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Optimized Schwarz Waveform Relaxation methods have been developed over the last decade for the parallel solution of evolution problems. They are based on a decomposition in space and an iteration, where only subproblems in space-time need to be solved. Each subproblem can be simulated using an adapted numerical method, for example with local time stepping, or one can even use a different model in different subdomains, which makes these methods very suitable also from a modeling point of view. For rapid convergence however, it is important to use effective transmission conditions between the space-time subdomains, and for best performance, these transmission conditions need to take the physics of the underlying evolution problem into account. The optimization of these transmission conditions leads to mathematically hard best approximation problems of homographic functions. We study in this paper in detail the best approximation problem for the case of linear advection reaction diffusion equations in two spatial dimensions. We prove comprehensively best approximation results for transmission conditions of Robin and Ventcel (higher order) type, which can also be used in the various limits for example for the heat equation, since we include in our analysis a positive low frequency limiter both in space and time. We give for each case closed form asymptotic values for the parameters which can directly be used in implementations of these algorithms, and which guarantee asymptotically best performance of the iterative methods. We finally show extensive numerical experiments including cases not covered by our analysis, for example decompositions with cross points. In all cases, we measure performance corresponding to our analysis.

Introduction

Schwarz waveform relaxation algorithms are parallel algorithms to solve evolution problems in space time. They were invented independently in [START_REF] Gander | Space time continuous analysis of waveform relaxation for the heat equation[END_REF] and [START_REF] Giladi | Space time domain decomposition for parabolic problems[END_REF], see also [START_REF] Gander | Overlapping Schwarz waveform relaxation for the heat equation in n-dimensions[END_REF], based on the earlier work in [START_REF] Bjørhus | On Domain Decomposition, Subdomain Iteration and Waveform Relaxation[END_REF], and are a combination of the classical waveform relaxation algorithm from [START_REF] Lelarasmee | The waveform relaxation method for time-domain analysis of large scale integrated circuits[END_REF] for the solution of large scale systems of ordinary differential equations, and Schwarz methods invented in [START_REF] Schwarz | Über einen Grenzübergang durch alternierendes Verfahren[END_REF]. Modern Schwarz methods are among the best parallel solvers for steady partial differential equations, see the books [START_REF] Smith | Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations[END_REF][START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF][START_REF] Toselli | Domain Decomposition Methods -Algorithms and Theory[END_REF] and references therein. Waveform relaxation methods have been analyzed for many different classes of problems recently: for fractional differential equations see [START_REF] Jiang | Waveform relaxation methods for fractional differential equations with the Caputo derivatives[END_REF], for singular perturbation problems see [START_REF] Zhao | On the convergence of continuous-time waveform relaxation methods for singular perturbation initial value problems[END_REF], for differential algebraic equations see [START_REF] Bai | On convergence conditions of waveform relaxation methods for linear differential-algebraic equations[END_REF], for population dynamics see [START_REF] Gerardo-Giorda | Balancing waveform relaxation for age-structured populations in a multilayer environment[END_REF], for functional differential equations see [START_REF] Zubik | Waveform relaxation for functional-differential equations[END_REF], and especially for partial differential equations, see [START_REF] Janssen | Multigrid waveform relaxation on spatial finite element meshes: the continuous-time case[END_REF][START_REF] Janssen | Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case[END_REF][START_REF] Van Lent | Multigrid waveform relaxation for anisotropic partial differential equations[END_REF] and the references therein. For the particular form of Schwarz waveform relaxation methods, see [START_REF] D'anfray | New trends in coupled simulations featuring domain decomposition and metacomputing[END_REF][START_REF] Gander | Overlapping Schwarz waveform relaxation for convection dominated nonlinear conservation laws[END_REF][START_REF] Daoud | Overlapping schwarz waveform relaxation method for the solution of the convectiondiffusion equation[END_REF][START_REF] Daoud | Overlapping Schwarz waveform relaxation method for the solution of the forwardbackward heat equation[END_REF][START_REF] Jiang | Schwarz waveform relaxation methods for parabolic equations in space-frequency domain[END_REF][START_REF] Zhang | Schwarz waveform relaxation methods for parabolic time periodic problems[END_REF][START_REF] Garbey | Acceleration of a Schwarz waveform relaxation method for parabolic problems[END_REF][START_REF] Ltaief | A parallel Aitken-additive Schwarz waveform relaxation suitable for the grid[END_REF][START_REF] Caetano | Schwarz waveform relaxation algorithms for semilinear reaction-diffusion[END_REF][START_REF] Wu | Convergence analysis of the overlapping Schwarz waveform relaxation algorithm for reaction-diffusion equations with time delay[END_REF][START_REF] Liu | Waveform relaxation for reaction-diffusion equations[END_REF][START_REF] Liu | A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations[END_REF]. These algorithms have also become of interest in the moving mesh R-refinement strategy, see [START_REF] Haynes | A Schwarz waveform moving mesh method[END_REF][START_REF] Haynes | A moving mesh method for timedependent problems based on Schwarz waveform relaxation[END_REF][START_REF] Gander | Domain decomposition approaches for mesh generation via the equidistribution principle[END_REF], and references therein. [START_REF] Audusse | Optimized Schwarz waveform relaxation for the primitive equations of the ocean[END_REF] Schwarz waveform relaxation methods however exhibit only fast convergence, when optimized transmission conditions are used, as first shown in [START_REF] Gander | Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation[END_REF], and then treated in detail in [START_REF] Martin | An optimized Schwarz waveform relaxation method for unsteady convection diffusion equation[END_REF][START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF][START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF][START_REF] Binh | Schwarz Waveform Relaxation Methods[END_REF] for diffusive problems, and [START_REF] Gander | Optimal Schwarz waveform relaxation for the one dimensional wave equation[END_REF][START_REF] Gander | Absorbing boundary conditions for the wave equation and parallel computing[END_REF] for the wave equation, see also [START_REF] Gander | Optimized waveform relaxation methods for RC type circuits[END_REF][START_REF] Gander | Optimized waveform relaxation methods for longitudinal partitioning of transmission lines[END_REF] for circuit problems, and [START_REF] Audusse | Optimized Schwarz waveform relaxation for the primitive equations of the ocean[END_REF] for the primitive equations. With optimized transmission conditions, the algorithms can be used without overlap, and optimized transmission conditions turned out to be important also for Schwarz algorithms applied to steady problems, for an overview, see [START_REF] Gander | Optimized Schwarz methods[END_REF] and references therein. In order to make such algorithms useful in practice, one needs simply to use formulas for the optimized parameters, which can then be put into implementations and lead to fast convergent algorithms, without having to think about optimizing transmission conditions ever again.

