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Abstract

Optimized Schwarz Waveform Relaxation methods have been developed over the last decade for
the parallel solution of evolution problems. They are based on a decomposition in space and an iter-
ation, where only subproblems in space-time need to be solved. Each subproblem can be simulated
using an adapted numerical method, for example with local time stepping, or one can even use a dif-
ferent model in different subdomains, which makes these methods very suitable also from a modeling
point of view. For rapid convergence however, it is important to use effective transmission conditions
between the space-time subdomains, and for best performance, these transmission conditions need
to take the physics of the underlying evolution problem into account. The optimization of these
transmission conditions leads to mathematically hard best approximation problems of homographic
functions. We study in this paper in detail the best approximation problem for the case of linear
advection reaction diffusion equations in two spatial dimensions. We prove comprehensively best ap-
proximation results for transmission conditions of Robin and Ventcel (higher order) type, which can
also be used in the various limits for example for the heat equation, since we include in our analysis a
positive low frequency limiter both in space and time. We give for each case closed form asymptotic
values for the parameters which can directly be used in implementations of these algorithms, and
which guarantee asymptotically best performance of the iterative methods. We finally show extensive
numerical experiments including cases not covered by our analysis, for example decompositions with
cross points. In all cases, we measure performance corresponding to our analysis.

Keywords Domain decomposition, waveform relaxation, best approximation.
2010 Mathematics Subject Classification 65M55, 65M15.

1 Introduction

Schwarz waveform relaxation algorithms are parallel algorithms to solve evolution problems in space time.
They were invented independently in [20] and [24], see also [21], based on the earlier work in [4], and are a
combination of the classical waveform relaxation algorithm from [32] for the solution of large scale systems
of ordinary differential equations, and Schwarz methods invented in [39]. Modern Schwarz methods
are among the best parallel solvers for steady partial differential equations, see the books [40, 38, 41]
and references therein. Waveform relaxation methods have been analyzed for many different classes of
problems recently: for fractional differential equations see [30], for singular perturbation problems see
[47], for differential algebraic equations see [2], for population dynamics see [23], for functional differential
equations see [48], and especially for partial differential equations, see [28, 29, 43] and the references
therein. For the particular form of Schwarz waveform relaxation methods, see [6, 18, 8, 7, 31, 46, 22, 35,
5, 45, 33, 34]. These algorithms have also become of interest in the moving mesh R-refinement strategy,
see [27, 26, 17], and references therein.
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Schwarz waveform relaxation methods however exhibit only fast convergence, when optimized trans-
mission conditions are used, as first shown in [16], and then treated in detail in [36, 15, 3, 42] for diffusive
problems, and [10, 9] for the wave equation, see also [19, 14] for circuit problems, and [1] for the prim-
itive equations. With optimized transmission conditions, the algorithms can be used without overlap,
and optimized transmission conditions turned out to be important also for Schwarz algorithms applied
to steady problems, for an overview, see [11] and references therein. In order to make such algorithms
useful in practice, one needs simply to use formulas for the optimized parameters, which can then be put
into implementations and lead to fast convergent algorithms, without having to think about optimizing
transmission conditions ever again.

The purpose of this paper is to provide such formulas for a general evolution problem of advection
reaction diffusion type. The analysis required to solve the associated optimization problems is substantial,
and only asymptotic techniques lead to easy to use, closed form formulas. We also use and extend more
general, abstract results for best approximation problems, which appeared in [3]. In particular, we remove
a compactness condition which remained in [3] in the case of overlap. We obtain with our analysis the
best choice of Robin transmission conditions, and also higher order transmission conditions called Ventcel
conditions (after the Russian mathematician A. D. Ventcel, also spelled Venttsel, Ventsel or Wentzell [44]),
both for the case of overlapping and non-overlapping algorithms. We give complete proofs of optimality,
generalizing one-dimensional results given in [15] and [3]. We also illustrate our results with numerical
experiments.

2 Model Problem and Main Results

We study the optimized Schwarz waveform relaxation algorithm for the time dependent advection reaction
diffusion equation in Ω ⊂ R2,

Lu := ∂tu+ a · ∇u− ν∆u + bu = f, in Ω× (0, T ), (2.1)

where ν > 0, b > 0 and a = (a, c)T , and suitable boundary conditions need to be prescribed on the bound-
ary of Ω, which will however not play an important role, and we will not mention this further. In order to
describe the Schwarz waveform relaxation algorithm, we decompose the domain into J non-overlapping
subdomains Uj , and then enlarge them, if desired, in order to obtain an overlapping decomposition given
by subdomains Ωj . The interfaces between subdomain Ωi and Ωj are then defined by Γij = ∂Ωi ∩ U j .
The algorithm for such a decomposition calculates then for n = 1, 2, . . . the iterates (unj ) defined by

Luni = f in Ωi × (0, T )
uni (·, ·, 0) = u0 in Ωi,

Biju
n
i = Biju

n−1
j on Γij × (0, T ),

(2.2)

where the Bij are linear differential operators in space and time, and initial guesses Biju
0
j on Γij × (0, T )

need to be provided.
There are many different choices for the operators Bij . Choosing for Bij the identity leads to the

classical Schwarz waveform relaxation method, which needs overlap for convergence. Zeroth or higher
order differential conditions lead to optimized variants, which also converge without overlap, see for
example [15] and [3], where a complete analysis in one dimension was performed. We study here in detail
the case where the transmission operators are of the form

Bij = (ν∇− a

2
) · ni +

s

2
, s = p+ q(∂t + c∂y − ν∆y). (2.3)

If q = 0, these are Robin transmission conditions, whereas for q 6= 0, they are called Ventcel transmission
conditions. In the ideal case where Ω = R2 is decomposed into two half spaces Ω1 = (−∞, L) × R and
Ω2 = (0,∞) × R, we can compute explicitly the error in each subdomain at step n as a function of the
initial error. We use Fourier transforms in time and in the direction y of the boundary, with ω and k
the Fourier variables. The convergence factor ρ(ω, k, p, q, L) of algorithm (2.2), which gives precisely the
error reduction of each error component in ω and k for a given choice of parameters p and q and overlap
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Method No overlap Overlap L

Dirichlet 1 1− ∝(L)

Robin 1− ∝(
√
h) 1− ∝( 3

√
L)

Ventcel 1− ∝( 4
√
h) 1− ∝( 5

√
L)

Table 1: The asymptotically optimized convergence factors δ∗(L).

L, can in this case be computed in closed form (see [15]),

ρ(ω, k, p, q, L) =
p+ q(νk2 + i(ω + ck))−

√
x20 + 4ν(νk2 + i(ω + ck))

p+ q(νk2 + i(ω + ck)) +
√
x20 + 4ν(νk2 + i(ω + ck))

e−
L

√
x2
0+4ν(νk2+i(ω+ck))

2ν , (2.4)

where we denote by
√

the standard branch of the square root with positive real part, x20 := a2+4νb and

i =
√
−1. Computing on a (uniform) grid, we assume that the maximum frequency in space is kM = π

h
where h is the local mesh size in x and y, and the maximum frequency in time is ωM = π

∆t , and that
we also have estimates for the lowest frequencies km and ωm from the geometry, see for example [11]
for estimates, or for a more precise analysis see [13]. We also assume that the mesh sizes in time and
space are related either by ∆t = Chh, or ∆t = Chh

2, corresponding to a typical implicit or explicit time
discretization of the problem.

Defining D := {(ω, k), ωm 6 |ω| 6 ωM , km 6 |k| 6 kM}, the parameters (p∗, q∗) which give the best
convergence factor are solution of the best approximation problem

inf
(p,q)∈C2

sup
(ω,k)∈D

|ρ(ω, k, p, q, L)| = sup
(ω,k)∈D

|ρ(ω, k, p∗, q∗, L)| =: δ∗(L). (2.5)

To motivate the reader, we outline in Table 1 the asymptotic behavior of the convergence factors, which
can be achieved by optimization. We use here the notation Q ⋍ h or Q =∝(h) if there exists C 6= 0 such
that Q ∼ Ch.

In what follows, we will often use the quantity

k̄ = |c|
√
(c2 + x20)

2 + 16ν2ω2
m − (c2 + x20)

8ν2ωm
.

By a direct calculation, we see that 0 6 k̄|c| 6 ωm, and we define the function

ϕ(k, ξ) := 2
√
2
√√

(x20 + 4ν2k2)2 + 16ν2ξ2 + x20 + 4ν2k2, (2.6)

and the constant

A =





ϕ(k̄,−ωm + |c|k̄) if km 6 k̄,
ϕ(km,−ωm + |c|km) if k̄ 6 km 6 1

|c|ωm,

ϕ(km, 0) if km > 1
|c|ωm.

(2.7)

We state in the following two subsections the main theorems which we will prove in this paper, for both
overlapping and non-overlapping variants of the algorithm.

2.1 Robin Transmission Conditions

Theorem 2.1 (Robin Conditions without Overlap) For small h and small ∆t, the best approxi-
mation problem (2.5) with L = 0 has a unique solution (p∗0(0), δ

∗
0(0)), which is given asymptotically

by

p∗0(0) ∼
√

A

Bh
, δ∗0(0) ∼ 1− 1

2

√
ABh, (2.8)
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where A is defined in (2.7), and

B =






2
νπ if ∆t = Chh,

C
√
2d

νπ if ∆t = Chh
2, d := νπCh, C =

{
1 if d < d0,√

d+
√
1+d2

1+d2 if d > d0,

(2.9)

where d0 ≈ 1.543679 is the unique real root of the polynomial d3 − 2d2 + 2d− 2.

Partial results in the spirit of this theorem were already obtained earlier:

1. If km = ωm = 0, all three cases in (2.7) coincide, since k̄ = 0, and the constant A simplifies to
A = 4x0, and we find the case analyzed in [25].

2. If km and ωm do not both vanish simultaneously, and we are in the case of the heat equation, a = 0,

b = 0, c = 0, ν = 1, we also obtain k̄ = 0, and A = 4

√
2
(√

k4m + ω2
m + k2m

)
, the case analyzed

in [42]. Note that the stability constraint for the heat equation discretized with a finite difference
scheme is 4ν∆t 6 h2, which with our notation implies that d 6 π/4 ∼ 0.7854, a value smaller than
d0, and hence the constant C in (2.9) is equal to 1.

For the algorithm with overlap, L > 0, we treat two asymptotic cases: the continuous case deals with
the small overlap parameter L only, while the discrete case involves also the grid parameters. In the
continuous case, we consider the parameters ωM and kM to be equal to +∞.

Theorem 2.2 (Robin Conditions with Overlap, Continuous) For small overlap L > 0, the best
approximation problem (2.5) on D∞ := {(ω, k), ωm 6 |ω| 6 +∞, km 6 |k| 6 +∞} has a unique solution

p∗0,∞(L) ∼ 1

2

3

√
νA2

L
, δ∗0,∞(L) ∼ 1− A

2p∗0,∞(L)
, (2.10)

where A is defined in (2.7).

If the overlap is fixed, the above analysis gives the behavior of the best parameter when h and ∆t
tend to zero. However, the overlap contains in general a few grid points only, and then the discretization
also needs to be taken into account:

Theorem 2.3 (Robin Conditions with Overlap, Discrete) For small ∆t and h, for L ⋍ h, the
best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h2 : p∗0(L) ∼ p∗0,∞(L),

for ∆t ⋍ h : p∗0(L) ∼
p∗0,∞(L)

3
√
2

,
δ∗0(L) ∼ 1− A

2p∗0(L)
. (2.11)

2.2 Ventcel Transmission Conditions

In order to present the theorems, we need to define two auxiliary functions: first

g(t) =
2t−

√
t2 + 1

t2 + 1
,

and we denote for Q < g0 ≈ 0.3690 by t2(Q) the only root of the equation g(t) = Q larger than

t0 =
√
54 + 6

√
33/6 ≈ 1.567618292. Next we also define

P (Q) =





√
1 +

√
t2(Q)2 + 1( 1√

t2(Q)2+1
+Q) if Q < g1 ≈ 0.3148,

1 +Q if Q > g1.
(2.12)
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Theorem 2.4 (Ventcel Conditions without Overlap) The best approximation problem has for L = 0
a unique solution (p∗1(0), q

∗
1(0)), given by

for ∆t = Chh and ACh

8 < 1 : p∗1(0) ∼ 1
2

4

√
νπA3

4h , q∗1(0) ∼ 8ph
πA ,

for ∆t = Chh and ACh

8 > 1 : p∗1(0) ∼ 4

√
νπA2

2Ch(P ( 8
ChA

))2h
, q∗1(0) ∼ 8ph

πA ,

for ∆t = Chh
2 : p∗1(0) ∼ 1

2
4

√
νπA3

4Ch

√
2
d , q∗1(0) ∼ 8Cph

πA

√
d
2 ,

δ∗1(0) ∼ 1− A

2p∗1(0)
.

(2.13)

Here again A is the constant defined in (2.7), d and C are the constants defined in (2.9).

Theorem 2.5 (Ventcel Conditions with Overlap, Continuous) For small overlap L > 0, the best
approximation problem (2.5) on D∞ has the unique solution

p∗1,∞(L) ∼ 1

2

5

√
νA4

8L
, q∗1,∞(L) ∼ 4

5

√
ν2L3

2A2
, δ∗1,∞(L) ∼ 1− A

2p∗1,∞(L)
, (2.14)

where A is defined in (2.7).

Theorem 2.6 (Ventcel Conditions with Overlap, Discrete) For small ∆t and h, for L ⋍ h, the
best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h2 : p∗1(L) ∼ p∗1,∞(L), q∗1(L) ∼ q∗1,∞(L),

for ∆t ⋍ h : p∗1(L) ∼ 2−
1
5 p∗1,∞(L), q∗1(L) ∼ 2

3
5 q∗1,∞(L),

δ∗1(L) ∼ 1− A

2p∗1(L)
. (2.15)

3 Abstract Results

We now recall the abstract results on the best approximation problem (2.5) from [3], and present an
important extension, which allows us to remove a compactness assumption in the overlapping case. We
start by rewriting the convergence factor (2.4) in the form

ρ(z, s, L) =
s− z

s+ z
e−

Lz
2ν , z :=

√
x20 + 4ν(νk2 + i(ω + ck)), s = p+ q(νk2 + i(ω + ck)). (3.1)

In order to separate real and imaginary parts of the square root, we introduce the change of variables

T : (k, ω) 7→ z = x + iy, which transforms the domain D into D̃ = D̃+ ∪ D̃+, with D̃+ ⊂ R+ × R+, as

illustrated in Figure 1. The domain D̃+ is compact, and lies below the line x = y, as one can see from
the coordinates (x, y) = (Re T (k, ω), Im T (k, ω)), which satisfy

x2 − y2 = x20 + 4ν2k2, (3.2a)

2xy = 4ν(ω + ck). (3.2b)

We further assume that the coefficients and parameters satisfy

either x20 + 4ν2k2m 6= 0, or ωm 6= 0, (3.3)

which implies that there exists an α > 0 such that

∀z ∈ D̃, Re z > α > 0.

