i0 ).
The following values reflect the digital applications considered for the twoaircraft [START_REF] Abdallah | Minimisation des bruits des avions commerciaux sous contraintes physiques et aérodynamique[END_REF][START_REF] Boiffier | The Dynamics of Flight, The Equations, SUPA ÉRO[END_REF][START_REF] Boiffier | Dynamique de vol de l'avion, SupAéro, Départements des Aéronefs[END_REF][START_REF] Roux | Pour une approche analytique de la dynamique du[END_REF]. 

V a1f = V a2f = 200 m/s V a10 = V a20 = 73.45 m/s The A1 Aircraft altitude Z G1f = 35 × 10 2 m Z G10 = 0 m The A2 Aircraft altitude Z G2f = 41 × 10 2 m Z G20 = 0 m The aircraft roll control δ l1f = δ l2f = 0.0174 δ l10 = δ l20 = -0.0174 The pitch control δ m1f = δ m2f = 0.087 δ m10 = δ m20 = 0 The yaw control δ n1f = δ n2f = 0.314 δ n10 = δ n20 = -0.035 The thrust control δ x1f = δ x2f = 0.6 δ x10 = δ x20 = 0.2 The attack angle α a1f = α a2f = 12 • α a10 = α a20 = 2 • The inclination angle θ a1f = θ a2f = 7 • θ a10 = θ a20 = -7 • The air-path inclination angle γ a1f = γ a2f = 0 • γ a10 = γ a20 = -5 • The aerodynamic bank angle μ a1f = μ a2f = 3 • μ a10 = μ a20 = -2 • The air-path azimuth angle χ a1f = χ a2f = 5 • χ a10 = χ a20 = -5 • The roll angle φ a1f = φ a2f = 1 • φ a10 = φ a20 = -1 • The cup ψ a1f = ψ a2f = 3 • ψ a10 = ψ a20 = -3
p 1f = p 2f = 1 • s -1 p 10 = p 20 = -1 • s -1
The Aircraft pitch velocity relative to the earth

q 1f = q 2f = 3.6 • s -1 q 10 = q 20 = 3 • s -1
The Aircraft yaw velocity relative to the earth

r 1f = r 2f = 12 • s -1 r 10 = r 20 = -12 • s -1
Table 1.

The two-aircraft acoustic optimal control problem. The combination of the aircraft dynamic equation ( 3) and ( 7), the aircraft objective function from equations [START_REF] Bonnans | Numerical Optimization: Theorical and pratical Aspects[END_REF] and the the aircraft flight constraints [START_REF] Christof | SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control[END_REF], the two-aircraft acoustic optimal control problem is given as follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ min (y,u)∈Y×U J G12 (y(t), u(t)) = t 1f t10 g 1 (y 1 (t), u 1 (t), t)dt+ t 1f t20 g 12 (y 1 (t), u 1 (t), y 2 (t), u 2 (t), t)dt + t 2f t20 g 2 (y 2 (t), u 2 (t), t)dt + φ(y(t f )) ẏ(t) = f (u(t), y(t)), u(t) = (u 1 (t), u 2 (t)), y(t) = (y 1 (t), y 2 (t)), ∀t ∈ [t 10 , t 2f ], t 10 = 0, y(0) = y 0 , u(0) = u 0 k 1i (y i (t), u i (t)) ≤ 0 k 2i (y i (t), u i (t)) ≥ 0 ( 12 
) where g 12 shows the aircraft coupling noise function and J G12 is the SEL of the two A300-aircraft.