The purpose of this paper is to provide such formulas for a general evolution problem of advection reaction diffusion type. The analysis required to solve the associated optimization problems is substantial, and only asymptotic techniques lead to easy to use, closed form formulas. We also use and extend more general, abstract results for best approximation problems, which appeared in [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF]. In particular, we remove a compactness condition which remained in [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF] in the case of overlap. We obtain with our analysis the best choice of Robin transmission conditions, and also higher order transmission conditions called Ventcel conditions (after the Russian mathematician A. D. Ventcel, also spelled Venttsel, Ventsel or Wentzell [START_REF] Ventcel | On boundary conditions for multidimensional diffusion processes[END_REF]), both for the case of overlapping and non-overlapping algorithms. We give complete proofs of optimality, generalizing one-dimensional results given in [START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF] and [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF]. We also illustrate our results with numerical experiments.

Model Problem and Main Results

We study the optimized Schwarz waveform relaxation algorithm for the time dependent advection reaction diffusion equation in Ω ⊂ R 2 ,

Lu := ∂ t u + a • ∇u -ν∆u + bu = f, in Ω × (0, T ), (2.1) 
where ν > 0, b 0 and a = (a, c) T , and suitable boundary conditions need to be prescribed on the boundary of Ω, which will however not play an important role, and we will not mention this further. In order to describe the Schwarz waveform relaxation algorithm, we decompose the domain into J non-overlapping subdomains U j , and then enlarge them, if desired, in order to obtain an overlapping decomposition given by subdomains Ω j . The interfaces between subdomain Ω i and Ω j are then defined by Γ ij = ∂Ω i ∩ U j .

The algorithm for such a decomposition calculates then for n = 1, 2, . . . the iterates (u n j ) defined by

Lu n i = f in Ω i × (0, T ) u n i (•, •, 0) = u 0 in Ω i , B ij u n i = B ij u n-1 j on Γ ij × (0, T ), (2.2) 
where the B ij are linear differential operators in space and time, and initial guesses B ij u 0 j on Γ ij × (0, T ) need to be provided.

There are many different choices for the operators B ij . Choosing for B ij the identity leads to the classical Schwarz waveform relaxation method, which needs overlap for convergence. Zeroth or higher order differential conditions lead to optimized variants, which also converge without overlap, see for example [START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF] and [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF], where a complete analysis in one dimension was performed. We study here in detail the case where the transmission operators are of the form

B ij = (ν∇ - a 2 ) • n i + s 2 , s = p + q(∂ t + c∂ y -ν∆ y ). (2.3) 
If q = 0, these are Robin transmission conditions, whereas for q = 0, they are called Ventcel transmission conditions. In the ideal case where Ω = R 2 is decomposed into two half spaces Ω 1 = (-∞, L) × R and Ω 2 = (0, ∞) × R, we can compute explicitly the error in each subdomain at step n as a function of the initial error. We use Fourier transforms in time and in the direction y of the boundary, with ω and k the Fourier variables. The convergence factor ρ(ω, k, p, q, L) of algorithm (2.2), which gives precisely the error reduction of each error component in ω and k for a given choice of parameters p and q and overlap Method No overlap Overlap L

Dirichlet 1 1-∝(L) Robin 1-∝( √ h) 1-∝( 3 √ L) Ventcel 1-∝( 4 √ h) 1-∝( 5 √ L)
Table 1: The asymptotically optimized convergence factors δ * (L).