We also use the notation ρ0(z, p, q) :=
s−z
s+z , ρ(z, p, q, L) := ρ0(z, p, q)e

−Lz/2ν. The min-max problem
(2.5) in the new (x, y)-coordinates takes now the simple form

inf
(p,q)∈C2

sup
z∈D̃

|ρ(z, p, q, L)| = sup
z∈D̃

|ρ(z, p∗, q∗, L)| =: δ∗(L). (3.4)

For convenience, we will also use the notationR0(ω, k, p, q) orR0(z, p, q) for |ρ0(z, p, q)|2, andR(ω, k, p, q, L) =
R(z, p, q, L) = R0(z, p, q)e

−Lx/ν.
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Figure 1: How the change of variables to simplify the convergence factor transforms the frequency domains

3.1 Robin Transmission Conditions

In this case, we set q = 0, and we will simply use the above notation without the parameter q in the
arguments, writing for instance ρ(z, p, L), ρ0(z, p), etc.. We also call the minimum in the Robin case
δ∗0(L).

We start with the non-overlapping case, L = 0, where there is a nice geometric interpretation of the
min-max problem (3.4): for a given point zo ∈ C and a parameter δ ∈ R, we introduce the sets

C(z0, δ) = {z ∈ C;

∣∣∣∣
z − z0
z + z0

∣∣∣∣ = δ}, D̄(z0, δ) = {z ∈ C;

∣∣∣∣
z − z0
z + z0

∣∣∣∣ 6 δ}. (3.5)

Note that C(z0, δ) is a circle centered at 1+δ2

1−δ2 z0, cutting the x−axis at the points 1−δ
1+δ z0 and 1+δ

1−δ z0, and

D̄(z0, δ) is the associated disk. Now because of the form of the convergence factor ρ0(z, p, q) = s−z
s+z ,

(p∗, δ∗) is a solution of the min-max problem (3.4) if and only if for any z in D̃, z is in D̄(p∗, δ∗). This
means geometrically that the solution of the min-max problem (3.4) is represented by the smallest circle

centered on the real axis which contains D̃. We will use this interpretation as a guideline in the analysis,
also for the overlapping case!

Theorem 3.1 For any set of coefficients such that (3.3) is satisfied, and kM and ωM being finite, the
min-max problem (3.4) with L = 0 has a unique solution (δ∗0(0), p

∗
0(0)) with δ∗0(0) < 1. The optimized

parameter p∗0(0) is real and positive, and any strict local minimum on R of the real function

F0(p) = sup
z∈D̃+

|ρ0(z, p)| (3.6)

is the global minimum.

Proof Since D̃ is compact, and with the assumption (3.3) we have Re z > α > 0 with α =
√
x20 + 4ν2k2m

in the first case of (3.3) or α =
√
2νωm in the second case, we can use directly the analysis in [3] for

polynomials of degree zero to get existence and uniqueness. The fact that the optimized parameter must
be real follows directly from the symmetry of D̃ with respect to the x-axis and the geometric interpreta-
tion, and finally that any strict local minimum is the global minimum follows as in [3].

In [3] one can also find a proof of the existence of a solution to the min-max problem (3.4) in the
overlapping case, and uniqueness is shown for L small enough, such that

δ∗(L)e
L
2ν sup

z∈D̃
Re z < 1.

This constraint imposes that D̃ is bounded in the x direction. We show now that this constraint is not
necessary, using the fact that in D̃ the real part of z is strictly larger than the absolute value of its
imaginary part.
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Theorem 3.2 For any L, for kM and ωM finite or not, and with the assumption (3.3), the min-max
problem (3.4) has a unique solution (δ∗0(L), p

∗
0(L)). The optimized parameter p∗0(L) is real, positive, and

any strict local minimum on R of the real function

FL(p) = sup
z∈D̃+

|ρ(z, p, L)| (3.7)

is the global minimum.

Proof By Theorem 2.8 in [3], we know that a (possibly complex) solution p∗ = p∗1 + ip∗2 of (3.4) exists.
We now compute explicitly the modulus of the convergence factor,

|ρ0(z, p)|2 =
(x− p1)

2 + (y − p2)
2

(x+ p1)2 + (y + p2)2
.

We first note that for any z, and any (p1, p2) with p1 > 0, we have |ρ0(z,−p1 + ip2)| > |ρ0(z, p1 + ip2)|,
and therefore we must have p∗1 > 0. Next, in order to show that |p∗2| 6 p∗1, we assume the contrary,
|p∗2| > p∗1, to reach a contradiction (in particular this means that p∗2 6= 0). We calculate the gradient,

∂p1 |ρ0(z, p)|2 = −4
x(x2 + y2 + p22 − p21)− 2yp1p2

((x+ p1)2 + (y + p2)2)2
,

∂p2 |ρ0(z, p)|2 = −4
y(x2 + y2 + p21 − p22)− 2xp1p2

((x+ p1)2 + (y + p2)2)2
,

which gives, with ε = sign(p∗2),

(∂p1 − ε∂p2)|ρ0(z, p∗)|2 = −4
(x− εy)(x2 + y2 + 2εp1p2) + (x + εy)(p22 − p21)

((x+ p1)2 + (y + p2)2)2
< 0,

where we used the fact that x > |y| as we noted earlier (see Figure 1). This shows that |ρ0(z, p)|e−Lx/2ν

decays in the neighborhood of p∗, in the direction (1,−ε), if |p∗2| > p∗1, which is in contradiction with the
fact that the minimum is reached, and hence we must have |p∗2| 6 p∗1.

Now for any z in D̃, since x > |y| and |p∗2| 6 p∗1, we have

Re
p

z
=
xp∗1 + yp∗2

|z|2 > 0.

This allows us to prove that the set of best approximations is convex: consider the disk defined in (3.5).
We have seen that (p∗(L), δ∗(L)) is a solution of the best approximation problem (3.4), if and only if for

any z in D̃, z is also in D̄(p∗(L), δ∗(L)eLx/2ν), which is equivalent by dividing numerator and denominator

by z to saying that p∗/z belongs to D̄(1, δ∗(L)eLx/2ν). For any z in D̃, either δ∗(L)eLx/2ν < 1 and thus
p∗/z is on the inside of the disk D̄(1, δ∗(L)eLx/2ν) which is convex, or δ∗(L)eLx/2ν > 1 and thus p∗/z
is outside of the disk D̄(δ∗(L)eLx/2ν, 1). Now since the circle with z0 = 1 cuts the x-axis only on the
negative half line, see the explicit calculation after (3.5), the outside of the disk contains the half-plane
x > 0, which is also convex.

Using the convexity, we can now show uniqueness: let p∗ and p̃∗ be two solutions of the best approxi-
mation problem with associated δ∗. For a given z in D̃, in the first case, p∗/z and p̃∗/z are both inside the
disk, which is convex. In the second case, they both belong to the half-plane x > 0, which is also convex,
because by assumption (3.3) the real part of z, and hence with the properties on p∗ = p∗1+ip

∗
2 also the real

parts of p∗/z and p̃∗/z are strictly positive. In both cases therefore, any point p/z in the segment joining

p∗/z and p̃∗/z is also in the disk D̄(1, δ∗(L)eLx/2ν), which means that supz∈D̃

∣∣∣ z−p
z+pe

−Lz/2ν
∣∣∣ 6 δ∗(L).

Since δ∗(L) is the minimum, p is also a minimizer. To conclude the proof of uniqueness, we can use now
Theorem 2.11 and the proof of Theorem 2.12 from [3], using a classical equioscillation argument.

To see that the minimizer is real, we use again the symmetry of D̃ with respect to the real axis, and
the results on the strict local minimum implying the global minimum follows as in the non-overlapping
case.
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3.2 Ventcel Transmission Conditions

For the case of Ventcel conditions, q 6= 0, we use the abstract results from [3].

Theorem 3.3 For any set of coefficients such that the assumption (3.3) is satisfied, and with kM and ωM

finite, the min-max problem (3.4) with L = 0 has a unique solution (δ∗1(0), p
∗
1(0), q

∗
1(0)) with δ∗1(0) < 1.

The coefficients p∗1(0)and q
∗
1(0)) are real, and any strict local minimum in R+ × R+ of the real function

F0(p, q) = sup
z∈D̃+

|ρ0(z, p, q)| (3.8)

is the global minimum.

Theorem 3.4 For any L > 0, for kM and ωM finite or not, and with the assumption (3.3) the min-max
problem (5.2) has a solution.

• If D̃ is compact and L sufficiently small, the solution is unique and any strict local minimum of the
real function

FL(p, q) = sup
z∈D̃+

|ρ(z, p, q, L)| (3.9)

is the global minimum.

• If D̃ is not compact, but L sufficiently small, if FL has a strict local minimum in R+ × R+, it is
the unique global minimum.

3.3 Outline of the Analysis

The abstract theorems in the previous subsections provide a guideline for the proof of the main results
in section 2:

1. The existence and uniqueness is guaranteed by the abstract results.

2. The convergence factor being analytic on the compact D, its maximum is reached on the boundary.
We thus study the variations of R for fixed p and q, on the exterior boundaries of D̃+. Due to the
complexity of the problem, this study must be asymptotic, assuming asymptotic properties of p
and q.

3. There are two local maxima in the Robin case, and three local maxima in the Ventcel case. We
prove that there exists a value p̄ (resp. (p̄, q̄)) such that these two (resp. three) values coincide.
The corresponding points z are called equioscillation points.

4. We give the asymptotic values of these points and p̄ (resp. (p̄, q̄)).

5. We prove that p̄ (resp. (p̄, q̄)) is a strict local minimizer for the function F .

6. We again invoke the abstract results to show that the strict local minimizer is in fact the global
minimizer.

Note that point 3 is not at all easy, since many cases have to be analyzed. We will treat the cases
∆t = Chh and ∆t = Chh

2 in the same paragraphs. But for the clarity of the paper, we treat the Robin
and Ventcel cases separately.

3.4 Study of the Boundaries of the Frequency Domain

The boundaries of D̃+ are all branches of the same function (ω, k) 7→ z = x+iy. Combining the equations
(3.2), we see that x, y also satisfy the equation

x2 + y2 =
√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2, (3.10)
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Figure 2: Illustration of the domain D̃+ in the (x, y) plane

which, together with the constraints x > 0, y > 0, gives us a closed form parametric representation for
D̃+: 




x =
√

1
2

√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 + 1

2 (x
2
0 + 4ν2k2),

y =
√

1
2

√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 − 1

2 (x
2
0 + 4ν2k2).

(3.11)

The boundary curves ω 7→ (x(ω, k), y(ω, k)) for k = km or k = kM are hyperbolas, as one can see directly
from (3.2a). They are shown in Figure 2, and using s(c) to denote the sign of c, the boundary on the left
(west) is given by

Cw = z([ωm, ωM ], s(c)km) ∪ z([max(ωm, |c|km), ωM ],−s(c)km) (3.12)

and the boundary on the right (east) is given by

Ce = z([−min(|c|kM , ωM ),−ωm], s(c)kM ) ∪ z([ωm, ωM ], s(c)kM ) ∪ z([|c|kM , ωM ],−s(c)kM ), (3.13)

with the convention that [a, b] = ∅ whenever a > b. The corner points of D̃+ are

z1 = z(max(ωm, |c|km),−s(c)km),
z2 = z(−min(ωM , |c|kM ), s(c)km),
z3 = z(ωM , s(c)kM ),
z4 = z(ωM , s(c)km).
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In order to complete the boundary of D̃+, we analyze now the curves at constant ω. The northern curve
joins z3 and z4,

Cn = z(ωM , s(c)[km, kM ]). (3.14)

The southern curve can have two components, which are

Csw = z(ωm,−s(c)[km,
ωm

|c| ]), Cse = z(−ωM , s(c)[
ωM

|c| , kM ]). (3.15)

Theorem 3.5 The curve k 7→ (x(ω, k), y(ω, k)) has a vertical tangent in the first quadrant if and only if
ω > 0. It is reached for

k̃1(ω) =
c

8ν2ω

(
x20 + c2 −

√
(x20 + c2)2 + 16ν2ω2

)
. (3.16)

It has a horizontal tangent in the first quadrant if and only if ω > 0. It is reached for

k̃2(ω) =
c

8ν2ω

(
x20 + c2 +

√
(x20 + c2)2 + 16ν2ω2

)
. (3.17)

For ωc = 0, the curve is monotone.

Proof We fix ω and differentiate (3.2) in k to obtain

(
x −y
y x

)(
∂kx
∂ky

)
= 2ν

(
2νk
c

)
, (3.18)

or equivalently (
∂kx
∂ky

)
=

2ν

x2 + y2

(
2νkx+ cy
−2νky + cx

)
. (3.19)

We first search vertical tangent lines. From (3.19), we see that ∂kx = 0 if and only if

2νkx+ cy = 0. (3.20)

Multiplying (3.20) successively by x and y and substituting xy from (3.2b) gives the system

x2 = − c

k
(ω + kc),

y2 = −4ν2
k

c
(ω + kc).

(3.21)

Replacing into the expression (3.2a) for x2 − y2 gives the equation for kc (we keep kc since kc has a sign)

Qω(kc) := 4
ν2

c2
ω(kc)2 − (c2 + x20)(kc)− ωc2 = 0. (3.22)

The polynomialQω has one negative solution ck̃1(ω), and one positive solution ck̃2(ω), given in (3.16,3.17).
For k to yield a solution of (3.21) in x > 0, y > 0, we must have ω + kc > 0 and kc < 0. We compute

Qω(−ω) = ω(x20 + 4 ν2ω2

c2 ), which has the sign of the leading coefficient in Qω. This proves that −ω is
outside the interval defined by the roots, i.e.

{
−ω < ck̃1(ω) < 0 < ck̃2(ω) if ω > 0,

ck̃1(ω) < 0 < ck̃2(ω) < −ω if ω < 0.

Therefore, ω + ck̃1(ω) > 0 ⇐⇒ ω > 0, and there is a unique point where the tangent is vertical, and
this point is given by k = k̃1(ω).

We now search for horizontal tangent lines. By (3.19), we see that ∂ky = 0 if and only if

−2νky + cx = 0. (3.23)

10



0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z1

z2

z3

z4

Cw
Cn

Csw

Cez̃1

z̃2

Figure 3: Illustration of the domain D̃+ in the (x, y) plane with the two special points z̃1 and z̃2 defined
in Corollary 3.6

Proceeding as before when we obtained (3.21), we get the system

x2 = 4ν2
k

c
(ω + kc),

y2 =
c

k
(ω + kc),

(3.24)

and kc, together with ω+ kc, must be positive, which is the case if kc is the positive root of Qω, yielding
k̃2. Therefore, there is a unique point where the tangent is horizontal, which is given by k = k̃2(ω).

