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Abstract. We propose to extend the d’Humières version of the lattice Boltzmann scheme

to triangular meshes. We use Bravais lattices or more general lattices with the property that

the degree of each internal vertex is supposed to be constant. On such meshes, it is possible

to define the lattice Boltzmann scheme as a discrete particle method, without need of finite

volume formulation or Delaunay-Voronoi hypothesis for the lattice. We test this idea for the

heat equation and perform an asymptotic analysis with the Taylor expansion method for two

schemes named D2T4 and D2T7. The results show a convergence up to second order accuracy

and set new questions concerning a possible super-convergence.
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1) Introduction
The importance of extending the lattice Boltzmann scheme from square type regular

meshes to unstructured triangulations has been recognized during the last years of 20th

century [5, 22, 29]. In particular the “volumetric formulation” of Chen [5] makes a link with

finite volumes, using control volumes around each vertex (the “Inria cells” [41]) of a finite

element type triangulation. This method is still under active development with the work

of Succi, Ubertini and co-workers [30, 35, 36]. In a dual way, van der Sman [37, 38, 39, 40]

uses rectangles and triangles as control volumes with a “cell center” type approach in

Roache [33] denomination. He has developed an approximation of diffusion equation with

Delaunay-Voronoi meshes for a BGK variant of the lattice Boltzmann scheme.

In a previous contribution [12], we have observed that for usual lattice Boltzmann

schemes (as for example the well known D2Q9), several (two for D2Q9) families of finite

volumes are naturally associated with the scheme. As a consequence, we consider now

the lattice Boltzmann scheme essentially as a “particle” method on a given (a priori fixed)

mesh with discrete velocities. Recall that the “Particle In Cell” method has been first

proposed in 1964 by Harlow et al. [18] and has been analyzed in the eighties by Beale and

Majda [2], Raviart, Cottet and Mas Gallic [8, 28, 32] among others. We remark that this

particle method does not suppose a priori the existence of a given lattice. The surrounding

cells are recomputed at each time step in order to make the particle interact. Dynamic

triangulation is an alternative to the previous methodology. It has been developed recently

by Cianci, Klales, Love and co-workers [23, 26] in the context of lattice gas automata.

In this contribution, instead of adopting the volumetric formulation or a Delaunay-

Voronoi hypothesis, we develop the framework of lattice Boltzmann schemes as a variant

of the particle method. We propose an extension of the approach of d’Humières [9] to

triangular meshes and we restrict this first tentative to scalar problems like the heat

equation without advection.

The outline of the contribution is the following. We first recall the classic D2T7 lattice

Boltzmann scheme in the next section. At this occasion, we put in evidence a property

of symmetry of Bravais lattices. It is possible to adapt the Taylor expansion analysis

[10] to this triangular lattice, with a diffusive scaling. This development is presented in

Section 3 and applied to the D2T7 scheme. Several simulations with the D2T7 lattice

Boltzmann scheme for the heat equation are presented in Section 4. In Section 5, we

set the question of defining a discrete particle method on a finite element type triangular

lattice. We propose a partial answer when each vertex of the lattice has a constant number

of neighbours. This framework is applied in Section 6 to define a D2T4 lattice Boltzmann

scheme for the heat equation. We repeat in Section 7 with this new scheme “D2T4” the

simulations presented in Section 4. This work validates the potential of applications of our

proposal. The conclusion (section 8) serves also as a discussion concerning encountered

difficulties.
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2) D2T7 lattice Boltzmann scheme
We consider a Bravais lattice L connecting nodes labelled by the letter x and parametrized

by a typical space scale ∆x. The neighbour vertex number j of the node x ∈ L is denoted

by xj and we set

(1) xj = x+ ξj ∆x .

For each x ∈ L and each direction ξj linking two vertices, the “opposite node” with

number σ(j) defined according to

(2) xσ(j) ≡ x− ξj ∆x , ξj + ξσ(j) ≡ 0

is also a vertex of the lattice L (i.e. xσ(j) ∈ L). In the following, we emphasize this

property satisfied by Bravais lattices and qualify it as a symmetric property. Most “DdQq”

schemes (with a notation introduced by Qian et al. [31]) presented in the literature use a

Bravais lattice. This symmetry property is also mandatory e.g. to define “two relaxation

times” lattice Boltzmann schemes as proposed by Ginzburg et al. [16].

The lattice Boltzmann scheme with multiple relaxation times is defined in a classical

manner. Consider a vertex x that belongs to the lattice L. Then the jo direction of

propagation is defined with a vector ξj and ξj ∈ V, set of directions that define the

vicinity of the vertex x. The jo density of particles at vertex x and time t is denoted by

fj(x, t). After a local step of relaxation, the jo density of particles is named f ∗
j (x, t).

Because a Bravais lattice L is symmetric, the neighbouring vertex xσ(j) defined in (2) in

the direction opposite to the jo direction of propagation belongs to the lattice L. The

lattice Boltzmann scheme can be completely defined:

(3) fj(x, t+∆t) = f ∗
j (x− ξj ∆x, t) .

