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A NON LOCAL VARIATIONAL FORMULATION FOR THE

OPTIMIZATION OF TONE MAPPING OPERATORS ∗

PRAVEEN CYRIAC , THOMAS BATARD , AND MARCELO BERTALMÍO †

Abstract. Due to technical limitations, common display devices can only reproduce images
having a low range of intensity values (dynamic range). As a consequence, the dynamic range of
images encoding real world scenes, which is large, has to be compressed in order for them to be
reproduced on a common display, and this technique is called tone mapping. A good tone mapping
operator should make the image on the screen be perceived as the original scene, but the main issue
is that the quality of a tone mapping operator may vary greatly depending on the image attributes
considered, and this might influence the way to design the tone mapping operator. In this paper,
we address this issue by showing that, for a large class of metrics comparing perceptual attributes
between images, it is possible to improve any tone mapping operator with respect to these metrics.
The key idea of our approach is first to consider a given metric as a non local operator, then to
formulate the problem of making the output image perceptually closer to the real world scene with
respect to this metric as a minimization problem. Experiments on a particular metric tested with
different tone mapping operators and images validate our approach.

Key words. Tone mapping, non local variational problem, perceptual distance, just noticeable
difference

1. Introduction.

1.1. On tone mapping operators.

1.1.1. The tone mapping challenge. The vast range of light intensities of the
real world span many orders of magnitude. Even though the Dynamic Range (DR)
of the Human Visual System (HVS) is only 3-4 orders of magnitude, nonetheless it is
capable to handle intensities from about 10−6 to 108 cd/m2 [21], due to the fact that
it continuously adjusts to the light in any viewed scene. As the DR of most cameras
is only 2-3 orders of magnitude, they tend to fail in capturing the details and contrast
that we perceive with the naked eye.

The most popular approach to capture the real world luminance is to create
High Dynamic Range (HDR) images through the fusion of multiple Low Dynamic
Range (LDR) images generated by a standard camera shooting the scene with varying
exposure time [6]. However, HDR images can not be directly reproduced on common
displays since their ranges usually span only two orders of magnitude, meaning that
they can only reproduce LDR images.

Hence, a range compression of HDR images has to be performed in order for them
to be reproduced on common displays, and this technique is called tone mapping. In
particular, a good tone mapping operator (TMO) should produce in anyone watching
the display a perception of details as close as possible to the one he/she would have
had by observing the original scene directly [27].

1.1.2. Overview of tone mapping operators. Tumblin and Rushmeir [25]
formally introduced the problem of tone mapping to the computer graphics field. The
TMO they propose aims at transforming the real world luminance into the luminance
generated by the display device. Since then, many TMOs have been proposed, and
can be classified as global or local approaches.
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Most of global TMOs consist in applying a compression curve to the image lev-
els, based on psychovisual laws. Besides Tumblin and Rushmeir [25] who use Stevens’
law, the Naka-Rushton formula is used in ([21],[23],[13]), Ferwerda’s model in [12], and
Weber-Fechner’s law in ([2],[27]) to name a few. In particular, Reinhard et al. [23]
developed a TMO based on the idea that tone mapping is similar to the adaptation
process in the HVS, and used a modification of the Naka-Rushton equation. Drago
et al. [7] introduced an adaptive logarithmic curve using a collection of logarithmic
functions ranging from log2 to log10, the choice of the logarithm base depending on
the luminance values. Mantiuk et al. [18] developed a piece-wise linear tone curve to
achieve DR compression, whose parameters are chosen so as to minimize the difference
between the estimated response of the HVS for the resultant image and the original
image. Global TMOs are in general very fast and do not introduce halos or artifacts,
but tend to produce low contrast images.

Local TMOs achieve DR compression by modifying each pixel based on its neigh-
borhood. Even though they are computationally more expensive than global ap-
proaches, they produce higher contrast images. However they have the tendency to
produce artefacts and halos [8][10][16].

More recently, Ferradans et al. [11] proposed a two stage TMO combining both
approaches. The first stage is a global tone mapping method that implements vi-
sual adaptation by combining the Naka-Rushton equation and Weber-Fechner’s law.
The second stage performs local contrast enhancement, based on a variational model
inspired by colour vision phenomenology.

1.1.3. Evaluation of tone mapping operators. The most straightforward
way to evaluate a TMO is to perform a subjective evaluation, where observers rate
the tone mapped image by comparing with the reference HDR image displayed on a
HDR screen [14], or they simply evaluate the tone mapped image by itself, without any
reference [29]. Subjects are asked to consider the image attributes such as brightness,
contrast, colors, and naturalness, as well as overall quality. But subjective evaluation
is limited in many ways: firstly, it is often time consuming and expensive; secondly,
it is difficult to incorporate it in the design of tone mapping algorithms. This points
out the importance of objective evaluation of TMOs.

An accurate objective evaluation should mimic the subjective evaluation described
above, so it requires the use of a perceptual metric between images of different dynamic
range. An objective tone mapping evaluation tool has been proposed by Smith et al.
[24], based on the measure of suprathreshold contrast distortion between the source
HDR image and its tone mapped LDR version. However, the contrast measure is local,
meaning that its sensitivity is limited to high frequency details. More recently, Aydin
et al. [3] proposed a dynamic range independent metric (DRIM) whose contrast
measure is not limited to the values of neighboring pixels. Moreover, the metric
predicts three type of distortions at each pixel between the two images it compares:
loss of visible features, amplification of invisible features, and reversal of contrast
polarity (see Sect. 3.1 for a more detailed description of the metric DRIM).