The numerical processing

The problem as defined in the relation ( 12) is an optimal control problem with instantaneous constraints. We aim to solve this problem with the Trust Region Sequential Quadratic Programming method. Applying SQP methods [START_REF] Bonnans | Numerical Optimization: Theorical and pratical Aspects[END_REF][START_REF] Wright | Numerical Optimization, Second edition[END_REF] , we write the system (12) as:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ min J G12 (x), x = (y(t), u(t)) ẏ = f (x) n j (x) ≤ 0, j ∈ Ξ n j (x) ≥ 0, j ∈ Γ (13) 
where the expressions Ξ and Γ are the sets of equality and inequality indices. The function J G12 (x), f(x), n(x) must be twice continuously differentiable. The Lagrangian of the system (13) is defined by the function L(x, λ) = J GP 12 (x) + λ T [b( ẏ, x) + n(x)] where the vector λ is the Lagrange multiplier and b( ẏ, x) = ẏf (x) = 0. Considering the feasible points of ( 12), one transforms the system (13) into a quadratic problem. A SQP method solves a succession of quadratic problems. The mathematical formulation of sub-problems obtained at the k-th step Δx k is the following:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ min Δx k [K G12 (x k )] = ∇ T J G12 (x k )Δx k + 1 2 (Δx k ) T H k Δx k ∇ T b( ẏk , x k )Δx k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )Δx k + n Ξ (x k ) ≤ 0 ∇ T n Γ (x k )Δx k + n Γ (x k ) ≥ 0 (14)
The vector Δx k is a primal-dual descent direction, H k = ∇ 2 L(x k , λ k ) is the Hessian matrix of Lagrangian L from system ( 13) and K G12 (x k ) the quadratic model. The estimation of gradients is, in principle, calculated by finite differences or the calculation of the adjoint systems for problems with many parameters and finally by the sensitivity analysis. This last technique is very effective in the case of a large number of variables with few parameters [START_REF] Avdoshin | Optimisation des Systèmes dynamiques hybrides[END_REF][START_REF] Christof | SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control[END_REF]. The SQP method is a qualified local method. Its convergence is quadratic if the first iterate is close to a solution ỹ satisfying the sufficient optimality conditions [START_REF] Bricker | SQP: Sequential quadratic programming[END_REF][START_REF] Gilbert | SQPpro: A solver of nonlinear optimization problems, using an SQP approach[END_REF][START_REF] Gill | SNOPT: An SQP Algorithme for large-scale constrained optimizatio[END_REF]. This algorithm above must be transformed because the two-Aircraft problem is non-convex. For improving the robustness and global convergence behavior of this SQP algorithm, it must be added with the trust radius of this form:

||DΔx k || p ≤ Δ, p ∈ [1, ∞] ( 15 
)
where D is uniformly bounded. The relations ( 14) and ( 15) form a quadratic program when p = ∞. So, the trust-region constraint is restated as

-Δe ≤ Dx ≤ Δe, e = (1, 1, 1, ..., 1) T . If p = 2, one has the quadratic constraint Δx T k D T DΔx k ≤ Δ 2 .
In the following, we develop the convergence theory for any choice of p just to show the equivalence between the ||.|| p and ||.|| 2 . By the combination of some relation of ( 13) and the relation ( 14), all the components of the step are controlled by the trust region. The two-aircraft problem takes the following form

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ min Δx k [K G12 (x k )] = ∇ T J G12 (x k )Δx k + 1 2 (Δx k ) T H k Δx k ∇ T b( ẏk , x k )Δx k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )Δx k + n Ξ (x k ) ≤ 0 ∇ T n Γ (x k )Δx k + n Γ (x k ) ≥ 0 ||DΔx k || p ≤ Δ, p ∈ [1, ∞] (16) 
In some situations, all of the components of the step are not controlled by the trust region because of some hypotheses on D. There is an other alternative which allows the practical SQP methods by using the merit function or the penalty function to measure the worth of each point x.

Several approaches like Byrd-Omojokun and Vardi approaches exist to solve the system (13) [START_REF] Xavier-Jonsson | Méthodes des points intérieurs et de régions de confience en optimisation non-linéaire et application à la conception des verres ophtamiques progressifs[END_REF]. It can also be solved with the KNITRO, the SNOPT and other methods [START_REF] Ouriemchi | Résolution de problèmes non-linéaires par les méthods des points intérieurs. Théorie et algorithmes[END_REF]. In the latter case, we have an ordinary differential system of non-linear and non-convex equations. The uniqueness of the solution of the quadratic sub-problem is not guaranteed. It therefore combines the algorithm with a merit function for judging the quality of the displacement. The merit function can therefore offer a way to measure all progress of iterations to the optimum while weighing the importance of constraints on the objective function. It is chosen in l 2 norm particularly the increased Lagrangian L I because of its smooth character. So, in the equation above, one replaces L by L I . Thus, this transforms the SQP algorithm in sequential quadratic programming with trust region globalization 'TRSQP'. Its principle is that each new iteration must decrease the merit function of the problem for an eligible trust radius. Otherwise, we reduce the trust radius Δx K for computing the new displacement. A descent direction is acceptable if its reduction is emotionally positive. The advantages of the method are that the merit function will circumvent the non-convexity of the problem. This approach shows that only one point is sufficient to start the whole iterative process [START_REF] Gilbert | Eléments d'optimisation différentiable -Théorie et Algorithmes[END_REF][START_REF] Khardi | Mathematical Model for Advanced CDA and Takeoff Procedures Minimizing Aircraft Environmental Impact[END_REF][START_REF] Nahayo | Les méthodes numériques appliquées en optimisation non-linéaire et en commande optimale[END_REF].

