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Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms

Let S be a compact connected surface and let f be an element of the group Homeo0(S) of homeomorphisms of S isotopic to the identity. Denote by f a lift of f to the universal cover of S. Fix a fundamental domain D of this universal cover. The homeomorphism f is said to be non-spreading if the sequence (dn/n) converges to 0, where dn is the diameter of f n (D). Let us suppose now that the surface S is orientable with a nonempty boundary. We prove that, if S is different from the annulus and from the disc, a homeomorphism is non-spreading if and only if it has conjugates in Homeo0(S) arbitrarily close to the identity. In the case where the surface S is the annulus, we prove that a homeomorphism is non-spreading if and only if it has conjugates in Homeo0(S) arbitrarily close to a rotation (this was already known in most cases by a theorem by Béguin, Crovisier, Le Roux and Patou). We deduce that, for such surfaces S, an element of Homeo0(S) is distorted if and only if it is non-spreading.

Conjugacy classes of non-spreading homeomorphisms

The rotation number is a famous dynamical invariant introduced by Poincaré to study the dynamics of homeomorphisms of the circle. The dynamics of a homeomorphism of the circle will "look like" the dynamics of the rotation of angle α when the rotation number of this homeomorphism is α. However, it is known that, for any α, there exist homeomorphisms with rotation number α which are not conjugate to a rotation. One can solve this problem by classifying the homeomorphisms up to semi-conjugacy. There might be yet another approach to solve this problem: it is not difficult to prove the following proposition (see Section 4 for more details).

Proposition 1.1. For any homeomorphism of the circle with rotation number α, the closure of the conjugacy class of this homeomorphism contains the rotation of angle α.

Actually, this last property characterizes the homeomorphisms of the circle with rotation number α. In this article, we pursue this approach in the case of homeomorphisms of surfaces.

To generalize the notion of rotation number, Misiurewicz and Ziemian introduced the notion of rotation set of a homeomorphism of the two-dimensional torus isotopic to the identity (see [START_REF] Misiurewicz | Rotation sets for maps of the tori[END_REF]). With the same approach, one can define the notion of rotation set of a homeomorphism of the closed annulus A = [0, 1] × S 1 . Unlike the case of the circle, two orbits can have different asymptotic directions or different linear speeds: in those cases, the rotation set will contain more than one point and one can prove that the closure of the conjugacy class of the homeomorphism does not contain a rotation. Indeed the rotation set is continuous for the Hausdorff topology at rotations (see Corollary 3.7 in [START_REF] Misiurewicz | Rotation sets for maps of the tori[END_REF]). Now, we investigate the case where the rotation set of the homeomorphism is reduced to a point. We call such homeomorphisms pseudo-rotations. The only point in the rotation set of such a pseudo-rotation is called the angle of this pseudo-rotation. In [1], Béguin, Crovisier, Le Roux and Patou proved the following theorem (see Corollary 1.2 in [1]). The group Homeo 0 (A) of homeomorphisms of A which are isotopic to the identity is endowed with the compact-open topology.

Theorem 1.2 (Béguin-Crovisier-Le Roux-Patou). Let f be a homeomorphism in Homeo 0 (A). Suppose that f is a pseudo-rotation of irrational angle α. Then the closure of the conjugacy class of f in Homeo 0 (A) contains the rotation R α .

The following theorem is a consequence of Theorem 1.2 in [START_REF] Kwapisz | Combinatorics of torus diffeomorphisms[END_REF], which is due to Kwapisz.

Theorem 1.3 (Kwapisz). Let f be a pseudo-rotation of T 2 which is a C 1 diffeomorphism of T 2 . Suppose that there exists a representative (α 1 , α 2 ) in R 2 of the angle of the pseudorotation f such that the real numbers 1, α 1 and α 2 are Q-linearly independent. Then the homeomorphism f has conjugates in Homeo 0 (T 2 ) arbitrarily close to the rotation of T 2 defined by (x, y) → (x + α 1 , y + α 2 ).

The above hypothesis on the angle (α 1 , α 2 ) is the one which ensures that the rotation (x, y) → (x + α 1 , y + α 2 ) is minimal (i.e. has no proper closed invariant set).

In this article, we investigate the case of rational pseudo-rotations of the annulus and homeomorphisms of compact surfaces S with ∂S = ∅. We first introduce a more precise definition of pseudo-rotations of the annulus which will be useful later. Let A be the closed annulus [0, 1] × S 1 . Definition 1.4. A homeomorphism f in Homeo 0 (A) is said to be a pseudo-rotation if there exists a lift f : R × [0, 1] → R × [0, 1] of the homeomorphism f and a real number α such that

∀x ∈ R × [0, 1], lim n→+∞ p 1 ( f n (x)) n = α,
where p 1 : R × [0, 1] → R is the projection. The class of α in R/Z is called the angle of the pseudo-rotation f .

Observe that the angle of a pseudo-rotation depends only on f and not on the chosen lift f . We will prove in Section 6 the following theorem.

Theorem 1.5. Let f be a homeomorphism in Homeo 0 (A). Suppose that f is a pseudorotation of angle α. Then the closure of the conjugacy class of f in Homeo 0 (A) contains the rotation R α , where

R α : A = [0, 1] × R/Z → A (t, x) → (t, x + α) .
This theorem is an extension of Theorem 1.2 in the case where the angle α is rational. We also have an analogous theorem in the case of the unit disc D 2 of R 2 . In this case, for α ∈ R/Z, if we see D 2 as the complex unit disc, we define the rotation R α as the map

R α : D 2 → D 2
z → e 2iπα .

Theorem 1.6. Let f be homeomorphism in Homeo 0 (D 2 ). Suppose that its restriction to the boundary circle ∂D 2 has rotation number α ∈ R/Z. Then the homeomorphism f has conjugates arbitrarily close to the rotation R α .

To state the next theorem, we need to extend the notion of pseudo-rotation to the context of a homeomorphism of an arbitrary surface. Let S be a surface. We denote by S its universal cover which we endow with a "natural" distance, i.e. a distance which is invariant under the group of deck transformations. For a subset A ⊂ S, we denote by Å its interior and by diam(A) its diameter. Definition 1.7. We call fundamental domain of S (for the action of the group π 1 (S) of deck transformations of S) any compact connected subset D of S which satisfies the following properties:

1. Π(D) = S, where Π : S → S is the projection.

2. For any deck transformation γ in π 1 (S) different from the identity, D ∩ γ(D) = ∅.

Fix a fundamental domain D for the action of the group of deck transformations of the covering S → S. For any homeomorphism f of S isotopic to the identity, we denote by f : S → S a lift of f which is the time one of the lift starting from the identity of an isotopy between the identity and the homeomorphism f . By classical results by Hamström (see [START_REF] Hamstrom | Homotopy groups of the space of homeomorphisms of a 2-manifold[END_REF]), such a homeomorphism f is unique if the surface is different from the torus, the Klein bottle, the Möbius strip or the annulus. Moreover, for any deck transformation γ, γ f = f γ, by uniqueness of the lift of an isotopy from the identity to f starting from γ. Denote by Homeo 0 (S) the group of homeomorphisms of S isotopic to the identity. = 0 is independent of the chosen fundamental domain D (see Proposition 3.4 in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF]).

Remark 1.10. In the case where the surface is an annulus or the torus, a homeomorphism is non-spreading if and only if it is a pseudo-rotation. Indeed, in the case of the torus, the sequence 1 n f n (D) of compact subsets of R 2 converges to the rotation set of f for the Hausdorff topology (see [START_REF] Misiurewicz | Rotation sets for maps of the tori[END_REF]).

In Section 5, we prove the following theorem.

Theorem 1.11. Let S be a compact surface with ∂S = ∅ which is different from the disc, the annulus or the Möbius strip. For any non-spreading homeomorphism f of S, the closure of the conjugacy class of f in Homeo 0 (S) contains the identity.

Remark 1.12. The theorem remains true when we replace the group Homeo 0 (S) with the identity component Homeo 0 (S, ∂S) of the group of homeomorphisms of S which pointwise fix a neighbourhood of the boundary. The proof in this case is almost identical to the proof in the case of the group Homeo 0 (S).

Remark 1.13. This property characterizes the non-spreading homeomorphisms of such a surface S: if a homeomorphism isotopic to the identity satisfies this property, then we will see that it is a distorted element in Homeo 0 (S) (the notion of distorted elements will be explained in the next section). Moreover, we will see in the next section that distortion elements in Homeo 0 (S) are non-spreading.

The following conjecture is natural.

Conjecture 1.14. The closure of the conjugacy class of any pseudo-rotation of the torus of angle α contains the translation of angle α. The closure of the conjugacy class of any non-spreading homeomorphism of a closed surface S of genus g ≥ 2 contains the identity.

Distortion elements in groups of homeomorphisms of surfaces

In this article, we pursue the study of distorted elements (see definition below) in groups of homeomorphisms of manifolds initiated in the article [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF]. For more background on distortion elements in groups of homeomorphisms or diffeomorphisms of manifolds, see [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF].

Let G be a finitely generated group and G be a finite generating set of G. For any element g in G, we denote by l G (g) the minimal number of factors in a decomposition of g as a product of elements of G ∪ G -1 . Definition 2.1. Let G be any group. An element g in G is said to be distorted (or is a distortion element) if there exists a finite subset G ⊂ G such that the following properties are satisfied.

1. The element g belongs to the group generated by G.

lim

n→+∞ l G (g n )/n = 0.
Let M be a compact manifold. We denote by Homeo 0 (M ) the group of compactlysupported homeomorphisms which are isotopic to the identity. We endow the group Homeo 0 (M ) with the compact-open topology. For any manifold M , we denote by M its universal cover.

Recall the following easy proposition (see Proposition 2.4 in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF] for a proof). Proposition 2.2. Let S be a compact surface. Denote by D a fundamental domain of S for the action of π 1 (S). If a homeomorphism f in Homeo 0 (S) is a distortion element in Homeo 0 (S), then f is nonspreading.

We conjectured that an element in Homeo 0 (S) which satisfies the conclusion of this proposition is distorted. However, we were not able to prove it and we just proved the following weaker statement (see Theorem 2.6 in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF]).

Theorem 2.3. Let f be a homeomorphism in Homeo 0 (S). If lim inf n→+∞ diam( f n (D))log(diam( f n (D))) n = 0,
then f is a distortion element in Homeo 0 (S).

In this article, we try to improve the above result. We will prove the following theorem which is the key idea to obtain this improvement. Definition 2.4. Let f be a homeomorphism in Homeo 0 (M ). A conjugate of f is a homeomorphism of the form hf h -1 , where h is any element of Homeo 0 (M ).

Theorem 2.5. Let f ∈ Homeo 0 (M ). Suppose that the homeomorphism f has conjugates arbitrarily close to an element of Homeo 0 (M ) which is distorted. Then the element f is distorted in Homeo 0 (M ).

To prove this theorem, we will find a map Homeo 0 (M ) → R which vanishes exactly on the distortion elements of Homeo 0 (M ) and which is continuous at those distortion elements. In the case of the 2-dimensional torus, notice that, if Conjecture 1.14 and Theorem 2.5 are true, the map f → lim n→+∞ diam( f n (D)) n satisfies those two conditions. Indeed, the limit

lim n→+∞ diam( f n (D)) n
, which always exists and is finite, is the diameter of the rotation set of f which is known to be upper semi-continuous (see Corollary 3.7 in [START_REF] Misiurewicz | Rotation sets for maps of the tori[END_REF]). In [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF], we define a useful quantity which vanishes exactly on the distortion elements of Homeo 0 (M ) (see Proposition 4.1 in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF]). However, we do not know whether this quantity is continuous at the distortion elements of Homeo 0 (M ). That is why we slightly changed the definition of this quantity to obtain maps g C and G C which vanish exactly on the distortion elements of Homeo 0 (M ) and which are continuous at those distortion elements.

We are interested now in the case where the manifold M is a surface. Let S be a compact surface with ∂S = ∅ which is different from the Möbius strip. Using Theorems 1.5, 1.6, 1.11, Proposition 2.2 and Theorem 2.5, we obtain a complete dynamical description of the distortion elements of the group Homeo 0 (S).

Corollary 2.6. An element f in Homeo 0 (S) is distorted if and only if it is a non-spreading homeomorphism.

Proof. The "only if" implication is a consequence of Proposition 2.2. The "if" implication involves Theorems 2.5, 1.5, 1.11 and the fact that a rotation of the annulus is a distortion element in Homeo 0 (A). This last fact is a straightforward consequence of Theorem 2.3. In the case of the disc, the "if" implication is a consequence of Theorem 2.3.