1.2. Contribution. The quality of the TMO may vary greatly from one metric
to another. For this reason, we propose in this paper a new approach for tone mapping
that takes into account the metric that will be used for the evaluation. In such a way,
we are able to improve existing TMO with respect to a given metric. The aim of this
paper is two-fold:

1. We develop a general framework for reducing perceptual distance between
images. Dealing with a generic perceptual metric met and images H, L0 of any
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dynamic range, our approach for reducing the perceptual distance between H and L0

is to minimize functionals of the form

(1.1) argmin
L∈C∞(Ω;[0,1])

∫

Ω

Φ(met(L,H)(x)) dx

where Φ: Rn −→ R
+, through gradient descent algorithms of initial condition L0.

Then the main task to perform the algorithm is to construct a discrete approximation
of the functional derivative

(1.2)
∂met(L,H)(x)

∂L(y)

Our purpose is to introduce perceptual uniformity since the discretization is made
on intensity values and not spatial coordinates. More precisely, we make use of the
concept of Just Noticeable Difference (JND).

2. We apply the general framework described in (1.1). to the optimization of
TMOs assuming that H is a HDR image, the initial condition L0 is a tone mapped
version of H and the metric met compares images of different dynamic range. In
this paper, we illustrate our approach with the metric DRIM [3]. More precisely, we
consider the following particular cases of (1.1)

(1.3) argmin
L∈LDR(Ω)

∫

Ω

‖DRIM(L,H)(x)‖k dx

where k ∈ R
∗. We evaluate our method by comparing the initial distance and distor-

tions map (see details in Sect.3.1) with the ones of the output.

This paper is organized as follows. In Sect. 2, we formulate the problem of reduc-
ing a perceptual distance between images as a non local variational problem of the
form (1.1). We first give the expression of the gradient of the functional to minimize in
the continuous setting. Then, we provide an insight into the expression of the discrete
gradient. In Sect. 3, we present an application of this general formulation to TMO
optimization. We first describe the perceptual distance DRIM used for evaluating
TMO. Then, we give explicit expressions of the discrete gradients of the functionals
(1.3) from a discrete approximation of the functional derivative (1.2) relatively to the
metric DRIM. We test the corresponding gradient descent algorithms on several tone
mapped images in order to validate our approach.

2. Reducing the perceptual distance between two images.

2.1. Perceptual distance as a non local operator. Many tasks in image
processing and computer vision require a validation by comparing the result with the
original data, e.g. optical flow estimation, image denoising, tone mapping. Whereas
measures based on pixel-wise comparisons (e.g. MSE, SNR, PSNR) are suitable to
evaluate image denoising and optical flow estimation algorithms, they are not relevant
to evaluate tone mapping since an accurate measure of the quality of a TMO should
involve perceptual concepts, e.g. color sensation and detail visibility (contrast). This
leads us to the following definitions.

Definition 2.1 (metric). Let L,H : Ω −→ R be two images. We call metric an
operator met such that met(L,H) is of the form met(L,H) : Ω −→ R

n, n ≥ 1. We
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consider the functional partial derivatives of met, i.e.

(2.1)
∂met(L,H)(x)

∂L(y)
: = lim

ǫ→0

met(L+ ǫδy, H)(x)−met(L,H)(x)

ǫ

(2.2)
∂met(L,H)(x)

∂H(y)
: = lim

ǫ→0

met(L,H + ǫδy)(x)−met(L,H)(x)

ǫ

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
We say that met is

(i) pixel-wise if ∀x, y ∈ Ω, y 6= x, the quantities (2.1), (2.2) vanish.
(ii) non local if ∀x ∈ Ω, ∃N (x) ∋ x,N (x) 6= {x}, ∃y 6∈ N (x) s.t. the quantities
(2.1), (2.2) do not vanish.

In this context, we can classify image quality measures into two categories. The
set of pixel-wise metrics includes MSE, PSNR and SNR measures. Indeed, the terms
met(L + ǫδy, H)(x) − met(L,H)(x) and met(L,H + ǫδy)(x) − met(L,H)(x) in for-
mulae (2.1), (2.2) vanish for y 6= x since such quantities only depend of the values
L(x) and H(x). The second category gathers the metrics that are non local. This
category contains the perceptual metrics since the perceptual difference at each pixel
requires the knowledge of the intensity values on a large neighborhood of this pixel.
This category can actually be divided into two sub-categories: the set of metrics that
compare images of same dynamic range (see e.g. [5] for LDR images, [15],[19] for
HDR images, and [26] for images of any dynamic range), and the set of metrics com-
paring images of different dynamic range (see e.g. [24]). The metric DRIM [3] belongs
to both sub-categories since it is independent of the dynamic range of the images it
compares.

Definition 2.2 (distance). A distance associated to the metric met is an
energy E of the form

(2.3) E : (L,H) 7−→

∫

Ω

Φ(met(L,H)(x)) dx

for some map Φ: Rn −→ R
+.

We say that the distance E is pixel-wise, resp. non local if the associated metric
is pixel-wise, resp. non local.

2.2. Gradient descent algorithm in the continuous setting. From now
on, we treat the problem of minimizing the distance E between two images. Given
an image H, we consider the following variational problem

(2.4) argmin
L∈C∞(Ω;[0,1])

E(L,H)

Proposition 2.3. Assuming that met is continuous, bounded, and Φ is contin-
uous, the variational problem (2.4) has a solution.