If ω = 0 and c 6= 0, a direct computation shows that

∂kx =
4ν2k(x2 + c2)

x(x2 + y2)
> 0, ∂ky =

2νc(x20 + y2)

x(x2 + y2)
> 0,

which implies that sign(∂kx) = sign(k) and sign(∂ky) = sign(c). Since with ω = 0 we have from (3.2b)
that k and c have the same sign, and hence dy

dx = ∂ky
∂kx

> 0, we obtain that the curve is monotone.

Suppose now c = 0, ω 6= 0. Using (3.19), we obtain directly dy
dx = ∂ky

∂kx
= − y

x < 0, and again the curve
is monotone.

Finally, if c = ω = 0, we obtain from (3.2b) that y(x) = 0, going from x = x0 to infinity, which is also
monotone.

Corollary 3.6 The northern curve Cn has a horizontal tangent, at z̃2 = z(ωM , k̃2(ωM )), if and only if
|k̃2(ωM )| ∈ [km, kM ].

For km 6 ωm/|c|, the southern curve Csw has a vertical tangent, at z̃1 = z(ωm, k̃1(ωm)), if and only
if |k̃1(ωm)| ∈ [km, ωm/|c|].

Proof The results follow directly from Theorem 3.5.

We show in Figure 3 an example where the two points k̃1 and k̃2 are part of D̃+.
Note that for ωM large, we have from (3.17) that

k̃2(ωM ) =
c

2ν
(1 +

x20 + c2

4νωM
) +O(ω−2

M ).

Therefore a sufficient condition for z̃2 to belong to the northern curve for ωM large is km < |c|
2ν .

The next lemma gives the asymptotic expansions for the corner points of D̃+, z1 := z(ωm,−s(c)km)
if |c|km < ωm and z1 := z(ωm,−ωm/c) if |c|km > ωm, z3 := z(ωM , s(c)kM ), and z4 := z(ωM , s(c)km),

and also for other important points on the boundary of D̃+.
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Lemma 3.7 The corner points zj of D̃+ have for kM and ωM large the asymptotic expansions

z1 =
√
x20 + 4ν2k2m + 4iνmax(ωm − |c|km, 0)),

z3 ∼
{
2νkM + i(|c|+ ωM

kM
) if ωM ⋍ kM ,

2νkM
√
1 + i ωM

νk2
M

if ωM ⋍ k2M ,

z4 ∼ √
2νωM (1 + i).

(3.25)

We furthermore have the expansions for the horizontal tangent point

k̃2(ωM ) ∼ c

2ν
, z̃2(ωM ) ∼

√
2νωM (1 + i).

Proof All expansions are obtained by direct calculations.

We now define the south-western point and the northern point as

zsw =

{
z1 if |ckm| < ωm or if (|ckm| > ωm and |k̃1(ωm)| 6∈ [km,

ωm

c ]),

z̃1 = z(ωm, k̃1(ωm)) if |ckm| > ωm and |k̃1(ωm)| ∈ [km,
ωm

c ].

zn =

{
z4 if |k̃2(ωM )| 6∈ [km, kM ],

z̃2 = z(ωM , k̃2(ωM )) if |k̃2(ωM )| ∈ [km, kM ].

(3.26)

4 Optimization of Robin Transmission Conditions

This section is devoted to the proofs of Theorems 2.1, 2.2 and 2.3. The existence and uniqueness of the
minimizers are guaranteed by the abstract Theorems 3.1 and 3.2; we therefore focus in each case on the
characterization of a strict local minimum, which will also provide the asymptotic results.

4.1 The Nonoverlapping Case

Proof of Theorem 2.1 (Robin Conditions Without Overlap): by Theorem 3.1, the best ap-

proximation problem (3.4) on D̃ has a unique solution (p∗0(0), δ
∗
0(0)), which is the minimum of the real

function F0 in (3.6). To characterize this minimum, we are guided by the geometric interpretation of

the min-max problem: we search for a circle containing D̃+, centered on the real positive half line, and
tangent in at least two points. From numerical insight, we make the ansatz that p∗0(0) ⋍

√
2νkM , which

we will validate a posteriori by the uniqueness result from Theorem 3.1.
Local Maxima of the Convergence Factor: We start by analyzing the variation of R0(ω, k, p) =

|ρ0(ω, k, p)|2 on the boundary curves Ce (k = km) and Cw (k = kM ).

Lemma 4.1 For kM large, and p ⋍
√
2νkM , we have

1. the maximum of R0 on Ce is attained for z = z3.

2. the maximum of R0 on Cw is attained for z = z4 or z = z1.

Proof Computing the partial derivative of R0 with respect to ω using the chain rule, we obtain

∂ωR0(ω, k, p) = 8νpy
3x2 − y2 − p2

|z(z + p)2|2 ,

which we rewrite, using the definitions of x and y in (3.11), as

∂ωR0(ω, k, p) =
8pνy

|z|2 |z + p|4
(√

(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 + 2(x20 + 4ν2k2)− p2
)
. (4.1)

We look now at the two boundary curves separately:
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• |k| = kM : with the asymptotic assumptions, p2 ≪ 2(x20 + 4ν2k2M ), and the factor on the right is
therefore positive. Since y is non-negative, ∂ωR0(·, kM , p) does not change sign, and the convergence
factor R0 is thus increasing in ω. Its maximum is attained at z3.

• |k| = km: the right hand side of (4.1) vanishes if y = 0, which leads to a first root

ω1(k) := −ck,
and also if the factor on the right in (4.1) vanishes, which happens if and only if

√
(x20 + 4ν2k2)2 + 16ν2(ω + ck)2 = p2 − 2(x20 + 4ν2k2),

where the right hand side is positive, since |k| = km and we have the asymptotic assumption on p.
By squaring, this equality is equivalent to

16ν2(ω + ck)2 = (p2 − 2(x20 + 4ν2k2))2 − (x20 + 4ν2k2)2 = (p2 − 3(x20 + 4ν2k2))(p2 − (x20 + 4ν2k2)).

Under the asymptotic assumption on p, the right hand side is positive, and we can therefore obtain
two further real roots

ω2(k) := −ck + 1

4ν

√
(p2 − 2(x20 + 4ν2k2))(p2 − 3(x20 + 4ν2k2)),

ω3(k) := −ck − 1

4ν

√
(p2 − 2(x20 + 4ν2k2))(p2 − 3(x20 + 4ν2k2)).

The three values ωj(km), j = 1, 2, 3, which lead to a vanishing derivative, can be ordered, ω3(km) <
ω1(km) < ω2(km). Looking at the behavior of the derivative of R in (4.1) for ω large, we see that
ω1(km) must be a maximum, whereas ω2(km) and ω3(km) represent minima. For k = −s(c)km,
ω1(k) = |c|km belongs to the western curve only if ωm 6 |c|km, see (3.12), and it is precisely on the
boundary. The maximum of R0 is therefore always attained on the boundary of the western curve.

We next analyze the variation of R0 on the exterior boundary curves of D̃+ when ω is fixed. We start
with the case ω = ωm:

Lemma 4.2 For km 6 ωm/|c|, and large p, the derivative of k 7→ R(ωm, k, p) vanishes at a single point
k̃3(p) ∼ k̃1(ωm), yielding a maximum at z̃3(p) = z(ωm, k̃3(p)), and

sup
z∈Csw

R0(z, p) =

{
R0(z1, p) if |k̃3(p)| 6 km,

R0(z̃3(p), p) if |k̃3(p)| 6 km.

Proof As in the previous proof, we start by computing the partial derivative

∂kR(ωm, k, p) = 4p
(x2 − y2 − p2)∂kx+ 2xy∂ky

|z + p|4 = 8pν
Nω(k)

|z|2 |z + p|4 ,

Nω(k) = (x2 − y2 − p2)(2ν k x+ cy) + 2x y(−2ν k y + cx).

(4.2)

For k in −s(c)[km,
ωm

|c| ], Nωm
(k) ∼ −p2∂kx if ∂kx 6= 0. If |k̃1(ωm)| 6 km, ∂kx has a constant sign in

the interval, and R0(ωm, k, p) is a decreasing function of x, reaching therefore its maximum at z1. If
|k̃1(ωm)| > km, ∂kx changes sign in the interval, and so does Nωm

(k): there is a value k̃3(p) ∼ k̃1(ωm)
such that Nωm

(k̃3(p)) = 0. At that point R0 is maximal.
It finally remains to study the case were ω = ωM .

Lemma 4.3 Suppose that ωM and kM are large, with ωM ⋍ kαM , α = 1 or 2, and p ⋍
√
kM . If p <√

4νωM , k 7→ R(ωM , k, p) has a single maximum at z̃4 = z(ωM , k̃4(ωM , p), p). It is given asymptotically
by

k̃4(ωM , p) ∼





c

2ν

4νωM − p2

4νωM + p2
if α = 1,

c

2ν
if α = 2.

(4.3)

We then have the following two results:
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1. If p >
√
4νωM or if p <

√
4νωM and |km| > |k̃4(ωM , p)|, then

sup
z∈Cn

R0(z, p) = max(R0(z3, p), R0(z4, p)).

2. If p <
√
4νωM and |km| 6 |k̃4(ωM , p)|, then

sup
z∈Cn

R0(z, p) = max(R0(z3, p), R0(z̃4(ωM , p), p)).

Proof We study the variations of NωM
defined in (4.2), for s(c)k ∈ [km, kM ]. Since we are on Cn, k has

the sign of c, see (3.14), which implies that ∂kx has the sign of c, as seen from (3.19). We now study
separately the two cases ωM ⋍ kM and ωM ⋍ k2M :

• Case ωM ⋍ kM : we need to study the three cases k ⋍ kαM for α < 1
2 , α = 1

2 and 1
2 < α < 1:

X k ⋍ kαM , α <
1
2 : we obtain from (3.11) that x ∼ y ∼ √

2νωM , and (3.2a) shows that x2 − y2 ∼
x20 + 4ν2k2 ≪ p2, which gives

NωM
(k) ∼

√
2νωM (−p2(2νk + c) + 4νωM (−2νk + c))

∼
√
2νωM (−2νk(p2 + 4νωM )− c(p2 − 4νωM )).

Since k has the same sign as c, this last quantity has the sign of −c if p >
√
4νωM . |ρ| is

therefore a decreasing function of x. If p <
√
4νωM , the right hand side vanishes for

k0 =
c

2ν

4νωM − p2

4νωM + p2
= O(1).

Therefore it has the sign of c if |k| 6 |k0|, and the opposite sign otherwise. By the intermediate
values theorem, NωM

vanishes for k̃4 ∼ k0, where a local maximum occurs.

X k ⋍ k
1
2

M : in this case,

NωM
(k) ∼ 2νkωMx(x

2 − 3y2 − p2) = 2νkωMx(2(2νk)
2 −

√
(2νk)4 + (4νωM )2 − p2).

The right hand side vanishes for

k′0 =
s(c)

2
√
3ν

√
2p2 +

√
p4 + 3(4νωM )2 ⋍ k

1
2

M ,

and changes sign. Therefore, NωM
vanishes for k̃′4 ∼ k′0, where a local minimum occurs.

X k ⋍ kαM , 1
2 < α 6 1: In this case we see from (3.2a) that x2 − y2 ≫ p2,

z ∼
√
4ν2k2 + 4iνωM ∼ 2ν|k|+ i

ωM

|k| ,

and the leading order term in NωM
is

NωM
(k) ∼ 4ν2k2(2νkx) + 4νωM (−2νωM + 2νck) ∼ (2νk)4s(c).

In conclusion, if p2 > 4νωM , |ρ| has a single extremum, which is a minimum, and supk∈s(c)[km,kM ]R0(ωM , k, p) =

max(R0(ωM , s(c)kM , p), R0(ωm, s(c)kM , p)). If p
2 6 4νωM , there is a maximum at k̃4 ∼ c

2ν
4νωM−p2

4νωM+p2 .

If it is inside the segment, then supk∈s(c)[km,kM ]R0(ωM , ·, p) = max(R0(ωM , s(c)kM , p), R0(ωM , k̃4, p)).

• Case ωM ⋍ k2M : we study the cases k ⋍ kαM for α = 0, 0 < α < 1 and α = 1 separately:

X k ⋍ 1: we have x ∼ y ∼ √
2νωM , and in NωM

the dominant term is 2xy(−2νky + cx), which
vanishes at k̃2(ωM ), from which we conclude that for |k| < |k̃2(ωM )|, s(c)NωM

(k) is positive,
and negative for |k| > |k̃2(ωM )|. Therefore a local maximum is reached in the neighbourhood
of k̃2(ωM ).
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X k ⋍ kαM , 0 < α < 1: we have again x ∼ y ∼ √
2νωM , and the dominant term inNωM

is 2xy(−2νky),
and

NωM
∼ −8νωMkx.

X k ⋍ kM : we have now x ∼ 2ν|k|, y ∼ ωM

|k| ⋍ kM , and the dominant term in NωM
is

NωM
∼ 2ν

x

k
(x2 − 3y2) ∼ 2νkx(4ν2k4 − 3ω2

M ).

Hence s(c)NωM
is negative for small k, and becomes positive for k >

√√
3

2ν ωM . R0(ωM , ·, p)

therefore reaches a minimum in the neighborhood of

√√
3

2ν ωM .

In conclusion, there is a maximum at k̃4 ∼ k̃2(ωM ) ∼ c
2ν . If this value is inside the segment, then

supk∈s(c)[km,kM ]R0(ωM , ·, p) = max(R0(ωM , s(c)kM , p), R0(ωM , k̃4, p)). Otherwise sups(c)[km,kM ]R0(ωM , ·, p) =
max(R0(ωM , s(c)km, p), R0(ωM , s(c)kM , p)).

The conclusion of the Lemma now follows directly from the conclusion of the two cases.
From the above analysis, we see that there are three local maxima of R0(ω, k, p):

southwest z̃sw =






z1 if |ckm| < ωm,

z1 if |ckm| > ωm and |k̃3(p)| 6∈ [km,
ωm

|c| ],

z̃3(p) if |ckm| > ωm and |k̃3(p)| ∈ [km,
ωm

|c| ],

northwest z̃n =






z4 if p >
√
4νωM ,

z4 if p <
√
4νωM and |k̃4(ωM , p)| 6∈ [km, kM ],

z̃4(ωM , p) if p <
√
4νωM and |k̃4(ωM , p)| ∈ [km, kM ],

northeast z3,

(4.4)

where z̃3 comes from Lemma 4.2 and z̃4 comes from Lemma 4.3.
We investigate now the asymptotic behavior of the convergence factor for large kM , in order to see

which of the candidates of local maxima z̃sw, z̃n and z3 will be important. Since z̃sw ⋍ 1, for p ⋍
√
kM ,

the convergence factor at z̃sw behaves asymptotically like

ρ0(z̃sw, p) =
z̃sw − p

z̃sw + p
∼ −1 + 2

z̃sw
p
, |ρ(z̃sw, p)| ∼ 1− 2

xsw
p
.