Moreover the basic iteration (3) of a lattice Boltzmann scheme supposes explicitly that

the lattice is symmetric, as illustrated in Figure 1 (left).
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Figure 1. Typical stencil of a lattice Boltzmann scheme for a Bravais lattice (left) ;

both opposite directions ξj and −ξj connect two vertices of the mesh. Local numbering

of the six neighbours (right) of the D2T7 lattice Boltzmann scheme on triangles.

The D2T7 lattice Boltzmann uses equilateral triangles as suggested by Frisch, Hasslacher

and Pomeau in 1986 [14] in the context of lattice gas automata. We precise the parameters

that we have to consider. A vertex x has a total of six neighbours (seven including itself)

ξj (j = 0, . . . , 6) as in Figure 1 (right). Following d’Humières approach [9] we introduce

moments mk as linear functions of the particle distribution f :

(4) mk =
∑

j

Mkj fj .
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We restrict our study to the simple case of only one conservation (thermal problem).

Following [24], we introduce a family P of polynomials pk for k = 0, · · · , 6:

(5) P =
{
1, X, Y, X2 + Y 2,

4√
3
X Y, 2 (X2 − Y 2), 3 Y − 4 Y 3

}
.

The coefficients of the matrix M introduced at relation (4) are simply given by a nodal

value in the velocity space:

(6) Mkj = pk(ξj) , 0 ≤ j, k ≤ 6 .

We remark that Mαj = ξαj for α = 1, 2. We have only one conserved moment ρ ≡
m0 = meq

0 = m∗
0 =

∑
j fj and the other moments at equilibrium follow the relations

meq
1 = meq

2 = 0, meq
3 = a3 ρ, meq

4 = meq
5 = meq

6 = 0. The relaxation of moments out of

equilibrium is also very simple:

(7) m∗
k = mk + sk (m

eq
k −mk) , k = 1, · · · , 6 .

with s1 = s2 and s4 = s5 to enforce isotropy.

3) Taylor expansion with diffusive scaling
We can analyse the D2T7 lattice Boltzmann scheme with the Taylor expansion method

[10]. We consider one time step of iteration (3) and we replace the particle distribution

in the right hand side by the moments after relaxation:

fj(x, t +∆t) =
∑

ℓ

M−1
jℓ m∗

ℓ(x− ξj ∆x, t).

In consequence, we have the formal expansion in the moment space

mk(x, t+∆t) =
∑

jℓ

Mkj M
−1
jℓ m∗

ℓ(x− ξj ∆x, t)

=
∑

jℓ

Mkj M
−1
jℓ

[
m∗

ℓ(x, t)− ξαj ∆x ∂αm
∗
ℓ +O(∆x2)

]

= m∗
k −∆x

∑

ℓ

(∑

j

Mkj ξ
α
j M−1

jℓ

)
∂αm

∗
ℓ +O(∆x2).

We introduced the momentum-velocity tensor introduced in [10]: Λℓ
kp ≡

∑

j

Mkj Mpj M
−1
jℓ .

Then we have up to third order accuracy

mk(x, t+∆t) = m∗
k −∆xΛℓ

kα ∂αm
∗
ℓ +

1

2
∆x2 Λp

kαΛ
ℓ
pβ ∂α∂βm

∗
ℓ + O(∆x3)

and using the relaxation step (7),

m∗
k(x, t+∆t) = meq

k −∆x
1− sk
sk

Λℓ
kα ∂αm

eq
ℓ +O(∆x2).

We adopt the so-called “diffusive scaling” proposed initially for rarefied flows by Sone [34]

(see an explicit derivation for lattice Boltzmann schemes e.g. in Junk et al. [20])

(8) ∆t ≡ ∆x2

ζ


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where ζ is a constant for homogeneity of dimensions. We add some advection term by

enforcing the relations according to meq
1 = u ∆x

ζ
and meq

2 = v ∆x
ζ
. After some pages of

formal calculus, following the method presented in details in [13], we obtain the equivalent

partial differential equation :

(9)
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂x
− µ∆ρ = Θ∆x2 ∆2ρ + ∆x4 A6 ρ+O(∆x6) .

Up to second order accuracy, we have an approximation of the heat equation with a

diffusivity coefficient µ given according to

µ =
1

2
ζ a3 σ1.

The coefficients σk for the nonconserved moments are given by the Hénon’s relation [19]

σk ≡ 1
sk

− 1
2
. The coefficient Θ in front of the fourth order term in (9) is explicited as

follows for u = v = 0 :

(10) Θ = − 1

16
σ1 a3 ζ

(
(1− a3)

(
1− 4 σ1 σ3

)
− 2 σ1 σ4 + 4 a3 σ

2
1

)
.

In the relation (9), A6 is a sixth order operator. The development of the other moments

can also be achieved. In particular, we have mα = meq
α − a3

2 s1
∆x ∂αρ+O(∆x2).