Proof. Under the assumption of the Proposition, the energy E is bounded since
the domain Ω of an image is a compact subset of R2. Moreover, the set C∞(Ω; [0, 1])
being closed, we deduce that there exists a function L∗ ∈ C∞(Ω; [0, 1]) (not necessar-
ily unique) solution of the variational problem (2.4).
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Proposition 2.4. Assuming that met and Φ are differentiable, the functions L
which are critical points of the energy

(2.5) EH : L 7−→ E(L,H)

satisfy
∫

Ω

δΦ

Å

met(L,H)(x);
δmet(L,H)(x)

δL(y)

ã

dx = 0 ∀y ∈ Ω

Proof. The functional EH being differentiable on the whole set C∞(Ω; [0, 1]), its
critical points are the functions L where its gradient ∇EH vanishes.

Let ψ : Ω −→ R be a compact support function. We compute the differential δE
of the energy E at a function L in the direction ψ. We have

δEH(L;ψ) = δ E((L,H); (ψ, 0))

=

∫

Ω

δ (Φ ◦ met) ((L,H); (ψ, 0))(x) dx

=

∫

Ω

δΦ (met(L,H)(x); δ met ((L,H); (ψ, 0))(x)) dx

The term

δ met ((L,H); (ψ, 0))(x)

is the differential of the functional L 7−→ met(L,H)(x) in the direction ψ, and is
defined by

(2.6) δmet ((L,H); (ψ, 0))(x) =

∫

Ω

∂met(L,H)(x)

∂L(y)
ψ(y) dy

where the definition of the term

∂met(L,H)(x)

∂L(y)

is given in formula (2.1). Finally we have

δEH(L;ψ) =

∫

Ω2

δΦ

Å

met(L,H)(x);
δmet(L,H)(x)

δL(y)

ã

ψ(y) dx dy

At last, as ψ has compact support, δEH(L;ψ) = 0 =⇒

(2.7)

∫

Ω

δΦ

Å

met(L,H)(x);
δmet(L,H)(x)

δL(y)

ã

dx = 0 ∀y ∈ Ω

The gradient of the functional EH at the function L is the map

(2.8) ∇EH(L) : y 7−→

∫

Ω

δΦ

Å

met(L,H)(x);
δmet(L,H)(x)

δL(y)

ã

dx
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Due to the lack of mathematical properties of the non local operators met encod-
ing perceptual metrics, it is hard to establish accurate numerical schemes for reaching
solutions of the variational problems (2.4). For this reason, we deal in this paper with
the gradient descent algorithm, since it is applicable to a large class of functionals.
As the variational problems (2.4) are minimization problems under constraints, we
adopt a projected gradient descent approach

(2.9) Ln+1 = P (Ln − αn∇EH(Ln)), L|n=0 = L0

where P denotes the projection onto the space C∞(Ω; [0, 1]).
We would like to point out that the gradient descent (2.9) might converge towards
critical points L∗ that are not global minima. However, we have EH(L∗) < EH(L0)
meaning that our method does reduce the perceptual distance of L0 with respect to
H.

2.3. The discrete gradient descent algorithm. The main task to compute
a discrete approximation of the gradient (2.8) is to compute accurate discrete approx-
imations of the functional derivative

∂met(L,H)(x)

∂L(y)
: = lim

ǫ→0

met(L+ ǫδy, H)(x)−met(L,H)(x)

ǫ

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
Our proposal is to make use of central differences of the form

(2.10)
∂metD(L,H)(a, b)

∂L(i, j)
: =

met(L+ ǫ1 δ(i,j), H)(a, b)−met(L− ǫ2 δ(i,j), H)(a, b)

2 d(L+ ǫ1 δ(i,j), L− ǫ2 δ(i,j))

for some well-chosen ǫ1, ǫ2, and where d(L+ǫ1 δ(i,j), L−ǫ2 δ(i,j)) measures a difference
between the two images L+ ǫ1 δ(i,j) and L− ǫ2 δ(i,j). A straightforward choice would
be to impose ǫ1, ǫ2 to be constant with respect to the intensity values of L and the
denominator to be ǫ1 + ǫ2, however we claim that perceptual uniformity should be
involved since the increments are done on the intensity values.

2.3.1. On perceptual uniformity. In the domain of psychophysics, the Just
Noticeable Difference (JND) is the smallest difference ∆I in the intensity of a stimulus
at which a human is able to perceive a difference between a uniform intensity I and
a superimposed intensity I +∆I.

The Weber’s law, named after the German physician E.H.Weber, relates the JND
with the intensity of the stimulus according to the formula

(2.11)
JND

I
= k

for some constant k > 0. Note that k varies with the natur of the stimulus. Regarding
perception, visual experiments conducted later on by others showed that the Weber’s
law holds for a large range of light intensity I. However, it is a fact that the relation
does not hold for low-intensity values.

The luminance, denoted by Y , is a measure of the perceived light and is defined
as the radiance (light intensity reaching the retina) weighted by spectral sensitivity
functions. However the space Y is not perceptually uniform in the sense that the
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difference between two luminance values is not proportional to the difference of light
intensity observed. In 1976, the CIE introduced lightness as the quantity

(2.12) L∗ =























903.3
Y

Yn
if

Y

Yn
≤ 0.008856

116

Å

Y

Yn

ã1/3

− 16 if
Y

Yn
> 0.008856

where Yn is the highest luminance value of the scene. The quantity Y/Yn is called
relative luminance. The space L∗ is perceptually uniform, and has a range of
0 to 100. In particular, a difference of 1 in L∗ approximates pretty well 1 JND. Note
that when scaled to the range 0...1, L∗ can be approximated by the 0.4-power of the
relative luminance, i.e. we have the relation