Meanwhile, we use an algorithm called feasibility perturbed SQP in which all iterates x k are feasible and the merit function is the cost function. Let us consider the perturbation Δx k of the step Δx k such that 1. The relation

x + Δx k ∈ F ( 17 
)
where F is the set of feasible points for (12), 2. The asymptotic exactness relation

||Δx -Δx k || 2 ≤ φ(||Δx k || 2 )||Δx k || 2 (18) 
is satisfied where φ : R + -→ R + with φ(0) = 0.

These two conditions are used to prove the convergence of the algorithm and the effectiveness of this method. The advantages gained by maintaining feasible iterates for this method are:

• The trust region restriction ( 15) is added to the SQP problem ( 14) without concern that it will yield an infeasible subproblem.

• The objective function J G12 is itself used as a merit function in deciding whether to take a step.

• If the algorithm is terminated early, we will be able to use the latest iterate x k as a feasible suboptimal point, which in many applications is far preferable to an infeasible suboptimum.

Here are some considerations that are needed for the KKT optimality conditions.

• An inequality constraint n j is active at point x = (y * , u * ) if n j (x) = 0. Γ(x) = Γ * is the set of indices j corresponding to active constraints in x,

Γ + * = {j ∈ Γ * |(λ * Γ ) j > 0} Γ 0 * = {j ∈ Γ * |(λ * Γ ) j = 0} (19) 
where the constraints of index Γ + * are highly active and those of Γ 0 * weakly active.

• An element x ∈ Γ * verifies the condition of qualifying for the constraints n if the gradients of active constraint ∇n Ξ (x), ∇n Γ (x) are linearly independent. This means that the Jacobian matrix of active constraints in x is full.

• An element x ∈ Γ * satisfies the qualification condition of Mangasarian-Fromowitz for constraints n in x if there exists a direction d such that

∇n Ξ (x) T d = 0∇n j (x) T d < 0∀j ∈ Γ(x) ( 20 
)
where the gradients {∇n(x)} are linearly independent.

The Karush-Kuhn-Tucker optimality conditions are obtained by considering that J, n functions of C 1 class and x a solution of the ( 12) which satisfies a constraints qualification condition. So,there exists λ * such that:

∇ y L(x, λ * ) = 0, n Ξ (x) = 0, n Γ (x) ≤ 0, λ * Γ ≥ 0, λ * Γ n Γ (x) = 0 (21) 
These equations are called the conditions of Karush-Kuhn-Tucker(KKT). The first equation reflects the optimality, the second and third the feasibility conditions. The others reflect the additional conditions and Lagrange multipliers corresponding to inactive constraints nj(x) are zero. The couple (x, λ * ) such that the KKT conditions are satisfied is called primal-dual solution of [START_REF] Gilbert | Eléments d'optimisation différentiable -Théorie et Algorithmes[END_REF]. So, x is called a stationary point.

For the necessary optimality conditions of second order [START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires[END_REF], taking x a local solution of ( 19) and satisfying a qualification condition, then there exist multipliers (λ * ) such that the KKT conditions are verified . So we have

∇ 2 xx L(x, λ * )d.d > 0∀h ∈ C * where C * is a critical cone defined by C * = {h ∈ Y × U : ∇n j (x).h = 0 ∀j ∈ Ξ ∪ Γ + * , ∇n j (x).h ≤ 0∀j ∈ Γ 0 * }. The elements of C * are called critical directions.
For the sufficient optimality conditions of second order [START_REF] Bergounioux | Optimisation et Controle des systèmes linéaires[END_REF], suppose that there exists (λ * ) which satisfy the KKT conditions and such that [START_REF] Chryssoverghi | Classical and relaxed optimization methods for optimal control problems International Mathematical Forum[END_REF].

∇ 2 xx L(x, λ * )d.d > 0∀h ∈ C * \{0}. So x is a local minimum of

The TRSQP algorithm and convergence analysis

Assume that for a given SQP step Δx k and its perturbation Δx k , the ratio to predict decrease is

r k = J G12 (x k ) -J G12 (x k + Δx k ) -K G12 ( Δx k ) (22) 
The two-aircraft acoustic optimal control TRSQP algorithm is written as:

1. Let x 0 a given starting point, Δ ≥ 1 the trust region upper bound, Δ 0 ∈ (0, Δ) an initial radius,

∈ [ 0 , f ) and p ∈ [1, ∞] 2. Calculate Δx k by solving the system ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ min Δx k [K G12 (x k )] = ∇ T J G12 (x k )Δx k + 1 2 (Δx k ) T H k Δx k ∇ T b( ẏk , x k )Δx k + b( ẏk , x k ) = 0 ∇ T n Ξ (x k )Δx k + n Ξ (x k ) ≤ 0 ∇ T n Γ (x k )Δx k + n Γ (x k ) ≥ 0 ||DΔx k || p ≤ Δ, p ∈ [1, ∞]
Seek also Δx k by using the system

x + Δx k ∈ F ||Δx -Δx k || 2 ≤ φ(||Δx k || 2 )||Δx k || 2
3. If no such for the perturbed counterpart Δx k is found, the following affectations are considered.