For z̃n, we have k ⋍ 1 and ω = ωM . Therefore z̃n ∼ √
2νωM (1 + i) and the convergence factor at z̃n

behaves asymptotically like

ρ0(z̃n, p) ∼
1 + i− p√

2νωM

1 + i+ p√
2νωM

.

We thus need to distinguish two cases for ρ0(z̃n, p):

1. If ωM ⋍ kM , |ρ(z̃n, p)| is asymptotically a constant smaller than 1, which shows that the modulus
is smaller than 1 independently of ωM , and thus also independent of kM . Therefore, for kM large
enough, the convergence factor at z̃n is smaller than the convergence factor at z̃sw, where it tends
to 1, and we do not need to take it into account in the min-max problem.

2. If ωM ⋍ k2M , then p√
2νωM

= O(1), and the convergence factor at z̃n is asymptotically

|ρ0(z̃n, p)| ∼ 1− p√
2νωM

,

which means it could be important in the min-max problem.

We finally study the convergence factor at the last point z3, and again have to distinguish two cases:
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1. If ωM ⋍ kM , z3 ∼ 2νkM + iωM+|c|kM

kM
and the convergence factor at z3 behaves asymptotically like

|ρ0(z3, p)| ∼
x3 − p

x3 + p
∼ 1− p

νkM
,

which means it needs to be taken into account.

2. If ωM =
νk2

M

d then z3 ∼ 2νkM

√
1 + i

d and the convergence factor behaves asymptotically like

|ρ0(z3, p)| ∼ 1−
√
d(d +

√
1 + d2)

2(1 + d2)

p

νkM
,

again possibly important for the min-max problem.

Determination of the Global Minimizer by Equioscillation: We now compare the various
points where the convergence factor can attain a maximum, in order to minimize the overall convergence
factor by an equilibration process. We need to consider again the two basic cases of an implicit or explicit
time integration scheme:

1. If ωM ⋍ kM , for large ωM , large kM and p ⋍
√
kM , the maximum of |ρ0| is reached at either z̃sw or

z3. We therefore consider the difference |ρ0(z̃sw, p)| − |ρ0(z3, p)|, which is asymptotically equal to

2( p
2νkM

− xsw

p ). Depending on the relative values of p2

2νkM
and xsw , this difference can be positive

or negative. Therefore, as a function of p, we can make it vanishes in the region p ⋍
√
kM .

2. If ωM =
νk2

M

d , then the point z̃n comes into play: we compute asymptotically the difference

|ρ0(z3, p)| − |ρ0(z̃n, p)| ∼
p

νkM

√
d

2



1−

√
d+

√
1 + d2

1 + d2



 .

The sign of this quantity is governed by the value of d with respect to d0:
{
If d > d0, |ρ0(z3, p)| > |ρ0(z̃n, p)|,
If d < d0, |ρ0(z3, p)| < |ρ0(z̃n, p)|.

Hence there is again a value of p such that |ρ0(z̃sw, p)| = max(|ρ0(z3, p)|, |ρ0(z̃n, p)|).
In order to obtain an explicit formula to equilibrate the convergence factor at two maxima, we get after
a short calculation that |ρ0| equioscillates at the generic points Z1 and Z2 (i.e. |ρ0(Z1, p)| = |ρ0(Z2, p)|)
if and only if

p =

√
ReZ1|Z2|2 − ReZ2|Z1|2

ReZ2 − ReZ1
.

Therefore we can define a unique p̄∗0 for both asymptotic regimes by the equioscillation equations






ωM ⋍ kM |ρ0(z̃sw, p̄∗0) = |ρ0(z3, p̄∗0)|,

ωM =
νk2

M

d

{
d > d0 |ρ0(z̃sw, p̄∗0)| = |ρ0(z3, p̄∗0)|,
d < d0 |ρ0(z̃sw, p̄∗0)| = |ρ0(z̃n, p̄∗0)|.

(4.5)

In the first two cases, we get p̄∗0 =
√

x̃sw|z3|2−x3|z̃sw|2
x3−x̃sw

and in the third case we obtain p̄∗0 =
√

x̃sw|zN |2−xN |z̃sw|2
xN−x̃sw

.

Since z̃sw is bounded, we obtain the asymptotic results





ωM ⋍ kM p̄∗0 ∼
√

xsw|z3|2
x3

,

ωM =
νk2

M

d




d > d0 p̄∗0 ∼

√
sx̃sw|z3|2

x3
,

d < d0 p̄∗0 ∼
√

x̃sw|z̃n|2
x̃n

,
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which imply 



ωM ⋍ kM p̄∗0 ∼
√
2νkMxsw,

ωM =
νk2

M

d





d > d0 p̄∗0 ∼
√
2νkMxsw

√
2(1+d2)

d(d+
√
1+d2)

,

d < d0 p̄∗0 ∼
√
2νkMxsw

√
2
d .

(4.6)

We now need to prove that the values of the Robin parameter p̄∗0 we obtained by equioscillation are indeed
local minima:

Lemma 4.4 For δp sufficiently small and p = p̄∗0 + δp

F0(p)− F0(p̄
∗
0) = max(δp∂p|ρ0(z̃sw(p̄∗0), p̄∗0)|, δp∂p|ρ0(z̃n(ωM , p̄

∗
0), p̄

∗
0))|+ O(δp).

Proof Consider for example the last case in (4.5), when z̃sw = z̃3(p) and z̃n = z̃4(ωM , p). By continuity,

F0(p) = max(|ρ0(z̃3(p), p)|, |ρ0(z̃4(ωM , p), p)|).

By the Taylor formula,

|ρ0(z̃3(p), p)| = |ρ0(z̃3(p̄∗0), p̄∗0)|+ δp(∂pz̃3(p̄
∗
0)∂k|ρ0(z̃3(p̄∗0), p̄∗0))|+ ∂p|ρ0(z̃3(p̄∗0), p̄∗0))|+ O(δp)

= |ρ0(z̃3(p̄∗0), p̄∗0)|+ δp∂p|ρ0(z̃3(p̄∗0), p̄∗0)|+ O(δp),

since ∂k|ρ0(z̃3(p̄∗0), p̄∗0))| = 0. In the same way,

|ρ0(z̃4(ωM , p), p)| = |ρ0(z̃4(ωM , p̄
∗
0), p̄

∗
0)|+ δp∂p|ρ0(z̃4(ωM , p̄

∗
0), p̄

∗
0)|+ O(δp).

Therefore

F0(p)− F0(p̄
∗
0) = max(δp∂p|ρ0(z̃3(p̄∗0), p̄∗0)|, δp∂p|ρ0(z̃4(ωM , p̄

∗
0), p̄

∗
0))| + O(δp),

which gives the lemma in this particular case. For the case where the extremum is reached at a corner
of the domain, the argument is even simpler, since then no derivative in k occurs.

The derivative of R0 in p is given by

∂pR0(z, p) =
−4x(|z|2 − p2)

|z + p|4 .

For p = p̄∗0, z = z̃sw , the numerator is equivalent to 4xp2, whereas for z = z̃n, it is equivalent to −4x|z|2.
Therefore ∂p|ρ0(z̃sw(p̄∗0), p̄∗0)| × ∂p|ρ0(z̃sw(ωM , p̄

∗
0), p̄

∗
0))| < 0, and F0(p) − F0(p̄

∗
0) < 0: p̄∗0 is a strict local

minimizer of F0.
By Theorem 3.1, p̄∗0 is the global minimizer, and therefore coincides with p∗0(0). In order to conclude

the proof of Theorem 2.1, we can replace in (4.6) the term xsw by the notation A/4 from the theorem,
to obtain

δ∗0(L) =

∣∣∣∣
z̃sw − p

z̃sw + p

∣∣∣∣ ∼ 1− 2
xsw
p

= 1− A

2p
.

The proof of Theorem 2.1 is now complete.

4.2 The Overlapping Case

We address now the two overlapping cases, and prove Theorem 2.2 for the continous algorithm, and
Theorem 2.3 for the discretized algorithm. By Theorem 3.2, we know already that there is a unique
minimizer in both cases, which we now again characterize by equioscillation.
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Figure 4: Illustration of the domain D̃∞
+ in the (x, y) plane

Proof of Theorem 2.2 (Robin Conditions with Overlap, Continuous): we denote the unique
minimizer of FL by p∗0,∞(L). As in the non-overlapping case, the maximum over the whole domain is

reached on the boundary C = C∞
w ∪ Csw of D̃∞

+ , which is represented in Figure 4 for the three possible

configurations of the boundary. In order to simplify the notation, we use l := L
2ν . We start with the

variations of the convergence factor

R(ω, k, p, ℓ) = R0(ω, k, p)e
−2ℓx (4.7)

on the west boundary C∞
w . Calculating the partial derivative of R with respect to ω leads to

∂ωR(ω, k, p, ℓ) = (∂ωR0(ω, k, p)− 2ℓR0(ω, k, p)∂ωx(ω, k))e
−2ℓx

=
4νy

|z|2|z + p|4Sk(x, y, p, ℓ),
(4.8)

where we introduced the function

Sk(x, y, p, ℓ) = 2p(3x2 − y2 − p2)− ℓ |z2 − p2|2 = 2p(3x2 − y2 − p2)− ℓ [(x2 − y2 − p2)2 + 4x2y2].

The root y = 0 of ∂ωR(ωm, k, p, ℓ) corresponds to ω = −ckm, which is possible only if |ωm| 6 |ckm|.
We study now Skm

(x, y, p, ℓ). Replacing y2 = x2 − α2 = x2 − x20 − 4ν2k2m from (3.2a), we get

S̃km
(x, p, ℓ) := 2p(2x2 + α2 − p2)− ℓ ((α2 − p2)2 + 4x2(x2 − α2)),

which is now a second order polynomial in x2,

S̃km
(x, p, ℓ) = −4ℓx4 + 4(α2ℓ+ p)x2 − (p2 − α2)(2p+ ℓ(p2 − α2)). (4.9)

The following lemma gives the asymptotic behavior of the roots of this polynomial:

Lemma 4.5 For small ℓ, large p with ℓp small, S̃km
(x, p, ℓ) has two distinct real roots,

x̃′1(p, ℓ) ∼
p√
2
, x̃′2(p, ℓ) ∼

√
p

ℓ
.

The first root is the real part of a minimum of the convergence factor, and the second root is the real part
of a maximum of the convergence factor, say at z̃′2. We thus obtain that

sup
z∈C∞

w

|ρ(z, p, ℓ)| = max(|ρ(z1, p, ℓ)|, |ρ(z̃′2(p, ℓ), p, ℓ)|).

Proof The discriminant of the second degree polynomial S̃km
and its leading asymptotic part under the

conditions of Theorem 2.2 are

∆ = 4(∆a + 2α2ℓp (2 + ℓp)); ∆a = 4p2(1− 2ℓp− ℓ2p2).
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Since ∆ ∼ ∆a, S̃km
has two roots with asymptotic behavior

x̃′1 ∼ p√
2
, x̃′2 ∼

√
p

ℓ
.

For z̃′j = x̃′j + i
√
(x̃′j)

2 − (x20 + 4ν2k2m), which we obtain from (3.2a), we compute

|ρ(z̃′1, p, ℓ)| ∼
√

1−
√
2

1 +
√
2
, |ρ(z̃′2, p, ℓ)| ∼ 1− 2

√
pℓ,

and |ρ(z̃′1, p, ℓ)| < |ρ(z̃′2, p, ℓ)| for small ℓp.

We analyze now the cases in Figure 4 in detail:

• Figure 4c, |ωm| < |ckm|: As ω runs throughR, z runs through the full hyperbola, and supz∈D̃∞
+
|ρ(z, p, ℓ)| =

max(|ρ(z1, p, ℓ)|, |ρ(z̃2, p, ℓ)|).

• Figure 4a and 4b, |ωm| > |ckm|: to study the variation of R on Csw = z(ωm,−s(c)[km,
ωm

|c| ]), we
compute

∂kR(ω, k, p, ℓ) =
4ν

|z|2|z + p|4Sω(x, y, p, ℓ),

Sω(x, y, p, ℓ) := 2p{(2νkx+ cy)(x2 − y2 − p2) + 2xy(−2νky + cx)} − ℓ (2νkx+ cy)|z2 − p2|2.
(4.10)

With the same assumptions as in the previous lemma, for any z in Csw,

Sωm
(x, y, p, ℓ) ∼ −2p3(1 + ℓp2)(2νkx+ cy) = −2p3(1 + ℓp2)∂kx.

In case of Figure 4b, where |k̃1(ωm)| 6 km, ∂kx has a constant sign on the curve Csw, see the
second case in Corollary 3.6, and hence the maximum of R is reached at z1. In case of Figure 4a,
where km 6 |k̃1(ωm)|, s(c)SωM

is positive for km 6 |k| < k̃1(ωm), and negative for |k| > k̃1(ωm). It
must therefore vanish in a neighborhood of k̃1(ωm), where R has a maximum on Csw, at a point we
call z̃′3(p, ℓ) := z(ωm, k̃

′
3(p, ℓ)), which is asymptotically equivalent to z̃1 where the vertical tangent

occurs.

We now define the point z̃′sw(p, ℓ) by

z̃′sw(p, ℓ) =

{
z1 if ωm < |c|km or |k̃′3(p, ℓ)| 6 km 6 ωm

|c| ,

z̃′3(p, ℓ) if km 6 |k̃′3(p, ℓ)| 6 ωm

|c| ,

in order to write in compact form

sup
z∈D̃∞

+

|ρ(z, p, ℓ)| = max(|ρ(z̃′sw(p, ℓ), p, ℓ)|, |ρ(z̃′2(p, ℓ), p, ℓ)|).

Using the asymptotic expansions of |ρ(z̃′2, p, ℓ)| above, and |ρ(z̃′sw, p, ℓ)| ∼ 1− 2xsw

p , we see that for small
ℓ,

|ρ(z̃′2, p, ℓ)| − |ρ(z̃′sw, p, ℓ)| ∼ 2(
xsw
p

−
√
pℓ).