(2.13) 0.01L∗ ≃

Å

Y

Yn

ã0.4

When shooting a scene, a digital camera captures the light intensity from which it
encodes R,G,B values. Standard digital cameras also perform gamma correction:

(2.14) R′ = R
1

γ G′ = G
1

γ B′ = B
1

γ

Assuming that these values are encoded in the sRGB color space (which is the stan-
dard color space used in the broadcast and computer industries), γ is approximately
2.2. Gamma correction was introduced to compensate the non-linearity of the CRT
displays. Even though CRTs have become obsolete, gamma correction is still used for
efficient coding, i.e. to allocate more bits to encode the low intensity regions (where
the HVS is more sensitive to changes) and less bits for bright regions. Then the
relative luminance Y/Yn perceived at a monitor displaying the image is given by

(2.15)
Y

Yn
≃ 0.2126R′γ + 0.7152G′γ + 0.0722B′γ

We refer to the book of Poynton [22] for detailed explanations about all these concepts.
From formulae (2.15) and (2.13), and the fact that the term Yn equals 1 when the
colors are encoded in the sRGB color space, we end up with the formula

(2.16) L∗ ≃ (0.2126R′γ + 0.7152G′γ + 0.0722B′γ)0.4

(assuming that the lightness is normalized to the range [0,1]).
Finally, from formula (2.16) and using the perceptual uniformity of the lightness

L∗, we can express the JND for light intensities of a color image of components
(R′, G′, B′) perceived at the screen.

2.3.2. Expression of the discrete gradient. Based on the analysis done in
Sect. 2.3.1., we argue that the increments ǫ1, ǫ2 as well as the measure d in formula
(2.10) should be related to the JND. However, we have to face two issues:

(i) The JND is determined on a uniform background whereas expression (2.10) deals
with image pixels.
(ii) Perceptual metrics do not necessarily compare images based on their lightness
values, i.e. they are not defined on perceptually uniform spaces.
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In order that the computation of the JND at an image pixel makes more sense,
our proposal is to use at some point a smoothed version of the image L

(2.17) L̃ := L ∗Gσ

where Gσ is the Gaussian kernel associated to some variance σ. Indeed, convolving
an image with a Gaussian kernel reduces its variations, making the smoothed image
be locally closer to a uniform patch than the original image.

In order to overcome (ii), we have to take into account the specificity of the
metric involved. In particular, the metric DRIM that we will use in Sect. 3 for tone
mapping takes into account the luminance perceived at a display device, meaning that
we will have to make use at some point of the formula (2.16).

In any case, the expression of the discrete approximation of the gradient (2.8)
is of the form

(2.18) ∇DEH(L) : (i, j) 7−→
∑

a,b

δΦ

Å

met(L,H)(a, b);
∂ metD(L,H)(a, b)

∂ L(i, j)

ã

and the projected gradient descent approach is

Ln+1 = PD(Ln − αn∇
DEH(Ln))

where PD denotes the projection onto the set of matrices of size Ω with values in the
range [0, 1].

3. Application to the Optimization of Tone Mapping Operators.

3.1. Dynamic range independent perceptual distances. As mentioned
above, the metric DRIM of Aydin et al. [3] compares in a perceptual manner im-
ages of any dynamic range. It aims at predicting details (contrast) changes between
two images.

The purpose of this metric is to consider the perception that a viewer would have
of both images relying on psychophysical data, and to estimate at each pixel the prob-
abilities that distortions between the two images appear. More precisely, the metric
first predicts whether the contrast is visible or not in each image, using the detection
module HDR-VDP [15], from which two perceptually normalized response maps are
produced, one for each image. The Cortex transform [28], with the modification from
Daly [5], splits each response into several bands of different orientation and spatial
bandwidth, then the metric estimates three types of distortions between the two im-
ages for each band and combine them. The outputs of the metric are the probabilities
for each distortion to be detected at any band. The distortions considered are the
following: Loss of Visible Contrast (LVC), meaning that contrast is visible in one
image (called the reference image) and not in the second one (called test image);
Amplification of Invisible Contrast (AIC), when details that were not in the reference
image appear in the test image; and contrast reversal (INV), meaning that contrast
is visible in both reference and test images but with different polarity. Note that for
applications to tone mapping evaluation, the reference image is the luminance map
of an HDR image and the test image is the luminance map of its LDR tone mapped
version.



Optimization of Tone Mapping Operators 9

Fig. 3.1. Distortion map illustration. Left: reference images. Middle: test images. Right:
distortion maps.

The metric also provides a distortion map to encode pixel-wise distortions with
the following color code: green hue represents LVC, blue hue stands for AIC and
red hue indicates INV, the saturation encoding the magnitude of the corresponding
distortion, whereas the intensity corresponds to the intensity of the reference image
(up to rounding). At each pixel, the maximum of the three distortions is computed,
and the corresponding color is displayed. If the maximum is lower than 0.5, then the
saturation is set to 0.

These three types of distortions estimated by the metric DRIM are illustrated on
Fig. 3.1. On the left column, we show two LDR grey-level images. We apply some
filters to these images in order to create distortions. To the reference image located
in the top row, we apply a Gaussian smoothing on its top-right part and unsharp
masking on its top-left part in order to obtain respectively a contrast reduction and
a contrast enhancement. To the reference image located in the bottom row, we apply
some contrast reversal technique on the pattern in the chair. The images resulting of
these filters are shown in the middle column. Then, we compute the metric DRIM
where the reference images are the original images on the left column and the test
images are their distorted versions in the middle column. The distortion maps, shown
in the right column, are coherent with the artificial distortions we created.

