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ABSTRACT

Non-negative Matrix Factorization (NMF) has become popular in

audio source separation in order to design source-specific models.

The number of components of the NMF is known to have a notice-

able influence on separation quality. Many methods have thus been

proposed to select the best order for a given task. To go further,

we propose here to use model averaging. As existing techniques do

not allow an effective averaging, we introduce a generative model in

which the number of components is a random variable and we pro-

pose a modification to conventional variational Bayesian (VB) infer-

ence. Experimental results on synthetic data show promising results

as our model leads to better separation results and is less computa-

tionally demanding than conventional VB model selection.

Index Terms— Variational Bayes, Non-negative Matrix Factor-

ization, Model Averaging, Audio Source Separation

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) has received increasing

attention from the research community since its initial proposal [1].

Its ability to recover part-based representation of non-negative data

has found numerous applications in different fields such as classifica-

tion or source separation. In particular, audio source separation has

successfully benefited from the development of source models based

on NMF principles [2]. Yet the number of components is often as-

sumed to be known whereas it has been shown to have a noticeable

influence on the separation results [3]. Several methods based on

statistical modelling and model selection principles have been pro-

posed to automatically determine the best number of components

according to the data to be processed.

The original formulation of NMF can be seen as a maximum

likelihood (ML) problem [4]. ML estimation cannot be used for

model selection because the likelihood is always larger for models

of higher order and it tends to overfit the data. To overcome these

drawbacks, the literature advocates the use of a full Bayesian frame-

work to perform model selection or averaging [5, 6]. In principle,

the Bayesian method considers the parameters of a model as ran-

dom variables with given distributions. This makes it possible to

compute the marginal likelihood of the model, also known as the

evidence, by integrating out the likelihood function with respect to

the parameters. This marginal likelihood can then be used to select

the most likely model or to combine several models. In practice, the

computation of the marginal likelihood is often intractable. Approxi-

mate inference techniques are required. Amongst the approximating

techniques, variational Bayesian (VB) inference has received partic-

ular attention as it is computationally efficient [5, 7]. Practically,
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VB proposes to approximate the true posterior distribution of the pa-

rameters by a factored variational distribution in order to compute a

lower bound of the marginal likelihood, also named the free energy.

This free energy is then used to select the most likely model [8, 9].

Lately, VB has been applied to NMF in order to infer the best

number of components. These applications to NMF fall into two cat-

egories : parametric vs. nonparametric. Parametric methods consist

in computing several NMFs with different numbers of components

and in comparing their marginal likelihoods. Synthetic tests in [7]

have shown that the marginal likelihood is maximum for the number

of components which has been used to generate the data. By con-

trast, nonparametric methods consider a single NMF model but with

a potentially infinite number of components. The method in [10] it-

eratively deactivates the components that are seen as irrelevant. A

similar approach has been proposed in [11] without resorting to a

VB framework. Both approaches are able to recover the number of

components that was used to generate synthetic data.

In order to further improve separation performance, we propose

here to average multiple NMFs instead of selecting the one with the

most appropriate order. The study in [12] shows that combining sev-

eral NMFs with fixed fusion weights can improve source separation

quality. It also emphasizes that it is worth adapting these weights to

the signal to be processed. A straightforward application of model

averaging with weights based on the free energy does not lead to an

effective averaging as it turns out to select a single model instead of

combining several ones. We thus propose in this article a genera-

tive model for NMF-based source separation in which the number

of components is seen as a random variable. Our framework, which

expands the model in [13], takes advantage of parametric methods

without tremendously increasing computation time by jointly esti-

mating several NMF models of different orders. Our study also intro-

duces a variational inference framework which differs from conven-

tional VB by implementing a scale factor that controls the entropy of

the distribution over the number of components. The model will be

first presented in Section 2 and the variational inference framework

will be presented in Section 3. Finally, Section 4 will be dedicated

to experimental results on synthetic data before concisely conclud-

ing in Section 5.