This quantity is positive for p smaller than 3
√

xsw

ℓ , and negative otherwise. Therefore it vanishes for one
single value of p, and we have asymtotically

p̄∗∞ ∼ 3

√
x2sw
ℓ
, FL(p̄

∗
∞) ∼ 1− 2 3

√
ℓxsw . (4.11)

We verify that ℓp̄∗∞ tends to zero with ℓ, thus justifying all previous computations.
The proof can now be completed like for the previous theorem, showing that p̄∗∞ is a strict local

minimizer and therefore coincides with the global minimizer p∗∞ according to the abstract result.
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Proof of Theorem 2.3 (Robin Conditions with Overlap, Discrete): In order to prove the results
for the discretized algorithm, suppose ℓ ⋍ k−1

M , p large , with ℓp small as in Lemma 4.5. The maximum
at z̃′2 on C+

w is on the curve Cw if x̃′2 ∼
√

p
ℓ < x4 ∼ √

2νωM . We see that

x̃′2
x4

∼
√

p

2νℓωM
⋍

{ √
p ≫ 1 if ωM ⋍ kM ,√
p

kM
≪ 1 if ωM ⋍ k2M ,

which indicates that the continuous analysis will only be important in the second case. We study now
both cases in detail:

• ωM ⋍ k2M : Let p ⋍ p∗0,∞(L). An asymptotic study shows that the derivative in ω on the eastern

curve |k| = kM satisfies
SkM

(z, p, ℓ) ∼ −ℓ(4ν2k2M + 16ν2ω4) < 0.

Therefore the maximum of |ρ| on the east is reached at z3 = z(ωM , s(c)kM ). The same study on
the north gives

SωM
(z, p, ℓ) ∼ −ℓ∂kx((4ν2k2)2 + 16ν2ω4

M ).

The sign of SωM
(z, p, ℓ) is the opposite of the sign of x, the maximum of |ρ| on Cn is therefore

reached at z4. From this we conclude that all values of |ρ| on Cn and Ce are smaller than the
value at z4. We now study the variations of R on the other boundaries. Since p ⋍ p∗0,∞(L), the

conclusions from Lemma 4.5 and after are all valid, there is a unique value p̄∗(ℓ) of p such that
|ρ(z̃′2, p, ℓ)| = |ρ(z̃′sw, p, ℓ)|. It is for ℓ = L

2ν small asymptotically equivalent to p∗0,∞(L).

• ωM ⋍ kM : We perform the asymptotic analysis in kM , assuming p≪ √
ωM , and study the behavior

of the convergence factor on all four boundary curves Cw, Ce, Csw and Cn:

Behavior of R on Cw: x̃′2 ≫ x4, and R has no local maximum on Cw. Therefore

maxCw
R = max(R(z1), R(z̃

′
2)).

Behavior of R on Ce: Since p≪ kM , using that x ∼ 2νkM , we obtain

SkM
(x, y, p, ℓ) ∼ −ℓ(2νkM )4.

The maximum of R on the eastern side is therefore reached for z = z3.

Behavior of R on Csw: The behavior of R on the southern part remains unchanged: for km 6

ωm/|c|, p = O(
√
2νkM ), the maximum of R(ωm, ·, p) on −s(c)(km, ωm/|c|) is reached at the sin-

gle point z̃′′3 (p, ℓ) = z(ωm, k̃
′′
3 (p, ℓ)), whose asymptotic behavior is given by k̃′′3 (p, ℓ) ∼ k̃1(ωm).

The proof is similar to that of Lemma 4.2.

Behavior of R on Cn: We extend the analysis in the proof of Lemma 4.3 to SωM
in (4.10). The

variations of R are determined by the sign of

SωM
(k) = NωM

(k)− ℓ

2p
|z2 − p2|2) (2νkx+ cy)

= 2p

[
(x20 + 4ν2k2 − p2 − ℓ

2p
((x20 + 4ν2k2 − p2)2 + 16ν2(ωM + ck)2)) (2νkx+ cy)

+4ν(ωM + ck)(−2νky + cx)
]
.

Again we have to distinguish three cases for k ⋍ kαM : α 6 1
2 ,

1
2 < α < 1 and α = 1:

X k = O(k
1
2

M ): in this case SωM
(k) ∼ 2pNωM

(k), and therefore on the curve Cn, SωM
vanishes

for k̃′4 ∼ k̃4 under the conditions of case 2 in Lemma 4.3, and R has a maximum there.
For k′′0 ⋍

√
kM , R has a minimum.
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X For k ⋍ kαM with 1
2 < α < 1, the overlap comes into play. We have

SωM
(k) ∼ 2p(2νk)4s(c)(1 − ℓ

2p
(2νk)2).

The right hand side vanishes for 2νk =
√

2p
ℓ , and SωM

(k) vanishes therefore in a neigh-

bourhood of that point,

k̃′′4 ∼ 1

2ν

√
2p

ℓ
,

which corresponds to a maximum of R again.

X For k ⋍ kM , the overlap dominates, and SωM
(k) ∼ −ℓ(2νk)4s(c).

Therefore, there are two local maxima on the curve Cn, and we must compare |ρ| at z̃n defined
in (4.4),

|ρ(z̃n, p)| ∼
∣∣∣∣
(1 + i)

√
2νωM − p

(1 + i)
√
2νωM − p

e−ℓ(1+i)
√
2νωM

∣∣∣∣ ∼ 1− p√
2νωM

,

and |ρ| at z̃′′4 = z(k̃′′4 , ωM ),

z̃′′4 ∼ 2ν|k̃′′4 |
(
1 + i

ωM

ν(k̃′′4 )
2

)
∼
√

2p

ℓ
(1 + i

νℓωM

p
) ∼

√
2p

ℓ
,

which gives for |ρ| at z̃′′4

|ρ(z̃′′4 , p)| ∼

√
2p
ℓ − p

√
2p
ℓ − p

e−
√
2pℓ ∼

1−
√

pℓ
2

1 +
√

pℓ
2

(1−
√
2pℓ) ∼ 1− 2

√
2pℓ.

Since p√
2νωM

≫ √
2pℓ, we find

sup
Cn

|ρ(z, p)| = |ρ(z̃′′4 , p)| ∼ 1− 2
√
2pℓ.

The rest of the proof is now similar to the proof of the nonoverlapping case, except that now the best
p equilibrates the values of |ρ| at the points z̃′′4 and z̃′w, which is equivalent to zsw. Asymptotically
we have

|ρ(z̃′′w)| ∼ 1− 2
xsw
p
,

which gives for p and the optimized contraction factor the asymptotic values

p̄∗(L) =
3

√
x2sw
2ℓ

, δ∗(L) ∼ 1− 2
xsw
p̄∗(L)

.

The full justification that p̄∗(L) is indeed a strict local, and hence the global optimum is analogous to
the nonoverlapping case and we omit it, and the proof is complete.

5 Optimization of Ventcel Transmission Conditions

This section is devoted to the proof of Theorems 2.4, 2.5 and 2.6. We start with a change of variables,

s = p+ q(z2 − x20)/4ν = p̃+ q̃z2, p̃ = p− x20/4ν, q̃ = q/4ν,

with which we can further simplify the convergence factor,

ρ(z, p, q, L) =
p̃+ q̃ z2 − z

p̃+ q̃ z2 + z
e−

Lz
2ν . (5.1)

Note that we will still write the arguments in terms of p and q, which are now simply functions of p̃ and
q̃, and the min-max problem is still

inf
(p,q)∈C2

sup
z∈D̃

|ρ(z, p, q, L)| = sup
z∈D̃

|ρ(z, p∗, q∗, L)| =: δ∗1(L). (5.2)
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5.1 The Nonoverlapping Case

Proof of Theorem 2.4 (Ventcel Conditions Without Overlap): by the abstract Theorem 3.3,
the best approximation problem has a unique solution (p∗1(0), q

∗
1(0)). We search now for a strict local

minimum for the function F0(p, q). We first analyze the variations of R on the boundaries, and identify
three local maxima. Then we show that there exists (p̄∗1, q̄

∗
1) such that these three values coincide, and

we compute their asymptotic behavior, showing that they satisfy the assumptions. We finally show that
(p̄∗1, q̄

∗
1) constitutes a strict local minimum for the function F0 on R+ × R+, from which it follows that

the local minimizer (p̄∗1, q̄
∗
1) = (p∗1(0), q

∗
1(0)), the global minimizer.

Local Maxima of the Convergence Factor: The following Lemma gives the local maxima of the
convergence factor for the two asymptotic regimes of an explicit and implicit time integration we are
interested in:

Lemma 5.1 Suppose the parameters in the Ventcel transmission condition satisfy

p ⋍ kαM , q ⋍ kβM , 0 < α <
1

2
< β < 1, α+ β 6 1. (5.3)

Then, we have for the two asymptotic regimes of interest

1. in the implicit case, when kM = ChωM , the supremum of the convergence factor is given by

sup
D̃+

|ρ0(z, p, q)| =
{
max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆1(p, q), p, q)|, |ρ0(z3, p, q)|) if p

q < ωM ,

max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆n(p, q), p, q)|, |ρ0(z3, p, q)|) if p
q > ωM ,

where z̆n ∈ Cn is defined in (5.13), and the asymptotic behavior is

|ρ0(z̆sw, p, q)| ∼ 1− 2
xsw
p
, |ρ0(z3, p, q)| ∼ 1− 4

qkM
,

|ρ0(z̆1, p, q)| ∼ 1− 2

√
pq

2ν
, |ρ0(z̆n, p, q)| ∼ 1− p√

2νωM
P (
qωM

p
),

(5.4)

where P (Q) is defined in (2.12).

2. in the explicit case, when ωM = 1
πCh

k2M , the supremum of the convergence factor is given by

sup
D̃+

|ρ0(z, p, q)| = max(|ρ0(z̆sw(p, q), p, q)|, |ρ0(z̆1(p, q), p, q)|, |ρ0(z̆′n(p, q), p, q)|),

where z̆n(p, q) is defined in (5.15), and

z̆′n(p, q) =

{
z3 if d > d0,

z̆n(p, q) if d < d0,
(5.5)

and we have asymptotically

|ρ(z̆sw, p, q)| ∼ 1− 2
xsw
p
, |ρ(z̆1, p, q)| ∼ 1− 2

√
pq

2ν
, |ρ0(z̆′n, p, q)| ∼ 1− 4C

qkM

√
d

2
, (5.6)

with C defined in (2.8).

Proof The proof of this lemma is rather long and technical, but follows along the same lines as in
the Robin case: we first compute the derivatives of R0(ω, k, p, q) in ω and k, using the formulation (5.1),
to obtain

∂zρ0 = 2 (q̃z2−p̃)
(p̃+q̃z2+z)2 ,

∂ω,kR0(ω, k, p, q) = 4Re (∂zρ0 ρ̄0 ∂ω,kz)

= 4
Re ((q̃z2−p)((p̃+q̃z2)2−z2) ∂ω,kz)

|p̃+q̃z2+z|4

= 4
Re (N(z,z̄) ∂ω,kz)

|p̃+q̃z2+z|4 ,

N(z, z̄) = (q̃z2 − p̃)((p̃+ q̃z̄2)2 − z̄2).
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We now expand the numerator N(z, z̄), using X := x20 + 4ν2k2 and Y := 4ν(ω + ck), so that

z2 = X + iY, z = x+ iy, x2 − y2 = X, 2xy = Y.

Using this notation, we obtain

ReN(z, z̄) = (q̃X − p)(q̃2X2 + (2p̃q̃ − 1)X + p̃2) + q̃(q̃2X + 3p̃q̃ − 1)Y 2,
ImN(z, z̄) = Y (−q̃3X2 + 2p̃q̃2X + p̃(3p̃q̃ − 1)− q̃3Y 2).

With the assumption on the coefficients p̃ and q̃, p̃q̃ ≪ 1, we have

ReN(z, z̄) ∼ q̃3X(X2 + Y 2)− q̃(X2 + Y 2) + p̃X − p̃3,
ImN(z, z̄) ∼ Y (−q̃3(X2 + Y 2) + 2p̃q̃2X − p̃).

(5.7)

We present now the remining three major steps in the proof:

1. We begin by studying, for fixed k, the variations of ω 7→ R0(ω, k, p, q). Since ∂ωz = 2ν(y+ ix)/|z|2,

∂ωR0(ω, k, p, q) = 8ν Re (N(z,z̄) (y+ix))
|p̃+q̃z2+z|4|z|2 = 8ν Φω

|p̃+q̃z2+z|4|z|2
Φω = yReN − xImN

∼ y(q̃3X(X2 + Y 2)− q̃(X2 + Y 2) + p̃X − p̃3 − 2x2(−q̃3(X2 + Y 2) + 2p̃q̃2X − p̃).

(a) We study first the left boundary Cw with k = km, where X = O(1) is fixed. We define
ξ = 2x2 −X , and replace 2x2 = ξ +X , X2 + Y 2 = ξ2 in the previous expression. This yields
a third order polynomial in the ξ variable,

Φω ∼ yQ3(ξ) := y
(
q̃3ξ3 + q̃(2q̃2X − 1)ξ2 + p̃(1− 2q̃2X)ξ + p̃(2X − 2q̃2X2 − p̃2)

)
. (5.8)

The principal part of Q3 is
Q3(ξ) ∼ q̃3ξ3 − q̃ξ2 + p̃ξ − p̃3. (5.9)

Since y is always positive or vanishes for ω = −ckm if |c|km ∈ (ωm, ωM ) (see Figure 2), the
sign of ∂ωR0(z, p, q) is the sign of Q3(ξ). Q3 has asymptotically three positive roots

1 ≪ ξ0 ∼ p̃2 ≪ ξ1 =
p̃

q̃
≪ ξ2 ∼ 1

q̃2
.

With the assumptions on p̃ and q̃, the roots are separated. Therefore, by continuity, Q3 has
three roots ξ′0, ξ

′
1, ξ

′
2 equivalent to ξ0, ξ1, ξ2, and ∂ωR0(ω, k, p, q) has, in addition to −ckm,

three zeros ω̆j ∼ ξj/4ν, j = 0, 1, 2. ω̆0 and ω̆2 correspond to minima of R0. Note that
z(ω̆j(k), k) = z(ω̆j(−k),−k), so that we can consider the part corresponding to k = s(c)km
only: there exists a unique maximum at z̆1(p, q) = z(ω̆1(s(c)km), s(c)km), and two minima at
z(ω̆0(s(c)km), s(c)km) and z(ω̆2(s(c)km), s(c)km), and we have the ordering

ωm ≪ ω̆0 ∼ p̃2

4ν
≪ ω̆1 ∼ p̃

4νq̃
≪ ω̆2 ∼ 1

4νq̃2
. (5.10)

If ωM ⋍ kM , then ω̆2 ≫ ωM , and

sup
Cw

|ρ0(z, p, q)| =
{
max(|ρ0(z1, p, q)|, |ρ0(z̆1(p, q), p, q)|) if ω̆1 ∼ p̃

4νq̃ < ωM ,

max(|ρ0(z1, p, q)|, |ρ0(z4, p, q)|) if ω̆1 ∼ p̃
4νq̃ > ωM ,

with

|ρ0(z1, p, q)| ∼ 1− 2
x1
p̃
, |ρ0(z4, p, q)| ∼ 1− p̃+ 4νq̃ωM√

2νωM
, |ρ0(z̆1, p, q)| ∼ 1− 2

√
2p̃q̃.

