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Non-linear position control of a pneumatic actuator
with closed-loop stiffness and damping tuning

ABRY Frederic1, BRUN Xavier1, SESMAT Sylvie1 and BIDEAUX Eric1

Abstract— This article proposes a new strategy for pneumatic
cylinder control using an innovative control synthesis model of
the system. A backstepping based control law is synthesized
to take advantage of the system two degrees of freedom and
a thorough tuning method of the closed-loop stiffness and
damping is provided.

I. INTRODUCTION

Pneumatic cylinders are recognized as cheap, clean and
safe actuators with a high power-to-weight ratio and dynamic
response. Traditionally employed as on/off devices in order
to perform very basic tasks, they most of the time do not
require more than a very simple open-loop control strategy.
The complexity and strong nonlinearity of their behavior and
the difficulty to obtain an accurate model have for a long
time prevented their use in more sophisticated applications.
Yet, in the past decades, the progress of modern control
theory, the enormous improvements of the microprocessor
performances and the use of very efficient servovalves have
made pneumatic actuators suited for most positioning opera-
tions, even those requiring high precision. The first strategies
proposed [1] were mostly based upon the linearization of
the model around a given steady state. Gain scheduling [2]
has been introduced to improve the performances, especially
when operating far from the central position. H∞ based
control algorithms have been developed [3] to take into
account errors caused by the model uncertainty and the
linearization. Finally, many non-linear control strategies have
been proposed: feedback linearization [4], sliding mode [5]
and backstepping [6] being the most efficient techniques used
so far.

One of the main particularity of a pneumatic cylinder lies
in its low stiffness. Depending on the application, it can be
seen as a drawback or a quality: a low stiffness means a
high compliance which can be an essential characteristic, in
medical applications [7] for instance, where it is required
for the patient’s security and comfort. On the other hand,
when precision and swift disturbances rejection is needed
(for example in aeronautical applications), the low stiffness
decreases the actuator performances and, thus, makes it a less
attractive alternative than the electro-mechanical actuators
and their very high stiffness. In the past decade, strategies
have been proposed to control the pneumatic stiffness of
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the cylinder [8] but studies regarding the actual closed loop
stiffness of the cylinder behavior have only been carried
out [7] in linear positioning control. So far, the proposed
multivariable non-linear control laws do not allow a precise
and simple tuning of the control stiffness.

In this paper, a control algorithm is designed using an
alternative state model of the cylinder and the backstepping
theory in order to simultaneously control the position and
pneumatic stiffness trajectories. An innovative closed loop
damping and stiffness tuning is proposed making this control
strategy easily implementable. Simulation results using a
more detailed model are then presented to validate the chosen
control law.

II. TECHNOLOGICAL CONTEXT

The proposed system consists of a symmetric in-line
pneumatic cylinder supplied by two independent servovalves.
The rod drives an inertial load which is submitted to heavy
disturbances.

Fig. 1. Technological system under consideration

III. SIMULATION MODEL

A. Mechanical model

The mechanical behavior of the load is given by:

M.
dv

dt
= Fpneu − b.v − Fext (1)

where v stands for the moving mass velocity, b the cylinder
and load viscous friction coefficient, Fext the applied dis-
turbances and Fpneu the pneumatic force provided by the
cylinder. The latter can be computed as follows: Fpneu =
S.(pP − pN ) where pP and pN stand respectively for the
pressure in chambers P and N (see fig. 1) and S for the
piston area.