• “Second order”, “quartic” and “hexahedric” coefficients

We have chosen the following numerical values ζ = 1 , a3 =
1
4
, s1 = 0.8 compatible with

a diffusivity coefficient µ = 0.09375. In these conditions, the D2T7 lattice Boltzmann

scheme is formally equivalent to the heat equation up to order 2 (id est, due to (9) and (10),

Θ 6= 0 and A6 6= 0) when using to fix the ideas the following “second order” coefficients

(given here with 15 decimals for a possible implementation):

(11) s3 = 1.428571428571428, s4 = s5 = 0.481927710843373, s6 = 0.476190476190476.

With the following choice of “quartic” relaxation coefficients

(12) s3 = 1.428571428571428, s4 = s5 = 0.930232558139534, s6 = 0.526315789473684,

the D2T7 lattice Boltzmann scheme is formally of the order 4 (id est Θ = 0 and A6 6= 0).

Last but not least, we can impose Θ ≡ 0 and A6 ≡ 0 and the D2T7 scheme is of order 6.

The “hexahedric” coefficients can be taken as follows:

(13) s3 = 1.086117521785847, s4 = s5 = 1.344205296559553, s6 = 0.647305233773416.

4) Diffusion simulations with the D2T7 scheme
We have done several simulations: a “one point” periodic analysis, a numerical evaluation

of the modes for a periodic pipe and a rectangle, the computation of harmonic functions

by time asymptotics of the heat equation, the dissipation of a triangular Dirichlet mode

and the direct numerical computation of triangular Dirichlet modes.


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• One point periodic analysis

The one point analysis can be conducted as follows. We start from the iteration (3) of a

lattice Boltzmann scheme. We suppose that the particle field for the neighbouring points

of vertex x satisfy the following periodicity condition :

(14) fj
(
x− ξj ∆x, t) = exp

(
− ik • ξj ∆x

)
fj
(
x, t)

for some wave vector k = (k cos θ, k sin θ). From (14), the evaluation of the right hand

side of (3) is easy in the context of the d’Humières version of the lattice Boltzmann

scheme. The state vector f is then solution of an eigenvalue problem of small dimension

q for a general lattice Boltzmann problem with q velocities. In the D2T7 case for thermal

problems, we obtain six eigenvalues λℓ ≃ 1 − sℓ for ℓ ≥ 1 and one physical eigenvalue

λ(k) ≃ 1 − µ k2. This eigenvalue has a real meaning for applications to macroscopic

physics. A numerical diffusivity µnum ≡ (1−λ(k))/k2 can be extracted from the previous

relation. In Figure 2, we have plotted the error ǫ ≡ | µ − µnum | as a function of the

modulus of the wave vector. With the three versions of the D2T7 scheme detailed in (11),

(12) and (13), the errors for the diffusivity have an order of convergence directly predicted

by the Taylor expansion analysis.
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Figure 2. D2T7 lattice Boltzmann scheme for the heat equation. One point periodic

analysis. Error ǫ ≡ | µ− µnum | between exact and numerical diffusivities. Note that the

exact dispersion equation can be obtained, and when solved by successive approximations

in powers of k, it leads to the same results, obtained from the successive equivalent

equations.

• Periodic pipe and rectangle

The analysis for a periodic pipe is conducted by following the same ideas. A D2T7 lattice

Boltzmann solver is considered on a simple geometry of nx ≡ 96 by ny ≡ 4 mesh points.

The unknown is now a vector f ∈ IR 7nxny. The iteration of the scheme defines a linear

operator A and the first eigenvalue of this operator is determined thanks to an Arnoldi

algorithm [1]. The first eigenvalue λ ≡ 1 corresponds to the conservation of mass in the

whole domain, including boundary conditions. The second eigenvalue λ0 corresponds to

the smallest wave vector compatible with the computational domain. It is compared with

the modulus of the wave vector to evaluate a numerical diffusivity µnum = (1−λ0)/k
2 as


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previously. The different errors ǫ ≡ | µ−µnum | are presented in Figure 3 (left). The first

two versions (11)(12) of orders two and four present a coherent numerical convergence.

The results are not so clear with the sixth order tuning of the parameters. It seems to

be due to the round-off errors for this study involving three orders of magnitude for wave

vector.

The analysis is analogous for a rectangle nx ≡ 36 by ny ≡ 52 mesh points. The

results are depicted in Figure 3 (right). The lattice Boltzmann scheme has a coherent

order of convergence for the “second order” and “fourth order” versions of the scheme.

The “sixth order” scheme exhibits now an error numerically evaluated as only fifth order

accurate. This fact seems again to due to round-off errors in the Arnoldi process [1].
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Figure 3. D2T7 lattice Boltzmann scheme for the heat equation. Periodic modes for

a pipe with nx = 96 and ny = 4 mesh points (left) an periodic modes for a rectangle of

nx = 36 by ny = 52 points (right). Error ǫ ≡ | µ − µnum | between exact and numerical

diffusivities. The hexahedric predicted coefficients define a fourth or fifth order scheme.