L, can in this case be computed in closed form (see [START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF]), ρ(ω, k, p, q, L) = p + q(νk 2 + i(ω + ck))x 2 0 + 4ν(νk 2 + i(ω + ck)) p + q(νk 2 + i(ω + ck)) + x 2 0 + 4ν(νk

2 + i(ω + ck)) e - L √ x 2 0 +4ν(νk 2 +i(ω+ck)) 2ν , (2.4) 
where we denote by √ the standard branch of the square root with positive real part, x 2 0 := a 2 + 4νb and i = √ -1. Computing on a (uniform) grid, we assume that the maximum frequency in space is k M = π h where h is the local mesh size in x and y, and the maximum frequency in time is ω M = π ∆t , and that we also have estimates for the lowest frequencies k m and ω m from the geometry, see for example [START_REF] Gander | Optimized Schwarz methods[END_REF] for estimates, or for a more precise analysis see [START_REF] Gander | On the influence of geometry on Schwarz methods[END_REF]. We also assume that the mesh sizes in time and space are related either by ∆t = C h h, or ∆t = C h h 2 , corresponding to a typical implicit or explicit time discretization of the problem.

Defining D := {(ω, k), ω m |ω| ω M , k m |k| k M }, the parameters (p * , q * ) which give the best convergence factor are solution of the best approximation problem inf (p,q)∈C 2 sup (ω,k)∈D |ρ(ω, k, p, q, L)| = sup (ω,k)∈D |ρ(ω, k, p * , q * , L)| =: δ * (L).

(

To motivate the reader, we outline in Table 1 the asymptotic behavior of the convergence factors, which can be achieved by optimization. We use here the notation

Q ⋍ h or Q =∝(h) if there exists C = 0 such that Q ∼ Ch.
In what follows, we will often use the quantity

k = |c| (c 2 + x 2 0 ) 2 + 16ν 2 ω 2 m -(c 2 + x 2 0 ) 8ν 2 ω m .
By a direct calculation, we see that 0 k|c| ω m , and we define the function

ϕ(k, ξ) := 2 √ 2 (x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 ξ 2 + x 2 0 + 4ν 2 k 2 , (2.6) 
and the constant

A =    ϕ( k, -ω m + |c| k) if k m k, ϕ(k m , -ω m + |c|k m ) if k k m 1 |c| ω m , ϕ(k m , 0) if k m 1 |c| ω m .
(2.7)

We state in the following two subsections the main theorems which we will prove in this paper, for both overlapping and non-overlapping variants of the algorithm.

Robin Transmission Conditions

Theorem 2.1 (Robin Conditions without Overlap) For small h and small ∆t, the best approximation problem (2.5) with L = 0 has a unique solution (p * 0 (0), δ * 0 (0)), which is given asymptotically by

p * 0 (0) ∼ A Bh , δ * 0 (0) ∼ 1 - 1 2 √ ABh, (2.8) 
where A is defined in (2.7), and

B =      2 νπ if ∆t = C h h, C √ 2d νπ if ∆t = C h h 2 , d := νπC h , C = 1 if d < d 0 , d+ √ 1+d 2 1+d 2 if d d 0 , (2.9)
where d 0 ≈ 1.543679 is the unique real root of the polynomial

d 3 -2d 2 + 2d -2.
Partial results in the spirit of this theorem were already obtained earlier:

1. If k m = ω m = 0, all three cases in (2.7) coincide, since k = 0, and the constant A simplifies to A = 4x 0 , and we find the case analyzed in [START_REF] Halpern | Optimized Schwarz waveform relaxation: roots, blossoms and fruits[END_REF].

2. If k m and ω m do not both vanish simultaneously, and we are in the case of the heat equation, a = 0, b = 0, c = 0, ν = 1, we also obtain k = 0, and

A = 4 2 k 4 m + ω 2 m + k 2 m
, the case analyzed in [START_REF] Binh | Schwarz Waveform Relaxation Methods[END_REF]. Note that the stability constraint for the heat equation discretized with a finite difference scheme is 4ν∆t h 2 , which with our notation implies that d π/4 ∼ 0.7854, a value smaller than d 0 , and hence the constant C in (2.9) is equal to 1.

For the algorithm with overlap, L > 0, we treat two asymptotic cases: the continuous case deals with the small overlap parameter L only, while the discrete case involves also the grid parameters. In the continuous case, we consider the parameters ω M and k M to be equal to +∞. Theorem 2.2 (Robin Conditions with Overlap, Continuous) For small overlap L > 0, the best approximation problem (2.5) on

D ∞ := {(ω, k), ω m |ω| +∞, k m |k| +∞} has a unique solution p * 0,∞ (L) ∼ 1 2 3 νA 2 L , δ * 0,∞ (L) ∼ 1 - A 2p * 0,∞ (L) , (2.10) 
where A is defined in (2.7).

If the overlap is fixed, the above analysis gives the behavior of the best parameter when h and ∆t tend to zero. However, the overlap contains in general a few grid points only, and then the discretization also needs to be taken into account: Theorem 2.3 (Robin Conditions with Overlap, Discrete) For small ∆t and h, for L ⋍ h, the best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h 2 : p * 0 (L) ∼ p * 0,∞ (L), for ∆t ⋍ h : p * 0 (L) ∼ p * 0,∞ (L) 3 √ 2 , δ * 0 (L) ∼ 1 - A 2p * 0 (L)
.