B. Thermodynamical model

In order to describe the thermodynamical behavior in each
chamber, the following model [9], derived from the mass and
energy conservation laws, has been chosen:
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Chamber P:

dpP
dt

=
γ

VP
.(r.Tqmp.qmP − pP .S.v)

+
γ − 1

VP
.λ.ΩP .(TS − TP )

dTP
dt

=
TP

pP .VP
.
[
(1− γ).S.v.pP + r.(γ.Tqmp − TP ).qmP

+λ.ΩP .(TS − TP ).(γ − 1)
]

ΩP (y) = S + π.d.(
l

2
+ y + l0)

VP (y) = V0 + S.y

Chamber N:

dpN
dt

=
γ

VN
.(r.Tqmn.qmN + pN .S.v)

+
γ − 1

VN
.λ.ΩP .(TS − TN )

dTN
dt

=
TN

pN .VN
.
[
(γ − 1).S.v.pN + r.(γ.Tqmn − TN ).qmN

+λ.ΩN .(TS − TN ).(γ − 1)
]

ΩN (y) = S + π.d.(
l

2
− y + l0)

VN (y) = V0 − S.y
with γ the ratio of specific heat, TS the ambient

temperature, λ the heat transfer coefficient, r the ideal gas
constant, d the cylinder diameter, l the cylinder stroke, l0
the cylinder dead length, qmP and qmN the mass flow
rates defined as positive entering the chambers P and N,
TP and TN the respective temperatures in the P and N
chambers, VP and VN the respective volumes of the P and

N chambers, V0 = S.(l0 +
l

2
), the cylinder half volume.

Tqmp and Tqmn are the respective temperatures of the gaz
entering or leaving the chambers P and N :

Tqmp =

{
TP if qmP < 0,

TS if qmP > 0
Tqmn =

{
TN if qmN < 0,

TS if qmN > 0
(2)

This model takes into account the heat exchanges between
the chambers and their surroundings through the varying
surface areas ΩP and ΩN .

C. Servovalves model

Theoretical or practical considerations show that, assum-
ing the supply and exhaust pressures to be constant, the
servovalve mass flow rate depends on both the voltage
control and the chamber pressure. A simulation model [10]
based on the theoretical mass flow rate of an ideal gas
through a converging nozzle is chosen. The servovalve’s
orifice is computed as being directly proportional to the
control voltage uP or uN and a second order dynamic is
added to simulate the servovalve bandwidth and damping.

IV. MODEL FOR CONTROL SYNTHESIS

Though quite accurate and representative of the actual
thermodynamical behavior of both chambers, the previously
proposed model is far too complex to be used to synthesize
an efficient control law. Therefore, the next step is to choose
a simpler representation of the cylinder.

A. Simplified model

The classical way to simplify the model is to first adopt a
polytropic law and then consider the temperature variation in
both chambers to be negligible. This leads to the following
reduced order model [11]:

dpP
dt

=
k.r.Ts
VP

.(qmP −
S

r.Ts
.pP .v)

dpN
dt

=
k.r.Ts
VN

.(qmN +
S

r.Ts
.pN .v)

(3)

where k is the polytropic coefficient chosen experimentally.
Finally, the external force is regarded as an unknown

disturbance to be rejected by the control. It is thus not
considered in the model for the control synthesis:

dv

dt
=

1

M
.[S.(pP − pN )− b.v]

dy

dt
= v

(4)

B. Alternative input and state vectors

The previously described model leads to the choice of the
following state variables: pP , pN , v and y.

Since the system have two independent inputs qmP and
qmN , it offers two degrees of freedom. Therefore, in addition
to the position, the MIMO control strategies generally [5]
propose to choose one of the chamber pressures as an output.
A planned pressure trajectory can then be imposed to the
system, which can offer some improvements to the energy
consumption. Still, the process is somehow indirect and not
entirely conclusive. In this paper, a different state vector
which actually exploits the second degree of freedom and
justifies the use of two independent servovalves is chosen.
Therefore the pneumatic force (Fpneu) and stiffness (Kpneu)
are controlled instead of the chambers pressures.