If ωM ⋍ k2M , then ω̆2 ≪ ωM , and

sup
Cw

|ρ0(z, p, q)| = max(|ρ0(z1, p, q)|, |ρ0(z̆1, p, q)|, |ρ0(z4, p, q)|),

with

|ρ0(z1, p, q)| ∼ 1− 2
x1
p̃
, |ρ0(z4, p, q)| ∼ 1− 2

√
2νωM q̃, |ρ0(z̆1, p, q)| ∼ 1− 2

√
2p̃q̃.
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(b) We now examine the behavior of Q3 for |k| = kM . In that case, X = O(k2M ), and the
asymptotics of the coefficients in Φω are different. We use the fact that q̃2X ≫ 1, and
q̃X
p̃ ≫ 1, to obtain

ReN(z, z̄) ∼ q̃3X(X2 + Y 2), ImN(z, z̄) ∼ −q̃3Y (X2 + Y 2), (5.11)

so that
Φω = q̃3y(X2 + Y 2)(yX + xY ) > 0,

and we obtain for the convergence factor

sup
Ce

|ρ0(z, p, q)| = |ρ0(z3, p, q)| ∼ 1− 2
x3

q̃|z3|2
.

2. Let us compute now the variations in k:

∂kR0(ω, k, p, q) = 4Re (N(z,z̄) (∂kx+i∂ky))
|p̃+q̃z2+z|4 = 8ν Φk

|p̃+q̃z2+z|4|z|2 ,

Φk = |z|2
2ν (∂kxReN(z, z̄)− ∂kyImN(z, z̄))

= (2νkx+ cy)ReN(z, z̄)− (−2νky + cx)ImN(z, z̄).

(a) We begin with the southwest curve Csw, defined by ω = ωm. Then k, X and Y are O(1), and
the asymptotics for the coefficients are given by

ReN(z, z̄) ∼ −p̃3, ImN(z, z̄) ∼ −p̃,
Φk ∼ − |z|2

2ν p̃
3∂kx if ∂kx 6= 0.

By Corollary 3.6, if |k̃1(ωm)| 6 km, ∂kx does not change sign in the interval, and |ρ0| is a
decreasing function of x. If |k̃1(ωm)| ∈ (km, ωm/|c|), ∂kx changes sign at k = k̃1, and therefore

∂kR0(ω, k, p, q) changes sign for a point k̆3 in the neighbourhood of k̃1(ωm), which produces a

maximum for |ρ0| at z̆3 = z(ωm, k̆3). We define

z̆sw =

{
z1 if |ckm| < ωm or if |ckm| > ωm and |k̆3| 6∈ [km,

ωm

|c| ],

z̆3 ∼ z̃1(ωm) if |ckm| > ωm and |k̆3| ∈ [km,
ωm

|c| ],

and then obtain for the convergence factor

sup
Csw

|ρ0(z, p, q)| = |ρ0(z̆sw, p, q)| ∼ 1− 2
xsw
p
.

(b) We study next the northern curve Cn, i.e. ω = ωM , s(c)k ∈ (km, kM ).

• For ωM ⋍ km, we define Y0 = 4νωM , and perform the asymptotic analysis in terms of Y0.
We analyze the sign of Φk in the five asymptotic cases k = O(1), k ⋍ Y θ

0 with 0 < θ < 1
2 ,

k ⋍ Y
1
2
0 , k ⋍ Y θ

0 with 1
2 < θ < 1, and k ⋍ Y0.

X If k = O(1), then X = O(1) and Y ∼ Y0. The asymptotics for the coefficients are
given by

ReN(z, z̄) ∼ −(p̃3 + q̃Y 2
0 ), ImN(z, z̄) ∼ −Y0(p̃+ q̃3Y 2

0 ), x ∼ y ∼
√

Y0

2 ,

Φk ∼ x
(
−(p̃3 + q̃Y 2

0 )(2νk + c) + Y0(p̃+ q̃3Y 2
0 )(−2νk + c)

)
.

With the assumptions on the coefficients, p̃2 ≪ Y0 and q̃2Y0 ≪ 1, so that

Φk ∼ xY0 (−2νk(p̃+ q̃Y0) + c(p̃− q̃Y0)) .

The quantity on the left changes sign for one value of k, therefore Φk changes sign for

k̆4(p, q) ∼
c

2ν

p̃− q̃Y0
p̃+ q̃Y0

, z̆4(p, q) = z(ωM , k̆4(p, q)).
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Figure 5: Graph of the fonction g

The point z̆4 corresponds to a maximum, and is on Cn if and only if the sign of k̆4 is
the sign of c, and its modulus is larger than km. If α+ β < 1, k̆4(p, q) ∼ − c

2ν and has

the wrong sign. Therefore z̆4 belongs to Cn if and only if α+ β = 1, and q̃Y0

p̃ < 1. At

that point, p̃+ q̃z2 ∼ p̃+ iY0q̃ ⋍ Y α
0 ≪ z̆4 ∼

√
Y0

2 , and therefore

ρ0(z̆4(p, q), p, q) ∼ −(1− 2
p̃+ q̃z̃24
z̆4

), |ρ0(z̆4(p, q), p, q)| ∼ 1−
√

2

Y0
(p̃+ q̃Y0).

X If k ⋍ Y θ
0 with 0 < θ < 1

2 ], then

Φk ∼ 2νkx (ReN(z, z̄) + ImN(z, z̄))
∼ −2νkx

(
q̃3Y 3

0 + q̃Y 2
0 + p̃Y0)

)
.

This quantity has a constant sign equal to the sign of k, or equivalently to the sign of
∂kx. Therefore in this area, |ρ0| is an increasing function of x.

X If k ⋍ Y
1
2
0 ], then X ⋍ Y0, Y ∼ Y0, and inserting t = X/Y0, we have

ReN(z, z̄) ∼ p̃X − q̃(X2 + Y 2
0 ), ImN(z, z̄) ∼ −Y0(p̃+ q̃3(X2 + Y 2

0 )), x ⋍ y ⋍

√
Y0

2 ,

Φk ∼ 2νk (xReN(z, z̄) + yImN(z, z̄)) ∼ 2νk
(
x(p̃X − q̃(X2 + Y 2

0 ))− yY0(p̃+ q̃3(X2 + Y 2
0 ))
)

∼ 2νkxY0
(
p̃t− q̃Y0(t

2 + 1)− (
√
t2 + 1− t)(p̃+ q̃3Y 2

0 (t
2 + 1))

)
.

Since q̃3Y 2
0 ≪ q̃Y0, asymptotically the only remaining terms are

Φk ∼ 2νkxY0(p̃(2t−
√
t2 + 1)− q̃Y0(t

2 + 1)).

If α + β < 1, Φk ∼ −2νkxq̃Y 2
0 (t

2 + 1)) and does not vanish; |ρ0| is still a decreasing

function of x in this zone. If α+β = 1, we define the function g(t) = 2t−
√
t2+1

t2+1 , drawn
in Figure 5, and rewrite Φk as

Φk ∼ 2νkxY0p̃(t
2 + 1)(g(t)− q̃Y0

p̃
). (5.12)

The function g has a maximum at t0 =
√
54 + 6

√
33/6 ≈ 1.5676, with g0 := g(t0) ≈

0.3690. Therefore, if Y0q̃
p̃ > g0, kΦk is negative for all t, and |ρ0| is a decreasing function

of x. Otherwise, the right hand side in (5.12) changes sign twice: the first time at
t1(

Y q̃
p̃ ) < t0 corresponds to a local minimum, and the second time at t2(

Y q̃
p̃ ) > t0

corresponds to a local maximum,

k̆5(p, q) ∼
s(c)

2ν

√
Y0t2(

Y0q̃

p̃
), z̆5(p, q) = z(ωM , k̆5(p̃, q̃)).
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X If k ⋍ Y θ
0 with 1

2 < θ < 1, then X ≫ Y0, Y ∼ Y0, and

ReN(z, z̄) ∼ X(q̃3X2 − q̃X + p̃), ImN(z, z̄) ∼ −Y0(p̃+ q̃3X2), x ∼
√
X, y ∼ Y0

2
√
X
,

Φk ∼ νkX− 1
2 (2XReN(z, z̄) + Y0ImN(z, z̄))

Φk ∼ 2νkX
3
2 (q̃3X2 − q̃X + p̃).

The right hand side, as a function of X , has only one root for 1
2 < θ < 1, 1

q̃2 ,
corresponding to a local minimum.

X If k ⋍ Y0, then X ⋍ Y 2
0 , Y ⋍ Y0, and

ReN(z, z̄) ∼ q̃3X3, ImN(z, z̄) ∼ −q̃3Y X2), x ∼
√
X, y ∼ Y

2
√
X
,

Φk ∼ νkX− 1
2 (2XReN(z, z̄) + Y ImN(z, z̄))

∼ 2νkq̃3X
3
2 (2X2 − Y 2) ∼ 4νkq̃3X

7
2 .

To summarize we have :

– if α+ β < 1, k 7→ |ρ0(ωM , k, p, q)| has no local maximum on the curve Cn.
– if α+ β = 1, k 7→ |ρ0(ωM , k, p, q)| has two local maxima on the curve Cn, z̆4(p, q) and
z̆5(p, q).

To compare them, we define Q = q̃Y0

p̃ , and get

k̆5(p, q) ∼
s(c)

2ν

√
Y0t2(Q), z̆5(p, q) = z(ωM , k̆5(p, q)), |ρ0(z̆5, p, q)| ∼ 1−2(

p̃

|z̆5|2
+q̃)Re z̆5.

The convergence factors |ρ0(z̆4, p, q)| and |ρ0(z̆5, p, q)| are both 1− ∝(ω
1
4

M ). In order to
compare the two, we compute

|ρ0(z̆4, p, q)| ∼ 1−p̃
√

2

Y
(1+Q), |ρ0(z̆5, p, q)| ∼ 1−p̃

√
2

Y

√
1 +

√
t2(Q)2 + 1(

1√
t2(Q)2 + 1

+Q).

It is easier to compare

h2(t) = 1 + g(t) and h1(t) =

√
1 +

√
t2 + 1(

1√
t2 + 1

+ g(t)),

for t > t0. A direct computation shows that
{
for t < t̄ ≈ 2.5484 h1(t) > h2(t),

for t > t̄ ≈ 2.5484 h1(t) < h2(t),

which implies {
for q̃Y0

p̃ > g1 ≈ 0.3148 |ρ0(z̆5, p, q)| < |ρ0(z̆4, p, q)|,
for q̃Y0

p̃ < g1 ≈ 0.3148 |ρ0(z̆5, p, q)| > |ρ0(z̆4, p, q)|.
We can now conclude the northern study for the case where ωM ⋍ km. We define

z̆n(p̃, q̃) =





z̆5(p̃, q̃) if q̃Y0

p̃ < g1 ≈ .1735,

z̆4(p̃, q̃) if g1 <
q̃Y0

p̃ < 1 and km 6 |k̆4|,
z4 if g1 <

q̃Y0

p̃ < 1 and km > |k̆4|,
z4 if q̃Y0

p̃ > 1.

(5.13)

Then we obtain for the convergence factor

sup
Cn

|ρ0(z, p, q)| = max(|ρ0(z3, p, q)|, |ρ(zn(p̃, q̃), p, q)|).

with the asymptotic behavior (P (Q) is defined in (2.12))

|ρ0(z̆n(p, q), p, q)| ∼ 1−
√

2

Y0
p̃P (Q), |ρ0(z3, p, q)| ∼ 1− 1

νkM q̃
. (5.14)
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• If ωM ⋍ k2M , then Y0 = O(k2M ), X ≪ Y , and we obtain that

X for k ≪ kM , the dominant part of Φk is given by

Φk ∼ xq̃Y 2((2νk + c)(q̃2X − 1) + (−2νk + c)q̃2Y )
∼ xq̃Y 2(2νk(q̃2(X − Y )− 1) + c(q̃2(X + Y )− 1))
∼ xq̃3Y 3(−2νk + c).

Remember that k̃2(ωM ) is the point where ∂ky vanishes. If |k̃2(ωM )| 6 km, ∂ky does
not vanish on the curve Cn, and |ρ0| is a decreasing function of x. If |k̃2(ωM )| > km,
∂ky does vanish on Cn, at

k̆4(p, q) ∼ k̃2(ωM ) ∼ c

2ν
, z̆4(p, q) = z(k̆4(p, q), p, q) ∼

√
Y0
2
(1+i), ρ0(z̆4(p, q), p, q) ∼ 1−2

1

q̃z̆4
,

which implies for the modulus of the convergence factor

|ρ0(z̆4(p, q), p, q)| ∼ 1− 2Re
1

q̃z̆4
∼ 1− 1

q̃

√
2

Y0
.

X for k ⋍ kM

ReN(z, z̄) ∼ q̃3X(X2 + Y 2), ImN(z, z̄) ∼ −q̃3Y (X2 + Y 2), x ⋍ y ⋍
√
Y0, ,

Φk ∼ 2νkq̃3(X2 + Y 2)(xX − yY ) ∼ 2νkxq̃3(X2 + Y 2)(2X −
√
X2 + Y 2).

The right hand side changes sign for X = Y/
√
3 corresponding to a minimum. Since

x is an increasing function of X ,

z(k) ∈ Cn ⇐⇒ Y0/
√
3 6 4ν2k2M .

Note as in the first part, ωM = ν
dk

2
M , and thus

z(k) ∈ Cn ⇐⇒ 1

d
√
3
6 1 ⇐⇒ d >

1√
3
.

We define

z̆n(p, q) =

{
z̆4(p, q) if km 6 |k̆4| ∼ |c|

2ν ,

z4 if km > |k̆4|,
(5.15)

and obtain

|ρ0(z̆n(p̃, q̃), p, q)| ∼ 1− 1

q̃

√
2

Y0
.

The maximum of |ρ0| on Cn is therefore reached at z̆n or z3, with

|ρ0(z3, p, q)| ∼ 1− 1

νq̃kM

√√√√d

2

(
d+

√
d2 + 1

d2 + 1

)
.