(2.11)

Ventcel Transmission Conditions

In order to present the theorems, we need to define two auxiliary functions: first

g(t) = 2t - √ t 2 + 1 t 2 + 1 ,
and we denote for Q < g 0 ≈ 0.3690 by t 2 (Q) the only root of the equation g(t) = Q larger than t 0 = 54 + 6 √ 33/6 ≈ 1.567618292. Next we also define

P (Q) =    1 + t 2 (Q) 2 + 1( 1 √ t2(Q) 2 +1 + Q) if Q < g 1 ≈ 0.3148, 1 + Q if Q > g 1 .
(2.12)

Theorem 2.4 (Ventcel Conditions without Overlap) The best approximation problem has for L = 0 a unique solution (p * 1 (0), q * 1 (0)), given by

for ∆t = C h h and AC h 8 < 1 : p * 1 (0) ∼ 1 2 4 νπA 3 4h , q * 1 (0) ∼ 8ph πA , for ∆t = C h h and AC h 8 > 1 : p * 1 (0) ∼ 4 νπA 2 2C h (P ( 8 C h A )) 2 h , q * 1 (0) ∼ 8ph πA , for ∆t = C h h 2 : p * 1 (0) ∼ 1 2 4 νπA 3 4Ch 2 d , q * 1 (0) ∼ 8Cph πA d 2 , δ * 1 (0) ∼ 1 - A 2p * 1 (0) . ( 2 

.13)

Here again A is the constant defined in (2.7), d and C are the constants defined in (2.9).

Theorem 2.5 (Ventcel Conditions with Overlap, Continuous) For small overlap L > 0, the best approximation problem (2.5) on D ∞ has the unique solution

p * 1,∞ (L) ∼ 1 2 5 νA 4 8L , q * 1,∞ (L) ∼ 4 5 ν 2 L 3 2A 2 , δ * 1,∞ (L) ∼ 1 - A 2p * 1,∞ (L) , (2.14) 
where A is defined in (2.7).

Theorem 2.6 (Ventcel Conditions with Overlap, Discrete) For small ∆t and h, for L ⋍ h, the best approximation problem (2.5) on D has a unique solution

for ∆t ⋍ h 2 : p * 1 (L) ∼ p * 1,∞ (L), q * 1 (L) ∼ q * 1,∞ (L), for ∆t ⋍ h : p * 1 (L) ∼ 2 -1 5 p * 1,∞ (L), q * 1 (L) ∼ 2 3 5 q * 1,∞ (L), δ * 1 (L) ∼ 1 - A 2p * 1 (L)
.

(2.15)

Abstract Results

We now recall the abstract results on the best approximation problem (2.5) from [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF], and present an important extension, which allows us to remove a compactness assumption in the overlapping case. We start by rewriting the convergence factor (2.4) in the form

ρ(z, s, L) = s -z s + z e -Lz 2ν , z := x 2 0 + 4ν(νk 2 + i(ω + ck)), s = p + q(νk 2 + i(ω + ck)). (3.1) 
In order to separate real and imaginary parts of the square root, we introduce the change of variables T : (k, ω) → z = x + iy, which transforms the domain D into D = D + ∪ D + , with D + ⊂ R + × R + , as illustrated in Figure 1. The domain D + is compact, and lies below the line x = y, as one can see from the coordinates (x, y) = (Re T (k, ω), Im T (k, ω)), which satisfy

x 2 -y 2 = x 2 0 + 4ν 2 k 2 , (3.2a) 2xy = 4ν(ω + ck). (3.2b) 
We further assume that the coefficients and parameters satisfy

either x 2 0 + 4ν 2 k 2 m = 0, or ω m = 0, (3.3) 
which implies that there exists an α > 0 such that ∀z ∈ D, Re z α > 0.

We also use the notation ρ 0 (z, p, q) := s-z s+z , ρ(z, p, q, L) := ρ 0 (z, p, q)e -Lz/2ν . The min-max problem (2.5) in the new (x, y)-coordinates takes now the simple form

inf (p,q)∈C 2 sup z∈ D |ρ(z, p, q, L)| = sup z∈ D |ρ(z, p * , q * , L)| =: δ * (L). (3.4)
For convenience, we will also use the notation R 0 (ω, k, p, q) or R 0 (z, p, q) for |ρ 0 (z, p, q)| 2 , and R(ω, k, p, q, L) = R(z, p, q, L) = R 0 (z, p, q)e -Lx/ν . 

Robin Transmission Conditions

In this case, we set q = 0, and we will simply use the above notation without the parameter q in the arguments, writing for instance ρ(z, p, L), ρ 0 (z, p), etc.. We also call the minimum in the Robin case δ * 0 (L).