2. GENERATIVE PROBABILISTIC MODEL

Following [13], we aim at modelling the short time Fourier transform

(STFT) of an audio signal. Our study is limited to the case of single-

channel mixtures composed of two sources but it can be extended to

more channels and sources. The mixing equation in frequency bin f
and time frame n is thus written as

xfn = Asfn + ǫfn = s1,fn + s2,fn + ǫfn (1)

where xfn is the mixture STFT coefficient, s1,fn and s2,fn
are the two sources that also compose the source vector sfn =
[s1,fn s2,fn]

T , A = [1 1] is the mixing matrix and ǫfn represents



sensor noise. Each source sj,fn is supposed to follow a circularly-

symmetric complex normal distribution
sj,fn ∼ N (0, vj,fn) (2)

whose variance is expressed by NMF as vj,fn =
∑Kj

k=1
wj,fkhj,kn.

Wj = {wj,fk}
f=1..F

k=1..Kj
and Hj = {hj,kn}

n=1..N

k=1..Kj
are the so-called

dictionary and activation matrices of the NMF, with F and N being

the numbers of frequency bins and of time frames, respectively.

We propose to consider the number of components Kj as a ran-

dom variable which follows a categorical distribution
Kj ∼ Cat

(

πj1, ..., πjm, ..., πjMj

)

(3)
where m indexes the Mj possible number of components
{

Kj1, ...,Kjm, ...,KjMj

}

, each having an a priori probability

of πjm. The combination of several NMFs of different orders al-

lows us to describe a given source with different resolutions. As a

consequence, we assume here that each number of components has

its specific NMF parameters so that in the following, they will also

be indexed with m. The variance of source j is thus expressed as

vj,fn =

Kjm
∑

k=1

wjm,fkhjm,kn. (4)

Finally, we assume that for each source j and each number of com-

ponents Kjm, the NMF parameters follow a Gamma distribution
wjm,fk ∼ Γ(a, a) , hjm,kn ∼ Γ(b, b) (5)

as in [10] where a and b are hyperparameters to be chosen.

Assuming that sensor noise follows a zero-mean Gaussian dis-

tribution of variance σ2, the likelihood can be formulated as

p(X|S) =
N
∏

n=1

F
∏

f=1

N
(

xfn|Asfn, σ
2
)

(6)

where the notation X = {xfn}
n=1..N

f=1..F
and S = {sfn}

n=1..N

f=1..F
is

used for the sake of readability. Denoting the set of all model pa-

rameters as Z = {S,W,H,K} with W = {Wjm}
m=1..Mj

j=1,2 ,

H = {Hjm}
m=1..Mj

j=1,2 and K = {Kj}j=1,2
, the joint distribution

can be written as

p(X,Z) = p(X|S) p(S|W,H,K) p(W|K) p(H|K) p(K). (7)

3. VARIATIONAL INFERENCE

Estimating the posterior distribution of the model parameters

p(Z|X) leads to intractable calculation. Variational Bayesian in-

ference gives us a way to approximate p(Z|X) with a factorized

variational distribution q(Z). By contrast to [10], we decided to

keep the conditioning of W and H on K so that the distribution

of interest q(S) is the only distribution to be approximated. The

factorized variational distribution is thus expressed as

q(Z) =

I
∏

i=1

qi(Zi) = q(S) q(W|K) q(H|K) q(K). (8)

3.1. Maximizing the free energy

In VB inference, approximating p(Z|X) to q(Z) is equivalent to

maximizing the free energy [13]. The strategy consists in iteratively

maximizing the free energy with respect to each distribution qi in

(8). The particular form of our variational distribution results in the

following expressions of the distributions which maximize the free

energy:
log q∗(S) =EZ\S [log p(X,Z)] + const (9)

log q∗(W|K) =EZ\{W,K} [log p(X,Z)] + const (10)

log q∗(H|K) =EZ\{H,K} [log p(X,Z)] + const (11)

log q∗(K) =EZ\K [log p(X,Z)]− EW [log q(W|K)]

− EH [log q(H|K)] + const
(12)

where EZ\Zi
[log p(X,Z)] denotes the expectation of the joint dis-

tribution (7) over all model parameters Z except Zi.