Figure 4. Typical two-dimensional mesh for a D2T7 computation on a triangle (left).

Two-dimensional computation of the harmonic function pH(x, y) = x2 − y2 on a triangle

with the D2T7 lattice Boltzmann scheme (right). The iso-contours are composed by

discrete hyperbolas.
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• Harmonic polynomials on a triangle

We have developed a D2T7 solver for a triangular geometry (see a typical mesh in Figure 4)

The initial condition is a priori identically null. We determine the numerical boundary

conditions compatible with a polynomial expression pH(x, y) ≡ x2 − y2 on the boundary

with an “anti-bounce-back” version of the algorithm of Bouzidi et al. [3]. The computation

converges in time towards the harmonic function introduced above. We present in Figure 4

(right) the numerical result ρ(x, y) ≃ pH(x, y) when we use 61 points on the edge of

the triangle (that corresponds to a total of 1891 vertices for the entire mesh).

Figure 5. Two-dimensional computation of the harmonic function pH(x, y) = x2− y2

on a triangle with the D2T7 lattice Boltzmann scheme. Iso-contours of the errors for

three sets of parameters presented at relations (11), (12) and (13). Negative values are in

blue and positive ones in red. The maximal errors are equal to 8.14 10−4 (left), 2.36 10−4

(middle) and 4.47 10−5 (right) when using a D2T7 scheme with formal order of 2 (left),

4 (middle) and 6 (right).
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Figure 6. Two-dimensional computation of the harmonic function pH(x, y) = x2− y2

on a triangle with the D2T7 lattice Boltzmann scheme. No extra order is observed for

the L∞ error when refining the mesh (left). The evolution in time is very slow (right),

even initializing the computation with the exact solution !

In Figure 5, we have plotted the error field for the three versions (11)(12)(13) of the D2T7

lattice Boltzmann scheme. The results are qualitatively coherent: the more the scheme is

theoretically precise, the more the error is reduced. In Figure 6 (left), we observe that the


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L∞ error is substantially reduced when the parameters induce a better precision. But the

order of convergence remains very close to second order even for “fourth order” and “sixth

order” versions of the scheme using the set of parameters (12) or (13). In this case this

default can be due to a possible deficit of time steps and to crude boundary conditions.

The lattice Boltzmann scheme is explicit and the time iterations (see Figure 6, right) take

too much time to reach convergence to the stationary state with a satisfactory reduction

of the error.

• Dissipation of a triangular Dirichlet mode

We have also experimented the relaxation of a Dirichlet mode. The first mode is simply a

product of three “sinus” functions, as first explicited by Lamé (see McCartin [27]). With

our nomenclature, the eigenvalue number ℓ is proportional to 3 (ℓ− 1)2 . The reference

value is in consequence equal to 12, 48 and 108 for ℓ equal to 3, 5 and 7 respectively. We

present in Figure 7 the results at T = 4/3 and the evolution of the physical field at the

center. The asymptotic analysis obtained by successive mesh refinements is presented in

Figure 8. We measure the error in time for the center vertex as the mesh size tends to zero

and the L∞ error at the precise time T = 4/3 in the same conditions. The results are

correct but not easy to interpret. The “second order” scheme is just a bit better that the

order 3/2. The “fourth order” version is of order 3 and the “sixth order” scheme hesitates

between the orders 3 and 4.
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Figure 7. Isovalues of the first Dirichlet mode for an equilateral triangle (left). Dissi-

pation of this mode by time evolution: D2T7 solution at time T = 4/3 for 76 points on

the edge (2926 vertices, middle). Exponential decay at the center of the mesh (55 vertices,

right).
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Figure 8. Dissipation of the first Dirichlet mode. Isocontours of the field of error

at T = 4/3 with a mesh composed by 61 points on the edge (left). Negative values in

blue and positive ones in red. Time and L∞ space errors for several meshes and several

“orders” with the D2T7 lattice Boltzmann scheme. The obtained accuracy is not the one

proposed by the Taylor expansion method. The space numerical accuracy is going from

1.7 to 3.0 with a good tuning of the numerical parameters.

• Dirichlet modes for a triangle

We used the D2T7 lattice Boltzmann scheme (3) to define a linear operator f(t) 7−→
f(t +∆t) ≡ A•f(t) where f(t) is the vector of all unknowns for the entire mesh. Then

the first eigenvalues of the linear operator A are computed with the Arnoldi algorithm [1].

Figure 9. Isovalues of the Dirichlet mode number “3” of an equilateral triangle (left)

and errors for a D2T7 computation. The exact reference eigenvalue is equal to 12 (in

appropriate units). The numerical eigenvalue is equal to 11.99902 with second order

parameters (middle) and to 11.99938 with “fourth order” parameters (right). The L∞

error for the modes is equal to 4 10−4 at order 2 and 10−4 at order 4. The figures show

the isovalues of the error for both computations with different scales. We observe that

the global shape of these errors is similar to isovalues of the reference eigenvector.