We start with the non-overlapping case, L = 0, where there is a nice geometric interpretation of the min-max problem (3.4): for a given point z o ∈ C and a parameter δ ∈ R, we introduce the sets

C(z 0 , δ) = {z ∈ C; z -z 0 z + z 0 = δ}, D(z 0 , δ) = {z ∈ C; z -z 0 z + z 0 δ}. (3.5) 
Note that C(z 0 , δ) is a circle centered at 1+δ 2 1-δ 2 z 0 , cutting the x-axis at the points 1-δ 1+δ z 0 and 1+δ 1-δ z 0 , and D(z 0 , δ) is the associated disk. Now because of the form of the convergence factor ρ 0 (z, p, q) = s-z s+z , (p * , δ * ) is a solution of the min-max problem (3.4) if and only if for any z in D, z is in D(p * , δ * ). This means geometrically that the solution of the min-max problem (3.4) is represented by the smallest circle centered on the real axis which contains D. We will use this interpretation as a guideline in the analysis, also for the overlapping case! is the global minimum.

Proof Since D is compact, and with the assumption (3.3) we have Re z α > 0 with α = x 2 0 + 4ν 2 k 2 m in the first case of (3.3) or α = √ 2νω m in the second case, we can use directly the analysis in [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF] for polynomials of degree zero to get existence and uniqueness. The fact that the optimized parameter must be real follows directly from the symmetry of D with respect to the x-axis and the geometric interpretation, and finally that any strict local minimum is the global minimum follows as in [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF].

In [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF] one can also find a proof of the existence of a solution to the min-max problem (3.4) in the overlapping case, and uniqueness is shown for L small enough, such that

δ * (L)e L 2ν sup z∈ D Re z < 1.
This constraint imposes that D is bounded in the x direction. We show now that this constraint is not necessary, using the fact that in D the real part of z is strictly larger than the absolute value of its imaginary part. Theorem 3.2 For any L, for k M and ω M finite or not, and with the assumption (3.3), the min-max problem (3.4) has a unique solution (δ * 0 (L), p * 0 (L)). The optimized parameter p * 0 (L) is real, positive, and any strict local minimum on R of the real function

F L (p) = sup z∈ D+ |ρ(z, p, L)| (3.7)
is the global minimum.

Proof By Theorem 2.8 in [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF], we know that a (possibly complex) solution p * = p * 1 + ip * 2 of (3.4) exists. We now compute explicitly the modulus of the convergence factor,

|ρ 0 (z, p)| 2 = (x -p 1 ) 2 + (y -p 2 ) 2 (x + p 1 ) 2 + (y + p 2 ) 2 .
We first note that for any z, and any (p 

∂ p1 |ρ 0 (z, p)| 2 = -4 x(x 2 + y 2 + p 2 2 -p 2 1 ) -2yp 1 p 2 ((x + p 1 ) 2 + (y + p 2 ) 2 ) 2 , ∂ p2 |ρ 0 (z, p)| 2 = -4 y(x 2 + y 2 + p 2 1 -p 2 2 ) -2xp 1 p 2 ((x + p 1 ) 2 + (y + p 2 ) 2 ) 2 ,
which gives, with ε = sign(p * 2 ),

(∂ p1 -ε∂ p2 )|ρ 0 (z, p * )| 2 = -4 (x -εy)(x 2 + y 2 + 2εp 1 p 2 ) + (x + εy)(p 2 2 -p 2 1 ) ((x + p 1 ) 2 + (y + p 2 ) 2 ) 2 < 0,
where we used the fact that x > |y| as we noted earlier (see Figure 1). This shows that |ρ 0 (z, p)|e This allows us to prove that the set of best approximations is convex: consider the disk defined in (3.5).

We have seen that (p * (L), δ * (L)) is a solution of the best approximation problem (3.4), if and only if for any z in D, z is also in D(p * (L), δ * (L)e Lx/2ν ), which is equivalent by dividing numerator and denominator by z to saying that p * /z belongs to D(1, δ * (L)e Lx/2ν ). For any z in D, either δ * (L)e Lx/2ν < 1 and thus p * /z is on the inside of the disk D(1, δ * (L)e Lx/2ν ) which is convex, or δ * (L)e Lx/2ν 1 and thus p * /z is outside of the disk D(δ * (L)e Lx/2ν , 1). Now since the circle with z 0 = 1 cuts the x-axis only on the negative half line, see the explicit calculation after (3.5), the outside of the disk contains the half-plane x 0, which is also convex.

Using the convexity, we can now show uniqueness: let p * and p * be two solutions of the best approximation problem with associated δ * . For a given z in D, in the first case, p * /z and p * /z are both inside the disk, which is convex. In the second case, they both belong to the half-plane x 0, which is also convex, because by assumption (3.3) the real part of z, and hence with the properties on p * = p * 1 +ip * 2 also the real parts of p * /z and p * /z are strictly positive. In both cases therefore, any point p/z in the segment joining p * /z and p * /z is also in the disk D(1, δ * (L)e Lx/2ν ), which means that sup z∈ D z-p z+p e -Lz/2ν δ * (L).

Since δ * (L) is the minimum, p is also a minimizer. To conclude the proof of uniqueness, we can use now Theorem 2.11 and the proof of Theorem 2.12 from [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF], using a classical equioscillation argument.

To see that the minimizer is real, we use again the symmetry of D with respect to the real axis, and the results on the strict local minimum implying the global minimum follows as in the non-overlapping case.