As the output of the metric DRIM encode at each pixel the probabilities of de-
tecting the distortions LVC,AIC,INV between two images, we reinterpret the metric
DRIM as follows.

Definition 3.1 (Dynamic range independent perceptual metric). Let L,H : Ω −→
R be two images of any dynamic ranges, the perceptual metric DRIM between L and
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H is the map

(3.1)
Ω −→ [0, 1]3

DRIM(L,H) : x 7−→ (LV C(L,H)(x), AIC(L,H)(x), INV (L,H)(x))

From the perceptual metric (3.1) we define a set of perceptual distances between
images of any dynamic range.

Definition 3.2 (Dynamic range independent perceptual distances). Let k ∈ R
∗,

the perceptual distance Ek(L,H) between L and H is

(3.2) Ek(L,H) : = ‖DRIM(L,H)‖Lk

In others words, we have

(3.3) Ek(L,H) =

∫

Ω

(LV C k(L,H)(x) +AIC k(L,H)(x) + INV k(L,H)(x))1/k dx

3.2. Reducing the perceptual distance between an HDR image and its

tone mapped version. Given an HDR image H, we aim at constructing the LDR
image L minimizing the perceptual distance Ek with H.

3.2.1. Gradient descent algorithm in the continuous setting. Let four
numbers a1, a2, b1, b2 with 0 ≤ a1 < a2 < b2 < b1 ≤ 1. In this paper, we define the
functional spaces LDR(Ω) and HDR(Ω) as follows

(3.4) HDR(Ω) = {f ∈ C∞(Ω; [a1, b1])}

(3.5) LDR(Ω) = {f ∈ C∞(Ω; [a2, b2])}

In particular, we have LDR(Ω) ⊂ HDR(Ω).

Proposition 3.3. Let H be an HDR image. Assuming that the metric DRIM
of Definition 3.1. is continuous, the variational problem

(3.6) argmin
L∈LDR(Ω)

Ek(L,H)

has a solution.
Proof. Each distortion being in the range [0, 1], the Lk norms being continuous,

and the space LDR(Ω) being closed, Proposition 3.3 appears to be a particular case
of Proposition 2.3.

Note that the energy (3.2) is bounded by 0 and 31/k|Ω|.

Proposition 3.4. Assuming that H is non constant and the metric DRIM is
differentiable on the space LDR(Ω), the critical points of the energy

(3.7) EkH : L −→ Ek(L,H)
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satisfy
(3.8)
∫

Ω

LV C(L,H)k−1 ∂LV C(L,H)
∂L(y) +AIC(L,H)k−1 ∂AIC(L,H)

∂L(y) + INV (L,H)k−1 ∂INV (L,H)
∂L(y)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k
dΩ = 0

∀y ∈ Ω.

The proof of the Proposition relies upon the following postulate: the metric DRIM

only vanishes when the inputs are two identical constant images. This pos-
tulate is based on many experiments that we have run.

Proof. The energy EkH is differentiable on the whole set LDR(Ω) since the metric
DRIM does not vanish for non constant images (postulate). Then, according to Prop.
2.4, the critical points of (3.7) satisfy

(3.9)

∫

Ω

δ‖ ‖k

Å

DRIM(L,H)(x);
δDRIM(L,H)(x)

δL(y)

ã

dx = 0 ∀y ∈ Ω

Finally, expression (3.8) follows from (3.9) and

δ‖ ‖k((u1, u2, u3); (v1, v2, v3)) =
uk−1
1 v1 + uk−1

2 v2 + uk−1
3 v3

‖(u1, u2, u3)‖k
k−1

The term ∇EkH(L) : y 7−→
(3.10)
∫

Ω

LV C(L,H)k−1 ∂LV C(L,H)
∂L(y) +AIC(L,H)k−1 ∂AIC(L,H)

∂L(y) + INV (L,H)k−1 ∂INV (L,H)
∂L(y)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k
dΩ

is the gradient of the energy EkH at the function L.

As already mentioned in Sect. 2.2, perceptual metrics like DRIM lack mathe-
matical properties. Hence, to the best of our knowledge, there exists no scheme that
would systematically converge towards the solutions of the variational problem (3.6).
Then, our proposal is to make use of a projected gradient descent algorithm of the
form

(3.11) Ln+1 = P (Ln − αn∇EkH(Ln)), L0 = TMO(H)

where P denotes the projection onto the space LDR(Ω), and the initial condition L0

is a tone mapped version of H. Even if the scheme (3.11) may converge towards local
minima of the energy EkH that are not global, it reduces the perceptual distance
EkH(L0) of the initial condition L0 with H, which validates our approach for TMO
optimization.

Actually, as the perceptual metric involved is the metric DRIM, the initial con-
dition L0 of the gradient descent (3.11) should be the light intensity provided by a
screen when displaying the tone mapped image TMO(H). Denoting by R0, G0, B0

the inverse gamma corrected (see Sect. 2.3.1) components of the tone mapped image
TMO(H) in the sRGB color space, we transform TMO(H) into XYZ color coordinates
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with the formula

(3.12)

à

X0

Y0

Z0

í

=

à

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502

íà

R0

G0

B0

í

As mentioned in Sect. 2.3.1., the component Y0 is an approximation of the light
intensity perceived when displaying a color image on a monitor. We then apply the
gradient descent algorithm (3.11) where the initial condition is Y0. Denoting by Y∗
the steady-state of the scheme (3.11), the final output of our algorithm dedicated to
optimize TMOs is the color image of components (R∗, G∗, B∗) defined by

à

R∗

G∗

B∗

í

=

à

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502

í−1à
X0

Y∗

Z0

í

3.2.2. The discrete gradient descent algorithm. The discrete approxima-
tion of the scheme (3.11) is of the form

(3.13) Ln+1 = PD(Ln − αn∇
DEkH(Ln)), L0 = Y0

where ∇DEkH is a discrete approximation of the gradient (3.10), and PD denotes
the projection onto the set of [0,1]-valued matrices. In what follows, we detail the
construction of ∇DEkH .