Some exact reference modes are displayed in the left part of Figures 9 to 11. The numerical

approximation is globally of very good quality and we have plotted the errors for different


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modes computed on the same lattice in the same figures. We perform the computations

for each mode, one with the “second order” accurate version of the D2T7 scheme and

the other one with a “fourth order” accurate tuning of numerical parameters. In each

case, we compare the theoretical eigenvalue after applying a suitable normalization and

the computed eigenvalue by the Arnoldi algorithm. The results are of good quality and

the quartic parameters give a better precision for the numerical results. Even if the

fourth order convergence is not established, the tuning of parameters improves clearly the

numerical quality.

Figure 10. Isovalues of the Dirichlet mode number “5” of an equilateral triangle (left)

and errors for a D2T7 computation. The exact reference eigenvalue is equal to 48. The

numerical eigenvalue is equal to 47.98339 at order 2 (middle) and to 47.98842 at order 4

(right). The L∞ error for the modes is equal to 3. 10−2 at order 2 and 1.1 10−3 at order 4.

Figure 11. Dirichlet mode number “7” of an equilateral triangle (left) and errors for

a D2T7 computation. The exact reference eigenvalue is equal to 108. The numerical

eigenvalue is equal to 107.90777 at order 2 (middle) and to 107.92705 at order 4 (right).

The L∞ error for the modes with this computation is equal to 1.02 10−2 at order 2 and

4.2 10−3 at order 4.
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5) Lattice Boltzmann scheme on arbitrary meshes ?
Imagine that we move the vertices in the Bravais lattice presented at Figure 4 (left).

We obtain a topologically regular mesh in the sense that the number of edges containing

a given internal vertex is constant. An example is proposed at Figure 12. This mesh

is a good candidate for future extensions of the lattice Boltzmann scheme. With this

kind of classical finite element type mesh, it is possible to use all the engineering tools

of automatic meshing in two and three space dimensions as described e.g. in [15]. But

this goal is still not the purpose of the present contribution. The vertices of the mesh

of Figure 12 are now the nodes of a cellular complex and each vertex has a constant

number of neighbours. In other terms, the degree of each vertex is constant. We denote

by xj ≡ x + ξj(x)∆x the vertex belonging to the lattice L with a local neighbouring

number j relative to the vertex x. Remark that the vertex x is also a neighbour of the

vertex xj with a local number ℓ ≡ nj(x). We have the obvious relation ξj(x)+ ξℓ(xj) ≡ 0

and in other terms the identity

(15) ξj(x) + ξnj(x)(xj) ≡ 0 .

As previously, we denote by fj(x) the density of particles going from vertex x towards

vertex xj . Moreover, the outgoing particles from vertex xj are also ingoing particles

“into” vertex x with an index denoted by ℓ.

Figure 12. Triangular lattice obtained from a little random displacement of the vertices

of an equilateral triangular mesh.

We precise the previous notation. If fj(x) is the density of particles from the vertex x

towards the vertex xj , f ∗
j (x) denotes the same quantity after relaxation. In a dual

vision, we denote by f ∗
ℓ (xj) the density of particles going from the vertex xj in the

direction of the vertex x after relaxation. We have also to consider the density f̃j(x) of

particles going from the vertex xj towards the vertex x. The lattice Boltzmann scheme

is a particle method. The flight of particles between the vertex xj and the vertex x

takes exactly one time step : f̃j(x, t + ∆t) = f ∗
ℓ (xj , t). If we replace the notation ℓ

for the index of vertex x relative to its neighbour xj by the notation nj(x) introduced

previously at relation (15), the lattice Boltzmann scheme takes the form

(16) f̃j(x, t +∆t) = f ∗
nj(x)

(xj, t) .





On triangular lattice Boltzmann schemes for scalar problems

In the case of general meshes, the relation (16) replaces the initial formula (3), correct

only for Bravais lattices, as illustrated in Figure 13.

x + ξ  ∆x  = x          xjj

jn (x)
*f        (x )j

f (x)j

Figure 13. Iteration of a lattice Boltzmann scheme: the ingoing particles f̃j(x) into

vertex x are coming from the neighbouring vertex xj after a relaxation step.

We precise now how to compare the ingoing particles f̃j(x), the outgoing particles f ∗
j (x)

emitted from the vertex x and the associated moments. We introduce first a matrix

M̃(x) in order to compute the moments mk(x) from the ingoing particles. As previously

(see the relation (5)), we suppose given a family P of polynomials pk. In an analogous

way suggested by the relation (6), we just reverse the direction of velocities and we have

M̃(x)kj = pk
(
− ξj

)
, with pk ∈ P. If the polynomials 1, X and Y are the first

polynomials of the family P, we have as in the previous studies M̃(x) 0j = 1 , M̃(x)αj =

−ξαj (x) , 1 ≤ α ≤ d. The moments are evaluated for the incoming particles with the

natural relation

(17) mk(x) ≡
∑

j

M̃(x)kj f̃j(x) , 0 ≤ k ≤ q − 1 , x ∈ L .