Note that a rational pseudo-rotation of the annulus has a power which is a pseudo-rotation of angle 0. Moreover, if an element of a group admits a positive power which is distorted, then this element is distorted. Hence the case α = 0 in Theorem 1.5 (together with Theorem 1.2 by Béguin, Crovisier, Le Roux and Patou) is sufficient to obtain Corollary 2.6 in the case of the annulus. Using Theorems 2.5 and 1.3, we obtain the following corollary.

Corollary 2.7. Let f be a pseudo-rotation of T 2 which is a C 1 diffeomorphism of T 2 . Suppose that there exists a representative (α 1 , α 2 ) in R 2 of the angle of the homeomorphism f such that the real numbers 1, α 1 and α 2 are Q-linearly independent. Then the element f is distorted in the group Homeo 0 (T 2 ).

Stability properties of distortion elements

In this section, we prove Theorem 2.5. Let B(0, 1) be the unit closed ball in R d and Let us fix a finite family U of closed balls or closed half-balls whose interiors cover M . We denote by N (U) the cardinality of this cover. We need the following lemma which is proved in Section 3.1. Lemma 3.2. Let f be a homeomorphism in Homeo 0 (M ). Then there exists a finite family (f i ) 1≤i≤s of homeomorphisms in Homeo 0 (M ) such that the following properties are satisfied: 1. Each homeomorphism f i is supported in the interior of one of the sets in U.

H d = (x 1 , x 2 , . . . , x d ) ∈ R d , x 1 ≥ 0 .
2. f = f 1 • f 2 • . . . • f s .
3. The cardinality of the set {f i , 1 ≤ i ≤ s} is less than or equal to 5N (U).

Let C be an integer which is greater than or equal to 5N (U). Let f be any homeomorphism in Homeo 0 (M ). We denote by a C (f ) the minimal integer s such that the following property is satisfied. There exists a finite family (f i ) 1≤i≤s of homeomorphisms in Homeo 0 (M ) such that:

1. Each homeomorphism f i is supported in the interior of one of the sets in U.

2. f = f 1 • f 2 • . . . • f s .
3. The cardinality of the set {f i , 1 ≤ i ≤ s} is less than or equal to C.

Let g C (f ) = lim inf n→+∞ a C (f n )/n and G C (f ) = lim sup n→+∞ a C (f n )/n.
In order to prove Theorem 2.5, we need the following results which will be proved afterwards.

This first lemma says that, essentially, the quantities g C and G C are the same and do not really depend on C.

Lemma 3.3. Let C > C ≥ 5N (U) be integers. The following properties hold. 1. G C+5N (U ) ≤ g C ≤ G C < +∞. 2. a C ≤ a C . 3. a 5N (U ) ≤ (14log(C) + 14)a C . Hence, if C > C ≥ 5N (U), then g C ≤ g C , G C ≤ G C , g 5N (U ) ≤ (14log(C) + 14)g C and G 5N (U ) ≤ (14log(C) + 14)G C .
This lemma is easy to prove once we have Lemma 3.6 below in mind. It is proved in Subsection 3.2.

The two following propositions are the two main steps of the proof of Theorem 2.5. The first one says that the quantities g C (or equivalently G C , g 5N (U ) or G 5N (U ) ) vanish exactly on the distortion elements of Homeo 0 (M ). The second one is a continuity property of those quantities.

Proposition 3.4. Let f be a homeomorphism in Homeo 0 (M ). The following conditions are equivalent:

1. The element f is distorted in the group Homeo 0 (M ).

There exists an integer

C ≥ 5N (U) such that G C (f ) = 0.

There exists an integer

C ≥ 5N (U) such that g C (f ) = 0. 4. G 5N (U ) (f ) = 0. 5. g 5N (U ) (f ) = 0.
The equivalence between the the four last assertions follows from Lemma 3.3. The equivalence with the first item, which is proved at the end of this section, is a consequence of a deeper result in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF].

The following proposition is proved in Subsection 3.2. Proposition 3.5. Let C ≥ 5N (U) be an integer. The map g C : Homeo 0 (M ) → R is continuous at the distortion elements of the group Homeo 0 (M ).

Observe that, by Lemma 3.3 and Proposition 3.4, this proposition implies that the maps G C are also continuous at the distortion elements of the group Homeo 0 (M ). Before proving the above propositons, let us prove Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.4, it suffices to prove that g 10N (U ) (f ) = 0. Denote by g a distortion element in Homeo 0 (M ) which belongs to the closure of the set of conjugates of f . Observe first that, for any homeomorphism h in Homeo 0 (M ) and any integer n,

a 10N (U ) (f n ) ≤ a 5N (U ) (hf n h -1 ) + 2a 5N (U ) (h). Hence g 10N (U ) (f ) ≤ g 5N (U ) (hf h -1 ).
Recall that, by Proposition 3.4, g 10N (U ) (g) = 0. By Proposition 3.5, the right-hand side of the last inequality can be chosen to be arbitrarily small. Therefore g 10N (U ) (f ) = 0. Proposition 3.4 implies that f is distorted in the group Homeo 0 (M ).

The above Lemmas will be essentially consequences of the following Lemma which is proved in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF] (see Lemma 4.5 and its proof). Lemma 3.6. Let (f n ) n∈N be a sequence of homeomorphisms of R d (respectively of H d ) supported in the unit ball (respectively the unit half-ball). Then there exists a finite set

G ⊂ Homeo c (R d ) (respectively G ⊂ Homeo c (H d )) such that: 1. G ≤ 5.
2. For any integer n, the element f n belongs to the group generated by G.

3. For any integer n, l G (f n ) ≤ 14 log(n) + 14.

The quantity a 5N (U ) is well defined

In this section, we prove Lemma 3.2.

Proof. Take a homeomorphism f in Homeo 0 (M ). We now apply the following classical result, called the fragmentation lemma. Lemma 3.7. Let f be a homeomorphism in Homeo 0 (M ). Then there exist an integer k ≥ 0 and homeomorphisms f 1 , f 2 , . . . , f k in Homeo 0 (M ) such that: 1. Each homeomorphism f i is supported in the interior of one of the sets of U.

2. f = f 1 • f 2 • . . . • f k .
Moreover, there exist a constant C(U) > 0 and a neighbourhood of the identity such that any homeomorphism f in this neighbourhood admits a decomposition as above with k ≤ C(U).

A proof of this Lemma can be found in [2] or [START_REF] Fischer | On the group of all homeomorphisms of a manifold[END_REF], for instance. The idea is to prove the lemma for homeomorphisms sufficiently close to the identity and then use a connectedness argument to extend this result to any homeomorphism in Homeo 0 (M ).

The fragmentation lemma applied to our homeomorphism f yields a decomposition f = f 1 • f 2 • . . . • f k . Consider now a partition {A U , U ∈ U} of the set {1, 2, . . . , k} such that, for any set U in U and any index i in A U , the homeomorphism f i is supported in the interior of U . Now, for each element U of our cover U, we apply Lemma 3.6 to the finite sequence (f i ) i∈A U : this provides a decomposition of each of the f i 's. The concatenation of those decompositions gives a decomposition of our homeomorphism f which satisfies the conclusion of Lemma 3.2.

Properties of the maps g C and G C

In this subsection, we prove Lemma 3.3, Proposition 3.4 and Proposition 3.5. These results rely on the following facts.

Let C, C ≥ 5N (U), p > 0 and f and g be elements of Homeo 0 (M ).

Fact 1: a C+C (f g) ≤ a C (f ) + a C (g). Fact 2: a C (f p ) ≤ pa C (f ).
Proof of Lemma 3.3. The inequalities g C ≤ G C and a C ≤ a C are obvious. Fix an integer k > 0. Take any integer n > 0 and perform the Euclidean division: n = qk + r. By Facts 1 and 2,

a C+5N (U ) (f n ) ≤ a C (f qk ) + a 5N (U ) (f r ) ≤ qa C (f k ) + a 5N (U ) (f r ).
Hence, dividing by n, and taking the upper limit as n → +∞, we obtain that

G C+5N (U ) (f ) ≤ a C (f k )/k. This relation implies the inequality G C+5N (U ) ≤ g C . It implies moreover that, for any C ≥ 5N (U), G C+5N (U ) < +∞.
From the inequality a 5N (U ) ≤ (14log(C) + 14)a C , which we prove below, we deduce that G 5N (U ) < +∞. Hence, for any

C ≥ 5N (U), G C ≤ G 5N (U ) < +∞ and g C ≤ g 5N (U ) ≤ G 5N (U ) < +∞.
It remains to prove that a 5N (U ) ≤ (14log(C) + 14)a C . Let f be an element of Homeo 0 (M ) and let l = a C (f ). By definition, there exists a map σ : {1, . . . , l} → {1, . . . , C} and elements f 1 , . . . , f C of Homeo 0 (M ) supported in the interior of one of the sets of U such that:

f = f σ(1) f σ(2) . . . f σ(l) .
Denote by {A U , U ∈ U} a partition of the set {1, . . . , C} such that, for any set U in U:

∀j ∈ A U , supp(f j ) ⊂ Ů .
Fix such an open set U . Lemma 3.6 applied to the (finite) sequence (f j ) j∈A U provides a finite set G U of homeomorphisms which are each supported in Ů such that the following properties are satisfied.

1. For any index j in A U , the element f j belongs to the group generated by G U .

2. The set G U contains at most 5 elements.

3. l G U (f j ) ≤ 14 log( A U ) + 14. Hence, if we take G = U ∈U G U , we have: 1. G ≤ 5N (U).
2. The element f belongs to the group generated by G.

3. l G (f ) ≤ (14 log(C) + 14)l. Hence a 5N (U ) (f ) ≤ (14 log(C) + 14)a C (f ).
Proof of Proposition 3.4. The equivalence between the last four conditions is a direct consequence of Lemma 3.3. By Lemma 3.7, if the element f is distorted, then there exists C such that G C (f ) = 0: it suffices to apply this lemma to each factor provided by the definition of a distortion element. Conversely, if there exists C such that G C (f ) = 0, then f is distorted by Proposition 4.1 in [START_REF] Militon | Distortion elements for surface homeomorphisms[END_REF].

Proof of Proposition 3.5. By Lemma 3.3 and Proposition 3.4, it suffices to prove the lemma for C = 15N (U). Fix > 0. Let f be an element which is distorted in Homeo 0 (M ). By Proposition 3.4, we can find an integer p > 0 such that

a 5N (U ) (f p ) p + (14log(C(U)) + 14)C(U) p < ,
where C(U) is given by Lemma 3.7. Take a homeomorphism g in Homeo 0 (M ) sufficiently close to f so that h = f -p g p belongs to the neighbourhood given by Lemma 3.7. For any positive integer n, we write n = pq n + r n , where q n and r n are respectively the quotient and the remainder of the Euclidean division of n by p. By Facts 1 and 2,

a 15N (U ) (g n ) ≤ q n a 10N (U ) (g p ) + a 5N (U ) (g rn ).
Dividing by n and taking the lower limit when n tends to +∞,

g 15N (U ) (g) ≤ a 10N (U ) (g p )/p. By Fact 1, a 10N (U ) (g p ) ≤ a 5N (U ) (f p ) + a 5N (U ) (h). By Lemma 3.7, a max(C(U ),5N (U )) (h) ≤ C(U) and, by Lemma 3.3, a 5N (U ) (h) ≤ (14log(C(U)) + 14)a max(C(U ),5N (U )) (h) . Hence g 15N (U ) (g) ≤ a 5N (U ) (f p ) p + (14log(C(U)) + 14)C(U) p < .

Conjugacy classes: case of the circle

In this section, we prove Proposition 1.1. Denote by Homeo 0 (S 1 ) the group of orientationpreserving homeomorphisms of the circle S 1 = R/Z. In this section, for any α ∈ R/Z, we denote by R α the rotation of the circle x → x + α. If f denotes an orientation-preserving homeomorphism of the circle, we denote by ρ(f ) its rotation number. Proposition 1.1 is not difficult to prove and one might find more straightforward proofs of it using semi-conjugacy results. However, we will use the proof given here for the case of homeomorphisms of the disc. Hence this section can be considered as a preparatory section for the case of the disc.

We will make a distinction between the case of a homeomorphism with a irrational rotation number and the case of a homeomorphism with an rational rotation number. Let us start with the irrational case. Proposition 4.1. Fix a homeomorphism f in Homeo 0 (S 1 ), a point x in S 1 and an integer N ≥ 0. Suppose that the rotation number of f is irrational. Then there exists a homeomorphism h in Homeo 0 (S 1 ) such that, for any 0

≤ k ≤ N , h(f k (x)) = R k α (x).
Of course this proposition does not hold in the case that the rotation number of f is rational as f can have infinite orbits whereas any orbit under a rational rotation is finite.