Thus, the first step is to choose the following state vector:
X = [y v Fpneu Kpneu]′ where [8]:

Kpneu = (
pP
VP

+
pN
VN

).k.S2 (5)

The model for control synthesis becomes:

dy

dt
= v

dv

dt
=
−b.v + Fpneu

M

dFpneu

dt
= −Kpneu.v +B1.qmA

dKpneu

dt
=
A1.Kpneu.y.v −A2.Fpneu.v +B2.qmH

VN .VP
(6)

where:

A1 = 2.S2.(k + 1) A2 = S2.k.(k + 1)

B1 = S.
Ts.k.r

V0
B2 = S2.k2.Ts.r
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qmH = qmT −

S.y

V0
.qmA[

qmA

qmT

]
= Λ(y).

[
qmP

qmN

] (7)

with the following transform matrix:

Λ(y) = V0.

 − 1

VP

1

VN
1

VP

1

VN

 (8)

Thus, the system shows two independent virtual inputs
qmA and qmT which control two different behaviors of the
cylinder. qmA is the active mass flow rate which actually
generates a pressure difference between the two chambers
and therefore an effort which ultimately can put the carried
mass into motion. On the contrary, qmT , the pressurization
mass flow rate, does not induce a pneuamtic force and can
only lead to a symmetric pressurization of the chambers. It
has to be noted that the pneumatic stiffness Kpneu dynamics
depend on both qmA and qmT .

This rewriting of the model, can somehow be compared
to the Park Transform [12] in electric motor control (which
involves distinguishing the two current components respec-
tively generating the flux and the torque).

Finally, the proposed equations of state show a strict feed-
back form which is particularly suited for control synthesis,
especially using the backstepping theory.

V. BACKSTEPPING CONTROL SYNTHESIS

A. Mass flow rate generation

In the previously proposed model, the mass flow rates have
been considered as the input vector. Obviously, those are
not directly controllable, the actual outputs of the control
algorithm have to be the servovalves voltage inputs.

Mostly two distinct strategies are proposed in the litera-
ture, the first one consists in using a theoretical model like
the one previously cited in III-C. Mass flow rate parameters
are then estimated using the supplier data sheet or by exper-
imental tests. The second technique consists in a thorough
experimental evaluation of the servovalve mass flow rate
for different voltage controls and chamber pressures [13].
From the results is derived a three dimensional table giving
the flow rate for each couple pressure - control voltage.
In order to reduce heavy computation load, a polynomial
function is derived from the table. The results have proven
to be fairly precise but since computational capacities have
significantly increased since this method has been proposed,
there is no need for this approximation anymore. Therefore,
in this paper, an experimental table is used to directly
derive the control voltage by a simple weighted mean of
the surrounding values. Servovalves dynamics are neglected
since they are supposed to be very fast compared to the
pressure dynamics.

B. Control law synthesis - position trajectory tracking

The first part of the control law is defined to ensure the
tracking of a trajectory defined by jd the desired jerk and its
successive integrals ad, vd and yd.

z1 = y − yd is defined as the position error, its derivative
can be computed as: ż1 = v − vd

At this point, v is viewed as a virtual input and has to be
chosen to cancel and stabilize the error z1:

v = vd − C1.z1 (9)

with C1 a strictly positive constant. To assess the global
stability of the subsystem, the following Lyapunov function:

V1 =
z21
2
≥ 0 is chosen. Its derivative can be computed:

V̇1 = −C1.z
2
1 ≤ 0 (10)

Its negativity ensures the stability of the subsystem, the next
error variable is defined as: z2 = v− vd +C1.z1. It leads to:

ż1 = z2 − C1.z1 (11)

ż2 =
Fpneu − b.v

M
− ad + C1.z2 − C2

1 .z1 (12)

A new Lyapunov candidate V2 = V1 +
z22
2
≥ 0 and the

following pneumatic effort control are defined:

Fpneud = M.(ad − z2.(C1 + C2) + z1.(C
2
1 − 1)) + b.v (13)

with C2 a strictly positive constant. If Fpneu = Fpneud is
ensured, then the error derivative can be computed as ż2 =
−z1−C2.z2 which eventually leads to V̇2 = −C1.z

2
1−C2.z

2
2 .