The relaxation step is essentially unchanged. The moments can be seen as the eigenvectors

of the jacobian of the relaxation matrix (see e.g. [11]) and this operator is diagonal with

this representation:

(18) m∗
k(x) = mk(x) + sk(x)

(
meq

k (x)−mk(x)
)
,

where the index k in relation (18) is running on all nonconserved moments. The outgoing

particles after relaxation are supposed to be a linear functional of the moments:

(19) f ∗
j (x) ≡

∑

k

P (x)jk m∗
k(x) , 0 ≤ j ≤ q − 1 , x ∈ L .

The question is now to determine the matrix P . We have the following property.

Proposition 1. Transition matrix from moments to particle distribution.

If the Taylor expansion approach is valid at the order zero and if each internal node of

lattice L is of constant degree (the number of neighbours of each vertex does not depend

of the vertex x ∈ L), the matrix P (x) of relation (19) is given by the relation

(20) P (x) i ℓ =
(
M̃(xi)

)−1

ni(x) ℓ
.

Proof of Proposition 1.

The proof can be conducted as follows. We start from the time iteration (3) of the lattice

Boltzmann scheme. Then after multiplication by the matrix M̃(x), with the help of (17),

(16) and (19), we have

mk(x, t+∆t) =
∑

j

M̃(x)kj f̃j(x, t+∆t) =
∑

j

M̃(x)kj f
∗
nj(x)

(xj , t)
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=
∑

j

M̃(x)kj
∑

ℓ

P (xj)nj(x) ℓ m
∗
ℓ(xj , t) =

∑

ℓ

(∑

j

M̃(x)kj P (xj)nj(x) ℓ

)
m∗

ℓ(x+ξj∆x, t).

We expand this relation at order one. Due to relaxation, we just have a small perturbation

between m and m∗ :
mk(x) + O(∆t) = m∗

k(x) + O(∆x).

In consequence, ∑

j

M̃(x)kj P (xj)nj(x) ℓ ≡ δk ℓ

and in other terms,
P (xj)nj(x) ℓ =

(
M̃(x)

)−1

j ℓ
.

We change the names of the vertices. We replace the letter xj by the letter x. Then we

replace the index nj(x) by some neighbor i of vertex x and the index j is now equal to

ni(x). With this change of notation, we obtain P (x) i ℓ =
(
M̃(xi)

)−1

ni(x) ℓ
which is exactly

the relation (20). �

We can now make explicit the d’Humières lattice Boltzmann scheme on an arbitrary mesh

where the degree of each vertex is constant. When all the outgoing densities of particles

f ∗
j (x, t) are known for all the vertices of the lattice at some discrete time t, the ingoing

densities f̃j(x, t + ∆t) at the new time step are simply evaluated by a free flight (16)

during one time step. Then the moments mk are a local linear transform of the particle

densities thanks to (17). The first moments compose a set W (x) of conserved variables

and the equilibrium moments meq are a given (in general nonlinear) function G(W ) of

this field: meq
k (x) = Gk(W (x)), x ∈ L. The relaxation of moments follow the relation

(18). Note that in general the coefficients sk(x) now depend a priori explicitly on the

vertex x. Last but not least, the outgoing particles at the new time step from the vertex

x follow the local linear transform (19).

6) D2T4 scheme for equilateral triangles
We consider a general two-dimensional mesh L composed by triangles. Note here that

a cellular complex is composed by “vertices” in L0 of dimension zero, by edges in L1

of dimension one and by triangles of dimension two: x ∈ L2. In other words, we adopt

a “cell center” framework in the sense proposed in Roache [33]. We can also locate the

degree of freedom x at the center of gravity of the corresponding triangle. Remark that

we make here a priori no other regularity hypothesis. Each triangle x has three edges.

Each edge inside the border of x is part of the boundary of (at most) two triangles : the

triangle x itself and its jth neighbor xj . It is then natural to consider outgoing particles

(fj)0≤j≤4 going from x towards xj with a local velocity ξj(x)∆t chosen in such a way

that the centers of both triangles x and xj are joined in exactly one time step of duration

∆t. Of course, the null velocity is not excluded. This remark explains the name “D2T4”

of this type of lattice Boltzmann scheme. A typical regular mesh for a D2T4 computation

is presented in Figure 14.
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Figure 14. Typical mesh with equilateral triangles. The four degrees of freedom of

D2T4 scheme are located at the center of gravity of each triangle. The links between

triangles create the dual hexagonal mesh around the vertices of the triangular mesh.

