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 Ginzburg and Adler analyzed the bounce-back boundary conditions for the lattice Boltzmann scheme and showed that it could be made exact to second order for the Poiseuille flow if some expressions depending upon the parameters of the method were satisfied, thus defining so-called "magic parameters". Using the Taylor expansion method that one of us developed, we analyze a series of simple situations (1D and 2D) for diffusion and for linear fluid problems using bounce-back and "anti bounce-back" numerical boundary conditions. The result is that "magic parameters" depend upon the detailed choice of the moments and of their equilibrium values. They may also depend upon the way the flow is driven.

Introduction

The theoretical analysis of the lattice Boltzmann scheme [START_REF] Frisch | Lattice gas hydrodynamics in two and three dimensions[END_REF][START_REF] Higuera | Boltzmann approach to lattice gas simulations[END_REF][START_REF] Higuera | Lattice gas dynamics with enhanced collisions[END_REF][START_REF] Qian | Lattice BGK models for Navier-Stokes equation[END_REF][START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF][START_REF] Karlin | Maximum Entropy Principle for Lattice Kinetic Equations[END_REF][START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF] is an active subject of research. Recall that the method was first analyzed by d'Humières [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] with a Chapman Enskog expansion coming from statistical physics; we also refer to Asinari and Ohwada [START_REF] Asinari | Connection between kinetic methods for fluid-dynamic equations and macroscopic finite-difference schemes[END_REF] for a method of analysis based on the Grad moment system. A fruitful idea followed by Junk et al [START_REF] Junk | Asymptotic analysis of the lattice Boltzmann equation[END_REF] and [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF][START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] is to use the so-called equivalent equation method derived independently by Lerat-Peyret [START_REF] Lerat | Noncentered Schemes and Shock Propagation Problems[END_REF] and Warming and Hyett [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF] (see also [START_REF] Villatoro | On the method of modified equations. V: Asymptotic analysis of and direct-correction and asymptotic successive-correction techniques for the implicit midpoint method[END_REF]). An infinitesimal parameter is introduced and the finite differences operators are expanded into a family of equivalent partial differential equations. The main goal of this study is to use the Taylor expansion method [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF][START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] in order to increase the accuracy of boundary conditions for simple problems with analytical solutions. We first consider a one-dimensional (1D) diffusion problem and study the influence of the definition of the moments and of their equilibrium value. We then consider a two-dimensional (2D) Poiseuille flow using several ways to enforce a pressure gradient.

We consider regular lattices parametrized by a space step ∆x. We introduce a time step ∆t and adopt the "acoustic" scaling: the ratio λ ≡ ∆x ∆t is a fixed reference velocity for each study. As a consequence, the parameters ∆x and ∆t are equivalent infinitesimals. Note that as this work is devoted to boundaries, we shall use a particular way to test the accuracy of a numerical scheme as will be discussed later.

Diffusion problem in one space dimension

We consider the classical Lattice Boltzmann model D1Q3 with three discrete velocities and one conservation law to model diffusion problems. We choose the velocities v i (0 ≤ i ≤ 2) such that v 0 = 0, v 1 = λ, v 2 = -λ. At each mesh point, there are three functions {f j } that can be interpreted as populations of fictitious particles. These populations evolve according to the lattice Boltzmann scheme which we write as in [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF]:

(1)

f j (x, t + ∆t) = f * j (x -v j ∆t, t) , 0 ≤ j ≤ 2,
where the superscript * denotes post-collision quantities and x a vertex of the lattice. Therefore during each time increment ∆t there are two fundamental steps: advection and collision. The advection step describes the motion of a particle which has undergone collision at node x -v j ∆t and goes to the jth neighbouring node. Following d'Humières [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF], the collision step is defined in the space of moments. For D1Q3 three moments {m ℓ } are obtained by a linear transformation of vectors f j :

(2)

m 0 = f 0 + f 1 + f 2 ≡ ρ (density), m 1 = λ(f 1 -f 2 ), m 2 = λ 2 2 (f 1 + f 2 ).
In consequence, we introduce a matrix of moments M to represent moments like (2); it takes the form