Proof. Denote by x, R k1 α (x),..., R k N α (x) the points of R k α (x), 0 ≤ k ≤ N which are successively met when we follow the circle in the sense given by the orientation of the circle, starting from the point x. Then, by Proposition 11.2.4 P.395 in [START_REF] Katok | Introduction the modern theory of dynamical systems[END_REF], the points which we meet successively among the points f k (x), for 0 ≤ k ≤ N , when we follow the oriented circle starting from x, are x, f k1 (x),..., f k N (x). Hence there exists a homeomorphism h in Homeo 0 (S 1 ) which, for any

0 ≤ i ≤ N , sends the interval [f ki (x), f ki+1 (x)] onto the interval [R ki α (x), R ki+1 α (x)].
, where k 0 = 0 and k N +1 = 0. The homeomorphism h satisfies the required property.

Corollary 4.2. Let f be an orientation-preserving homeomorphism of the circle with ρ(f ) = α irrational. Then the homeomorphism f has conjugates in Homeo 0 (S 1 ) arbitrarily close to the rotation R α .

Proof. Let > 0. Fix a point x 0 of the circle. As the orbits under the rotation R α are dense in the circle, one can find N > 0 such that the length of any connected component of the complement of

R k α (x 0 ), 0 ≤ k ≤ N -1 is smaller than . Proposition 4.1 yields a homeomorphism h such that, for any 0 ≤ k ≤ N , h(f k (x 0 )) = R k α (x 0 ). As the point x 0 is fixed under h -1 , we also have, for any 0 ≤ k ≤ N , hf k h -1 (x 0 ) = R k α (x 0 ). Denote by (R k0 α (x 0 ), R k1 α (x 0 )) any connected component of the complement of R k α (x 0 ), 0 ≤ k ≤ N -1 in the circle. For any point x in [R k0 α (x 0 ), R k1 α (x 0 )], the point hf h -1 (x) belongs to the interval [hf h -1 R k0 α (x 0 ), hf h -1 R k1 α (x 0 )] = [R k0+1 α (x 0 ), R k1+1 α (x 0 )].
As the point R α (x) also belongs to this interval and as the length of this interval is smaller than ,

d(hf h -1 (x), R α (x)) < .
Now, we deal with the case where the rotation number is rational.

Proposition 4.3. Let f be a homeomorphism in Homeo 0 (S 1 ). Suppose that ρ(f ) = p q , where p and q are relatively prime integers. Fix a (large) integer N > 0. There exists a cover (I j ) j∈Z/N qZ = ([a j , b j ]) j∈Z/N qZ of the circle by intervals whose interiors are pairwise disjoint with the following properties.

1. for any j, a j+1 = b j .

for any

j, f (I j ) ⊂ I j+N p-1 ∪ I j+N p ∪ I j+N p+1 .
Proof. By a classical result by Poincaré (see Proposition 11.1.4 in [START_REF] Katok | Introduction the modern theory of dynamical systems[END_REF]), there exists a point x 0 of the circle which is periodic for f with period q, i.e. f q (x 0 ) = x 0 and f k (x 0 ) = x 0 whenever 0 < k < q. Denote by x 0 = f k0 (x 0 ), f k1 (x 0 ),..., f kq-1 (x 0 ) the points of f k (q), k ∈ Z/qZ in the order given by the orientation of the circle. Construct by induction N -1 points

x 1 , x 2 , . . . , x N -1 in the open interval (x 0 , f k1 (x 0 )) such that x 0 < x 1 < x 2 < . . . < x N -1 < f k1 (x 0 )
and, for any

0 < i < N -1, x i-1 < f q (x i ) < x i+1 .
It suffices to take the connected components of the complement of

f k (x j ), 0 ≤ k ≤ q -1 0 ≤ j ≤ N -1
as intervals I j . More precisely, for any 0 ≤ j ≤ N -2 and any 0 ≤ i ≤ q -1, take

I j+N i = f ki ([x j , x j+1 ]),
and, for any 0 ≤ i ≤ q -1,

I N -1+N i = [f ki (x N -1 ), f ki+1 (x 0 )].
As the points f k (x 0 ) are in the same order on the circle as the points R k p q (x 0 ), we obtain that,

for any index i ∈ Z/qZ, f (f ki (x 0 )) = f ki+p (x 0 ). Hence, if k i = q -1, f (I j ) = I j+N p and, if k j = q -1, f (I j ) ⊂ I j+N p-1 ∪ I j+N p ∪ I j+N p+1 as, for any i, x i-1 < f q (x i ) < x i+1 .
Corollary 4.4. Let f be a homeomorphism in Homeo 0 (S 1 ). Suppose that ρ(f ) is rational.

Then the homeomorphism f has conjugates arbitrarily close to the rotation R p q .

Proof. Let > 0 and take an integer N sufficiently large such that 1 N q < 3 . Set

I j = [ j N q , j+1
N q ] ⊂ S 1 . Proposition 4.3 holds for the rotation R p q with those intervals. Proposition 4.3 applied to the homeomorphism f provides intervals I j with the properties given by the Proposition. Take any homeomorphism h in Homeo 0 (S 1 ) such that, for any j, h(I j ) = I j . Then, for any j, hf h -1 (I j ) ⊂ I j+N p-1 ∪ I j+N p ∪ I j+N p+1 and hence d(hf h -1 , R p q ) < .

Conjugacy classes: case of the disc

In this section, we see D 2 as the unit disc in the Euclidean plane. We denote by Homeo 0 (D 2 , ∂D 2 ) the identity component of the group of homeomorphisms of the disc which pointwise fix a neighbourhood of the boundary. As a warm-up, we start with the following easy proposition. Proposition 5.1. Any element of Homeo 0 (D 2 , ∂D 2 ) has conjugates arbitrarily close to the identity.

Proof. Take > 0 and an element f of Homeo 0 (D 2 , ∂D 2 ). Let B be a closed disc which is contained in the interior of the disc D 2 and whose interior contains the support of f . Finally, let h be a homeomorphism in Homeo 0 (D 2 , ∂D 2 ) which sends the disc B to a disc B whose diameter is smaller than . As the homeomorphism hf h -1 is supported in B , this homeomorphism is -close to the identity. The goal of this section is to prove Theorem 1.6

In the proof of the theorem, we need the following easy lemma. Lemma 5.2. Let ϕ be an orientation preserving homeomorphism of the circle ∂D 2 . There exists a homeomorphism h in Homeo 0 (D 2 ) such that h |∂D 2 = ϕ.

Proof. Denote by . the Euclidean norm on R 2 . We see D 2 as the unit disc in R 2 . Take the homeomorphism defined by h :

D 2 → D 2 x = 0 → x ϕ( x x ) 0 → 0 .
An isotopy between ϕ and the identity provides an isotopy between h and the identity.

Proof of Theorem 1.6. We will distinguish two cases depending on whether the number rotation number ρ(f ) of f on the boundary ∂D 2 is rational or not.

First case: Suppose that α = ρ(f ) is irrational. Fix > 0. Denote by γ the oriented arc

[0, 1] → D 2 ⊂ R 2 t → (t, 0) .
Let N and M be integers.

Denote by

R q1 α (γ), R q2 α (γ), . . . , R q N α (γ) the curves R α (γ), R 2 α (γ), . . . , R N α (γ)
ordered in such a way that q 1 = 1 and for any index

i ∈ Z/nZ R qi+1 α (γ) is the curve in the set R k α (γ), 1 ≤ k ≤ N k = q i
which is immediately on the right of R qi α (γ).

For any i ∈ Z/N Z and any 0 ≤ j ≤ M -1, denote by S i,j the square bounded on the left by R qi α (γ), on the right by R . We take N and M sufficiently large so that the two following properties hold:

1. For any i ∈ Z/N Z and any 1 ≤ j ≤ M -1, the square S i,j has a diameter smaller than .

2. The diameter of the set x ≤ 1 M is smaller than .

We will find a similar decomposition for f in order to build our conjugation. Denote by x the point (1, 0). Use Proposition 4.1 and Lemma 5.2 to find a homeomorphism h in Homeo 0 (D 2 ) such that, for any 0

≤ k ≤ N , h(f k (x)) = R k α (h(x)) = R k α (x).
We want to build a homeomorphism h such that the homeomorphism h hf h -1 h -1 is close to the rotation R α .

Let δ : [0, 1] → D 2 be an embedded arc with the following properties:

1. δ([0, 1)) ∩ ∂D 2 = ∅. 2. δ(1) = x.

The arcs

δ k = (hf h -1 ) k (δ), for 0 ≤ k ≤ N , are pairwise disjoint.
Observe that any small enough arc satisfying the two first properties also satisfies the third property. Observe also that the arcs hf k h -1 (δ), for 0 ≤ k ≤ N , are in the same order as the arcs R k α (γ). Indeed, for any k the arc hf k h -1 (δ) has the same endpoint as the arc R k α (γ). These arcs hf k h -1 (δ) will be sent to the arcs

R k α (γ) [ 1 M ,1] under h .
Now, we construct the curves which will be sent to the circles C i under h . Let C 1 be a simple loop S 1 → D 2 contained in the interior of the disc which contains the points (hf h -1 ) k (δ(0)) for 0 ≤ k ≤ N and which does not contain any other point of the arcs (hf h -1 ) k (δ), for 0 ≤ k ≤ N . We can then construct by induction a family of simple loops (C i ) 1≤i≤M with the following properties:

1. For any 1 ≤ i < j ≤ M , the loops C j and hf h -1 (C j ) are disjoint from the loops C i and hf h -1 (C i ) and lie above C i and hf h -1 (C i ) (i.e. they belong to the same connected component of D 2 -C i and D 2 -hf h -1 (C i ) as the boundary ∂D 2 ).

2. For any i and j with 0 ≤ i ≤ N and 1 ≤ j ≤ M , each loop C j meets each of the arcs δ i in exactly one point.

These properties enable us to construct a homeomorphism h in Homeo 0 (D 2 ) with the following properties.

1. For any

0 ≤ i ≤ N , h (hf i h -1 (δ)) = R i α (γ |[1,M ] ). 2. For any 1 ≤ j ≤ M , h (C j ) = C j .
Denote by S a connected component of the complement of

m j=1 C j ∪ N -1 i=0 R i α (γ([ 1 M , 1]))
which is different from the disc D 1 M of center 0 and radius 1 M . Then there exist i and j such that R α (S) = S i,j . By construction, the image under h hf

(h h) -1 of S is contained in -S i,j ∪ S i,j-1 ∪ S i,j+1 if j > 1. -S i,1 ∪ D 1 M ∪ S i,2 if j = 1. Moreover, the homeomorphism h hf (h h) -1 sends the disc D 1 M to D 1 M ∪ i S i,1 = R α (D 1 M )∪ i S i,1 . As the sets D 1
M and S i,j have a diameter smaller than , we deduce that

d(R α , h hf (h h) -1 ) < 2 ,
where d denotes the uniform distance.

Second case: Case where ρ(f ) = p q is rational. This case is similar to the first one: we will skip some details. For notational reasons, the unit circle is identified with R/Z. Fix large integers N > 0 and M > 0. First, use Proposition 4.3 to obtain intervals (I i ) 0≤i≤N p corresponding to f |∂D 2 . Then use Lemma 5.2 to obtain a homeomorphism h of the disc which sends the interval I j to the interval

[ i N q , i+1 N q ] of the circle ∂D 2 .
For any 0 ≤ i ≤ N q -1, take a small arcs δ i : [0, 1] → D 2 which touch ∂D 2 only at the point δ i (1) = i N q ∈ ∂D 2 . Choose these arcs so that they are pairwise disjoint. For any 1 ≤ j ≤ M , take a loop C j which meets each δ i in only one point. Construct them so that the following properties hold.

1.

C M = ∂D 2 .
2. The loop C 1 meets each curve δ i at δ i (0). 3. For any j ≥ 1, the loop C j is above C j-1 (disjoint from C j-1 and in the same connected component of D 2 -C j as ∂D 2 ).

For any

1 ≤ j ≤ M -1, the curve hf h -1 (C j ) is disjoint from C j-1 and C j+1 .
Construct then a homeomorphism h in Homeo 0 (D 2 ) with the following properties. 1. It sends each loop C j to the circle of radius j M . 2. It sends each curve δ i to the straight line contained in a radius of the unit disc joining the circle of radius 1 M to the point i N q of the circle ∂D 2 . One can check that the homeomorphism h hf (h h) -1 is close to the rotation of angle ρ(f ) if N and M are chosen sufficiently large.