Ventcel Transmission Conditions

For the case of Ventcel conditions, q = 0, we use the abstract results from [START_REF] Bennequin | A homographic best approximation problem with application to optimized Schwarz waveform relaxation[END_REF]. Theorem 3.3 For any set of coefficients such that the assumption (3.3) is satisfied, and with k M and ω M finite, the min-max problem (3.4) with L = 0 has a unique solution (δ * 1 (0), p * 1 (0), q * 1 (0)) with δ * 1 (0) < 1. The coefficients p * 1 (0)and q * 1 (0)) are real, and any strict local minimum in R + × R + of the real function

F 0 (p, q) = sup z∈ D+ |ρ 0 (z, p, q)| (3.8)
is the global minimum.

Theorem 3.4 For any L > 0, for k M and ω M finite or not, and with the assumption (3.3) the min-max problem (5.2) has a solution.

• If D is compact and L sufficiently small, the solution is unique and any strict local minimum of the real function

F L (p, q) = sup z∈ D+ |ρ(z, p, q, L)| (3.9)
is the global minimum.

• If D is not compact, but L sufficiently small, if F L has a strict local minimum in R + × R + , it is the unique global minimum.

Outline of the Analysis

The abstract theorems in the previous subsections provide a guideline for the proof of the main results in section 2:

1. The existence and uniqueness is guaranteed by the abstract results.

2. The convergence factor being analytic on the compact D, its maximum is reached on the boundary. We thus study the variations of R for fixed p and q, on the exterior boundaries of D + . Due to the complexity of the problem, this study must be asymptotic, assuming asymptotic properties of p and q.

3. There are two local maxima in the Robin case, and three local maxima in the Ventcel case. We prove that there exists a value p (resp. (p, q)) such that these two (resp. three) values coincide.

The corresponding points z are called equioscillation points.

4. We give the asymptotic values of these points and p (resp. (p, q)).

5. We prove that p (resp. (p, q)) is a strict local minimizer for the function F .

6. We again invoke the abstract results to show that the strict local minimizer is in fact the global minimizer.

Note that point 3 is not at all easy, since many cases have to be analyzed. We will treat the cases ∆t = C h h and ∆t = C h h 2 in the same paragraphs. But for the clarity of the paper, we treat the Robin and Ventcel cases separately.

Study of the Boundaries of the Frequency Domain

The boundaries of D + are all branches of the same function (ω, k) → z = x+iy. Combining the equations (3.2), we see that x, y also satisfy the equation 

x 2 + y 2 = (x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 (ω + ck) 2 , ( 3 
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D + :    x = 1 2 (x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 (ω + ck) 2 + 1 2 (x 2 0 + 4ν 2 k 2 ), y = 1 2 (x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 (ω + ck) 2 -1 2 (x 2 0 + 4ν 2 k 2 ). (3.11) 
The boundary curves ω → (x(ω, k), y(ω, k)) for k = k m or k = k M are hyperbolas, as one can see directly from (3.2a). They are shown in Figure 2, and using s(c) to denote the sign of c, the boundary on the left (west) is given by

C w = z([ω m , ω M ], s(c)k m ) ∪ z([max(ω m , |c|k m ), ω M ], -s(c)k m ) (3.12)
and the boundary on the right (east) is given by

C e = z([-min(|c|k M , ω M ), -ω m ], s(c)k M ) ∪ z([ω m , ω M ], s(c)k M ) ∪ z([|c|k M , ω M ], -s(c)k M ), (3.13) 
with the convention that [a, b] = ∅ whenever a > b. The corner points of D + are

z 1 = z(max(ω m , |c|k m ), -s(c)k m ), z 2 = z(-min(ω M , |c|k M ), s(c)k m ), z 3 = z(ω M , s(c)k M ), z 4 = z(ω M , s(c)k m ).
In order to complete the boundary of D + , we analyze now the curves at constant ω. The northern curve joins z 3 and z 4 ,

C n = z(ω M , s(c)[k m , k M ]). (3.14)
The southern curve can have two components, which are

C sw = z(ω m , -s(c)[k m , ω m |c| ]), C se = z(-ω M , s(c)[ ω M |c| , k M ]). (3.15)
Theorem 3.5 The curve k → (x(ω, k), y(ω, k)) has a vertical tangent in the first quadrant if and only if ω > 0. It is reached for

k1 (ω) = c 8ν 2 ω x 2 0 + c 2 -(x 2 0 + c 2 ) 2 + 16ν 2 ω 2 . (3.16)
It has a horizontal tangent in the first quadrant if and only if ω > 0. It is reached for

k2 (ω) = c 8ν 2 ω x 2 0 + c 2 + (x 2 0 + c 2 ) 2 + 16ν 2 ω 2 .
(3.17)

For ωc = 0, the curve is monotone.