(3) M =    1 1 1 0 λ -λ 0 λ 2 2 λ 2 2
and the relations (2) can be simply written as m = M f . To simulate diffusion problems, we conserve only the density moment ρ in the collision step and obtain one macroscopic scalar equation. The other quantities (non-conserved moments) are assumed to relax towards equilibrium values (m eq 1 , m eq 2 ) following:

(4) m * ℓ = (1 -s ℓ ) m ℓ + s ℓ m eq ℓ , 1 ≤ ℓ ≤ 2,
where s ℓ (0 < s ℓ < 2, for ℓ = 1, 2) are relaxation rates, not necessarily equal to a single value as in the BGK case [START_REF] Qian | Lattice BGK models for Navier-Stokes equation[END_REF]. The equilibrium values m eq ℓ of the non conserved moments in equation (4) determine the macroscopic behavior of the scheme. Indeed with the following choice of equilibrium values (neglecting non-linear contributions):

(5)

m eq 1 = 0 , m eq 2 = ζ λ 2 2 ρ
and using the Taylor expansion method we find (see e.g. [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]) that the equivalent partial differential equation of the numerical scheme up to order three in ∆x is a diffusion equation:

(6) ∂ρ ∂t -κ ∂ 2 ρ ∂x 2 = O(σ 1 ∆x 3 ) .
The value of the diffusivity κ is given according to

(7) κ = ∆t λ 2 σ 1 ζ
where σ ℓ ≡ 1 s ℓ -1 2 , ℓ = 1, 2. Remark that the thermal diffusivity κ is imposed by the Physics. Moreover the scale velocity λ is fixed and the coefficient ζ is also imposed. When we refine the mesh, the coefficient σ 1 must be chosen in order to enforce relation [START_REF] Frisch | Lattice gas hydrodynamics in two and three dimensions[END_REF]. In other terms, the product σ 1 ∆t must be maintained constant. Then the right hand side of relation (6) exhibits a second order truncation error of the lattice Boltzmann scheme for a given thermal diffusivity κ. Associated with stability properties (see Junk and Yong [START_REF] Junk | Weighted L 2 Stability of the Lattice Boltzmann Method[END_REF]), convergence properties of lattice Boltzmann scheme can be established, as in [START_REF] Junk | Convergence of Lattice Boltzmann Methods for Navier-Stokes Flows in Periodic and Bounded Domains[END_REF].

Localization of a one-dimensional boundary

Let us introduce a constant c and consider the following one-dimensional Poisson problem:

(8) -K d 2 ρ dx 2 = c in ]0, 1[, ρ(0) = ρ(1) = 0 .
We take an "anti bounce-back" numerical boundary condition at x = 0: to model the right hand side c of equation [START_REF] Ginzburg | Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations[END_REF]. So we can write the lattice Boltzmann scheme as follows: (i) m = M f, (ii) m 0 = m 0 + 1 2 δp, (iii) evaluate the other moments, (iv) relaxation (4) of the other moments, (v) m 0 = m 0 + 1 2 δp, (vi) f = M -1 m, (vii) advection step (1) and boundary conditions. The exact solution of problem (8) is elementary:

(9) f 1 (x b , t + ∆t) = -f 2 (x e , t + ∆t) = -f * 2 (x b , t) ,
u(x) = c x (1-x) 2 K .
We analyze the behavior of the discrete model to show whether it can be tuned so that the location of the "numerical boundary" can be fixed at mid-point as expected from "anti bounce-back". Thus we shall use as criterion for accuracy the difference between the imposed boundary and the "numerically determined" boundary.

From a theoretical point of view, we suppose that the discrete fields f j (x, t) vary slowly in space and time in order to be able to use Taylor expansions. We analyse the lattice Boltzmann scheme in terms of equivalent partial differential equations and formal developments. It is well known (see e.g. Griffiths and Sanz-Serna [START_REF] Griffiths | On the scope of the method of modified equations[END_REF] or Chang [START_REF] Chang | A critical analysis of the modified equation technique of Warming and Hyett[END_REF]) that this method of analysis fails a priori to predict boundary effects properly if this hypothesis is not satisfied. We keep in mind this restriction in our numerical experiments. Nevertheless, this elementary tool can produce nontrivial results, as we will see hereafter.