Conjugacy classes: case of the annulus

This section is devoted to the proof of Theorem 1.5. This proof uses the notion of rotation set of a homeomorphism of the annulus isotopic to the identity. For more background on this notion, see the article [START_REF] Misiurewicz | Rotation sets for maps of the tori[END_REF] by Misiurewicz and Ziemian. In the quoted article, the notion is introduced in the case of homeomorphisms of the torus but everything carries over in the (easier) case of the annulus. For any homeomorphism f in Homeo 0 (A), we denote by ρ(f ) its rotation set.

A simple curve γ : [0, 1] → S 1 × [0, 1] = A (respectively γ : [0, 1] → R × [0, 1]
) is said to join the two boundary components of the annulus (respectively the strip) if:

γ(0) ∈ S 1 × {0} and γ(1) ∈ S 1 × {1} (respectively γ(0) ∈ R × {0} and γ(1) ∈ R × {1}).

γ((0, 1)) ⊂ S 1 × (0, 1) (respectively γ((0, 1)) ⊂ R × (0, 1)). Given a simple curve γ which joins the two boundary components of the strip R × [0, 1], the set R × [0, 1] -γ([0, 1]) consists of two connected components. As the curve γ is oriented by the parametrization, it makes sense to say that one of them is on the right of γ and the other one is on the left of γ. Definition 6.1. Take a simple curve γ which joins the two boundary components of the strip R × [0, 1]. A subset of R × [0, 1] is said to lie strictly on the right (respectively strictly on the left) of the curve γ if it is contained on the connected component of R × [0, 1] -γ on the right (respectively on the left) of γ. Definition 6.2. Take three pairwise disjoint simple curves γ 1 , γ 2 and γ 3 which join the two boundary components of the annulus. We say that the curve γ 2 lies strictly between the curves γ 1 and γ 3 if the following property is satisfied. There exists lifts γ1 and γ2 to the strip of respectively γ 1 and γ 2 such that:

1. The curve γ2 lies strictly on the right of γ1 .

2. For any lift γ3 of the curve γ 3 which lies strictly on the right of γ1 , the curve γ2 lies strictly on the left of γ3 .

Notice that a curve which lies strictly between γ 1 and γ 3 does not lie strictly between γ 3 and γ 1 . Proposition 6.3. (see Figure 1) Let f be a homeomorphism in Homeo 0 (A) and p and q be integers such that either q > 0, 0 < p < q and p and q are mutually prime or p = 0 and q = 1. Let us fix an integer n > 1. Suppose that ρ(f ) = p q . Then there exists a family of pairwise disjoint simple curves (γ i ) i∈Z/nqZ which join the two boundary components of the annulus such that, for any index i:

1. The curve γ i lies strictly between the curves γ i-1 and γ i+1 .

2. The curve f (γ i ) lies strictly between the curves γ i+np-1 and γ i+np+1 . Remark 6.4. In the case of the rotation R p q , note that it suffices to take γ i (t) = ( i nq , t).

γ0 γ1 γ2 γ3 f (γ0) f (γ1) f (γ2) f (γ3)
Figure 1 -Illustration of Proposition 6.3 in the case p = 0, q = 1 and n = 4

For technical reasons, it is more convenient to prove the following stronger proposition. Proposition 6.5. Let f be a homeomorphism in Homeo 0 (A) and p and q be integers such that either q > 0, 0 < p < q and p and q are mutually prime or p = 0 and q = 1. Suppose that ρ(f ) = p q . Let us fix integers n > 0 and N > 0. Then there exists a family of pairwise disjoint simple curves (γ i ) i∈Z/nqZ which join the two boundary components of the annulus such that, for any index i and any integer 0 ≤ k ≤ N :

1. If n = 1 or q = 1, the curve f k (γ i ) lies strictly between the curves γ i+knp-1 and γ i+knp+1 .

2. If n = q = 1, any lift of the curve f k (γ 1 ) meets at most one lift of the curve γ 1 .

The case N = 1 of this proposition yields directly Proposition 6.3.

Proof. We say that a finite sequence of curves (γ i ) i∈Z/nqZ satisfies property P (N, n) if it satisfies the conclusion of the proposition. We prove by induction on n that, for any N , there exist curves (γ i ) i∈Z/qnZ which satisfy property P (N, n) and such that, for any index

n ≤ i < nq, γ i = f (γ i-np ).
We first check the case where n = 1, which is actually the most difficult one. The proof in this case relies on the following lemma due to Béguin, Crovisier, Le Roux and Patou (see [1], Proposition 3.1). Let

Homeo Z (R) = {f ∈ Homeo(R × [0, 1]), ∀(x, y) ∈ R × [0, 1], f (x + 1, y) = f (x, y) + (1, 0)} . Lemma 6.6. Let F 1 , . . . , F l be pairwise commuting homeomorphisms in Homeo Z (R × [0, 1]).
Suppose that, for any index i, ρ(F i ) ⊂ (0, +∞). Then there exists an essential simple curve γ : [0, 1] → R × [0, 1] which joins the two boundary components of the strip and satisfies the following property. For any index i, the curve F i (γ) lies strictly on the right of the curve γ.

Fix an integer N > 0. We denote by f the lift of the homeomorphism f such that ρ( f ) = p q and by T the translation of R × [0, 1] defined by (x, t) → (x + 1, t). Consider the unique permutation σ of 1, q -1 = {1, . . . , q -1}, such that there exists a finite sequence of integers (t(i)) 1≤i≤q-1 with 0 < σ(1) p q + t(1) < σ(2) p q + t(2) < . . . < σ(q -1) p q + t(q -1) < 1.

Notice that σ(i) p q + t(i) = i q . Hence σ(i) is equal to i p mod q (observe that p is invertible in Z/qZ as the integers p and q are mutually prime). Equivalently, the integer σ -1 (i) is the unique representative in 1, q -1 of ip mod q. To simplify notation, let σ(0) = 0, σ(q) = 0, t(0) = 0 and t(q) = 1. Let M be any integer greater than N q . We now apply Lemma 6.6 to the homeomorphisms of one of the following forms, for 0 ≤ j ≤ M and 0 ≤ i ≤ q -1:

1. T t(i+1)-jp f σ(i+1)+jq T -t(i) f -σ(i) whose rotation set is t(i + 1) + σ(i + 1) p q -t(i) -σ(i) p q ⊂ (0, +∞). 2. T t(i+1) f σ(i+1) T -t(i)+jp f -σ(i)-jq whose rotation set is t(i + 1) + σ(i + 1) p q -t(i) -σ(i) p q ⊂ (0, +∞).
Lemma 6.6 provides a simple curve γ : [0, 1] → [0, 1] × R such that, for any j ∈ 0, M , and any i ∈ 0, q -1 :

1. The curve T t(i+1)-jp f σ(i+1)+jq (γ ) lies strictly on the right of the curve T t(i) f σ(i) (γ ).

2. The curve T t(i+1) f (γ ) lies strictly on the right of the curve T t(i)-jp f σ(i)+jq (γ ). In particular, by the first property above with j = 0, the curve T 1 (γ ) lies strictly on the right of the curve T t(q-1) f σ(q-1) (γ ) which lies itself strictly on the right of the curve T t(q-2) f σ(q-2) (γ ) and so forth. Hence the curve T 1 (γ ) lies strictly on the right of the curve γ : the projection γ of the curve γ on the annulus is a simple curve. We set γ i = f σ(i) (γ ). We have seen that the curve T t(i) f σ(i) (γ ) is the unique lift of the curve γ i which lies between the curves γ and T 1 (γ ). Let us check that the curves γ i satisfy the desired properties.

Fix i ∈ 0, q -1 and k ∈ 0, N . Perform the Euclidean division of k + σ(i ) by q: k + σ(i ) = jq + r. By the two above properties, the curve f jq+r (γ ) lies strictly between the curves γ σ -1 (r)-1 and γ σ -1 (r)+1 . To see this, if r = 0, apply the first property for i = σ -1 (r)-1 and the second property for i = σ -1 (r), and, if r = 0, apply the first property for i = q -1 and the second property for i = 0. Now, remember that, modulo q:

σ -1 (r) = σ -1 (k + σ(i ) -jq) = (k + σ(i ))p = kp + i .
This proves the proposition when n = 1.

Suppose that there exist curves (α i ) i∈Z/nqZ which satisfy P (2N q, n) and such that, for any index n ≤ i < nq, α i = f (α i-np ). Let us construct curves (γ i ) i∈Z/(n+1)qZ which satisfy P (N q, n + 1) (hence P (N, n + 1)) and such that for any index n + 1 ≤ i < (n + 1)q, γ i = f (γ i-np ). If i is not equal to 1 mod n + 1, the curve γ i is one of the curves f N q (α j ). More precisely, write the Euclidean division of i by n

+ 1: i = l(i)(n + 1) + r(i). If r(i) > 1, then γ i = f N q (α j ), with j = l(i)n + r(i) -1. If r(i) = 0, then γ i = f N q (α j ), with j = l(i)n.
We now build the curve γ 1 .

Notice that, for any integers -N ≤ k, k ≤ N , f (N +k)q (α 0 ) ∩ f (N +k )q (α 1 ) = ∅. Indeed, recall that, by Property P (2N q, n), the curves of the form f lq (α 0 ), with 0 ≤ l ≤ 2N , lie strictly between the curves α -1 and α 1 . Likewise, the curves of the form f lq (α 1 ), with 0 ≤ l ≤ 2N , lie strictly between the curves α 0 and α 2 . Moreover, the intersection f (N +k)q (α 0 ) ∩ f (N +k )q (α 1 ) is equal to f (N +k)q (α 0 ∩f (k -k)q (α 1 )) or f (N +k )q (f (k-k )q (α 0 )∩α 1 ) and, among the integers kk and kk, one is nonnegative and smaller than or equal to 2N .

Hence there exists a simple curve γ 1 : [0, 1] → A such that: 1. γ 1 (0) ∈ S 1 × {0}, γ 1 (1) ∈ S 1 × {1} and γ 1 ((0, 1)) ⊂ S 1 × (0, 1). 2. For any integers k, k ∈ -N, N , the curve γ 1 lies strictly between the curves f (N +k)q (α 0 ) = f kq (γ 0 ) and f (N +k )q (α 1 ) = f k q (γ 2 ). By the second property above, for any integer k ∈ 0, N , the curve f kq (γ 1 ) lies strictly between the curves γ 0 and γ 2 . Moreover, the curves of the form f kq (γ 0 ), with 0 ≤ k ≤ N lie strictly between the curves γ -1 and γ 1 and the curves of the form f kq (γ 2 ), with 0 ≤ k ≤ N lie strictly between the curves γ 1 and γ 3 . If q = 1, we have proved that the finite sequence (γ i ) i∈Z/(n+1)qZ satisfies P (N, n + 1).

Suppose now that q = 1. For any index i = 1 with r(i) = 1, there exists a unique integer j ∈ 1, q -1 such that i = 1+j(n+1)p. Set γ i = f j (γ 1 ). As γ i-1 = f j (γ 0 ) and γ i+1 = f j (γ 2 ) by induction hypothesis, it is easy to check that the finite sequence (γ i ) i∈Z/(n+1)qZ satisfies P (N q, n + 1).

Proof of Theorem 1.5. In the case where α is irrational, the theorem is Corollary 1.2 in [1]. Suppose that α = p q , where p and q are integers with either q = 1 and p = 0 or q > 0 and 0 < p < q. Fix large integers N, N > 0. Apply Proposition 6.3 to the homeomorphism f with n = N : this proposition provides curves (γ i ) i∈Z/N qZ . Consider a finite sequence (α j ) j∈ 0,N of pairwise disjoint loops S 1 → A such that: For any t ∈ S 1 , α 0 (t) = (t, 0) and α N (t) = (t, 1).

2. The loops α j are homotopic to α 0 .

3. For any index 1 ≤ j < N , the loops α j and f (α j ) lie strictly between the curves α j+1 and α j-1 .

4.

For any indices i and j, the loop α i meets the curve γ j in only one point.

Such curves can be built by induction on N . Let us introduce some notation (see Figure 3). For any i ∈ Z/N qZ, let γ i be the curve [0, 1] → A defined by: γ i (t) = ( i N q , t) and, for any j ∈ 0, N , let α j be the loop S 1 → A defined by α j (t) = (t, j N ). For i in Z/N qZ and j in 0, N , denote by α j,i (respectively α j,i ) the closure of the connected component of α j -∪ i γ i (respectively α j -∪ i γ i ) which lies strictly between the curves γ i and γ i+1 (respectively between the curves γ i and γ i+1 ). Notice that, for any j, the loop α j is the concatenation of the α j,i 's. Similarly, for any i ∈ Z/N qZ and any 0 ≤ j ≤ N -1, denote by γ i,j (respectively γ i,j ) the closure of the connected component of γ i -∪ j α j (respectively of γ i -∪ j α j ) which lies strictly between the curves α j+1 and α j (respectively between the curves α j+1 and α j ). Finally, for i ∈ Z/N qZ and 0 ≤ j ≤ N -1, we denote by D i,j (respectively D i,j ) the topological closed disc whose boundary is the Jordan curve γ ∪α j,i ∪γ i+1,j ∪α j+1,i (respectively γ i,j ∪α j,i ∪γ i+1,j ∪α j+1,i ). Note that

f γ 0 γ 1 γ 2 γ 3 α 1 α 2 f (α 1 ) f (α 2 ) f (γ 0 ) f (γ 1 ) f (γ 2 ) f (γ 3 )
D i,j = [ i N q , i+1 N q ] × [ j N , j+1 N ].
The discs D i,j as well as D i,j have pairwise disjoint interiors and cover the annulus A.