The degrees of freedom in Figure 14 are the centers of the initial triangular mesh. This

“secondary mesh” is no longer a Bravais lattice. We lose the possibility of straight prop-

agation of particles in the lattice and also the symmetry property of Bravais meshes

emphasized in Figure 1. But we keep the property that the number of neighbours is

constant. And this property is maintained whatever the initial triangulation with cellular

complexes.

3

2

1

2

1

3

rightleft

Figure 15. Two types of triangles for the D2T4 scheme with equilaterals. The local

numbers are explicited for each edge.

We observe that such a lattice contains only two types of equilateral triangles: the “left”

and “right” ’ triangles as displayed in Figure 15. We precise now the choices we have done

to construct our scheme. The family P of polynomials is simply composed by a restriction

of (5) to the first four terms: P =
{
1, X, Y, X2+Y 2

}
. Because we have two generic tri-

angles, we have two families of neighboring directions ξleft =
(
−1, 0

)
,
(
1
2
, −

√
3
2

)
,
(
1
2
,

√
3
2

)
,

ξright =
(
1, 0

)
,
(
− 1

2
,

√
3
2

)
,
(
− 1

2
, −

√
3
2

)
. We observe also that due to the simple numbering

of local edges (see the figure 15), we have the simple relations nj(x) ≡ j and ξleftj +ξrightj =

0. In this contribution, we consider only one conserved variable ρ = m0 ≡
∑3

j=0 fj. The

moments at equilibrium are simply chosen with meq
1 = meq

2 = 0 and meq
3 = a3 ρ.

Proposition 2. Transition matrix for the D2T4 lattice Boltzmann scheme

For the D2T4 lattice Boltzmann scheme defined previously, we have

(21) P left =
(
M left

)−1
, P right =

(
M right

)−1
.

In this particular case, the relations (21) are exactly analogous to the ones for lattice

Boltzmann schemes on Bravais lattices. In some sense, for the D2T4 scheme, the relations

(21) remain (too !) simple !
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Proof of Proposition 2

Recall that due to (20), we have P (x)i ℓ =
(
M̃(xi)

)−1

ni(x) ℓ
with ni(x) ≡ i due to our

precise choice of numbering (see the figure 15). Then we have the two matrix equalities

P left
i ℓ =

(
M̃ right

)−1

i ℓ
and P right

i ℓ =
(
M̃ left

)−1

i ℓ
. We remark also that M left

kj = pk(ξ
left
j ) and

M̃ left
kj = pk(−ξleftj ). Analogously M right

kj = pk(ξ
right
j ) and M̃ right

kj = pk(−ξrightj ) . But ξleftj +

ξrightj = 0 , then P left =
(
M̃ right

)−1
= (M left)−1 and for the other family of triangles

P right =
(
M̃ left

)−1
= (M right)−1 . The relation (21) is established. �

• Taylor expansion analysis for the D2T4 scheme

The analysis can now be conducted without difficulty in the same framework than pre-

viously. We adopt the diffusive-scaling (8). After some developments with the help of

formal calculus (see e.g. [13]) we derive the equivalent partial differential equation at the

order 6:

(22)





∂ρ

∂t
− µ∆ρ =

a3 ζ

24
(12 σ2

1 − 1)∆x
(
∂2
x − 3 ∂2

y

)(
∂xρ

)
+Θ2∆x2 ∆2ρ

+ Θ3∆x3
(
∂2
x − 3 ∂2

y

)
∆
(
∂xρ

)
+ ∆x4 A6 ρ+O(∆x6) .

The notation σk is identical to the one used at Hénon’s relation [19]. The diffusion

coefficient µ satisfies the relation µ = ζ a3 σ1.

• “First order”, “second order”, “third order” and “quartic” coefficients

We have chosen ζ = 1. For first order simulations, we have taken the following numerical

values

(23) a3 = 0.216506350946109, s1 = 1.2, s3 = 0.750796078775233

compatible with a diffusion coefficient µ = 0.0721687836487032 = 1
4
√
12

. With the choice

σ1 = 1√
12

the scheme is at least second order accurate (see the right hand side of (22))

and we take parameters to fit the previous choice of the diffusion coefficient:

(24) a3 = 0.25, s1 = 1.267949192431122

With the particular value

(25) s3 = 0.422649730810374 ,

we have Θ2 6= 0 and the D2T4 scheme is formally second order accurate. With

(26) s3 = 0.758775495823486 ,

we have Θ2 = 0, Θ3 6= 0 and the D2T4 scheme is formally third order accurate. With

the choice of parameters

(27) s3 = 0.732050807568877 =
√
3− 1 ,

id est σ3 =
√
3
2
, we have Θ2 = Θ3 = 0. With these conditions, the D2T4 scheme is

theoretically fourth order accurate.
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7) Diffusion simulations with the D2T4 scheme
We have done essentially the same simulations as performed with the D2T7 lattice Boltz-

mann scheme (see Section 4).