A short computation shows that |ρ0(z3, p, q)| and |ρ0(z̆n, p, q)| are asymptotically of the
same order, and that

sup
Cn

|ρ0(z, p, q)| =
{

|ρ0(z3, p, q)| if d > d0
|ρ(z̆n, p, q)| if d < d0

∼ 1− 1

νq̃kM
C

√
d

2
,

in the notation of Theorem 2.1.
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3. We can now finish with the southern part on the east, i.e. ω = −ωM , s(c)k ∈ (ωM/|c|, kM ).
For this part to exist, ωM/|c| has to be smaller than kM , thus ωM = O(kM ), which implies that
X = O(k2M ) ≫ Y , and

Φk ∼ q̃3X2(X − iY )(∂kx+ i∂ky) ∼ q̃3X2s(c)
2ν

|z|2 (X
2 + Y (|c|

√
X − Y

2
) ∼ q̃3X4 2νs(c)

|z|2 .

Therefore |ρ0| is an increasing function of x, and

sup
Cse

|ρ0(z, p, q)| = |ρ0(z3, p, q)|.

We can now simply collect all the previous results, and returning to the variables p and q concludes the
proof of this long lemma.

Determination of the Global Minimizer by Equioscillation: The following lemma gives asymp-
totically the local minimizers for both the implicit and explicit time integration schemes:

Lemma 5.2 In the implicit case, when kM = ChωM , there exist p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M such that

{
|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆1(p, q), p, q)| = |ρ0(z3, p, q)|) if p

q < ωM ,

|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆n(p, q), p, q)| = |ρ0(z3, p, q)|) if p
q > ωM .

Defining Q0 = 2
Chxsw

, the coefficients are given asymptotically by

q̄∗1 ∼ 2p

xswkM
, p̄∗1 ∼

{
4
√
x3swνkM if Q0 > 1,

4

√
8νxswωM

P (Q0)2
. if Q0 < 1.

In the explicit case, when ωM = 1
πCh

k2M , there exist p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M such that

|ρ0(z̆sw(p, q), p, q)| = |ρ0(z̆1(p, q), p, q)| = |ρ0(z̆′n, p, q)|).

The coefficients are given by

q̄∗1 ∼ 2Cp

xswkM
, p̄∗1 ∼ 4

√
νx3swkM

C
.

Proof In each asymptotic regime for kM and ωM , we proceed in two steps:

• In the implicit case, ωM = 1
Ch
kM :

1. For p such that p ⋍ kαM , α < 1
2 , consider the equation

|ρ0(z̆sw, p, q)| − |ρ0(z3, p, q)| = 0,

with the unknown q. By the expansions (5.6), we see that for any q ⋍ k−β
M , 1

2 < β < 1,

|ρ0(z̆sw, p, q)| − |ρ0(z3, p, q)| ∼
4

qkM
− 2

xsw
p
,

which can take positive or negative values according to the sign of the right hand side. There-
fore it vanishes for q = q̂(p), with

q̂(p) ∼ 2p

xswkM
. (5.16)

We verify that q̂(p) ⋍ k−β
M , 1

2 < β < 1.
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2. Consider now for large kM and Q0 > 1 the equation in the p-variable,

|ρ0(z̆sw, p, q̂(p))| − |ρ0(z̆1, p, q̂(p))| = 0.

By the asymptotic expansions above, for q = q̂(p),

|ρ0(z̆sw, p, q)| − |ρ0(z̆1, p, q)| ∼ 2

(√
pq

2ν
− xsw

p

)
∼ 2

(
p

√
1

xswkM
− xsw

p

)
.

This quantity takes positive or negative values, and vanishes for a p̄∗1 with

p̄∗1 ∼ 4
√
x3swνkM .

Consider alternatively for Q0 < 1 the equation in the p-variable,

|ρ0(z̆sw, p, q̂(p))| − |ρ0(z̆n, p, q̂(p))| = 0.

By the asymptotic expansions above, for q = q̂(p),

|ρ0(z̆sw, p, q)| − |ρ0(z̆n, p, q)| ∼
p√

2νωM
P (Q0)− 2

xsw
p
.

Again, this quantity vanishes for a p̄∗1 with

p̄∗1 ∼ 4

√
8νx2swωM

P (Q0)2
.

• In the explicit case, ωM = 1
πCh

k2M :

1. We first solve, for fixed p, the equation in q,

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| = 0.

By the expansions in (5.6),

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| ∼
4C

qkM

√
d

2
− 2

xsw
p
,

and |ρ(z̆sw(p, q), p, q)| − |ρ(z̆′n(p, q), p, q)| vanishes for

q = q̂(p) ∼ 2Cp

xswkM

√
d

2
.

2. We solve now for q = q̂(p), the equation

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆1(p, q), p, q)| = 0,

whose asymptotic behavior is

|ρ(z̆sw(p, q), p, q)| − |ρ(z̆1(p, q), p, q)| ∼ 2

√
pq

2ν
− 2

x̆sw
p

∼ 2p

√
C

νxswkM

√
d

2
− 2

xsw
p
.

By the same arguments as before, |ρ(z̆sw(p, q), p, q)| − |ρ(z̆1(p, q), p, q)| vanishes for

p̄∗1 ∼ 4

√
νx3swkM

C

√
2

d
.
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We have now proved that there exist in all cases coefficients p and q satifying the relations in the lemma.

They satisfy p̄∗1 ⋍ k
1
4

M , q̄∗1 ⋍ k
− 3

4

M , and are therefore conforming to the previous study with α+ β = 1.

It remains to show that this is indeed a strict local minimum for the function F0. By the same
argument as in the Robin case, we can prove that for δp and δq sufficiently small and p = p̄∗1 + δp,
q = q̄∗1 + δq,

F0(p, q)− F0(p̄
∗
1, q̄

∗
1) = maxµ((δp ∂p̃ + δq ∂q̃)|ρ0(z̆µ, p̄∗1, q̄∗1)|) + O(δp, δq),

where the points z̆µ are those involved in the maximum: if ωM ⋍ kM , z̆sw and z3 in any case, and either
z̆n or z̆1, and if ωM ⋍ k2M , z̆sw, z̆

′
n and z̆1.

Therefore, (p̄∗1, q̄
∗
1) is a strict local minimum of F0(p, q) if and only if for any (δp, δq), there exists a z̆µ

such that (δp ∂p̃ + δq ∂q̃)R0(z̆µ, p̄
∗
1, q̄

∗
1) > 0. To analyze this quantity, we rewrite the convergence factor

in the form

R0 =
φ− ψ

φ+ ψ
, with

{
φ = q̃2|Z|2 + 2p̃q̃X + p̃2 + |z|2,
ψ = 2x(p̃+ q̃|z|2).

This allows us to write the derivatives in the more elegant form

R′
0 =

ψφ′ − ψ′φ

(φ + ψ)2
,

and at an extremum, R0 = δ∗1
2 implies that ψ/φ = ζ :=

1−(δ∗1 )
2

1+(δ∗1 )
2 , and

R′
0 =

ζφ′ − ψ′

(1 + ζ)2φ
.

We therefore obtain

(δp ∂p̃ + δq ∂q̃)R0(z̆µ, p̄
∗
1, q̄

∗
1) =

ζ∂p̃φ− ∂p̃ψ

(1 + ζ)2φ
δp+

ζ∂q̃φ− ∂q̃ψ

(1 + ζ)2φ
δq

=
2(ζ(p̃+ q̃X)− x)

(1 + ζ)2φ
δp+

2(ζ(p̃X + q̃|Z|2)− x|z|2)
(1 + ζ)2φ

δq

=:
2Φ(z̆µ, δp, δq)

(1 + ζ)2φ
.

We now study the asymptotic behavior of Φ for the two cases of interest:

• If ωM ⋍ kM , then
Φ(z̆1, δp, δq) ∼ −x̆1(δp+ p̃

q̃ δq),

Φ(z̆n, δp, δq) ∼ −x̆n(δp+MY0 δq),
Φ(z̆sw, δp, δq) ∼ xsw(δp+ (x2sw − 3y2sw)δq),
Φ(z3, δp, δq) ∼ 2νkM (δp+ (2νkM )2δq).

where M is given by

M =

{
1 if Q0 = 2

Chxsw
> g1,√

1 + (t2(Q0))
2

if Q0 < g1.

Therefore, (p̄∗1, q̄
∗
1) is a strict local minimum of F0(p, q) if and only if the union of the following set

equals R2:
E1 = {(δp, δq),−(δp+MkMδq) > 0},
E2 = {(δp, δq), δp+ (2νkM )2δq > 0},

E3 = {(δp, δq), δp+ (x2sw − 3y2sw)δq > 0}.

The domains are shown in Figure 6: for large kM , the slopes of D1, δp +MkMδq = 0 and D2,
δp+(2νkM )2δq = 0 are such that E1∪E2 is R2 excluding a small angle Ĕ = {δq < 0, −MkMδp < δq <
(2νkM )2δq}. If x2sw − 3y2sw < 0, E3 contains the whole quadrant δp > 0, δq < 0. If x2sw − 3y2sw > 0,
the slope of D3, δp+ (x2sw − 3y2sw)δq = 0, is O(1), so that E3 contains Ĕ .
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(b) x2
sw

− 3y2
sw

> 0

Figure 6: Description of the analysis for ωM ⋍ kM

δp

δq

D1

D2

D3

(a) x2
sw

− 3y2
sw

< 0

δp

δq

D1

D2

D3

(b) x2
sw

− 3y2
sw

> 0

Figure 7: Description of the analysis in the case ωM =
νk2

M

d with d > d0

• If ωM =
νk2

M

d , then the asymptotics for z̆sw and z̆1 remain unchanged. The asymptotics for z̆′n
become

Φ(z̆′n, δp, δq) ∼
{√

2νωM (−δp+ 4νωMδq) if d < d0
2νCkM√

2d
((2d−

√
d2 + 1)δp+ 4 d2+1

d (νkM )2δq) if d > d0.

If d < d0, the situation is the same as in Figure 6. If d > d0, we obtain the conclusion as indicated
in Figure 6.

5.2 The Overlapping Case

We follow along the same lines as in the Robin case, starting with the infinite case where only L is
involved. Denoting by ℓ := L/2ν as before to simplify the notation, we obtain for the derivatives of the
convergence factor

R(ω, k, p, q, L) = R0(ω, k, p, q)e
−2ℓx,

∂ω,kR(ω, k, p, q, L) = ∂ω,kR0(ω, k, p, q)− 2ℓ∂ωxR0(ω, k, p, q)

=
4Re (N(z,z̄) (∂ω,kx+i∂ω,ky))−2ℓ∂ωx|(p̃+q̃z2)2−z2|2

|p̃+q̃z2+z|4

= 4
(ReN(z,z̄)− ℓ

2M) ∂ω,kx−ImN(z,z̄)∂ω,ky

|p̃+q̃z2+z|4 ,
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with M = |(p̃+ q̃z2)2 − z2|2.

Proof of Theorem 2.5 (Ventcel Conditions with Overlap, Continuous): we solve the min-max

problem on the infinite domain D̃∞
+ . By the abstract Theorem 3.4, for sufficiently small L, the problem

has a solution. We need to prove that FL has a strict local minimum, which will again be achieved by
equioscillation. The proof consists of two steps, shown in the following lemmas:

Lemma 5.3 (Local Extrema) Suppose p ⋍ kαM , q ⋍ kβM , 0 < α < 1
2 < β < 1, α+ β < 1. Then,

sup
D̃∞

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆”1(p, q), p, q, L)|),

where z̆′sw ∼ zsw. The two other points belong to C∞
w , with

ω̆′
1 ∼ p̃

4νq̃ , |ρ(z̆′1, p, q, L)| ∼ 1− 2
√
2p̃q̃,

ω̆”
1 ∼ 2

ℓq̃ , |ρ(z̆”1 , p, q, L)| ∼ 1− 2
√

ℓ
q̃ .

Proof We make the assumptions on the coefficients p and q in (5.3). We start with the variations of R
on the west boundary, i.e. as a function of ω for k = km:

∂ωR(ω, k, p, q, L) = 8ν
Φℓ

ω

|z|2|p̃+ q̃z2 + z|4 ,

Φℓ
ω = Φω − ℓ

2
My.

We rewrite M in terms of ξ as in (5.8), using Y ∼ ξ,

M = |(p̃+q̃X+iq̃Y )2−X−iY |2 ∼ |(p̃2−q̃2Y 2−X)+iY (2(p̃+q̃X)q̃−1)|2 ∼ tp4+q̃4Y 4+Y 2 ∼ q̃4ξ4+ξ2+p̃4,

and we obtain

Φℓ
ω ∼ yQ4 := y(− ℓ

2
q̃4ξ4 +Q3).

The fourth-order polynomial Q4 is a singular perturbation of Q3 defined in (5.8). The roots are therefore
perturbations of those already defined, with in addition ξ”1 , whose principal part solves

q̃3ξ3 − ℓ

2
q̃4ξ4 = 0.

By the same argument as before, Q4 has four roots,

1 ≪ ξ′0 ∼ p̃2 ≪ ξ′1 ∼ p̃

q̃
≪ ξ′2 ∼ 1

q̃2
≪ ξ”1 ∼ 2

ℓq̃
,

and ∂ωR(ω, k, p, q) has, in addition to ω = −ckm, four zeros ω′
0, ω

′
1, ω

′
2 and ω1”, equivalent to the

corresponding ξ/4ν. ξ′0 and ξ
′
2 correspond to minima ofR, while z̆′1 = z(ω̆′

1, s(c)km) and z̆”1 = z(ω̆”
1, s(c)km)

correspond to maxima. At the maxima we have Y ∼ ξ, X = O(1), and z ∼ √
ξ(1 + i), which implies for

the convergence factor

|ρ(z̆′1, p, q, L)| ∼ 1− 2
√
2p̃q̃, |ρ(z̆”1 , p, q, L)| ∼ 1− 2

√
ℓ

q̃
.

If |c|km > ωm, the local extrema are z1, z̆
′
1 and z̆”1 . If |c|km < ωm, we must take Csw into account. We

use the results derived in the nonoverlapping case to obtain

∂kR(ω, k, p, q, L) = 8ν
Φℓ

k

|p̃+q̃z2+z|4|z|2 ,

Φℓ
k = Φk − ℓ

2∂ωx|(p̃+ q̃z2)2 − z2|2
= (ReN(z, z̄)− ℓ

2M)∂kx− ImN(z, z̄)∂ky.
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By the results in the previous section, since M = O(1),

Φℓ
k ∼ −|z|2

2ν
∂kx(p̃

3 + 4
ℓ

2
M) ∼ −|z|2

2ν
∂kx,

if ∂kx 6= 0. By Corollary 3.6, if |k̃1(ωm)| 6 km, ∂kx does not change sign in the interval, and thus |ρ| is
a decreasing function of x. If |k̃1(ωm)| ∈ (km, ωm/|c|), ∂kx changes sign at k = k̃1, and therefore ∂k|ρ|2
changes sign for a point k̆′3 in the neighbourhood of k̃1(ωm), which produces a maximum at z̆′3 = z(ωm, k̆

′
3).