Consider a homeomorphism h of the annulus which sends, for any (i, j), the path γ i,j onto the path γ i,j and the path α j,i onto the path α j,i . Such a homeomorphism exists thanks to the Schönflies theorem and sends each disk D i,j onto the corresponding disk D i,j .

By the properties of the curves α i and γ j , for any (i, j), the loop f (∂D i,j ) lies strictly between the curves α min(j+2,N ) and α max(j-1,0) . and strictly between the curves γ i+N p-1 and γ i+N p+2 . Hence

f (∂D i,j ) ⊂ 1, 2 ∈{-1,0,1} D i+N p+ 1,j+ 2 ,
where D i,j = ∅ whenever j ≥ N or j < 0. Therefore

f (D i,j ) ⊂ 1, 2∈{-1,0,1} D i+N p+ 1 ,j+ 2 and hf h -1 (D i,j ) ⊂ 1 , 2∈{-1,0,1} D i+N p+ 1,j+ 2 . Obviously R p q (D i,j ) = D i+N p,j ⊂ 1 , 2 ∈{-1,0,1} D i+N p+ 1,j+ 2 .
We deduce that the uniform distance between the rotation R p q and hf h -1 is bounded by the supremum of the diameters of the sets

1, 2∈{-1,0,1} D i+N p+ 1,j+ 2 = [ i -1 N q + p q , i + 2 N q + p q ] × [ max(j -1, 0) N , min(j + 2, N ) N ].
This last quantity is arbitrarily small as soon as the integers N and N are sufficiently large.

Conjugacy classes: general case

In this section, we prove Theorem 1.11.

We call essential arc of the surface S a simple curve γ : [0, 1] → S up to positive reparametrization, whose endpoints lie on ∂S, which is not homotopic with fixed extremities to a curve contained in ∂S and such that γ((0, 1)) ⊂ S -∂S. For any essential arc γ, by abuse of notation, we also denote by γ the set γ([0, 1]). In the case where the set Sγ has two connected components, as the curve γ is oriented, it makes sense to say that one of them, C, is on the right of γ and the other one, C , is on the left of γ. In this case, a subset A of S is said to lie on the right (respectively strictly on the right, on the left, strictly on the left) of the arc

γ if A is contained in the closure of C (respectively in C, in the closure of C , in C ).
In what follows, we fix a compact surface S with ∂S = ∅ and which is different from the annulus, the Möbius strip or the disc.

We call maximal family of essential arcs of S a finite family (α i ) 1≤i≤n of pairwise disjoint essential arcs of S such that the surface S -(∂S ∪ i α i ) is homeomorphic to an open disc (see 4). Observe that the cardinality of a maximal family of essential arcs of S is 1 -χ(S). Any family of pairwise disjoint and pairwise non homotopic (relative to ∂S) essential arcs whose cardinality is equal to 1 -χ(S) and whose complement in S is connected is a maximal family of essential arcs. Given such a family of essential arcs, the inclusion i : S -(∂S ∪ i α i ) → S lifts to a map ĩ : S -(∂S ∪ i α i ) → S. The closure of the range of such a map is a fundamental domain for the action of π 1 (S). We call it a fundamental domain associated to the family (α i ) 1≤i≤n . Observe that two fundamental domains associated to such a family differ by an automorphism in π 1 (S). Given any family (α i ) 1≤i≤n of pairwise disjoint and pairwise non homotopic (relative to ∂S) essential arcs such that S -∪ i α i is connected, we call fundamental domain associated to (α i ) 1≤i≤n a fundamental domain associated to any maximal family of essential arcs which contains (α i ) 1≤i≤n .

Fix a fundamental domain D 0 associated to some maximal family of essential arcs (α i,0 ) 1≤i≤l of S. Proposition 7.1. Let N ≥ 1 be an integer. There exists a maximal family (α i ) 1≤i≤l of essential arcs such that the following properties hold.

1. Given two distinct arcs α, β : [0, 1] → S, each of which is a lift of one of the arcs α i , we have

∀ -N ≤ k ≤ N, f k (α) ∩ β = ∅.
2. There exists a fundamental domain D associated to the family (α i ) 1≤i≤l and a homeomorphism h 0 ∈ Homeo 0 (S) such that h0 (D) = D 0 .

With this proposition, we are able to prove Theorem 1.11.

Proof of Theorem 1.11. Fix > 0. We will construct a homeomorphism h in Homeo 0 (S) such that d(hf h -1 , Id) = sup x∈S d(hf h -1 (x), x) ≤ . Let ϕ : D 0 → [0, 1] 2 be a homeomorphism such that the image under ϕ of any essential arc contained in ∂D 0 is contained either in [0, 1] × {0} or in [0, 1] × {1} and the image under ϕ -1 of any of the four corners of the square [0, 1] × [0, 1] is an endpoint of an essential arc contained in ∂D 0 . Moreover, we impose that, for any t ∈ [0, 1], the points ϕ -1 (t, 0) and ϕ -1 (t, 1) do not belong to (necessarily different) lifts of the same essential arc α i,0 .

Choose L > 0 sufficiently large that, for any 0 ≤ i, j ≤ L, diam(ϕ -1 ([i/(L + 1), (i + 1)/(L+1)]×[j/(L+1), (j +1)/(L+1)])) ≤ /2. For any 0 ≤ i ≤ L+1, denote by βi,0 (respectively δi,0 ) the curve ϕ -1 ([0, 1]×{i/(L + 1)}) (respectively the curve ϕ -1 ({i/(L + 1)}×[0, 1])) oriented from the point ϕ -1 (0, i/(L + 1)) to the point ϕ -1 (1, i/(L + 1)) (respectively from the point ϕ -1 (i/(L + 1), 0) to the point ϕ -1 (i/(L + 1), 1)). See Figure 5. Let β0 = β0,0 , βL+1 = βL+1,0 , δ0 = δ0,0 and δL+1 = δL+1,0 . We will construct arcs ( βi ) 1≤i≤L and ( δi ) 1≤i≤L such that the following properties hold.

1. There exists a homeomorphism h in Homeo 0 (S) such that h(D 0 ) = D 0 , h( βi ) = βi,0 , h( δi ) = δi,0 .

2. For any 1 ≤ i ≤ L, the image under f of the arc βi meets neither the curve βi-1 nor the curve βi+1 . For any 1 ≤ i ≤ L, the image under f of the arc δi meets neither the curve δi-1 nor the curve δi+1 . 3. Take any essential arc α contained in ∂D 0 . The image under f or f -1 of this essential arc does not meet any of the curves βi , and any of the curves δi which satisfy δi ∩ α = ∅. 4. Consider any essential arc α : [0, 1] → S contained in ∂D 0 . Denote by γ the deck transformation such that D 0 ∩ γD 0 = α. Finally, let {α(t i ), 1 ≤ i ≤ r}, be the set of points of α which belong to one of the curves δi or γ( δj ), where t 1 < t 2 < . . . < t r . Let t 0 = 0 and t r+1 = 1. Then the following properties are satisfied.

-For any l ≤ r the image under f of the arc α([t l , t l+1 ]) does not meet any of the following arcs: α([0,

t l-1 ]) if l > 0, α([t l+2 , 1]) if l < r, the curves of the form δi if δi ∩ α([t l , t l+1 ]) = ∅ and the curves of the form γ( δj ) if γ( δj ) ∩ α([t l , t l+1 ]) = ∅.
-For any index i such that α ∩ δi = ∅, denoting by α(t l(i) ) the point α ∩ δi , the image under f of the arc δi does not meet any of the following arcs: α([0, t l(i)-1 ]) if l(i) > 0, α([t l(i)+1 , 1]) if l(i) < r+1 and the curves of the form γ( δj ) if δi ∩γ( δj ) = ∅.

claim that in this case d(hf h -1 , Id) ≤ , which completes the proof of Theorem 1.11. First, let us check this claim before building the curves βi and δi . In what follows, we will call square any subset of S of the form π(ϕ -1 ([i/(L + 1), (i + 1)/(L + 1)] × [j/(L + 1), (j + 1)/(L + 1)])). By the properties above, for any 0 ≤ i ≤ L and any 0 ≤ j ≤ L, the image under h f h-1 of any point in the square π(ϕ -1 ([i/(L + 1), (i + 1)/(L + 1)] × [j/(L + 1), (j + 1)/(L + 1)])), which is the projection of the square delimited by π( δi,0 ), π( δi+1,0 ), π( βj,0 ) and π( βj+1,0 ), is contained in squares which meet the square ϕ -1 ([i/(L + 1), (i + 1)/(L + 1)] × [j/(L + 1), (j + 1)/(L + 1)]). Indeed, this is a consequence of the first three conditions above for any square which does not touch ∂D 0 (see Figure 6) and the fourth condition ensures that this property also holds for squares which meet ∂D 0 (see Figure 7). Any point in the union of such squares is at distance at most from any point of the square C, which proves the claim. Now let us construct the arcs βi and δi . We will first build the curves βi by induction on i. More precisely, we build by induction on 1 ≤ i ≤ L a curve βi : [0, 1] → D 0 such that the following properties are satisfied.

1. βi (0) ∈ ϕ -1 ({0} × [0, 1]), βi (1) ∈ ϕ -1 ({1} × [0, 1]) and βi ((0, 1)) ⊂ D 0 -∂D 0 .
2. The arc βi lies strictly on the left of the arc βi-1 if i > 1.

For any 1 ≤ j < i and any

-2 2L-i ≤ k, k ≤ 2 2L-i the arcs f k ( βj ) and f k ( βi ) are disjoint.
4. For any essential arc α contained in ∂D 0 and any -2

2L-i ≤ k, k ≤ 2 2L-i , we have f k (α) ∩ f k ( βi ) = ∅.
Recall that, by Proposition 7.1, for any -2 2L = -N/2 ≤ k, k ≤ N/2 = 2 2L and any essential arcs α = α contained in ∂D 0 ,

f k (α) ∩ f k (α ) = ∅.
Hence there exists an essential arc β1 : [0, 1] → D 0 with the following properties.

C δi-1 δi δi+1 δi+2 α βL-1 γ( δj-1 ) γ( δj ) γ( δj+1 ) γ( δj+2 ) γ( β1 )
Zone in which the image under f of the square C is contained 3. The arc β1 is disjoint from any of the arcs of the form f k ( α), where α is any essential arc contained in ∂D 0 and -2 2L ≤ k ≤ 2 2L . Observe that, for any essential arc α contained in ∂D 0 and any -2

2L-1 ≤ k, k ≤ 2 2L-1 , we have f k (α) ∩ f k ( β1 ) = f k ( f k-k (α) ∩ β1 ) = ∅.
Now suppose that we have constructed essential arcs β1 , . . . , βi with the above properties, for some i < L.

We now build the arc βi+1 . By the second above property, for any essential arc α contained in ϕ -1 ([0, 1] × {1}) and any -2 2L-i ≤ k, k ≤ 2 2L-i , the arcs f k ( βi ) and f k (α) are disjoint. Hence there exists an essential arc βi+1 : [0, 1] → D 0 with the following properties.

1. The point βi+1 (0) belongs to ϕ -1 ({0} × [0, 1]) ⊂ ∂ S and the point βi+1 (1) belongs to

ϕ -1 ({1} × [0, 1]) ⊂ ∂ S. 2. βi+1 ((0, 1)) ⊂ D 0 -∂D 0 .
3. The arc βi+1 is disjoint from any of the arcs of the form f k (α), where α is any essential arc contained in ϕ -1 ([0, 1] × {1}) and -2 2L-i ≤ k ≤ 2 2L-i . 4. The arc βi+1 is strictly on the left of any of the arcs of the form f k ( βi ), where -2 2L-i ≤ k ≤ 2 2L-i . It is easy to check that the arc βi+1 satisfies the required properties. Now, it remains to build the curves δi with 1 ≤ i ≤ L. We build by induction on i a curve δi : [0, 1] → D 0 such that the following properties are satisfied.