In the discrete case, we replace the gradient (3.10) by ∇DEkH(L) : (i, j) 7−→
(3.14)

∑ LV C(L,H)k−1 ∂LV CD(L,H)
∂L(i,j) +AIC(L,H)k−1 ∂AICD(L,H)

∂L(i,j) + INV (L,H)k−1 ∂INV D(L,H)
∂L(i,j)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k

Following Sect. 2.3, we compute a discrete approximation of the functional derivative
of the metric DRIM as
(3.15)
∂DRIMD(L,H)(a, b)

∂L(i, j)
: =

DRIM(L+ ǫ1 δ(i,j), H)(a, b)−DRIM(L− ǫ2 δ(i,j), H)(a, b)

2d(L+ ǫ1 δ(i,j), L− ǫ2 δ(i,j))

for some well-chosen ǫ1, ǫ2, d determined in the following paragraph, and from which
follows the functional derivatives

∂LV CD(L,H)(a, b)

∂L(i, j)

∂AICD(L,H)(a, b)

∂L(i, j)

∂INV D(L,H)(a, b)

∂L(i, j)

Computation of ǫ1, ǫ2, d. As mentioned in Sect. 2.3.2, the key idea to compute
(3.15) is to approximate the JND in the luminance space. We can express the JND
for the luminance L (denoted by Y in Sect. 2.3.1) perceived at the screen using the
formula (2.16) and (2.17) as follows. Let (i, j) ∈ Ω, we have

(3.16) ∆ L̃0.4(i, j) = 0.01
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where L̃ is a smoothed version of L (see Sect. 2.3). Then, solving the equation

(3.17) (L̃(i, j) + ǫ1)
0.4 − L̃0.4(i, j) = 0.01

yields

(3.18) ǫ1 = (L̃0.4(i, j) + 0.01)2.5 − L̃(i, j)

In the same manner, solving the equation

(3.19) L̃0.4(i, j)− (L̃(i, j)− ǫ2)
0.4 = 0.01

yields

(3.20) ǫ2 = L̃(i, j)− (L̃0.4(i, j)− 0.01)2.5

However, defining ǫ1, ǫ2 as in (3.18), (3.20) might yield an extra issue:

(iii) L(i, j) + ǫ1 > 1 or L(i, j)− ǫ2 < 0. In such a case, the quantity (2.10) would not
be defined.

We then relax the perceptual uniformity paradigm in order to stay in the range [0, 1]
of the image L. We end up with the following two extensions of equations (3.17) and
(3.19)

(3.21) (L̃(i, j) + ǫ1)
0.4 − L̃0.4(i, j) = min(0.01, 1− L̃0.4(i, j))

(3.22) L̃0.4(i, j)− (L̃(i, j)− ǫ2)
0.4 = min(0.01, L̃0.4(i, j))

whose solutions are

(3.23) ǫ1 : = (L̃0.4(i, j) + min(0.01, 1− L̃0.4(i, j)))2.5 − L̃(i, j)

(3.24) ǫ2 : = L̃(i, j)− (L̃0.4(i, j)−min(0.01, L̃0.4(i, j)))2.5

Hence, L+ ǫ1δi,j never exceeds 1 since L̃ ≤ L by construction. For the same reason,
L− ǫ2δi,j never gets negative.
We then set

(3.25) d = min(0.01, 1− L̃0.4(i, j)) +min(0.01, L̃0.4(i, j))

3.2.3. Preprocessing. To increase the chance that the gradient descent algo-
rithm (3.13) does not stop at a local minimum of the energy EkH

too close to the initial
condition L0, we apply a preprocessing on L0 in order to get an initial condition Lnew

of the algorithm (3.13) that is closer (in terms of perceptual distance) to H than L0.
The method we propose relies on the intuition that high values of LVC might be re-
duced by application of local sharpening whereas high values of AIC might be reduced
by local Gaussian blurring. Hence we perform local Gaussian blurring and unsharp
masking [1] to L0 depending on the values of the function LV C(L0, H)−AIC(L0, H).
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Denoting by Lsmooth a blurred version of L0 and defining Lsharp as

(3.26) Lsharp = L0 + α (L0 − Lsmooth)

for some constant α, we define the image Lnew as
(3.27)

Lnew(i, j)=







Lsharp(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) > 0

(1− β)L0(i, j) + βLsmooth(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) < 0

Experiments on different tone mapped images described in the next Section show that
the distance with H is indeed reduced as well as the errors in the distortion map.

3.2.4. Numerical scheme. We summarize in this Section the different steps of
our algorithm.

1. Let H be an HDR image and L0 be a tone mapped version of H. As the
metric DRIM only takes into account the luminance information of the input im-
ages, we first convert them into luminance maps: we apply the transformation (3.12)
on the LDR image L0 and extract the luminance channel Y0, and use the function
pfs read luminance[17] to extract the luminance information of H.
2. We perform the preprocessing described in Sect. 3.2.3 on the image Y0 with the
following parameters: the variance σ of the Gaussian smoothing kernel is set to 0.62,
and the constants α, β are respectively 0.7 and 0.5. These values provide good results
and have been fixed for all the experiments in this paper.
3. We apply the gradient descent algorithm (3.13) where the initial condition is the
output of the preprocessing. We test different values for k and different domains for
the summation in the expression of the discrete gradient operator (3.14). Indeed,
because the variational problem we propose is non local, the gradient operator is an
integral operator, meaning that its computation might be very time-consuming. In
order to decrease the execution time of the algorithm, we adopt the following two
approaches: we consider 50×50 neighborhoods, and make use of computers equipped
with multiple cores to compute the gradient operator over the whole image domain.
The algorithm stops when the energy does not decrease anymore, i.e. when we reach
a local or global minimum.