• One point periodic analysis

The results are presented in Figure 16. The theoretical orders with the four choices of

parameters proposed previously are exactly the one proposed by the Taylor expansion

analysis. A defect of isotropy for the numerical diffusivity is clearly visible for parameters

that lead to a first order and third order schemes with this D2T4 simulator.
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Figure 16. One point periodic analysis. Error ǫ ≡ | µ−µnum | between numerical and

theoretical diffusivities. Four sets of parameters defined at relations (23), (24), (25), (26)

and (27) lead to schemes of several orders. The measured orders with a linear regression

are displayed in the right column.

• Periodic pipe and rectangle

We have tested the fourth order version (24) (27) of the D2T4 lattice Boltzmann scheme on

two simple periodic geometries presented in Section 4. The numerical results (Figure 17)

show that the scheme is convergent, but simply at second order accuracy.
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Figure 17. D2T4 lattice Boltzmann scheme for the heat equation. Periodic modes

for a pipe with nx = 96 and ny = 4 mesh points (left) and a rectangle of nx = 36 by

ny = 52 points (right). Error ǫ ≡ | µ− µnum | between exact and numerical diffusivities.

The predicted coefficients for the order 4 define a second order scheme in this particular

case.
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• Harmonic polynomials on a triangle

The numerical computation of Laplace equation with non-homogeneous boundary condi-

tions has been also performed by integrating the heat equation and taking the limit for

time large enough. Our simulation (Figure 18) shows that the D2T4 scheme is convergent

with second order accuracy. Nevertheless the second order and fourth order versions of

the scheme give essentially the same results.
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Figure 18. Two-dimensional computation of the harmonic function pH(x, y) = x2−y2

on a triangle with the D2T4 lattice Boltzmann scheme (left). Convergence of the L∞

error for several meshes. The D2T4 lattice Boltzmann scheme remains of order 2 even if

quartic parameters are used in the simulation. Dissipation of the first Dirichlet mode for

an equilateral triangle (right). Time and L∞ space errors for several meshes and several

“orders”. The numerical accuracy is equal to 2 for all the parameters. With “quartic”

parameters the absolute level of the error is substantially reduced.

• Dissipation of a triangular Dirichlet mode

The dissipation of the first mode described at the figure 7 for the D2T7 scheme has been

constructed without difficulty. Now the two main versions of the scheme (second and

fourth orders) converge with second order accuracy as shown in Figure 18. We observe

that even if no extra order of convergence has been obtained, the results with quartic

parameters give a better precision.

• Dirichlet modes for a triangle

The simulations done with the D2T7 lattice Boltzmann scheme have been compared with

a D2T4 simulator. The results (Figure 19) explicit this comparison. A first result is that

the level of error for D2T4 is comparable with D2T7 results at order two. If we look

precisely to the error fields, distinguished contribution is due to the boundary conditions.
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Figure 19. Isovalues of the errors for D2T4 computation of Dirichlet modes of an

equilateral triangle. The exact reference eigenvalues are equal respectively to 12, 48 and

108 and the computed ones to 11.97493, 47.59816 and 105.95870. This figure can be

compared to second order accurate D2T7 results at Figures 9, 10 and 11 respectively.

8) Conclusion
We have proposed an extension of the lattice Boltzmann method for triangular meshes.

Our first step concerns a single conservation law and we made numerical simulations for

the heat equation. For an extension of the discrete particle method, we have considered

non Bravais lattices such that the degree of each vertex is constant. Our formulation

does not need any finite volume or Delaunay-Voronoi triangulation hypothesis as in the

previous contributions. We have used the Taylor expansion analysis with a diffusive

scaling to explicit some parameters of the d’Humières scheme. With this method, it is

possible to get formally a better accuracy. Our simulations show that this extra accuracy

can be obtained with very fundamental one point periodic hypothesis. In more realistic

cases, this extra-accuracy is in general not observed.

We think that triangular meshes explicit the limit of validity of the Taylor expansion

analysis. In fact when we write the lattice Boltzmann scheme with the relation (3) or

(16) and when we perform the Taylor expansion, we suppose that there exists a very

regular function f(x, t) of space and time that support the definition of the scheme. In

particular, this function is supposed to be independent of the lattice ! This last Ansatz

is in defect for triangular meshes on nonsymmetric lattices as D2T4. Note that this kind

of remark recover other critics [4, 17] relative to this kind of symptotic analysis [25, 42].

Two directions of research are natural in the continuation of the present contribu-

tion. First we can try to develop a true mathematical analysis of the lattice Boltzmann

scheme, following e.g. previous work of Junk and Yong [21] with appropriate mathe-

matical tools, as done typically by Ciarlet and Raviart for finite elements [7] or Gallouët

and coworkers for finite volumes [6]. Second we can extend triangular lattice Boltzmann

schemes to systems with other conservation laws for acoustics and fluid flow applications,
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revisiting the breakthrough of Frisch, Hasslacher and Pomeau [14]. Preliminary results

have been obtained for D2T10, which are not described in this article due to unnecessary

complications.
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