The negativity of the derivative ensures the subsystem global
stability. The next error variable is then introduced:

z3 = Fpneu − Fpneud (14)

It leads to:

ż2 =
z3
M
− z1 − C2.z2 (15)

ż3 = B1.qmA −Kpneu.v −M.jd −
b.(Fpneu − b.v)

M

+M.(C3
1 − 2.C1 − C2).z1 + (C1 + C2).z3

+M.(1− C2
1 − C2

2 − C1.C2).z2

(16)

A third Lyapunov function can be defined as:

V3 = V2 +
z23
2

(17)

If the following active mass flow rate control is chosen:

qmA = f0 + f1.z1 + f2.z2 + f3.z3 (18)

where:

f0 =
M2.jd +M.Kpneu.v − v.b2 + Fpneu.b

M.B1

f1 = −M.(C3
1 − 2.C1 − C2)

B1

f2 =
M2.(C2

1 + C1.C2 + C2
2 − 1)− 1

M.B1

f3 = −C1 + C2 + C3

B1

(19)
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with C3 a strictly positive constant, then V̇3 = −C1.z
2
1 −

C2.z
2
2 −C3.z

2
3 ≤ 0 and the error will asymptoticly converge

to zero.
In this first part, a virtual mass flow-rate qmA which

ensures that the cylinder will follow the desired trajectory
has been computed. At this point, no choice has been made
regarding the qmT control.

C. Pneumatic stiffness trajectory tracking

As previously mentioned the position trajectory tracking
only uses one of the system two degrees of freedom. Con-
sequently, a control law can be synthesized to ensure the
tracking of a given pneumatic stiffness trajectory.
A new error variable can therefore be defined: z4 = Kpneu−
Kpneud. Its derivative can be computed as follows:

ż4 =
A1.Kpneu.v.y −A2.Fpneu.v +B2.qmH

VN .VP
− K̇pneud

(20)

A final Lyapunov function has to be defined: V4 = V3 +
z24
2
≥ 0 and the following pressurization mass flow rate

control is chosen:

qmH =
1

B2
.
[
A2.Fpneu.v + VN .VP .(K̇pneud

− C4.z4)

−A1.Kpneu.v.y
] (21)

with C4 a strictly positive constant. It leads to: V̇4 =
−C1.z

2
1 −C2.z

2
2 −C3.z

2
3 −C4.z

2
4 ≤ 0 which means that the

cylinder pneumatic stiffness will track the trajectory defined
by K̇pneud

and its integral Kpneud.
The pneumatic stiffness trajectory tracking leads to a vir-

tual mass flow rate qmH control which depends on both qmA

and qmT , the first one being computed to track the position
trajectory. From (7), the actual mass flow rate controls can
be calculated through the following relationships:

qmT = qmH +
S.y

V0
.qmA (22)[

qmP

qmN

]
= Λ−1(y).

[
qmA

qmT

]
(23)

The whole control law (fig. 2) requires the measurement
of both pressures pP and pN as well as the piston position
y and velocity v .

VI. PARAMETERS TUNING

The tuning of non-linear control strategy is always a
complex task since the control parameters seldom show an
obvious physical meaning. It is usually done by trial and
error which is time consuming, complex and inaccurate,
often preventing the algorithm from being used in industrial
applications. In this section is proposed a new simple yet
very efficient way to choose the parameters by defining the
cylinder behavior using linear concepts.

A. Definition of the closed-loop stiffness

The closed-loop stiffness is defined as Kcl = −d
∑
F

dz1
,

where
∑
F stands for the sum of the forces applied on the

piston according to the control synthesis model (6) and z1
the previously defined position error.

Kcl = −dFpneu

dz1
− d(−b.v)

dz1

= −M.
d
(
−z2.(C1 + C2) + z1.(C

2
1 − 1)

)
dz1

(24)

and, since z2 = v − vd + C1.z1:

Kcl = −M.
d
(
−C1.z1.(C1 + C2) + z1.(C

2
1 − 1)

)
dz1

(25)

And finally:

Kcl = M.(C1.C2 + 1) (26)

It has to be noted that Kcl and Kpneu, while both having
the dimension of a stiffness, represent two independent con-
cepts: Kpneu is the pneumatic stiffness, a physical intrinsic
property of the cylinder which is chosen as a state variable
to be controlled while Kcl is the closed-loop stiffness, a
parameter of the behavior of the system controlled by the
previously proposed algorithm, it does not depends on the
position of the piston.