Δx k+1 ← ( 1 2 )||D k Δx k || p x k+1 ← x k ; D k+1 ← D k ; 4. Otherwise, calculate r k = J G12 (x k )-J G12 (x k + Δx k ) -K G12 ( Δx k ) ; if r k ≤ f , Δ k+1 ← ( 1 2 )||D k Δx k || p ; else if r k > a 0 × 0 and ||D k Δx k || p = Δ k Δ k+1 ← min(2Δ k , Δ); else Δ k+1 ← Δ k ; 5. If r k > x k+1 ← x k + Δx k ; Choose the new matrix D k+1 ; else x k+1 ← x k ; D k+1 ← D k ; 6. end.
At each major iteration a positive definite quasi-Newton approximation of the Hessian of the Lagrangian function, H, is calculated using the BFGS method, where λ i , i = 1, ..., m, is an estimate of the Lagrange multipliers.

H k+1 = H k + q k q T k q T k s k - H T k s T k s k H k s T k H k s k where s k = x k+1 -x k , q k = (∇J G12 (x k+1 + n j=1 λ j .∇n(x k+1 ) + b(x k+1 )) -(∇J G12 (x k + n j=1 λ j .∇n(x k ) + b(x k ))
A positive definite Hessian is maintained providing q T k s k is positive at each update and that H is initialized with a positive definite matrix. This algorithm is implemented by AMPL language programming and the KNITRO solver [START_REF] Byrd | KNITRO: An integrated Package for nonlinear optimization[END_REF].

Analysis of the algorithm and its convergence. Let us define the set F 0 as follows:

F 0 = {x|∇ T b( ẏ, x)Δx + b( ẏ, x) = 0, ∇ T n Ξ (x)Δx + n Ξ (x) = 0, ∇ T n Γ (x)Δx + n Γ (x) ≥ 0, J G12 (x) ≤ J G12 (x 0 )} ∈ F The trust-region bound ||DΔx k || p ≤ Δ, p ∈ [1, ∞]
specifies the following assumption.

1. There exists a constant β such that for all points x ∈ F 0 and all matrix D used in the algorithm, we have for any Δx satisfying the following equations

∇ T b( ẏ, x)Δx + b( ẏ, x) = 0, ∇ T n Ξ (x)Δx + n Ξ (x) = 0, ∇ T n Γ (x)Δx + n Γ (x) ≥ 0. that β -1 ||Δx|| 2 ≤ ||DΔx|| p ≤ β||Δx|| 2 (23) 
2. The level set F 0 is bounded and the functions J G12 , b, η are twice continuously differentiable in an open neighborhood M(F 0 ) of this set.

Under certain assumptions as shown in [START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF], this algorithm is well defined.

In this paragraph, one wants to prove that the algorithm has a convergence to stationary point of [START_REF] Dgac | Mémento à l'usage des utilisateurs des procédures d'approche et de départ aux instruments[END_REF]. If we consider that all assumptions hold for each feasible point x for [START_REF] Chryssoverghi | Classical and relaxed optimization methods for optimal control problems International Mathematical Forum[END_REF], the Mangasarian-Fromowitz are satisfied for constraints. After all, the KKT optimality conditions are specified and that shows that there is at least a local convergence. With other added conditions as shown in [START_REF] Mathew | A feasible trust-region sequential quadratic programming algorithm[END_REF], the global convergence is held.

Numerical Results

The observation points are taken on the ground under the flight path and are independent of each other. Numerical processing is implemented by AMPL and KNITRO solver. KNITRO output optimality conditions for the obtained solution is achieved as follow: Multistart stopping, found local optimal solution.