3.2. Lower bounding the free energy

In order to find the update rules of the model parameters, we need
to compute the expectations in (9) – (12). Amongst these terms,
EZ∗

[log p(S|W,H,K)], in which Z∗ denotes any subset of Z, is
intractable. At first, it is worth noting that

EZ∗
[log p(S|W,H,K)] =

∑

j,fn

EZ∗

[

log p(sj,fn|Wj ,Hj ,Kj)
]

=
∑

jm,fn

q(Kjm)EZ∗\Kj

[

log p(sj,fn|Wjm,Hjm)
]

Following [10], we lower bound EZ∗\Kj
[log p(sj,fn|Wjm,Hjm)]

as follows:

EZ∗\Kj
[log p(sj,fn|Wjm,Hjm)] ≥ − log π

− logωjm,fn + 1−
1

ωjm,fn

Kjm
∑

k=1

EZ∗\Kj
[wjm,fkhjm,kn]

− EZ∗\Kj

[

|sj,fn|
2
]

Kjm
∑

k=1

φ2

jm,fn,kEZ∗\Kj

[

1

wjm,fkhjm,kn

]

.

for any ωjm,fn ≥ 0 and φjm,fn,k ≥ 0 s.t.
∑Kjm

k=1
φjm,fn,k = 1.

This lower bound is tightened by zeroing its derivative w.r.t.

ωjm,fn and φjm,fn,k which leads to the following expressions :

ωjm,fn =

Kjm
∑

k=1

EZ∗\Kj
[wjm,fkhjm,kn] (13)

φjm,fn,k =
1

Cjm,fn

EZ∗\Kj

[

1

wjm,fkhjm,kn

]−1

(14)

with Cjm,fn =
∑Kjm

k=1
EZ∗\Kj

[

1

wjm,fkhjm,kn

]−1

.

3.3. Variational updates

When needed, the expectations of log p(S|W,H,K) in (9) – (12)

are replaced by their parametric lower bounds. The variational distri-

bution of the sources is identified to a bivariate Gaussian distribution

q(sfn) = N
(

µ
s,fn,Σs,fn

)

with parameters

µ
s,fn = Σs,fnA

1

σ2
xfn , Σs,fn =

(

C
−1

fn +
1

σ2
J

)−1

(15)

where J is a matrix of ones of size 2× 2, C−1

fn = diag(C−1

j,fn)j=1,2

and

C−1

j,fn =

Mj
∑

m=1

q(Kjm)C−1

jm,fn. (16)

The variational distributions of the NMF parameters are identi-

fied to generalized inverse Gaussian (GIG) distributions [10] which

are controlled by three parameters τ , ρ and γ. The updates of these

parameters for the matrix Wjm = {wjm,fk}
k=1..Kjm

f=1..F of source j
for the number of components Kjm are given by:

τ
W

jm = E

[

1

Wjm

].2

◦





(

E
[

|Sj |
.2
]

◦C.−2

jm

)

(

E

[

1

Hjm

].−1
)T




ρ
W

jm = a+ E [Vjm].−1
E [Hjm]T , γ

W

jm = a (17)

where the notation ◦ denotes the Hadamard product, M.x denotes

element-wise exponentiation and M
T denotes the transpose of ma-

trix M. Vjm is the variance of source j for the number of compo-

nents Kjm, that is to say the product WjmHjm. Cjm is the matrix

composed of the coefficients Cjm,fn defined in (14). As part of the



exponential family, the GIG distribution over Wjm is equivalently

determined by its parameters τW

jm, ρW

jm and γ
W

jm or by its statistics

E [Wjm], E
[

1

Wjm

]

and E [logWjm]. The inference scheme thus

alternates between estimating the statistics and the parameters of the

distribution as in an expectation-maximization algorithm. Note that

the same update rules can be found for Hjm by replacing and re-

ordering the terms accordingly.