B. Definition of the closed-loop damping

Likewise, the closed-loop damping can be defined as

Bcl = −d
∑
F

dv̄
with v̄ = v − vd.

Bcl = −
(
dFpneu

dv̄
− b.v

dv̄

)
(27)

Since v = v̄ + vd,
dv

dv̄
=
dv̄

dv̄
+
d(vd)

dv̄
= 1

Bcl = −
d
(
M.(ad + z1.(C

2
1 − 1)− z2.(C1 + C2)

)
dv̄

= −d(−M.z2.(C1 + C2))

dv̄

(28)

And finally:

Bcl = M.(C1 + C2) (29)

C. Computation of the control law parameters

For a given closed-loop stiffness Kcl and closed-loop
damping Bcl, the corresponding C1 and C2 parameters have
to be computed. From (26) the following can be derived:

C2 =
Kcl −M
C1.M

(30)

The global stability of the system requires C2 > 0 which
leads to Kcl > M . From (29) and (30) can be derived:

M.C2
1 −Bcl.C1 +Kcl −M = 0 (31)
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Solutions of this second order equation have to be real
and positive, therefore: Bcl ≥ 2

√
M.(Kcl −M) There is

only one practical solution because C1 and C2 values are
interchangeable:

C1 =
Bcl +

√
B2

cl − 4.M.(Kcl −M)

2.M

C2 =
Bcl −

√
B2

cl − 4.M.(Kcl −M)

2.M

(32)

The two conditions: Bcl ≥ 2
√
M.(Kcl −M)

Kcl > M
(33)

ensure the global stability of the system.

D. Closed-loop regulation behavior

According to (13), (26) and (29), the pneumatic force
control provided by the backstepping based algorithm can
be expressed as follows:

Fpneud = −Kcl.z1 −Bcl.v̄ +M.ad + b.v (34)

The closed loop behavior of the cylinder in regulation
when submitted to an unknown external force Fext can be
described as:

M.
dv

dt
=
∑
F = Fpneu − b.v − Fext (35)

For a constant set-position, that is for vd = ad = jd = 0, the
approximation Fpneu = Fpneud is made:

M.
dv

dt
= −Kcl.z1 −Bcl.v̄ − Fext (36)

Since vd = 0, v̄ = v, v = ż1.

M.z̈1 = −Kcl.z1 −Bcl.ż1 − Fext (37)

This study neglects the error z3 defined by (14) and therefore
has absolutely no value as a stability proof but merely
provides information about the algorithm tuning. The piston
response to an external disturbance in the Laplace domain
can be expressed as follows:

Hreg =
z1
Fext

= − 1

M.s2 +Bcl.s+Kcl
(38)

This transfer function corresponds to a classical spring-mass
system with friction. The gain G, natural frequency ωn and
damping ratio ξ of the second order transfer function can be
computed:

G = − 1

Kcl
; ωn =

√
Kcl

M
; ξ =

Bcl

2.
√
Kcl.M

(39)

Which leads to the following tuning rules:
• the condition for a non-oscillatory response of the piston
to an external force is: Bcl ≥ 2.

√
Kcl.M

• the steady-state error can be computed as ∆y = −Fext

Kcl
therefore increasing the system closed-loop stiffness will
reduce the static error

• the damping ratio is proportional to Bcl. This implies that,
in the non-oscillatory response case, the convergence time
will be increased by a high closed-loop damping, which
traduces the control ability to slow down the piston without
altering the steady-state position.