The pseudo code of the gradient descent algorithm is given below.

while Enew < Eold do

for each pixel p do

L+
n = Ln + ǫ1δp

L−
n = Ln − ǫ2δp, ⊲ ǫ1, ǫ2 from (3.23) and (3.24)

(LV C+/−, AIC+/−, INV +/−) = DRIM(L
+/−
n , H),

Diff type = (type+ − type−)/d, type ∈ Type = {LV C,AIC, INV } ⊲ d from
(3.25)

gradient(p) =
∑

X(
∑

Type type
k−1 ×Difftype)/(

∑

Type type
k)1−1/k

⊲ X is either 50× 50 or full image domain
end for

Ln+1 = PD(Ln − αn × gradient), ⊲ αn from line search strategy and PD from
(3.13)
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(LV C,AIC, INV ) = DRIM(Ln+1, H)

Eold = Enew

Enew =
∑

X(LV Ck +AICk + INV k)1/k

end while

4. The final output LDR color image is then obtained by combining the X0 and
Z0 components of the initial tone mapped image L0 with the output produced by the
gradient descent algorithm.

3.3. Experiments. We test our algorithm dedicated to optimize TMOs on dif-
ferent HDR images taken from the MPI [20] and Fairchild [9] databases, and the
TMOs of Ferradans et al. [11], Drago et al. [7], Reinhard et al. [23], and Mantiuk et
al. [18].

The evaluation of our algorithm is two-fold: global and pixel-wise. As a pixel-
wise measure, we compare the distortion maps (see details in Sect. 3.1) of the initial
condition and output. As a global measure, we compare their averaged perceptual
distance with H, making use of the following energy

(3.28) E(L,H) =
1

|Ω|

∑

(a,b)∈Ω

‖DRIM(L,H)(a, b)‖2

The first experiment we propose consists in evaluating the preprocessing. In
Fig. 3.2, we show the input tone mapped images, output color images of the prepro-
cessing, as well as their distortion maps. We have applied the formula (3.27) to the
luminance channel of tone mapped images obtained with the method of Ferradans et
al.[11] (top row image) and Drago et al. [7] (bottom row image). The HDR source
images are taken from the MPI database [20]. We observe that the LVC distortion
has been reduced, whereas the INV distortion has increased a bit. As we can see in
formula (3.27), the preprocessing is only devoted to reduce the LVC and AIC dis-
tortions, and does not take into account the INV distortion. Hence, some choices
of the parameters α, β might yield an increase of the INV distortion. On Table 3.1,
we present results of the preprocessing (amongst other results) tested on images of
the Fairchild database [9] for the TMOs aforementioned. Note that the images have
been rescaled to 200×200 pixels in order to speed up the gradient descent algorithm.
Average results have been computed over 10 images of the dataset. The results con-
firm that the preprocessing reduces the perceptual distance with respect to the HDR
source image.

In the second experiment, we evaluate the final output of our method described
above for different perceptual distances (3.2) parametrized by k ∈ R

∗. Table 3.1
shows the distance (3.28) of the initial tone mapped images and output images with a
given HDR image for the following values of the parameter k : 0.8, 1, 1.2, 2, 5 and 50.
The summation for the computation of the gradient operator (3.14) has been done on
50× 50 neighborhoods. The results show that, in most of the cases, k = 0.8 provides
the minimum distance. We also observe that the distance tends to increase with the
value k.

In the third experiment, we compare the output of the preprocessing stage with
the final output of our method using 50× 50 neighborhoods and parameter k = 0.8,
as well as their distortions maps (see Fig 3.3). The HDR source is the image “Peck-
Lake” from the Fairchild database, and the input tone mapped image is provided by
the TMO of Drago et al. [7]. Its corresponding distortion map reveals a great loss



16 PRAVEEN CYRIAC, THOMAS BATARD AND MARCELO BERTALMÍO

Fig. 3.2. Evaluation of preprocessing stage for Ferradans et al.[11] (top row) and Drago et al.
(bottom row) TMOs. From left to right: input tone mapped image, output of preprocessing stage,
distortion map of the input, distortion map of the output.

Table 3.1
Distance with different k values.

❳
❳
❳
❳
❳
❳
❳
❳

Image
TMO Drago

et al.[7]
Reinhard
et al.[23]

Mantiuk
et al.[18]

Ferradans
et al.[11]

AmikBeav
DamPM1

Initial 0.726 0.744 0.763 0.745
Preprocess 0.573 0.611 0.66 0.702

Final (k = 0.8) 0.464 0.515 0.59 0.546
Final (k = 1) 0.469 0.517 0.59 0.545
Final (k = 1.2) 0.474 0.519 0.59 0.546
Final (k = 2 ) 0.494 0.534 0.6 0.558
Final (k = 5 ) 0.543 0.57 0.624 0.559
Final (k = 50) 0.561 0.588 0.639 0.602