We say in the following that a boundary scheme (such as [START_REF] Ginzbourg | Boundary flow condition analysis for three-dimensional lattice Boltzmann model[END_REF] to fix the ideas) is of order p at location ∆q relative to homogeneous Dirichlet boundary condition (that are present in (8)) if the numerical boundary condition implies [START_REF] Ginzburg | Second order boundary method for Lattice Boltzmann model[END_REF] ρ

(x b -∆q) = O(∆x p )
for the continuous conserved field issued from the particle field f j (x, t) according to (2).

We have the following result:

Proposition 1.
Superconvergent relation between parameters For the D1Q3 lattice Boltzmann scheme (1) (2) (4) (5), the "anti bounce-back" numerical boundary condition ( 9) is of order 3 at location ∆q = ∆x 2 relative to the homogeneous Dirichlet boundary condition of problem [START_REF] Ginzburg | Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations[END_REF] if and only if the following condition [START_REF] Ginzburg | Multireflection boundary conditions for lattice Boltzmann models[END_REF] σ

1 σ 2 = 1 8 is satisfied.
Relation [START_REF] Ginzburg | Multireflection boundary conditions for lattice Boltzmann models[END_REF] defines superconvergent parameters σ 1 and σ 2 . Recall that they have been called "magic" by I. Ginzbourg and P.M. Alder [START_REF] Ginzbourg | Boundary flow condition analysis for three-dimensional lattice Boltzmann model[END_REF].

Proof of Proposition 1.

We have introduced in [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF][START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] the "tensor of momentum velocities" and the so-called "defects of conservation" which are defined respectively by

Λ ℓ kα ≡ j M kj M αj (M -1 ) jℓ (12) θ k ≡ ∂ t m eq k + Λ ℓ kα ∂ α m eq ℓ , k ≥ 1.
For the D1Q3 lattice Boltzmann scheme applied to diffusion problem like ( 8), ( 13)

θ 1 = ζλ 2 ∂ρ ∂x , θ 2 = ζ λ 2 2 ∂ρ ∂t .
Then we obtain the following development of non-equilibrium moments at third order (as described in [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]):

(14) m * k = m eq k + ∆t 1 2 -σ k θ k -∆t(σ k ∂ t θ k + σ ℓ Λ ℓ kα ∂ α θ ℓ ) + O(∆x 3 ), k ≥ 1.
Thus for k = 1:

m * 1 = ∆t 1 2 -σ 1 θ 1 -∆t(σ 1 ∂ t θ 1 + σ 1 Λ 1 11 ∂ x θ 1 + σ 2 Λ 2 11 ∂ x θ 2 ) + O(∆x 3 ) .
Using (13) and ∂ t θ 1 = O(∆t 2 ), Λ 1 11 = 0 the above equation becomes:

(15) m * 1 = ∆tλ 2 1 2 -σ 1 ζ ∂ρ ∂x + O(∆x 3 ).
For k = 2, we use expression (5) of m eq 2 , together with θ 2 = 0 and Λ 1 21 = λ 2 2 to obtain from equation ( 14):

(16) m * 2 = λ 2 ζ 2 ρ -∆t 2 λ 4 ζ 2 σ 1 1 2 -σ 2 ∂ 2 ρ ∂x 2 + O(∆x 3 )
Using the inverse moment matrix M -1 , the post-collision f are given by:

f * 1 = 1 2λ 2 [2m * 2 + λm * 1 ] , f * 2 = 1 2λ 2 [2m * 2 -λm * 1 ] . ( 17 
)
At the boundary, due to ( 9) and (1), we consider the following quantity:

(18) f * 1 (x e ) + f * 2 (x b ) = 1 2λ 2 [2(m * 2 (x e ) + m * 2 (x b )) + λ(m * 1 (x e ) -m * 1 (x b ))] .
Using relations [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] and (15) we obtain respectively:

(19)      m * 2 (x e ) + m * 2 (x b ) = λ 2 ζ 2 [ρ(x e ) + ρ(x b )] -∆t 2 λ 4 ζ 2 σ 1 1 2 -σ 2 ∂ 2 ρ ∂x 2 (x e ) + ∂ 2 ρ ∂x 2 (x b ) + O(∆x 3 )  (20) m * 1 (x e ) -m * 1 (x b ) = ∆t λ 2 ζ ( 1 2 -σ 1 ) ∂ρ ∂x (x e ) - ∂ρ ∂x (x b ) + O(∆x 3 ).
With the help of classical Taylor expansion we have, with the notation

x i ≡ 1 2 (x b + x e ): ρ(x e ) + ρ(x b ) = 2ρ(x i ) + ∆x 2 4 ∂ 2 ρ ∂x 2 (x i ) + O(∆x 3 ), (21) ∂ρ ∂x (x e ) - ∂ρ ∂x (x b ) = -∆x ∂ 2 ρ ∂x 2 (x i ) + O(∆x 3 ), (22) 
∂ 2 ρ ∂x 2 (x e ) + ∂ 2 ρ ∂x 2 (x b ) = 2 ∂ 2 ρ ∂x 2 (x i ) + O(∆x 2 ). ( 23 
)
Considering equation [START_REF] Junk | Convergence of Lattice Boltzmann Methods for Navier-Stokes Flows in Periodic and Bounded Domains[END_REF], together with [START_REF] Junk | Weighted L 2 Stability of the Lattice Boltzmann Method[END_REF], [START_REF] Karlin | Maximum Entropy Principle for Lattice Kinetic Equations[END_REF] and taking into account relations ( 21), ( 22) and ( 23) we obtain:

(24) f * 1 (x e ) + f * 2 (x b ) = ζ ρ(x i ) + ζ ∆x 2 σ 1 σ 2 - 1 8 
∂ 2 ρ ∂x 2 (x i ) + O(∆x 3 ).
Due to the simple fundamental expression (1) of a lattice Boltzmann scheme, the left hand side of ( 24) is identically null when the numerical boundary condition (9) occurs. Due to the relation

x i = 1 2 (x b + x e )
, the condition ( 10) is satisfied with ∆q = ∆x 2 and p = 3 if and only if σ 1 σ 2 = 1 8 .

• Let us now consider the effect of using a different moment matrix for the D1Q3 case:

(25) M =   1 1 1 0 λ -λ -2λ 2 λ 2 λ 2   .
obtained from (3) by a Gram-Schmidt orthogonalization algorithm as usual with the lattice Boltzmann scheme (see e.g. [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]). The moments at equilibrium are now given by m eq 1 = 0 and m eq 2 = λ 2 ζ ρ. We remark that the matrix of moments [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF] leads to an equivalent macroscopic conservation law of type (6) with a diffusivity κ which is now given by κ = ∆t

λ 2 σ 1 2+ ζ 3 . Proposition 2.
Third order at the boundary The D1Q3 lattice Boltzmann scheme (1) (25) (4) (5) associated to the "anti bounce-back" numerical boundary condition (9) is of order 3 at location ∆q = ∆x 2 for the homogeneous Dirichlet boundary condition of problem [START_REF] Ginzburg | Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations[END_REF] if and only if σ 1 σ 2 = 3 8 . Remark that the superconvergent parameters satisfying the relation [START_REF] Ginzburg | Multireflection boundary conditions for lattice Boltzmann models[END_REF] emerging from Proposition 1 with the choice of transformation matrix M given by (3) are different from those obtained in the case with matrix [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF].



On a superconvergent lattice Boltzmann boundary scheme

Proof of Proposition 2.