MULTISTART: Best locally optimal point is returned. EXIT: Locally optimal solution found. for ONL 10 . In this figure, the legend ONL means optimal noise level. As specified, noise level increases (till 550 sec) and is maximum when the observation point lies below the aircraft. Noise levels decrease gradually as the aircraft moves away from the observation point. This is confirmed by Khardi analysis [START_REF] Khardi | Reduction of commercial aircraft noise emission around airports. A new environmental challenge[END_REF]. By comparison, this result is also close to standard values of jet noise on approach as shown by Harvey [START_REF] Abdallah | Optimization of operational aircraft parameters reducing noise emission[END_REF][START_REF] Hubbard | Aeroacoustics of flight vehicles, Theory and Practices[END_REF]. To conclude, numerical calculations carried out in this paper are efficient and fitted with experimental and theoretical researches related to acoustical developments. Figure 2 shows the trajectories which reflect a path in one level flight followed by a continuous descent till the aircraft touch point. The aircrafts' landing procedures are sufficiently separated. It is obvious that each aircraft follows its optimal trajectory when considering the separation distance. Constraints on speeds described in the previous table are considered, allowing a subsequent landing on the same track. Thus, as recommended by ICAO, the security conditions are met and flight procedures are good as shown by the presented results. The maximum altitudes considered are 3500 m and 4100 m for the first and the second aircraft. The duration approach is 600 s for the first aircraft and 690 s for the second. This figure shows that after some time, we have obtained the same optimal trajectory for the two-aircraft even the procedures are different. This shows the aircraft trajectory resulting from the two trajectories combination. This figure also shows aircraft speed evolution during landing. For the first, the aircraft speed decreases from 200 m/s to 140 m/s and keeps a constant position till the end of the aircraft landing. This evolution remains the same for the speed of the second aircraft. Processing calculation provided that the aircraft throttle position is kept constant (0.6) during the landing procedures. The two-aircraft roll velocity p 1 , p 2 , pitch velocity q 1 , q 2 and yaw velocity r 1 , r 2 , both related to earth frame, are obtained and they have a constant behavior.

Conclusion

We have developed a mathematical model in the case of two approaching aircraft landing in succession on the same track. An algorithm for solving the optimal control model has been developed. Theoretical considerations and practices of the feasible TRSQP algorithm are used by KNITRO for the establishment of a non-linear program, implementing the considered problem. The algorithm minimizes a sequence of merit function using a sub-problem of the quadratic problem at each step for all active constraints to generate a search trust direction for all primal and dual variables. An optimal solution to the discretized problem is found through a local convergence. The results show a reduction of noise at reception points during the approach of the two-aircraft. The obtained trajectories exhibit optimal characteristics and are acoustically effective. Some added conditions are necessary to prove the global convergence of the considered algorithm. We found that the aircraft optimal trajectories coincide for a large portion of the flight as soon as the continuous descent is initiated. Further researches are needed to complete the problem processing.
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  Final Statistics: Final objective value = 4.91134561926630e+01 Final feasibility error (abs / rel) = 5.79e-09 / 1.96e-10 Final optimality error (abs / rel) = 2.58e-07 / 2.58e-07 Number of iterations = 72 Number of CG iterations = 3 Number of function evaluations = 85 Number of gradient evaluations = 73 Number of Hessian evaluations = 72 Total program time (secs) = 258.19754 ( 258.104 CPU time) Time spent in evaluations (secs) = 240.00644 The observation positions are: (-20000 m, -20000 m, 0 m), (-19800 m, -19800 m, 0 m), ..., (0 m, 0 m, 0 m), for a space step of 200 m for x and y. The touch point on the ground is (0 m, 0 m, 0 m) while the temporal separation of aircraft is 90 s. At each point, it is a vector of N noise levels as shown in the discretization process. It is very important to consider the maximum value among the N values, which value corresponds to the shortest distance between the noise source and the observation point.

Figure 1 :

 1 Figure 1: Aircraft noise at the indicated reception point

Figure 2 :

 2 Figure 2: Aircraft optimal flight paths and speeds

Figure 3 :

 3 Figure 3: Flight-path angles of the aircraft

Figure 4 :

 4 Figure 4: Aircraft finesse

  The mass of the A1 Aircraft m 10 1.1 × 10 5 kg, m 1f 1.09055 × 10 5 kg, The mass of the A2 Aircraft m 20 1.10071 × 10 5 kg m 2f 1.09126 × 10 5 kg The A300 inertia moments [8] A = 5.555 × 10 6 kg m 2 B = 9.72 × 10 6 kg m 2 C = 14.51 × 10 6 kg m 2 E = -3.3 × 10 4 kg m 2 The Aircraft vertical separation Z 12 = 2 × 10 3 ft 6 × 10 2 m The Aircraft longitudinal separation X G 12 = 5 NM 9 × 10 3 m The Aircraft roll velocity relative to the earth

•

The limits of time t 1f = 600 s,t 2f = 645 s t 10 = 0 s, t 20 = 45 s