Barharbor
Presun

Initial 0.662 0.665 0.533 0.561
Preprocess 0.53 0.552 0.493 0.511

Final (k = 0.8) 0.417 0.454 0.446 0.46
Final (k = 1) 0.416 0.452 0.442 0.457
Final (k = 1.2) 0.418 0.453 0.444 0.454
Final (k = 2) 0.433 0.465 0.447 0.462
Final (k = 5) 0.469 0.508 0.47 0.490
Final (k = 50) 0.496 0.528 0.484 0.501

Average
(10 images)

Initial 0.645 0.657 0.573 0.590
Preprocess 0.527 0.575 0.515 0.536

Final (k = 0.8) 0.417 0.460 0.457 0.460
Final (k = 1) 0.420 0.461 0.457 0.460
Final (k = 1.2) 0.426 0.464 0.457 0.462
Final (k = 2 ) 0.442 0.476 0.467 0.471
Final (k = 5) 0.475 0.511 0.481 0.494
Final (k = 50) 0.490 0.529 0.497 0.511

of contrast (green patches). We observe that the preprocessing stage reduces such a
distortion, and the gradient descent algorithm applied to the output of the prepro-
cessing reduces it to even greater extent. These improvements are confirmed when
computing the perceptual distances (3.28) at each stage with the HDR source image:
initial (0.639), preprocessing (0.509), and final (0.389). There is a 39% reduction in
distance in the final image compared to the initial tone mapped image. From this
result and the ones shown in Table 3.1 we can claim that applying the gradient de-
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Fig. 3.3. Comparison between the output of preprocessing stage and the final stage. Top left:
input tone mapped image of Drago et al.[7]. Top middle: output of preprocessing stage. Top right:
final output with k = 0.8. Bottom row: corresponding distortion maps.

scent algorithm to the output of the preprocessing provides much better results than
applying only the preprocessing.

At last, we analyze the impact of modifying the neighborhood size used for the
summation in the expression of the gradient operator (3.14). We test our algorithm
for 50 × 50 as well as 200 × 200 neighborhoods (the whole image domain). The
parameter k has been set to 0.8, which is the value giving the best results in the
case of 50 × 50 neighborhoods according to the second experiment. In Fig 3.4, we
show the output color image obtained with the two neighborhood sizes along with
their distortion maps. The HDR source is the image “BarHarborPresunrise” from
the Fairchild database. The input tone mapped image is provided by the TMO of
Reinhard et al. [23]. The distortion maps show that using the whole image domain
substantially reduces the LVC distortion (less green patches appear in the distortion
map), and reduces (in less proportion) the INV distortion (less red patches). In
Fig 3.5, we show some results of our algorithm with a 200× 200 neighborhood tested
on the different TMOs mentioned above applied to the same HDR image. By a close
observation of the output images, we can notice an enhancement of details of the initial
tone mapped images which is confirmed by comparing the corresponding distortion
maps (reduction of LVC distortion). Table 3.2 compares the distance between the
final output images (using the aforementioned domains) with the HDR source image.
We can see that the results obtained by using a 200× 200 neighborhood have smaller
error than the results achieved by using a 50× 50 neighborhood, and this numerical
behavior is consistent with the visual distortion maps presented in Fig 3.4.

4. Conclusion. Based on perceptual metrics that measure distortions between
images, we propose in this paper a non local variational approach to minimize per-
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Fig. 3.4. Comparison between the final output with 50× 50 and 200× 200 neighborhoods. Top
left: input tone mapped image of Reinhard et al. [23]. Top middle: final output with 50 × 50
neighborhood. Top right: final output with 200 × 200 neighborhood. Bottom row: corresponding
distortion maps.

Table 3.2
Distance at the final stage of our method with 50× 50 and 200× 200 neighborhoods. Percentile

improvement at each stage with respect to the original tone mapping result is given in brackets.

❳
❳
❳
❳

❳
❳

❳
❳

Image
TMO Drago

et al.[7]
Reinhard
et al.[23]

Mantiuk
et al.[18]

Ferradans
et al.[11]

AmikBeav
DamPM1

Initial 0.726 0.744 0.763 0.745
Preprocess 0.573 (21%) 0.611 (13%) 0.66 (14%) 0.702 (6%)

Final (50× 50) 0.464 (36%) 0.515 (31%) 0.59 (23%) 0.546 (27%)
Final (200× 200) 0.264 (64%) 0.356 (52%) 0.47 (38%) 0.388 (48%)

Barharbor
Presun

Initial 0.662 0.665 0.533 0.561
Preprocess 0.53 (20%) 0.552 (17%) 0.493 (7%) 0.511 (9%)

Final (50× 50) 0.417 (37%) 0.454 (32%) 0.446 (16%) 0.46 (18%)
Final (200× 200) 0.206 (69%) 0.248 (63%) 0.352 (34%) 0.34 (39%)

ceptual distances between two images of any DR. Then, we use this framework in the
context of tone mapping by considering the perceptual metric DRIM [3]. The experi-
ments show that our approach improves the TMOs tested in the sense that it reduces
the perceptual distance of a tone mapped image with respect to its HDR source. Our
method provides an average reduction of this distance by more than 25%.
Further work will be devoted to apply the proposed framework to contexts where
minimization of a perceptual distance could also be useful. One such application
may be to optimize gamut mapping methods by considering a perceptual metric that
measures color distortions between images.
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Fig. 3.5. The final output. First column: input tone mapped images (TMOs from top to
bottom: Drago et al.[7], Reinhard et al.[23], Mantiuk et al.[18], Ferradans et al. [11]). Second
column: final output images with a 200 × 200 neighborhood. Third column: distortion maps of
input tone mapped images. Fourth column: distortion maps of final outputs. See Table. 3.2 (image
“BarharborPresun”) for the corresponding distances.
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