For this model we have the following Taylor development of non-conserved moments up to order 2 on ∆x:

m * 1 = ∆t λ 2 1 2 -σ 1 2 + ζ 3 ∂ρ ∂x + O(∆x 3 ), m * 2 = λ 2 ζ ρ -∆t 2 λ 4 σ 1 1 2 -σ 2 2 + ζ 3 
∂ 2 ρ ∂x 2 + O(∆x 3 ).
With the help of the matrix moments [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF] we have:

f * 1 = 1 3 ρ + 1 6λ 2 m * 2 + 3λm * 1 , f * 2 = 1 3 ρ + 1 6λ 2 m * 2 -3λm * 1 .
As f 2 (x b ) is internal to the domain we add to ρ(x b ) a body source δρ = -2+ ζ 3 ∂ 2 ρ ∂x 2 . Now by using the same method as in the proof of Proposition 1, we obtain:

f * 1 (x e ) + f * 2 (x b ) = 2 + ζ 3 ρ(x i ) + ∆x 2 8σ 1 σ 2 -3 2 + ζ 72 ∂ 2 ρ ∂x 2 (x i ) + O(∆x 3 ).
The conclusion is a direct consequence of the above calculus. To illustrate the preceeding discussion, we perform a numerical simulation of the two lattice Boltzmann models and analyze (after a suitable number of iterations to reach steady state) the "Poiseuille" parabolic profile. We measure the numerical error in terms of a precise location of the boundary for Dirichlet type boundary condition. We follow  François Dubois, Pierre Lallemand and Mahdi Tekitek a method proposed by Ginzburg and d'Humières [START_REF] Ginzburg | Second order boundary method for Lattice Boltzmann model[END_REF]: from the numerical discrete field u LB (j ∆x) we determine by least squares a parabola that fit at best the data. Then we calculate where this approximation of the numerical solution u LB is equal to zero. We interpret this location as the "experimental numerical location" of the solid wall. We find experimentally that the extrapolated location of the Dirichlet boundary condition is located between x b and x e and this exact solid wall location is parametrized under the form x b -∆q, with 0 ≤ ∆q ≤ ∆x. The results obtained for several values of σ 1 and σ 2 are shown in Figure 2 to depend only upon the product σ 1 σ 2 and go through 0 respectively for 1 8 or 3 8 , in complete coherence with the Taylor expansion method developed in Propositions 1 and 2.

The two-dimensional Poiseuille flow

We consider here the classical D2Q9 model (see e.g. [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]). We study a Poiseuille flow (in linear regime), first with an imposed uniform body force and periodic boundary condition at the inlet and oulet of the channel. Then we consider the same flow with an imposed difference of pressure between inlet and outlet. The evolution of the lattice Boltzmann scheme is given by equation [START_REF] Asinari | Connection between kinetic methods for fluid-dynamic equations and macroscopic finite-difference schemes[END_REF]. The corresponding moments have an explicit physical significance: m 0 ≡ ρ is the density, m 1 ≡ j x and m 2 ≡ j y are x and y components of momentum, m 3 is the energy, m 4 is related to square energy, m 5 , m 6 are x and y components of heat flux and m 7 , m 8 are diagonal stress and off-diagonal stress. A Gram-Schmidt orthogonalization method is also used and the matrix of moments is exactly that used in [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF][START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]. The collision is described in the moments space as:

(26) m * ℓ = (1 -s ℓ ) m ℓ + s ℓ m eq ℓ , 3 ≤ ℓ ≤ 8,
where the equilibrium values m eq k are given by:

(27) m eq 3 = α ρ , m eq 4 = β ρ , m eq 5 = -j x λ , m eq 6 = -j y λ , m eq 7 = 0 , m eq 8 = 0 . 

 • The Poiseuille flow

We introduce a two-dimensional domain Ω =]0, L[×]0, H[ (see Figure 3). Let u(t, x, y) ≡ (u, v) be the velocity of fluid and p the pressure solution of the "Poiseuille" Stokes system:

(28) -ν ∆u + 1 ρ ∇p = 0 , div u = 0 in Ω
with the following boundary conditions:

(29) p(0, y) = -p(L, y) = δp for 0 ≤ y ≤ H , u(x, 0) = u(x, H) = 0 for 0 ≤ x ≤ L .
The solution of the above problem is classical: u(x, y) ≡ (u(y) = K y (H -y), v = 0) , p(x, y) = 2 ρ ν K x+ P 0 , where P 0 is a given constant. We note that the problem (28) ( 29) is equivalent to a flow resulting from the action of a constant external force F between two arallel walls with periodic boundary conditions on the inlet and the outlet of the channel (i.e. in the Ox direction). So the problem (28) (29) becomes:

(30) -ν ∆u = F , u(x, 0) = u(x, H) = 0,
where F = (F x , 0) is the external force. The solution is given by u

(x, y) = u(y) = Fx 2 ν y (H -y) , v = 0 .
• A first lattice Boltzmann scheme We use the D2Q9 lattice Boltzmann scheme to model the Poiseuille flow described by equation (30). We use the equilibrium (27) with s 7 = s 8 = 1 2 + 3ν λ 2 ∆t -1 to have the exact viscosity ν present in equation (30). The implementation of the lattice Boltzmann scheme is conducted as follows for an arbitrary mesh vertex x of the lattice.

At initial time step t = t 0 we set the vectors f (x, t 0 ) = 0. For any given time t, we first determine the moments m k using the relation m ≡ M f. Then we change velocity j x before the collision step by adding a half of the external force F x :  x = j x + ∆t 2 F x . Thus the macroscopic moments (density and velocity) are evaluated. Then we perform the collision step in moments space according to relation (26) and we add half of the external force F x to the conserved velocity  x : j x (t + ∆t) =  x + ∆t 2 F x . Using the matrix M -1 we compute the particle distributions f * α (x, t). We perform advection through a relation analogous to (1) and we obtain the vector f α (x + v α ∆t, t + ∆t) for 0 ≤ α ≤ 8, if x + v α ∆t is a lattice node. For a boundary node as x b of Figure 3, we use (with the usual numbering of the degrees of freedom for D2Q9 scheme [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]) the following bounce-back boundary condition (31)

   f 2 (x b , t + ∆t) = f 4 (x e , t + ∆t) = f * 4 (x b , t) f 5 (x b , t + ∆t) = f 7 (x c , t + ∆t) = f * 7 (x b , t) f 6 (x b , t + ∆t) = f 8 (x d , t + ∆t) = f * 8 (x b , t) .
Periodic boundary conditions are considered in the longitudinal direction for abscissae equal to 0 and L. We repeat those steps until convergence to a steady state.

 Proposition 3.

Order three for bounce-back For the D2Q9 lattice Boltzmann scheme (1) (26) (27 ) the bounce-back numerical boundary condition (31) is of order 3 at location ∆q = ∆x 2 for the Dirichlet boundary condition u = 0 if and only if σ 5 σ 8 = 3 8 . Proof of Proposition 3. We calculate the defects of conservation θ k defined by [START_REF] Ginzburg | Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions[END_REF] for k > 3:

θ 3 = ∂ t (αρ) = -α divj + O(∆x 2 ) , θ 4 = ∂ t (βρ) -divj = -(β + 1) divj + O(∆x 2 ) , θ 5 = - ∂ t j x λ + λ(α + β) 3 ∂ x ρ = λ 6 (4 + 3α + 2β) ∂ x ρ + O(∆x) , θ 6 = - ∂ t j y λ + λ(α + β) 3 ∂ y ρ = λ 6 (4 + 3α + 2β) ∂ y ρ + O(∆x) , θ 7 = 2 3 (∂ x j x -∂ y j y ) θ 8 = 1 3 (∂ y j x + ∂ x j y ) .
Nonequilibrium moments at second order are given by the expansion ( 14) (justified in [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF][START_REF] Dubois | Using the Lattice Boltzmann Scheme for Anisotropic Diffusion Problems, Finite Volumes for complex Applications V[END_REF]). Then we have:

m * 3 = αρ + ∆t 1 2 -σ 3 -α divj + ∆t λ 2 6 (σ 3 α(4 + α) + σ 5 (4 + 3α + 2β))∆ρ + O(∆x 3 ), m * 4 = βρ+∆t ( 1 2 -σ 4 ) -(β+1)divj+∆t λ 2 6 
(σ 4 (β+1)(4+α)+σ 5 (4+3α+2β))∆ρ +O(∆x 3 ),