Finally, the log-posterior distribution log q̃(Kjm) of the number

of components Kj is computed as the sum of the terms given in (12).

Besides, it is worth noting that when considering a single number of

components (Mj = 1), our model is equivalent to the model in [13].

3.4. Posterior over the model order

To obtain the posterior distribution of Kj , it is necessary to take the

exponential of log q̃(Kjm) and to normalize it so that
∑Mj

m=1
q(Kjm) = 1. Preliminary tests have shown that the sum of

all terms in (12) gives large values, which results in one q(Kjm)
being equal to one and the others being equal to zero when taking

the exponential. This means that conventional VB inference leads

to model selection rather than model averaging. In order to avoid it,

we propose to scale the log-posterior by a factor β before computing

the exponential. This is equivalent to penalizing the entropy of the

distribution q(Kj) in a way similar to [14]. The posterior probability

is thus computed as

q(Kjm) ∝ exp

(

log q̃(Kjm)

β

)

. (18)

Thus, small values of β will favour peaky distributions with one

q(Kjm) close to 1, whereas higher values of β will result in a more

uniform distribution over Kj .

4. EXPERIMENTS

We propose to evaluate our model on an audio source separation

task. To do so, we rely on the PASCAL CHiME corpus [15] which

features recordings of real domestic noise and speech utterances

from diverse speakers.

4.1. Synthetic data generation

We randomly selected one speaker of the database and ten seconds of

background noise. We learned an NMF speaker model by concate-

nating 250 utterances of the selected speaker and estimating W1m

and H1m following a standard maximum-likelihood scheme. We

chose seven different numbers of components so that K1m = 2m

with m = 1..7. We retained the seven dictionaries {W1m}m=1..7

as seven models of the same speaker, hence describing the same

spectral content but at different levels of details. For instance, W11

will give a rough description of the spectral characteristics of the

speaker whereas W17 will be a much more detailed description but

with potential redundancies. We proceeded the same way to learn

an NMF background model. This time, we retained a single model

with 16 components. For each learning, we used a STFT with half-

overlapping windows of 2048 samples each.

Once the models for both speech and background were learned,

we generated for each model order K1m several mixtures X, with

300 time frames each, according to our generative model. The dic-

tionary W1m of the speaker source and the dictionary W2 of the

background source were fixed to their learned values. The corre-

sponding activation matrices H1m and H2 were randomly generated

according to the Gamma distribution in (5) with b = 0.2. Both the

speaker and background sources S1 and S2 were randomly gener-

ated according to the distribution defined in (2). Finally, the mix-

ing equation (1) was used to generate the observation X at different

signal-to-noise ratios (SNRs). Here, we chose six different values of

SNR from −6 dB to 9 dB by step of 3 dB. The sensor noise ǫfn in

(1) has been chosen of constant variance σ2 = 10−6. As a conse-

quence, we generated a total of 42 synthetic observations X, i.e., for

six different SNRs and seven model orders.

4.2. Estimation and separation

For each generated example, we propose to compare VB selection

and VB fusion. VB selection consists in computing seven single-

order NMFs with K1m = 2m and in retaining the one which gives

the highest bound to the free energy. Firstly, for a given number of

components K1m, a single-order speaker model is learned on 250
utterances of the same speaker as in the generation step yet the ut-

terances differ from those used to generate the data. This choice is

motivated by [15] in which the training data are distinct from the

development and test data in order to simulate real domotic sce-

narios. We then resort to the model introduced in Section 2 with

M1 = M2 = 1 and to the variational inference scheme exposed in

Section 3. The distribution over W1m is set to be a Dirac according

to the single-order NMF model previously learned. The distribution

over W2 is initialized by its statistics E [W2] and E [1/W2], the

statistic E [logW2] being unused in the variational updates. The

terms of E [W2] are drawn according to the Gamma prior in (5)

with a = 0.2 and E [1/W2] is set to be equal to E [W2]
.−1

. In

the same manner, E [H1m], E [1/H1m], E [H2] and E [1/H2] are

initialized as constants. The distribution q(W1m) is fixed whereas

q(W2), q(H1m) and q(H2) are to be estimated. We used 50 it-

erations and at the end, the estimated sources are computed as the

expectation µ
s,fn of the posterior distribution in (15). As we only

consider single-order NMF models, the update of q(K) in (12) is of

no use here for both the speaker and background models.