We thus define

z̆′sw =






z1 if |ckm| < ωm,

z1 if |ckm| > ωm and |k̆′3| 6∈ [km,
ωm

|c| ],

z̆′3 ∼ z̃1(ωm) if |ckm| > ωm and |k̆′3| ∈ [km,
ωm

|c| ],

and obtain for the convergence factor

sup
Csw

|ρ(z, p, q, L)| = |ρ(z̆′sw, p, q, L)| ∼ 1− 2
x̆′sw
p̃

∼ 1− 2
xsw
p̃
.

We can therefore conclude that

sup
z∈D̃+

|ρ(z, p, q, L)| = max(|ρ(z̆′sw, p, q, L)|, |ρ(z̆′1, p, q, L)|, |ρ(z̆”1 , p, q, L)|).

Lemma 5.4 (Local Minimum for FL(p, q)) There exist p̄∗∞ ⋍ k
1
5

M , q̄∗∞ ⋍ k
− 3

5

M such that

|ρ(z̆”sw, p, q, L)| = |ρ(z̆′1, p, q, L)| = |ρ(z̆”1 , p, q, L)|.

The coefficients are given asymptotically by

p̄∗∞ ∼ 5

√
x4sw
2ℓ

, q̄∗∞ ∼ 4ν
x2sw
2p̃3

∼ 4ν 5

√
ℓ3

4x2sw
, δ∼1− 2 5

√
2ℓxsw.

Proof We skip the arguments which are similar to those of the previous section, and show only the
computation of the parameters. Since

|ρ(z̆”sw, p, q, L)| − |ρ(z̆′1, p, q, L)| ∼ 2(
√
2p̃q̃ − xsw

p̃
), |ρ(z̆”sw, p, q, L)| − |ρ(z̆”1 , p, q, L)| ∼ 2

(√
ℓ

q̃
− xsw

p̃

)
,

we must have asymptotically

2p̃3q̃ ∼ x2sw, ℓ
p̃2

q̃
∼ x2sw .

which gives the formulas in the lemma. Notice that they have the announced asymptotic behavior
p̄∗∞ = O(L− 1

5 ), q̄∗∞ = O(L
3
5 ), validating the computations made above. We finally recover the results in

the Lemma by returning to the original variables p and q.

The proof that p̄∗∞, q̄∗∞ is a strict local minimum of FL is analogous to that in the nonoverlapping
case and therefore we omitted it. Then by the abstract Theorem 3.4, we found the global minimum, and
the proof of Theorem 2.5 is complete.
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Proof of Theorem 2.6 (Ventcel Conditions with Overlap, Discrete): the existence and unique-
ness for the min-max problem is again covered by the abstract theorem. We thus only need to show the
local maxima in the convergence factor, and the strict local minimizer for FL(p, q), which is done in the
following two lemmas:

Lemma 5.5 (Local Maxima of R on D̃) Suppose p ⋍ kαM , q ⋍ kβM , 0 < α < 1
2 < β < 1, α + β < 1.

Then, if ωM ⋍ k2M , we have

sup
z∈D̃

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆”1(p, q), p, q, L)|).

If ωM ⋍ kM , then

sup
z∈D̃

|ρ(z, p, q, L)| = max(|ρ(z̆′sw(p, q), p, q, L)|, |ρ(z̆′1(p, q), p, q, L)|, |ρ(z̆′4(p, q), p, q, L)|),

where z̆′4(p, q) ∈ Cn is such that

|ρ(z̆′4(p, q), p, q) ∼ 1− 2

√
2

ℓq̃
.

Proof We have already computed the extrema on Csw and C∞
w . For the west boundary Cw, we need to

check if the computed values are indeed inside the bounded domain. With the assumptions on p and q,
the first maximum on C∞

w is at ω′
1 ∼ p̃

q̃ ≪ ωM . The second maximum is at ω”
1 ∼ 1

4νℓq̃ ⋍ k1+β
M . It belongs

to Cw, if ωM ⋍ k2M . In the other case, the minimum at ξ′2 does not belong either to Cw, and

sup
Cw

|ρ(z, p, q, L)| = max(|ρ(z1, p, q, L)|, |ρ(z̆′1, p, q, L)|).

We compute now the local extrema on the curve Cn, treating again the two cases of interest:

• If ωM ⋍ k2M , the term −ℓM dominates in the derivative, so that

Φℓ
k ∼ − ℓ

2
M∂kx,

and R is a decreasing function of x on Cn.

• If ωM ⋍ kM , then we have the cases

X If k = O(kM ), l
2M ⋍ Y0, ReN(z, z̄) ∼ −p̃3 − q̃2Y 2

0 ≫ Y0. Therefore the computations from

the nonoverlapping case are valid. According to (5.13), since q̃Y0

p̃ ≫ 1, there is no maximum

for k = O(kM ).

X If k ⋍ kθM , 1
2 < θ < 1, M ∼ X2(q̃2X − 1)2, and

Φℓ
k ∼ 2νk

√
X(ReN(z, z̄)− l

2X
2(q̃2X − 1)2)

∼ 2νkX
3
2 (− ℓ

2 q̃
4X3 + q̃3X2 − q̃X + p̃).

The polynomial on the right hand side is a singular perturbation of the polynomial in Φk,
q̃3X2 − q̃X + p̃, and it has asymptotically the following two roots:

1

q̃2
≪ 2

ℓq̃
.

The first one corresponds to a minimum, the second one to a maximum. Therefore the overlap

creates a new local maximum, k̆′4 ∼ s(c)
2ν

√
2
ℓq̃ . The convergence factor is in this case

|ρ(k̆′4, ωM , p, q) ∼ 1− 2

√
2

ℓq̃
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Hence we found all the possible maxima, and

sup
z∈D̃+

|ρ(z, p, q, L)| = max(|ρ(z̆′sw, p, q, L)|, |ρ(z̆′1, p, q, L)|, |ρ(z̆′4, p, q, L)|).

Lemma 5.6 (local minimum for FL(p, q)) There exist p̄∗L ⋍ k
1
5

M , q̄∗L ⋍ k
− 3

5

M such that the three values
in Lemma 5.5 coincide. The coefficients and associated convergence factor are given asymptotically by

p̄∗L ∼





5

√
x4
sw

2ℓ , if ωM ⋍ k2M ,

5

√
x4
sw

4ℓ , if ωM ⋍ kM
, q̄∗L ∼ 4ν

x2sw
2p̃3

, sup
z∈D̃

|ρ(z, p̄∗L, q̄∗L, L)| ∼ 1− 2 5
√
4ℓxsw.

Proof We skip the arguments which are similar to those previously, and retain only the conclusion. The
case ωM ⋍ k2M is like in the previous analysis. In the other case, we prove as before that there exist p̄∗L
and q̄∗L which solve the two equations

|ρ(z̆”sw, p, q, L)| − |ρ(z̆′1, p, q, L)| = 0, |ρ(z̆”sw, p, q, L)| − |ρ(z̆′4, p, q, L)| = 0.

The first one is the same as in the infinite case, providing the relation

2p̃3q̃ ∼ x2sw ,

and the second one becomes

|ρ(z̆”sw, p, q, L)| − |ρ(z̆”1 , p, q, L)| ∼ 2

(√
2ℓ

q̃
− xsw

p̃

)
,

which provides the relation

2ℓ
p̃2

q̃
∼ x2sw ,

and the solution
p̃L ∼ 2−

1
5 p̃∞, q̃ ∼ 2

3
5 q̃∞. sup

z∈D̃+

|ρ(z, p, q, L)| ∼ 1− 2 5
√
4ℓxsw.

We can conclude now the proof of Theorem 2.6 as in the other cases.

6 Numerical experiments

We now present a substantial set of numerical experiments in order to illustrate the performance of the
optimized Schwarz waveform relaxation algorithm, both for cases where our analysis is valid, and for
more general decompositions. We work on the domain Ω = (0, 1.2)× (0, 1.2) and chose for the coefficients
in (2.1) ν = 1, a = (1, 1) and b = 0, and the time interval length T = 1. We discretized the problem using
Q1 finite elements and simulate directly the error equations, f = 0, and start with a random initial error,
to make sure all frequencies are present, see [12] for a discussion of the importance of this. We use as
the stopping criterion the relative residual reduction to 10−6. We start with the case of an implicit time
integration method (Backward Euler), where one can choose ∆t = h

4 . We show in Table 2 the number of
iterations needed by the various Schwarz waveform relaxation algorithms for the case of non-overlapping
decompositions. We first note that the algorithms work also very well for decompositions into more
than two subdomains, and the optimized parameters we derived are also very effective in that case. For
example for a decomposition into 4 × 4 subdomains and a high mesh resolution, the Ventcell conditions
need about 5 times less iterations than the Robin conditions for convergence, and the cost per iteration
is virtually the same.
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Iterative GMRES
h 0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025

Robin

2x1 49 71 97 144 198 23 29 36 45 55
2x2 53 74 101 145 202 30 38 48 59 73
4x1 52 72 101 140 204 30 40 50 63 78
4x4 81 116 160 219 303 47 64 84 107 133

Ventcell

2x1 13 15 18 21 24 10 12 14 16 18
2x2 23 29 39 48 63 16 19 22 25 29
4x1 18 21 25 29 35 14 17 20 24 27
4x4 30 37 44 54 65 22 28 34 40 46

Table 2: Number of iterations for an implicit time discretization setting ∆t = h
4 , algorithms without

overlap

Iterative GMRES
h 0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025

Robin

2x1 12 14 16 19 23 8 10 12 14 17
2x2 14 17 21 27 33 11 14 17 20 24
4x1 14 15 18 23 29 11 13 16 20 24
4x4 19 24 32 41 52 14 20 26 32 40

Ventcell

2x1 9 10 11 12 13 6 7 8 9 10
2x2 12 14 17 20 23 8 10 11 13 16
4x1 12 11 11 14 16 10 9 9 11 13
4x4 16 17 19 24 29 13 13 14 18 22

Classical

2x1 54 106 189 360 733 27 40 58 83 117
2x2 84 159 303 570 1058 37 56 82 118 166
4x1 73 145 282 553 969 38 60 89 127 179
4x4 127 258 487 912 1706 54 94 143 209 296

Table 3: Number of iterations for an implicit time discretization setting ∆t = h
4 , algorithms with overlap

2h
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Figure 8: Plots of the iteration numbers from Table 2 and 3 when the methods are used iteratively, and
theoretically predicted rates. Top left 2 × 1 subdomains, Top right 2 × 2 subdomain, bottom left 4 × 1
subdomains and bottom right 4× 4 subdomains

In Table 3, we show the corresponding results for the overlapping algorithms, using an overlap of 2h.
We see that overlap greatly enhances the convergence of the algorithms, as predicted by our analysis.
At a high mesh resolution, the number of iterations on the 4 × 4 example can be reduced by a factor
of 6 using overlap in the case of Robin conditions, and by a further factor of 2 when optimized Ventcell
conditions are used.

We illustrate our asymptotic results now in Figure 8 by plotting in dashed lines the iteration numbers
from Table 2 and 3 in log-log scale, and we add the theoretically predicted growth of the iteration numbers.
We see that our asymptotic analysis for the two subdomain case also predicts quite well the behavior of
the algorithms in the case of many subdomains.

Next, we investigate the setting of an explicit method (Forward Euler with mass lumping), where
∆t = h2/4. We show in Table 4 and 5 the number of iterations needed to reduce the relative residual
again by a factor of 10−6.

We illustrate our asymptotic results now in Figure 9 by plotting in dashed lines the iteration numbers
from Table 4 and 5 in log-log scale, and we add the theoretically predicted growth of the iteration numbers.
As in the implicit case shown earlier, the asymptotic behavior we observe follows our analysis of the two
subdomain case, also in the experiments with many subdomains.
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Iterative GMRES
h 0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005

Robin

2x1 57 85 117 176 24 31 36 44
2x2 59 87 117 174 25 32 39 48
4x1 63 86 121 170 26 30 37 44
4x4 62 84 123 166 26 31 40 48

Ventcell

2x1 20 22 25 28 12 13 15 16
2x2 22 25 26 30 13 14 16 18
4x1 21 22 25 29 12 14 15 16
4x4 23 27 26 34 15 16 18 19

Table 4: Number of iterations for an explicit time discretization setting ∆t = h2

4 , without overlap

Iterative GMRES
h 0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005

Robin

2x1 13 16 20 24 8 9 10 10
2x2 13 16 19 23 9 10 11 12
4x1 14 18 20 24 9 10 12 12
4x4 14 18 20 23 10 13 15 16

Ventcell

2x1 9 10 11 13 6 8 9 10
2x2 9 10 11 13 7 8 9 10
4x1 9 10 11 14 7 8 9 10
4x4 11 11 12 14 8 9 10 11

Classical

2x1 25 46 88 169 17 27 43 66
2x2 33 63 122 235 21 34 54 83
4x1 25 48 91 176 17 27 43 66
4x4 36 70 136 263 22 36 58 89

Table 5: Number of iterations for an explicit time discretization setting ∆t = h2

4 , with overlap 2h
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Figure 9: Plots of the iteration numbers from Table 4 and 5 when the explicitly discretized methods are
used iteratively, and theoretically predicted rates. Top left 2× 1 subdomains, Top right 2× 2 subdomain,
bottom left 4× 1 subdomains and bottom right 4× 4 subdomains
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7 Conclusion

We provide in this paper the complete asymtotically optimized closed form transmission conditions for
optimized Schwarz waveform relaxation algorithms applied to advection reaction diffusion problems in
higher dimensions. We showed the results for the case of two spatial dimensions, but the extension to
higher dimensions d > 2 from there is trivial, it suffices to replace the Fourier variable contributions k2 by
||k||2, and ck by c ·k, which implies to replace in the asymptotic analysis the highest frequency estimate

kM = π
h by kM =

√
d−1π
h , or replacing π by

√
d− 1π in the final asymptotically optimized closed form

formulas. The formulas for Robin and Vencel conditions are derived such that limits to pure diffusion
can be taken, and therefore also the associated time dependent heat equation optimization problems are
solved by our formulas. The formulas are equally good for advection dominated problems, although one
has to pay attention there to have fine enough mesh sizes to resolve boundary layers, in order for the
asymptotically optimized formulas to be valid. We extensively tested our algorithms numerically, see
also [37] for more scaling experiments, and these tests indicate that our theoretical asymtptotic formulas
derived for two subdomain decompositions are also very effective for more general decompositions into
many subdomains.
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