m * 5 = - j x λ + ∆t 1 2 -σ 5 λ (4 + 3α + 2β) 6 ∂ x ρ + ∆t λ 3 (4 + 3α + 2β) 2 σ 5 ∂ x divj +ασ 3 ∂ x divj + (β + 1)σ 4 ∂ x divj + 2σ 8 ∂ x (∂ x j x -∂ y j y ) -σ 8 ∂ y (∂ y j x + ∂ x j y ) + O(∆x 3 ), m * 6 = - j y λ + ∆t 1 2 -σ 5 λ (4 + 3α + 2β) 6 ∂ y ρ + ∆t λ 3 (4 + 3α + 2β) 2 σ 5 ∂ y divj +ασ 3 ∂ y divj + (β + 1)σ 4 ∂ y divj -2σ 8 ∂ y (∂ x j x -∂ y j y ) -σ 8 ∂ x (∂ y j x + ∂ x j y ) + O(∆x 3 ), m * 7 = ∆t 1 2 -σ 8 2 3 (∂ x j x -∂ y j y ) + ∆t λ 2 9 σ 8 (4 + α) + σ 5 2 (4 + 3α + 2β) (∂ 2 x ρ -∂ 2 y ρ) + O(∆x 3 ), m * 8 = ∆t 1 2 -σ 8 1 3 (∂ y j x + ∂ x j y ) + ∆t λ 2 9 (σ 8 (4 + α) -σ 5 (4 + 3α + 2β))∂ xy ρ + O(∆x 3 ) .
We have j y = 0, j x = j x0 + y∂ y j x + y 2 2 ∂ 2 y j x and ρ = constant. We evaluate the non conserved moments m * k (x b ) and add m

1 (x b ) = j x (x b ) = j x (x i ) + ∆x 2 3 σ 8 ∂ 2 y j x (x i ) + O(∆x 3 ). We compute moments m * k (x e ), m * k (x c
) and m * k (x d ) at the "external nodes" depicted in Figure 3. Using the matrix M -1 we evaluate f

* k (x b ), f * k (x c ), f * k (x d ) and f * k (x e ). Finally we obtain (32) f * 5 (x c ) -f * 7 (x b ) = 1 6 j x (x i ) + ∆x 2 144 (8σ 5 σ 8 -3) ∂ 2 j x ∂y 2 (x i ) + O(∆x 3 )
verse profile for longitudinal momentum. the algebra then follows what is presented for proposition 3.

• We then perform simulations of the two situations discussed above. For this we consider a domain of size N x = 100, N y = 21 and analyze the flow in the steady state.

For several values of σ 5 and of σ 8 , we determine a parabola by best fit with the velocity profile in the middle section of the channel. We verified that the domain was long enough in order to reduce to a negligible level the errors due to mismatch in the end boundary conditions for links that intersect both a solid boundary (imposed flux) and the input boundary (imposed pressure), that would require a more sophisticated treatment.

As in relation [START_REF] Ginzburg | Second order boundary method for Lattice Boltzmann model[END_REF], we define ∆q as the experimental point where the parabola goes through zero. The results (Figure 4) depend only upon the product σ 5 σ 8 and are coherent with the theoretical results established in propositions 3 and 4. For α = -2 and β = 1, the superconvergent accuracy is obtained "experimentally exactly" at the boundary for 

Conclusion

The "magic" parameters introduced by Ginzburg and Adler [START_REF] Ginzbourg | Boundary flow condition analysis for three-dimensional lattice Boltzmann model[END_REF] which allow to increase the accuracy of lattice Boltzmann simulations in the presence of solid boundaries have been considered for a few simple situations. We have shown that they depend upon the choice of moments and of their equilibrium values. In addition they depend upon the way the flow is driven. The analysis requires the determination of the non equilibrium moments up to second order accuracy and this explicitation is obtained in the framework of the Taylor expansion method. Note that the same results could be obtained with the Chapman-Enskog procedure. The work described here can easily be extended to more complicated lattice Boltzmann schemes for boundaries parallel to one of the velocities of the model. In all cases that we considered, the results can be expressed in terms of products of the type σ i σ j , where σ i corresponds to the relevant transport coefficient (diffusivity or shear viscosity) and σ j to other moments of opposite symmetry (i.e. odd order moments of f , "energy flux" and higher order terms of the same symmetry for models with a large enough number of velocities), and thus the "magic" conditions are the same as those presented in the comprehensive paper of Ginzburg, Verhaeghe and d'Humières [START_REF] Ginzburg | Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions[END_REF]. They are also valid for special BGK situations that we have in addition to the "magic" conditions, σ i = σ j .