1. If the point δi,0 (0) (respectively δi,0 (1)) belongs to an essential arc α : [0, 1] → ∂D 0 , the following properties hold. Denote by γ the deck transformation such that D 0 ∩γ(D 0 ) =

The point δi (0) (respectively δi (1)) belongs to the same essential arc contained in ∂D 0 as the point δi,0 (0) (respectively δi,0 (1)). Moreover, the family consisting of the points (γ δk,0 ∩ α) k , where k ≤ i varies over the indices such that γ δk,0 ∩ α = ∅, and the point δi,0 (0) (respectively δi,0 (1)) are in the same order on α as the family consisting of the points (γ δk ∩ α) k and the point δi (0) (respectively δi (1)).

2. If the point δi,0 (0) (respectively δi,0 (1)) does not belong to one of these essential arcs, then the point δi (0) (respectively δi (1)) belongs to the same component of ϕ -1 ([0, 1] × {0})∩∂ S (respectively ϕ -1 ([0, 1]×{1})∩∂ S) as the point δi,0 (0) (respectively δi,0 (1)).

3. δi ((0, 1)) ⊂ D 0 -∂D 0 .

4. If i > 1, the curve δi is strictly on the right of the curve δi-1 in D 0 .

5. For any 1 ≤ j ≤ L, the curve δi meets the curve βj in only one point.

6. For any -2 L-i ≤ k, k ≤ 2 L-i and any 0 ≤ j ≤ i, the curves f k ( δj ) and f k ( δi ) are disjoint.

7. For any -2 L-i ≤ k, k ≤ 2 L-i and any essential arc α contained in ∂D 0 which does not meet the curve δi,0 , the curves f k ( δi ) and f k (α) are disjoint.

8. Consider any essential arc α : [0, 1] → S contained in ∂D 0 such that α∩ δi = ∅. Denote by γ the deck transformation such that D 0 ∩ γD 0 = α. Let {α(t l ), 1 ≤ l ≤ r}, be the set of points of α which belong to one of the curves δj or γ( δj ), where 1 ≤ j, j ≤ i and t 1 < t 2 < . . . < t r . Let t 0 = 0 and t r+1 = 1. Finally, let α(t l(i) ) be the point α ∩ δi . Then, for any -2 L-i ≤ k, k ≤ 2 L-i , the following properties are satisfied.

-The image under f k of the arc α([0, t l(i) ]) does not meet any of the following arcs:

f k ( α([t l(i)+1 , 1])), the curves of the form f k ( δj ) if j ≤ i and δj ∩ α([0, t l(i) ]) = ∅
and the curves of the form

f k (γ( δj )) if j ≤ i and γ( δj ) ∩ α([0, t l(i) ]) = ∅.
Likewise, the image under f k of the arc α([t l(i) , 1]) does not meet any of the following arcs:

f k ( α([0, t l(i)-1 ])), the curves of the form f k ( δj ) if j ≤ i and δj ∩ α([t l(i) , 1]) = ∅
and the curves of the form f k (γ( δj )) if j ≤ i and γ( δj ) ∩ α([t l(i) , 1]) = ∅. -The image under f k of the arc δi does not meet any of the following arcs:

f k ( α([0, t l(i)-1 ])) if l(i) > 0, f k (α([t l(i)+1 , 1])) if l(i) < r + 1 and the curves of the form f k (γ( δj )) if δi ∩ γ( δj ) = ∅, where 0 ≤ j ≤ i.
Before completing the induction, let us why the curves βi and δi satisfy the required properties. From the properties satisfied by the curves δi and the curves βi , we deduce that there exists a homeomorphism h : D 0 → D 0 with the following properties.

1. For any 1 ≤ i ≤ L, h( δi ) = δi,0 and h( βi ) = βi,0 .

2. The homeomorphism h preserves any essential arc contained in ∂D 0 .

3. For any two essential arcs α and α contained in ∂D 0 , if there exists a deck transformation γ such that γ(α) = α , then γ h|α = hγ | α.

The second and the third conditions above imply that the homeomorphism h can be extended on S as the lift of some homeomorphism h in Homeo 0 (S). To construct such a homeomorphism, first construct it on the union of ∂D 0 with the curves δi and βi . Then extend this homeomorphism to the connected components of the complement of this set in D 0 by using the Schönflies theorem. Now, let us build the curves δi by induction. Fix an index 1 ≤ i ≤ L and suppose that we have constructed arcs δ1 , δ2 , . . . , δi-1 with the above properties (this condition is empty in the case i = 1). Denote by A i the set of essential arcs contained in ∂D 0 which lie strictly on the right of the curve δi,0 in D 0 and by B i the set of essential arcs contained in ∂D 0 which lie strictly on the left of the curve δi,0 in D 0 . We distinguish three cases. First case: The points δi,0 (0) and δi,0 (1) do not belong to an essential arc contained in ∂D 0 .

Second case: The point δi,0 (0) to an essential arc α contained in ∂D 0 and the point δi,0 (1) belongs to an essential arc α contained in ∂D 0 .

Third case: One of the points among δi,0 (0) and δi,0 (1) belongs to an essential arc contained in ∂D 0 and the other one does not. We construct the curve δi in the first two cases and we leave the construction in the third case to the reader.

Let us look at the first case. Notice that the following properties hold. 1. For any -2 L-i+1 ≤ k, k ≤ 2 L-i+1 , any essential arc α in A i and any essential arc α in B i , the curves f k (α) and f k (α ) are disjoint. 2. For any -2 L-i+1 ≤ k, k ≤ 2 L-i+1 and any essential arc α in A i , the curves f k (α)

and

f k ( δi-1 ) are disjoint. 3. For any -2 L-i+1 ≤ k ≤ 2 L-i+1 , the arc f k (δ i-1 ) is disjoint from the set ϕ -1 ({1} × [0, 1]
): by construction of the chart ϕ, the endpoints of these curves do not belong to the connected component of ∂ S which contains ϕ -1 ({1} × [0, 1]). 4. For any -2 L-i+1 ≤ k ≤ 2 L-i+1 and any essential arc α in A i , the curve f k ( α) is disjoint from the arcs of the form βj , with 1 ≤ j ≤ L.

Hence there exists an essential arc δi with the following properties:

-The point δi (0) (respectively δi (1)) belongs to the same component of ∂ S ∩ D 0 as the point δi,0 (0) (respectively δi,0 (1)) and does not meet any essential arc contained in

∂D 0 . -δi ((0, 1)) ⊂ D 0 -∂D 0 .
-The curve δi lies strictly on the right of the curves of the form f k ( δi-1 ), with

-2 L-i+1 ≤ k ≤ 2 L-i+1 , in D 0 .
-For any 1 ≤ j ≤ L, the curve δi meets the curve βj in only one point.

-The curves of the form f k (α), where α belongs to A i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the right of the curve δi and the curves of the form f k (α), where α belongs to B i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the left of the curve δi . Of course, the curves of the form f k ( δj ), with j < i -1 and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the left of the curve f k ( δi-1 ) and hence are disjoint from the curve δi . The curve δi satisfies the required properties.

The second case is subdivided into three subcases. First subcase: The arcs of the form γ( δj,0 ), where γ is a nontrivial deck transformation and 1 ≤ j ≤ i -1, meet neither the arc α nor the arc α . Second subcase: The arcs α and α both meet an arc of the form γ( δj,0 ), where γ is a nontrivial deck transformation and 1 ≤ j ≤ i -1. Third subcase One of the arcs α and α meets an arc of the form γ( δj,0 ), where γ is a nontrivial deck transformation and 1 ≤ j ≤ i -1 and the other does not. We construct the arc δi only in the first two subcases and leave the construction to the reader in the third one. Changing the orientation if necessary, we can suppose that the arcs α : [0, 1] → ∂D 0 and α : [0, 1] → ∂D 0 are oriented in such a way that the points α(1) and α (1) lie on the right of the curve δi,0 in D 0 .

Let us study the first subcase. Let τ be the parameter in [0, 1] defined by τ = 0 if δ i-1 ∩ α = ∅ and {α(τ )} = δi-1 ∩ α otherwise. Let τ be the parameter in [0, 1] defined by τ = 0 if δ i-1 ∩ α = ∅ and {α (τ )} = δi-1 ∩ α otherwise. Then take an arc δi with the following properties.

1. The point δi (0) belongs to the arc α and the point δi (1) belongs to the arc α . 2. δi ((0, 1)) ⊂ D 0 -∂D 0 .

3. The curve δi meets each of the curves βj , with 1 ≤ j ≤ L, in only one point.

The compact sets of the form

f k ( δi-1 ∪ α([0, τ ]) ∪ α ([0, τ ])) ∩ D 0 with -2 L-i+1 ≤ k ≤ 2 L-i+1
lie strictly on the left of the arc δi in D 0 .

The curves of the form f k (α ), where α belongs to A i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the right of the curve δi in D 0 and the curves of the form f k ( α ), where α belongs to B i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the left of the curve δi in D 0 .

The arc δi satisfies the required properties. Now, we look at the second subcase (see Figure 8 for an illustration of the notation). Denote by γ the deck transformation such that γ(D 0 ) ∩ D 0 = α and by γ the deck transformation such that γ (D 0 ) ∩ D 0 = α . Let α(t 0 ) = δi,0 (0) and α (t 0 ) = δi,0 (1). Denote by t -,0 (respectively t -,0 ) the supremum of the real numbers t < t 0 (respectively t < t 0 ) such that α(t) (respectively α (t)) meets an arc of the form γ δj,0 (respectively γ δj,0 ) with j < i. Take t -,0 = 0 (respect. t -,0 = 0) if there is no such real number. Likewise, denote by t +,0 (respectively t +,0 ) the infimum of the real numbers t > t 0 (respectively t > t 0 ) such that α(t) (respectively α (t)) meets an arc of the form γ δj,0 (respectively γ δj,0 ) with j < i. Take t +,0 = 1 (respectively t +,0 = 1) if there is no such real number. Denote by j -, j + , j -and j + the indices such that, respectively, the point α(t -,0 ) belongs to the arc γ( δj-,0 ), the point α (t -,0 ) belongs to the arc γ ( δj -,0 ), the point α(t +,0 ) belongs to the arc γ( δj+,0 ) and the point α (t +,0 ) belongs to the arc γ ( δj + ,0 ). Finally, denote by t -, t + , t -and t + the real numbers in [0, 1] such that, respectively, the point α(t -) belongs to the arc γ( δj-), the point α(t + ) belongs to the arc γ( δj+ ), the point α (t -) belongs to the arc γ ( δj -), the point α (t + ) belongs to the arc γ ( δj + ). Finally, as in the first subcase, let τ (respectively τ ) be the parameter in [0, 1] defined by τ = 0 (respectively

τ = 0) if δi-1 ∩ α = ∅ (respectively δi-1 ∩ α = ∅) and {α(τ )} = δi-1 ∩ α (respectively {α (τ )} = δi-1 ∩ α ) otherwise. ∂ S ∂ S α α ∂ S ∂ S δi-1 δi α(τ ) α (τ ) α(t -) α (t -) α (t + ) α(t + ) β1 βL γ( δj-) γ( δj+ ) γ ( δj -) γ( δj + ) Figure 8

-Notation in the second subcase

There exists an arc δi : [0, 1] → D 0 with the following properties.

1. The point δj (0) belongs to the arc α and the point δj (1) to the arc α .

2. δi ((0, 1)) ⊂ D 0 -∂D 0 .

3. The curve δi meets each of the curves βj , with 1 ≤ j ≤ L, in only one point.

The compact sets of the form

f k ( δi-1 ) ∩ D 0 , f k (α([0, max(τ, t -)])) ∩ D 0 , f k (α ([0, max(τ , -)])) ∩ D 0 , f k γ( δj-) ∩ D 0 and f k γ( δj -) ∩ D 0 lie strictly on the left of δi in D 0 . 5. The compact sets of the form f k (α([t + , 1])) ∩ D 0 , f k (α ([t + , 1])) ∩ D 0 , γ( δj+ ) ∩ D 0 and f k γ( δj + ) ∩ D 0 lie strictly on the right of δ i in D 0 .
6. The curves of the form f k (α ), where α belongs to A i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the right of the curve δi in D 0 and the curves of the form f k ( α ), where α belongs to B i and -2 L-i+1 ≤ k ≤ 2 L-i+1 , lie strictly on the left of the curve δi in D 0 .

Such an arc satisfies the required conditions (note that, by construction of the chart ϕ, γ α = α and γ α = α hence the curve γ δi does not meet the arc α and the curve γ δi does not meet the arc α). The induction is complete.

Now we turn to the proof of Proposition 7.1.