Proof We fix ω and differentiate (3.2) in k to obtain

x -y y x ∂ k x ∂ k y = 2ν 2νk c , (3.18) 
or equivalently

∂ k x ∂ k y = 2ν x 2 + y 2 2νkx + cy -2νky + cx . (3.19) 
We first search vertical tangent lines. From (3.19), we see that

∂ k x = 0 if and only if 2νkx + cy = 0. (3.20) 
Multiplying (3.20) successively by x and y and substituting xy from (3.2b) gives the system

x 2 = - c k (ω + kc), y 2 = -4ν 2 k c (ω + kc). (3.21)
Replacing into the expression (3.2a) for x 2y 2 gives the equation for kc (we keep kc since kc has a sign)

Q ω (kc) := 4 ν 2 c 2 ω(kc) 2 -(c 2 + x 2 0 )(kc) -ωc 2 = 0. (3.22)
The polynomial Q ω has one negative solution c k1 (ω), and one positive solution c k2 (ω), given in (3.16,3.17).

For k to yield a solution of (3.21) in x > 0, y > 0, we must have ω + kc > 0 and kc < 0. We compute

Q ω (-ω) = ω(x 2 0 + 4 ν 2 ω 2 c 2 )
, which has the sign of the leading coefficient in Q ω . This proves that -ω is outside the interval defined by the roots, i.e.

-ω < c k1 (ω) < 0 < c k2 (ω) if ω > 0, c k1 (ω) < 0 < c k2 (ω) < -ω if ω < 0.
Therefore, ω + c k1 (ω) > 0 ⇐⇒ ω > 0, and there is a unique point where the tangent is vertical, and this point is given by k = k1 (ω).

We now search for horizontal tangent lines. By (3.19), we see that ∂ k y = 0 if and only if Proceeding as before when we obtained (3.21), we get the system

-2νky + cx = 0. ( 3 
x 2 = 4ν 2 k c (ω + kc), y 2 = c k (ω + kc), (3.24) 
and kc, together with ω + kc, must be positive, which is the case if kc is the positive root of Q ω , yielding k2 . Therefore, there is a unique point where the tangent is horizontal, which is given by k = k2 (ω).

If ω = 0 and c = 0, a direct computation shows that

∂ k x = 4ν 2 k(x 2 + c 2 ) x(x 2 + y 2 ) > 0, ∂ k y = 2νc(x 2 0 + y 2 ) x(x 2 + y 2 ) > 0,
which implies that sign(∂ k x) = sign(k) and sign(∂ k y) = sign(c). Since with ω = 0 we have from (3.2b) that k and c have the same sign, and hence dy dx = ∂ k y ∂ k x > 0, we obtain that the curve is monotone. Suppose now c = 0, ω = 0. Using (3.19), we obtain directly dy dx = ∂ k y ∂ k x = -y x < 0, and again the curve is monotone.

Finally, if c = ω = 0, we obtain from (3.2b) that y(x) = 0, going from x = x 0 to infinity, which is also monotone.

Corollary 3.6 The northern curve C n has a horizontal tangent, at z2 = z(ω M , k2 (ω M )), if and only if | k2 (ω M )| ∈ [k m , k M ].
For k m ω m /|c|, the southern curve C sw has a vertical tangent, at

z1 = z(ω m , k1 (ω m )), if and only if | k1 (ω m )| ∈ [k m , ω m /|c|].
Proof The results follow directly from Theorem 3.5.

We show in Figure 3 an example where the two points k1 and k2 are part of D+ . Note that for ω M large, we have from (3.17

) that k2 (ω M ) = c 2ν (1 + x 2 0 + c 2 4νω M ) + O(ω -2 M ).
Therefore a sufficient condition for z2 to belong to the northern curve for ω M large is k m < |c| 2ν . The next lemma gives the asymptotic expansions for the corner points of

D + , z 1 := z(ω m , -s(c)k m ) if |c|k m < ω m and z 1 := z(ω m , -ω m /c) if |c|k m > ω m , z 3 := z(ω M , s(c)k M ), and z 4 := z(ω M , s(c)k m ),
and also for other important points on the boundary of D + .

Lemma 3.7 The corner points z j of D + have for k M and ω M large the asymptotic expansions

z 1 = x 2 0 + 4ν 2 k 2 m + 4iν max(ω m -|c|k m , 0)), z 3 ∼ 2νk M + i(|c| + ωM kM ) if ω M ⋍ k M , 2νk M 1 + i ωM νk 2 M if ω M ⋍ k 2 M , z 4 ∼ √ 2νω M (1 + i).
(3.25)

We furthermore have the expansions for the horizontal tangent point

k2 (ω M ) ∼ c 2ν , z2 (ω M ) ∼ √ 2νω M (1 + i).
Proof All expansions are obtained by direct calculations.