FrançoisFigure 1 :

 1 Figure 1: A boundary surface cutting the link between a fluid node x b and a fictitious outside node x e ≡ x b -∆x.

Figure 2 :

 2 Figure 2: "Experimental numerical location" of the solid wall ∆q versus σ 1 σ 2 . The first D1Q3 model with symbol: superconvergent parameters such that σ 1 σ 2 = 1 8 . The second D1Q3 model with symbol: superconvergent parameters satisfying σ 1 σ 2 = 3 8 .

Figure 3 :

 3 Figure 3: Domain Ω = ]0, L[ × ]0, H[ (left) and notations for the numerical treatment of a boundary vertex x b at the bottom of domain Ω (right).

  σ 5 σ 8 = 3 16 . When α = -β = -52 , the same observation occurs for σ 5 σ 8 = 3 8 .

Figure 4 : 2 for σ 5 σ 8

 428 Figure 4: Product σ 5 σ 8 versus solid wall location ∆q with N y = 21 for the second lattice Boltzmann boundary scheme (33). Parameters α = -2, β = 1 with symbol, parameters α = -2.5, β = 2.5 with symbol. The boundary is experimentally located at ∆q = ∆x 2 for σ 5 σ 8 = 3 16 in the first case and σ 5 σ 8 = 3 8 in the second, as suggested in Proposition 4.
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and similar relations for f * 2 (x e ) -f * 4 (x b ) and f * 6 (x d ) -f * 8 (x b ). The conclusion is clear: when the left hand side of (32) is identically null due to the boundary condition (31), the momentum j x (x i ) on the surface located at ∆q = 1 2 ∆x is null "up to third order accuracy" as defined in [START_REF] Ginzburg | Second order boundary method for Lattice Boltzmann model[END_REF] if and only if the relation 8σ 5 σ 8 -3 = 0 occurs.

• We remark that if we apply the body force following the algorithm (i) m = M f, (ii) collision, (iii) f = M -1 m, (iv) apply the body force following the precise relations for transformation of particle distribution f -→ f :

λ and m k = m k for the other moments, the solid wall for the Poiseuille problem is "numerically located" at ∆q = ∆x 2 up to third order accuracy if the relation σ 5 σ 8 = 3 16 is satisfied between the relaxation parameters, as proposed by Ginzburg and d'Humières [START_REF] Ginzburg | Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations[END_REF][START_REF] Ginzburg | Multireflection boundary conditions for lattice Boltzmann models[END_REF][START_REF] Ginzburg | Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions[END_REF].

• A second lattice Boltzmann scheme We can also model the Poiseuille flow described by (28) (29) with the explicit introduction of a pressure gradient δp. So the scheme (26) (27) has the same steps as the preceeding scheme with F x ≡ 0 and the wall boundary conditions are still given by (31). We consider the boundary condition for nodes x ≡ (k ∆x, ℓ ∆x) at the entrance (k = 1) and at the output (k = N x ) as follows:

(33)

with δρ = δp/c 2 s the density drop corresponding to the pressure step considered in (29), ( c s is the speed of sound) and (α, β) parameters for equilibrium introduced at the relation (27). Note that these expressions may be called "anti bounce-back" with an imposed scalar quantity (similar to what is used when the lattice Boltzmann scheme is set to simulate diffusion problems). In this case we perform the same proof as for proposition 3, we take F x = 0 and the exact solution is given by a linear longitudinal profile for density and a parabolic trans-