Proof of Proposition 7.1. Denote by G the set of deck transformations γ of S such that 1. The fundamental domains γ(D 0 ) and D 0 have an essential arc in common.

2. The fundamental domain D 0 lies on the left of this essential arc.

The group π 1 (S) is the free group on the elements of G.

Let l = 1 -χ(S). We prove by induction on 0 ≤ b ≤ l that, for any N ≥ 1, the following property P(N ) holds. There exists a family (α i ) 1≤i≤b of pairwise disjoint and pairwise nonhomotopic essential arcs of S and a homeomorphism g b in Homeo 0 (S) with the following properties. Let Γ be the set of deck transformations whose reduce representative does not begin with the letter a and does not end with the letter a -1 . The proof relies on the following lemma.

For any index

1 ≤ i ≤ b, g b (α i ) = α i,0 .

7.2.

There exists an essential arc β2 : [0, 1] → S which satisfies the following properties.

1. The point β2 (0) belongs to the same connected component of ∂ S as β0 (0) and the point β2 (1) belongs to the same connected component of ∂ S as β0 (1).

2. For any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie strictly on the right of the curve β2 .

3. For any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( β2 ) lie strictly on the right of the curve β2 .

4. For any deck transformation γ in Γ different from the identity and for any integer |k| ≤ N l G (γ), the curve γ f k ( β2 ) lies strictly on the left of the curve β2 .

5. For any deck transformation γ in Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 and for any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie strictly on the left of the curve β2 .

This lemma is proved below. We now explain how to complete the induction. Let αb+1 = β2 .

By construction of the curve αb+1 , for any non-trivial deck transformation γ ∈ aπ 1 (S) ∪ Γ and any |k| ≤ N l G (γ), we have γ f k (α b+1 ) ∩ αb+1 = ∅. Hence, for any element γ of π 1 (S)a -1 and any

|k| ≤ N l G (γ), γ f k (α b+1 ) ∩ αb+1 = γ f k (α b+1 ∩ γ -1 f -k (α b+1 )) = ∅.
As π 1 (S) = π 1 (S)a -1 ∪ aπ 1 (S) ∪ Γ, we have proved that for any element γ of π 1 (S) and

any |k| ≤ N l G (γ), γ f k (α b+1 ) ∩ αb+1 = ∅.
Moreover, Lemma 7.2 implies that, for any deck transformation γ ∈ π 1 (S) and any indices

1 ≤ i = j ≤ b + 1, if |k| ≤ N (l G (γ) + 1), then γ f k (α i ) ∩ αj = ∅.
Observe that the projection α b+1 on S of the arc αb+1 is an essential arc. Now we construct the homeomorphism g b+1 . Notice that the arc α b+1 is homotopic to the arc β 0 relative to ∂S ∪ ∪ 1≤i≤b α i . Hence, by the main theorem of the article [START_REF] Epstein | Curves on 2-manifolds and isotopies[END_REF] by Epstein, there exists a homeomorphism g b+1 in Homeo 0 (S) which pointwise fixes the curves α i for 1 ≤ i ≤ b and which sends the curve β 0 to the curve α b+1 . Then take g b+1 = g b+1 g b .

It remains to prove Lemma 7.2. We need the following lemma (see Figure 9). Lemma 7.3. Let α be an essential arc of S. Denote by C the set of boundary components of S which lie strictly on the left of α. Let (α i ) 1≤i≤n be a finite family of essential arcs of S such that, for any i, any component in C lies strictly on the left of αi .

Then there exists a unique essential arc inf α(( αi ) 1≤i≤n ) with the following properties.

1. Any essential arc of S which lies (strictly) on the left α and of the αi 's lies (strictly) on the left of the arc inf α(( αi ) 1≤i≤n ).

2. The arc inf α(( αi ) 1≤i≤n ) lies on the left of the arc α and of the arcs αi .

Moreover, any point of the essential arc inf α(( αi ) 1≤i≤n ) belongs to either the arc α or one of the arcs αi .

Of course, in the above lemma, if we replace the words "left" by "right", we can define a curve sup α(( αi ) 1≤i≤n ).

Proof. We use the following lemma by Kerekjarto (see [START_REF] Le Calvez | Un théorème d'indice pour les homéomorphismes du plan au voisinage d'un point fixe[END_REF] p. 246 for a proof). We see the Poincaré disk as the unit disk in the plane which is seen as the Riemann sphere minus the point at infinity. As the universal cover of the double of the surface S, endowed with a hyperbolic metric, is the Poincaré disk, the surface S is naturally a subset of the Poincaré disk and the interior of S is a Jordan domain J 0 -its frontier is locally connected without cut points. Denote by U the connected component of int( S) -α which lies on the left of α. For any 1 ≤ i ≤ n, denote by U i the connected component of int( S) -αi which lies on the left of αi . (or more precisely the closure in S of this frontier) is an essential arc. If we orient properly this arc, it satisfies the two required properties. To prove the uniqueness part of this lemma, observe that the image of an arc which satisfies the two required properties is necessarily the in S of the frontier in int( S) of the component J: the first condition implies that it is contained in the closure of U ∩ n i=1 U i . As such an arc touches a boundary component of ∂ S, it must be contained in the closure of J. The second condition implies that this arc must be contained in the frontier of J. As the complement of ∂ S in this frontier is connected and the orientation of our arc is determined by the two conditions, the uniqueness part of the lemma is proved.

Proof of Lemma 7.2. First step. We prove first the following property. There exists an essential arc β1 of S such that 1. The point β1 (0) lies on the same connected component of ∂ S as the point β0 (0) and the point β1 (1) lies on the same connected component of ∂ S as the point β0 (1).

2. For any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k ( αi ) lie on the right of the curve β1 .

3. For any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( β1 ) lie on the right of the curve β1 .

We start with a lemma where we use the non-spreading hypothesis.

Lemma 7.5. In the set of essential arcs

γ f k ( β0 ), |k| ≤ N (l G (γ) + 1) γ ∈ aπ 1 (S) ∪ γ( f k (α i )), |k| ≤ N (l G (γ) + 1) 1 ≤ i ≤ b, γ ∈ aπ 1 (S) ,
only a finite number of arcs meet the curve β0 .

Proof. Suppose for a contradiction that there exists a sequence (γ n ) n∈N of non-trivial automorphisms in π 1 (S) with l G (γ n ) -----→ By the Švarc-Milnor lemma (see [START_REF] De La Harpe | Topics in geometric group theory[END_REF] p.87), there exists constants C, C > 0 such that, for any n,

diam( f kn (D b )) ≥ Cl G (γ n ) -C . Therefore diam( f kn (D b )) k n ≥ Cl G (γ n ) N (l G (γ n ) + 1) - C N (l G (γ n ) + 1)
.

the right hand side of this inequality has a positive limit as n → +∞. = 0 (recall that this hypothesis is independent of the chosen fundamental domain).

We now want to apply Lemma 7.3 to complete this first step. We have first to check that the family of essential arcs we will consider satisfies the hypothesis of this lemma. For any essential arc c of S we denote by c 0 the arc with the opposite orientation. We denote by C the set of connected components of ∂ S which lie on the left of β0 .

Recall first that the essential arcs the lifts of the arc β 0 which lie strictly on the right of β0 are the curves of the form γ( β0 ), where γ belongs to aπ 1 (S). Therefore the arc β0 lies strictly on the left of the curves of the form γ( β0 ), with γ ∈ aπ 1 (S) -aπ 1 (S)a -1 , as the curve γ -1 ( β0 ) is strictly on the left of the curve β0 . Moreover, the arc β0 lies strictly on the right of the curves of the form γ( β0 ), with γ ∈ aπ 1 (S)a -1 . By this discussion, the components in C lie strictly on the left of the curves of the form γ( β0 ), hence also of the form γ f k ( β0 ), with k ∈ Z and γ ∈ aπ 1 (S) -aπ 1 (S)a -1 . They also lie strictly on the left of the curves of the form γ f k ( β0 0 ), with k ∈ Z and γ ∈ aπ 1 (S)a -1 .

For any 1 ≤ i ≤ b, denote by A i the subset of aπ 1 (S) consisting of deck transformations γ such that D b lies strictly on the left of the arc γ(α i ). Denote by A c i the complement of this set in aπ 1 (S). Consider the family F of essential arcs consisting of the arcs which meet the arc β0 of one of the following forms.

1. γ f k ( β0 ), γ ∈ aπ 1 (S) -aπ 1 (S)a -1 , |k| ≤ N l G (γ). 2. γ f k ( β0 0 ), γ ∈ aπ 1 (S)a -1 , |k| ≤ N l G (γ). 3. γ f k ( αi ), 1 ≤ i ≤ b, γ ∈ A i , |k| ≤ N (l G (γ) + 1) 4. γ f k (α 0 i ), 1 ≤ i ≤ b, γ ∈ A c i , |k| ≤ N (l G (γ) + 1
) By Lemma 7.5, the family F is finite. Take β1 = inf β0 (F). Let us check that this curve satisfies the wanted properties.

By construction of the curve β1 , for any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k ( αi ) lie on the right of the curve β1 . Now, take a deck transformation γ ∈ aπ 1 (S) -aπ 1 (S)a -1 and |k| ≤ N l G (γ). Observe that, by the uniqueness part of Lemma 7

.3, γ f k ( β1 ) = inf γ f k ( β0) (γ f k (F)), where γ f k (F) = γ f k ( β), β ∈ F .
It is easy to check that any curve in γ f k (F) is either equal to one of the curves in F or lies strictly on the right of β0 . Hence any of these curves lie on the right of β1 . As the curve f ( β0 ) also lies on the right of the curve β1 by construction, we deduce that the curve γ f k ( β1 ) lies on the right of the curve β1 , by Lemma 7.3.

Finally, take a deck transformation γ ∈ aπ 1 (S)a -1 and |k| ≤ N l G (γ). As the arc β1 lies on the left of the arc β0 , the arc γ f k ( β1 ) lies on the left of the arc γ f k ( β0 ). As the arc β1 lies on the right of the arc γ f k ( β0 ) by construction and as the arc γ f k ( β0 ) is on the right of the arc β1 and of the arc γ f k ( β1 ), the arc γ f k ( β1 ) lies on the right of the arc β1 .

Second step. We prove that we can perturb the arc β1 to obtain an arc β 1 such that us now list the properties of this curve β1,0 .

First take a deck transformation γ in aπ 1 (S) -aπ 1 (S)a -1 with l G (γ) ≥ M and |k| ≤ N l G (γ). By construction, the curve γ f k ( β1 ) is strictly on the right of the arc β1,0 . Moreover, by construction of the disks U i , the curves γ f k (c i ) are strictly on the right of the arc β1 . Hence these curves lie strictly on the right of the arc β1,0 which lies on the left of the curve β1 by construction. We deduce that the arc γ f k ( β1,0 ) lies strictly on the right of the arc β1,0 . Moreover, the curve β1,0 is strictly on the left of the curve γ f k ( β1 ) as γ -1 / ∈ aπ 1 (S).

For any deck transformation γ in aπ 1 (S)-aπ 1 (S)a -1 and any |k| ≤ N l G (γ), as the curves γ f k (c i ) and the arc γ f k ( β1 ) lie on the right of the arc β1 , the arc γ f k ( β1,0 ) lies on the right of the arc β1,0 , which is itself on the left of γ f k ( β1,0 ).

Take now an automorphism γ ∈ aπ 1 (S)a -1 and |k| ≤ N l G (γ). Then the arc γ f k ( β1,0 ) lies on the left of the arc γ f k ( β1 ) and the arc β1,0 lies on the right of the arc γ f k ( β1 ), which is itself on the right of β1 , hence of β1,0 . Hence the arc γ f k ( β1,0 ) lies on the right of the arc β1,0 .

Finally, for any index 1 ≤ i ≤ b, any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), as the arc γ f k ( αi ) lies on the right of the arc β1 , it also lies on the right of the arc β1,0 . Now repeat the same process with the curve β1,0 instead of the curve β1 to obtain a new arc β1,1 and then repeat it to the arc β1,1 ... until we obtain an essential arc β1,M . This arc satisfies the following properties.

1. For any deck transformation γ in aπ 1 (S) -aπ 1 (S)a -1 and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( β1,M ) lie strictly on the right of the curve β1,M .

2. For any deck transformation γ in aπ 1 (S)a -1 and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( β1,M ) lie on the right of the curve β1,M .