On the contrary, VB fusion uses the full model we exposed in

Section 2, including the update of q(K). Instead of considering a

single speaker model, the framework jointly takes into account the

seven learned speaker models. The term fusion here refers to the fact

that the variance of the speaker source is now the combination of sev-

eral NMFs of different orders because of model averaging. The prior

probability of the number of components of the speaker source is set

to be uniform, i.e., p(K1m) = 1/7 with K1m = 2m and m = 1..7.

The corresponding distributions over W1m and H1m and the dis-

tributions related to the background source are initialized as in the

selection case above. Note that preliminary tests have shown that

with β = 1, VB fusion leads to similar results as VB selection.

Indeed, the expression in (12) thus results in one number of compo-

nents having a posterior probability of one and the others having zero

probability. Therefore, in order to compute the posterior probability

of the number of components, we weight its entropy by β = 104, a

value which has been found to work well in practice.

4.3. Results

The separation quality is evaluated by the signal-to-distortion ratio

(SDR) expressed in decibels [16]. Fig. 1 shows the SDR of the

speaker source for VB selection and VB fusion. The best single

NMF separation and the mean of the seven separated signals are

also evaluated for indicative purposes. They are denoted as oracle

selection and fusion by mean in reference to [12]. Note that oracle

selection is not reachable in practice as it requires the knowledge of

the original true speaker source. The SDRs are averaged over the

seven numbers of components used at generation for each SNR. The

corresponding values as well as the average computation time are

reported in Table 1.

The comparison of VB selection and oracle selection shows that

VB selection fails to retain the number of components which gives



SNR Average

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average time (ms)

VB selection 3.77 4.36 5.20 5.72 6.19 6.40 5.27 172.7

VB fusion with β = 104 4.24 4.90 5.47 6.14 6.76 7.21 5.79 60.8

Oracle selection 4.35 5.04 5.69 6.45 7.14 7.77 6.07 172.7

Fusion by mean 3.81 4.57 5.22 5.91 6.53 7.04 5.52 172.7

Table 1. Average SDR (dB) for VB selection, VB fusion, oracle selection and fusion by mean, for each SNR and average computation time

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB
0

1

2

3

4

5

6

7

8

SNR

S
D

R
 (

d
B

)

 

 
VB selection

VB fusion

Oracle selection

Fusion by mean

Fig. 1. Average SDR for VB selection, VB fusion, oracle selection

and fusion by mean, for each SNR

the best SDR in our study case. On average, VB selection under-

performs oracle selection by 0.8 dB. However, the proposed VB fu-

sion scheme gives significantly better results than VB selection as it

outperforms the latter by 0.5 dB on average. Moreover, VB fusion

outperforms the simple fusion by mean. Finally, besides being more

efficient in terms of SDR, VB fusion is also less time consuming

than VB selection as it is 2.8 times faster. Indeed, VB fusion uses

less parameters than VB selection. In particular, there is an unique

background model in VB fusion whereas VB selection requires the

estimation of a background model per number of components.

5. CONCLUSION

We introduced a generative model dedicated to NMF-based source

separation. Using VB inference together with a parametric lower

bound of the marginal likelihood, our model allows us to describe

a source as the combination of several NMFs of different orders,

in a way similar to model averaging. Our experimental results on

synthetic data show that our model gives better separation results

than VB model selection and almost reaches oracle selection results.

Our VB fusion approach also turns out to be more computationally

efficient than VB selection. Future work will focus on the study of

the influence and determination of β as well as on the application of

our generative model to real data.
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