Fig. 2. Complete principle of the control strategy

E. Remaining parameters

A thorough physical analysis of the C3 and C4 parameters
cannot be provided in this paper, it has to be the object of
a dedicated study. Still, a simple observation of (18) and

(21) shows that they respectively affect the derivatives
dqmA

dz3

and
dqmH

dz4
. In others words, the settings of C3 and C4 will

respectively define the levels of the pneumatic effort and
pneumatic stiffness error feedback.

F. Simulation results

To illustrate those results, a simulation is performed using
the model proposed in section III. The piston is controlled
to move to a given position and stay still. An external force
step (non represented for the sake of brevity) of 20 % of
the cylinder maximum pneumatic force is applied at t =
2.5s until t = 7.5s. A constant pneumatic stiffness trajectory
is chosen and the piston behavior is simulated for three
different tunings (table. I). Position and pneumatic stiffness
responses can be seen in fig. 3 and fig. 4.

Trial #1 #2 #3
Kcl [N.m−1] 1.105 1.105 5.105

Bcl [N.s.m−1] 2.5.103 7.5.103 5.5.103

ξ 1.02 3.06 1.00
ωn [rad.s−1] 8.17 8.17 18.26

TABLE I

The initial displacement shows the expected position tra-
jectory tracking in the three cases but the response to the
external disturbance differs according to the chosen tuning.
The first trial is performed with a low closed-loop stiffness
and the corresponding minimal closed-loop damping. Con-
vergence is quick and with no oscillations on the position.
The second trial is made with the same closed-loop stiffness
but a higher closed-loop damping, the piston displacement
is slowed-down and convergence time is greatly increased in
accordance with the higher value of the damping ratio ξ but
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the position static error is almost unchanged (the small dif-
ference being the result of the pneumatic force tracking error
neglected in section VI). Finally, the last trial shows the result
of a five times higher closed-loop stiffness: the static error
is proportionally reduced. Results are summarized in table

II. Expected static errors are computed as ∆y = −Fext

Kcl
.

Expected settling times (time necessary for the piston to
reach and remain within 5% of its steady state position)
are computed using a classical algebraic approximation for
second order systems.

�*y1
��
y2

�*y3

Fig. 3. Position response of the piston for various tunings

�*Kpneu1

HY

Kpneu2

@
@R

Kpneu3

Fig. 4. Pneumatic stiffness response of the cylinder for various tunings

Trial #1 #2 #3
Expected static error [mm] 10 10 2
Simulated static error [mm] 10.13 10.45 2.07
Expected settling time [s] 0.62 2.28 0.28
Simulated settling time [s] 0.579 2.167 0.241

TABLE II

The provided simulations have showed the efficiency of
the control strategy and validated the tuning method. The
simulated cylinder non-linear behavior has proved to be
very close to the provided linear approximation and the
closed-loop stiffness and damping parameters are precisely
respected.

VII. CONCLUSION

In this paper a transformation of the traditional pneumatic
cylinder control synthesis model has been introduced. It
makes easier and more intuitive the synthesizing of non-
linear control laws taking advantage of the system two
degrees of freedom.

A study of the backstepping based algorithm has led
to the development of an innovative tuning strategy which
allows the computation of the control parameters using linear
concepts such as stiffness and damping. This development
simplifies the control law implementation and therefore
makes non-linear position control of pneumatic cylinder
more adapted to engineering problems.

The next step of this study will provide experimental
results: a test-bench using an electric linear motor as a dis-
turbance generator (currently in the final stage of assembly)
will offer the possibility to assess the controlled pneumatic
cylinder response when submitted to swift perturbations.

The remaining parameters, which are not computed by
the proposed strategy, have to be studied in the same way in
order to offer a complete solution for the algorithm tuning.

A study also needs to be conducted on the pneumatic
stiffness trajectory and how it has to be chosen depending on
the objectives of the control: strong disturbances rejection or
fast response to a displacement set-point value.

Finally, a theoretical analysis could demonstrate the sys-
tem global stability when submitted to a bounded distur-
bance.
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