3. For any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie on the right of the curve β1,M .

Let β 1 be an essential arc which lies strictly on the left of the arc β1,M and is sufficiently close to this arc so that the first above property remains true for the arc β 1 . Then, for any deck transformation γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie strictly on the right of the curve β1 . If we take an automorphism γ in aπ 1 (S)a -1 and an integer |k| ≤ N l G (γ), observe that the curve γ f k ( β 1 ) lies strictly on the left of the curve γ f k ( β1,M ) which lies on the right of the curve β1,M and that the arc β1,M lies on the right of the arc γ f k ( β1,M ). Hence, the arc γ f k ( β 1 ) lies strictly on the right of the arc β 1 .

Note that the curves of the form γ f k ( β 1 ), where γ ∈ π 1 (S)a -1 -aπ 1 (S)a -1 and |k| ≤ N l G (γ), lie strictly on the left of the curve

β 1 , as γ f k ( β 1 ) ∩ β 1 = γ f k ( β 1 ∩ γ -1 f -k ( β 1 )) = ∅ and γ -1 /
∈ aπ 1 (S). After this second step, it is still possible that the curve β 1 meets a curve of the form γ f k ( β 1 ), with γ ∈ Γ and |k| ≤ N l G (γ).

Third step. We finally construct the curve β2 with the properties required by Lemma 7.2. To achieve this, we construct by induction a sequence of curves. Let M be the maximal length (with respect to G) of an element γ in Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 such that either there exist |k| ≤ N (l G (γ) + 1) and 1 ≤ i ≤ b such that γ f k ( αi ) ∩ β 1 = ∅ or there exists |k| ≤ N l G (γ) such that γ f k ( β 1 ) ∩ β 1 = ∅. One can prove that this maximum is well-defined by an argument similar to the proof of Lemma 7.5: otherwise there would be a contradiction with the hypothesis diam( f n (D)) n -----→ n→+∞ 0 for any fundamental domain D ⊂ S for the action of the group π 1 (S).

Let δM +1 = β 1 We now construct by induction on j ∈ [0, M + 1] a curve δj whose endpoints δj (0) and δj (1) lie on the same components of ∂ S as the points β0 (0) and β0 (1) respectively with the following properties.

1. For any element γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie strictly on the right of the curve δj . 2. For any element γ in aπ 1 (S) and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( δj ) lie strictly on the right of the curve δj .

3. For any element γ in Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 with l G (γ) ≥ j and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k ( αi ) lie strictly on the left of the curve δj .

4. For any non-trivial element γ in Γ with l G (γ) ≥ j and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( δj ) lie strictly on the left of the curve δj .

Then it suffices to take β2 = δ0 to complete the proof of Lemma 7.2.

Suppose that we have constructed an arc δj+1 for j ≥ 0 with the above properties. Let us build the arc δj . Denote by C the set of connected components of ∂ S which lie on the right of δj+1 (or equivalently on the right of β0 ). For any 1 ≤ i ≤ b, denote by B i the subset of Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 consisting of deck transformations γ such that D b lies on the left of γ(α i ). Denote by B c i the complement of this set in Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 . Denote by F j the family of essential arcs consisting of the following arcs.

1. The arcs of the form γ f k (α i ) where 1 ≤ i ≤ b, |k| ≤ N (l G (γ) + 1), γ ∈ B c i and l G (γ) = j.

2. The arcs of the form γ f k (α 0 i ) where 1 ≤ i ≤ b, |k| ≤ N (l G (γ) + 1), γ ∈ B i and l G (γ) = j.

3. The arcs of the form γ f k ( δ0 j+1 ) where |k| ≤ N l G (γ), γ ∈ Γ -{Id} and l G (γ) = j. We want to define δ j = sup δj+1 (F j ). To do so, we first have to check that the family F j satisfies the hypothesis of Lemma 7.3 (or more precisely of the lemma obtained from Lemma 7.3 by changing the word "left" with the word "right", see the remark below Lemma 7.3). By definition of the sets B i , any component in C lies on the left of any arc of the form γ(α i ), with γ ∈ B i , hence also of the arcs of the form f k γ(α i ) for any k ∈ Z. Moreover, any component in C lies on the right of any arc of the form f k γ( αi ), with γ ∈ B c i and k ∈ Z. Finally, take any γ ∈ Γ. Remember that the curve γ -1 ( β0 ) lies strictly on the left of the curve β0 , as γ -1 / ∈ aπ 1 (S). Hence the arc β0 lies strictly on the left of the curve γ( β0 ). Therefore any component in C lies on the left of γ( β0 ) and also on the left of γ f k ( δj+1 ) for any k ∈ Z: the connected components of ∂ S met by the curve γ( β0 ) are the same as those met by the curve γ f k ( δj+1 ) and these curves are oriented in the same way.

We can apply Lemma 7.3 to obtain an essential arc δ j = sup δj+1 (F j ).

Let us study the properties of this curve.

First let us check that, for any element γ in aπ 1 (S) and any integer |k| ≤ N (l G (γ) + 1), the curves of the form γ f k (α i ) lie strictly on the right of the curve δ j . Fix such an element γ 0 in aπ 1 (S), such an integer k 0 and 1 ≤ i 0 ≤ b. As one of the endpoints of γ 0 f k0 ( αi0 ) lies on a connected component of ∂ S which is strictly on the right of β1 (hence of δ j ), it suffices to prove that γ 0 f k0 ( αi0 ) ∩ δ j = ∅. By definition of the arc δ j , it suffices to prove that the arc γ 0 f k0 ( αi0 ) lies strictly on the right of the arc δj+1 and of any arc of F j . By induction hypothesis, the arc γ 0 f k0 (α i0 ) lies strictly on the right of the arc δj+1 . It also lies strictly on the right of the curves of the form γ f k ( αi ) where 1 ≤ i ≤ b, |k| ≤ N (l G (γ) + 1), γ ∈ B c i and l G (γ) = j: the curve γ -1 γ 0 f k0-k (α i0 ) is disjoint from the curve αi , as |k 0 -k| ≤ N (l G (γ) + l G (γ 0 ) + 2) = N (l G (γ -1 γ 0 ) + 2) ≤ 3N l G (γ -1 γ 0 ), hypothesis on the curves αj (recall that these curves satisfy P(3N ), see the beginning of the proof of Proposition 7.1). For the same reason, the arc γ 0 f k0 (α i0 ) lies strictly on the right of the arcs of the form γ f k (α 0 i ) where 1 ≤ i ≤ b, |k| ≤ N (l G (γ) + 1), γ ∈ B i and l G (γ) = j. Finally, let us prove that the arc γ 0 f k0 (α i0 ) lies strictly on the right of the arcs of the form γ f k ( δ0 j+1 ) where |k| ≤ N l G (γ), γ ∈ Γ -{Id} and l G (γ) = j. Notice that the deck transformation γ -1 γ 0 belongs either to Γ or to π 1 (S)a -1 -aπ 1 (S)a -1 and that l G (γ -1 γ 0 ) = l G (γ) + l G (γ 0 ) > j. In both cases, the claim is true as the arc γ -1 γ 0 f k0-k ( αi0 ) is disjoint from δj+1 by induction hypothesis.

Let us see why, for any element γ in aπ 1 (S) and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( δ j ) lie strictly on the right of the curve δ j . Fix such an element γ 0 in aπ 1 (S) and such an integer k 0 . Here we distinguish the cases γ 0 ∈ aπ 1 (S) -aπ 1 (S)a -1 and γ 0 ∈ aπ 1 (S)a -1 . In the first case, notice that the curve γ 0 f k0 ( δ j ) is on the right of the curve γ 0 f k0 ( δj+1 ) by definition of δ j . Hence it suffices to prove that this last arc is strictly on the right of any arc in F j ∪ δj+1 . To do this, it suffices to prove that any arc in F j ∪ δj+1 is on the left of the arc γ 0 f k0 ( δj+1 ), which is easily done by using the induction hypothesis. Now suppose that γ 0 ∈ aπ 1 (S)a -1 . As usual, as one of the endpoints of the arc γ 0 f k0 ( δj )

is strictly on the right of the curve δj , it suffices to prove that γ 0 f k0 ( δj ) ∩ δj = ∅. To do this, it suffices to check that the image under γ 0 f k0 of any essential arc in F j ∪ δj+1 is disjoint from any arc in F j ∪ δj+1 which can be done without serious difficulty by using the induction hypothesis and the properties of the curves αi .

By construction, the curves of the form γ f k (α i ) with 1 ≤ i ≤ b, γ ∈ Γ ∪ π 1 (S)a -1aπ 1 (S)a -1 , l G (γ) = j lie on the left of the arc δ j . By induction hypothesis, as the arc δj+1 lies on the left of the arc δ j , the curves of the form γ f k (α i ) with 1 ≤ i ≤ b, γ ∈ Γ ∪ π 1 (S)a -1 -aπ 1 (S)a -1 , l G (γ) > j lie strictly on the left of the arc δ j .

Finally, let us check that, for any non-trivial element γ in Γ with l G (γ) ≥ j and any integer |k| ≤ N l G (γ), the curves of the form γ f k ( δ j ) lie on the left of the curve δ j . Fix such an element γ 0 ∈ Γ and such an integer k 0 . This results from the following facts.

1. The arc γ 0 f k0 ( δ j ) lies on the right of the arc γ 0 f k0 ( δj+1 ).

2. The arc δ j lies on the left of the arc γ 0 f k0 ( δj+1 ).

3. The arc γ 0 f k0 ( δj+1 ) is on the left of the arc δ j . With arguments similar to those used during Step 2, we then perturb the arc δ j to obtain an arc δj which satisfies the required properties.
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 5 Figure 5 -Notation for the proof of Theorem 1.11 Now, apply Proposition 7.1 with N = 2 2L+1 . We use notation from this proposition in what follows. Conjugating the homeomorphism f by h 0 , we can suppose that D = D 0 .

CFigure 6 -

 6 Figure 6 -image of a square which does not meet ∂D 0

Figure 7 - 1 .
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 2 Let D b = g-1 b (D 0 ) and denote by αi : [0, 1] → S the lift of α i such that αi ([0, 1]) ⊂ D b and the fundamental domain D b lies on the left of αi . Then, for any deck transformation γ ∈ π 1 (S), any indices 1 ≤ i = j ≤ b and any |k| ≤ N (l G (γ)+1), γ f k (α i )∩ αj = ∅. 3. For any non-trivial automorphism γ ∈ π 1 (S), any 1 ≤ i ≤ b and any |k|≤ N l G (γ), γ f k ( αi ) ∩ αi = ∅.Notice that, if the above properties hold for b = l, Proposition 7.1 is proved.For b = 0, there is nothing to prove.Suppose that the above property holds for b < l and let us prove this for b + 1. Fix N ≥ 1 and let N = 2N . Consider a family (α i ) 1≤i≤b of pairwise disjoint and pairwise non-homotopic essential arcs and a homeomorphism g b which satisfy P(3N ) = P(6N ). Let β0 = g-1 b (α b+1,0 ), where αb+1,0 is the lift of the arc α b+1,0 such that the fundamental domain D 0 lies on the left of the arc αb+1,0 .For any reduced words w and w in elements of G, denote by wπ 1 (S)w the set of automorphisms in π 1 (S) whose reduced representative starts with the word w and ends with the word w . Denote by a the element of the generating set G such that D b ∩ a(D b ) = β0 . It is also the element of the generating set G such that D 0 ∩ a(D 0 ) = αb+1,0 , as gb a = ag b .We will use the following fact repeatedly.Fact: For any automorphism γ ∈ π 1 (S), the fundamental domain γ(D b ) lies on the right of β0 if and only if γ ∈ aπ 1 (S).
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 9374 Figure 9 -Illustration of Lemma 7.3

  As any component in C is strictly on the left of α and of the αi 's, any point in int( S) close to such a component belongs to U ∩ n i=1 U i . Moreover, the components in C are contained in the closure of the same connected component of U ∩ n i=1 U i : they belong to the same connected component of ∂J 0 -( n i=1 αi ∪ α). Let us call J this connected component of U ∩ n i=1 U i . By Lemma 7.4, the set J is a Jordan domain. Hence its frontier inside int( S)

n→+∞

  +∞ and a sequence (k n ) n∈N of integers with |k n | ≤ N (l G (γ n ) + 1) such that, for any n, there exists a curve β among β0 and the αi 's such that γ n f kn ( β) ∩ β0 = ∅. Then, for any n, f kn (D b ) ∩ γ -1 n (D b ) = ∅. As the homeomorphism f has a fixed point in D b (otherwise we could build a nowhere vanishing vector field on the surface S, which is impossible), diam( f kn (D b )) ≥ d(D b , γ n (D b )).

  Moreover, the sequence (|k n |) n has to tend to +∞: otherwise, one of the sets of the form f l (D b ), with l in Z, would have infinite diameter as it would cross infinitely many sets of the form γ n (D b ). This contradicts the hypothesis lim n→+∞ diam( f n (D b )) n