We now define the south-western point and the northern point as

z sw = z 1 if |ck m | < ω m or if (|ck m | > ω m and | k1 (ω m )| ∈ [k m , ωm c ]), z1 = z(ω m , k1 (ω m )) if |ck m | > ω m and | k1 (ω m )| ∈ [k m , ωm c ]. z n = z 4 if | k2 (ω M )| ∈ [k m , k M ], z2 = z(ω M , k2 (ω M )) if | k2 (ω M )| ∈ [k m , k M ]. (3.26)

Optimization of Robin Transmission Conditions

This section is devoted to the proofs of Theorems 2.1, 2.2 and 2.3. The existence and uniqueness of the minimizers are guaranteed by the abstract Theorems 3.1 and 3.2; we therefore focus in each case on the characterization of a strict local minimum, which will also provide the asymptotic results. Proof Computing the partial derivative of R 0 with respect to ω using the chain rule, we obtain

The Nonoverlapping Case

∂ ω R 0 (ω, k, p) = 8νpy 3x 2 -y 2 -p 2 |z(z + p) 2 | 2 ,
which we rewrite, using the definitions of x and y in (3.11), as

∂ ω R 0 (ω, k, p) = 8pνy |z| 2 |z + p| 4 (x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 (ω + ck) 2 + 2(x 2 0 + 4ν 2 k 2 ) -p 2 . (4.1)
We look now at the two boundary curves separately:

• |k| = k M : with the asymptotic assumptions, p 2 ≪ 2(x 2 0 + 4ν 2 k 2 M ), and the factor on the right is therefore positive. Since y is non-negative, ∂ ω R 0 (•, k M , p) does not change sign, and the convergence factor R 0 is thus increasing in ω. Its maximum is attained at z 3 .

• |k| = k m : the right hand side of (4.1) vanishes if y = 0, which leads to a first root

ω 1 (k) := -ck,
and also if the factor on the right in (4.1) vanishes, which happens if and only if

(x 2 0 + 4ν 2 k 2 ) 2 + 16ν 2 (ω + ck) 2 = p 2 -2(x 2 0 + 4ν 2 k 2 ),
where the right hand side is positive, since |k| = k m and we have the asymptotic assumption on p. By squaring, this equality is equivalent to

16ν 2 (ω + ck) 2 = (p 2 -2(x 2 0 + 4ν 2 k 2 )) 2 -(x 2 0 + 4ν 2 k 2 ) 2 = (p 2 -3(x 2 0 + 4ν 2 k 2 ))(p 2 -(x 2 0 + 4ν 2 k 2 )
). Under the asymptotic assumption on p, the right hand side is positive, and we can therefore obtain two further real roots

ω 2 (k) := -ck + 1 4ν (p 2 -2(x 2 0 + 4ν 2 k 2 ))(p 2 -3(x 2 0 + 4ν 2 k 2 )), ω 3 (k) := -ck - 1 4ν (p 2 -2(x 2 0 + 4ν 2 k 2 ))(p 2 -3(x 2 0 + 4ν 2 k 2 )).
The three values ω j (k m ), j = 1, 2, 3, which lead to a vanishing derivative, can be ordered,

ω 3 (k m ) < ω 1 (k m ) < ω 2 (k m ).
Looking at the behavior of the derivative of R in (4.1) for ω large, we see that ω 1 (k m ) must be a maximum, whereas ω 2 (k m ) and

ω 3 (k m ) represent minima. For k = -s(c)k m , ω 1 (k) = |c|k m belongs to the western curve only if ω m |c|k m , see (3.
12), and it is precisely on the boundary. The maximum of R 0 is therefore always attained on the boundary of the western curve.

We next analyze the variation of R 0 on the exterior boundary curves of D + when ω is fixed. We start with the case ω = ω m : 

sup z∈Csw R 0 (z, p) = R 0 (z 1 , p) if | k3 (p)| k m , R 0 (z 3 (p), p) if | k3 (p)| k m .
Proof As in the previous proof, we start by computing the partial derivative

∂ k R(ω m , k, p) = 4p (x 2 -y 2 -p 2 )∂ k x + 2xy∂ k y |z + p| 4 = 8pν N ω (k) |z| 2 |z + p| 4 , N ω (k) = (x 2 -y 2 -p 2 )(2ν k x + cy) + 2x y(-2ν k y + cx). (4.2) For k in -s(c)[k m , ωm |c| ], N ωm (k) ∼ -p 2 ∂ k x if ∂ k x = 0. If | k1 (ω m )| k m , ∂ k x has a constant sign in the interval, and R 0 (ω m , k, p) is a decreasing function of x, reaching therefore its maximum at z 1 . If | k1 (ω m )| > k m , ∂ k x changes
sign in the interval, and so does N ωm (k): there is a value k3 (p) ∼ k1 (ω m ) such that N ωm ( k3 (p)) = 0. At that point R 0 is maximal. It finally remains to study the case were ω = ω M .

Lemma 4.3 Suppose that ω M and k M are large, with ω M ⋍ k α M , α = 1 or 2, and p ⋍ √ k M . If p < √ 4νω M , k → R(ω M , k, p) has a single maximum at z4 = z(ω M , k4 (ω M , p), p). It is given asymptotically by k4 (ω M , p) ∼      c 2ν 4νω M -p 2 4νω M + p 2 if α = 1, c 2ν if α = 2. (4.3)
We then have the following two results:

1. If p > √ 4νω M or if p < √ 4νω M and |k m | | k4 (ω M , p)|, then sup z∈Cn R 0 (z, p) = max(R 0 (z 3 , p), R 0 (z 4 , p)). 2. If p < √ 4νω M and |k m | | k4 (ω M , p)|, then sup z∈Cn R 0 (z, p) = max(R 0 (z 3 , p), R 0 (z 4 (ω M , p), p)).
Proof We study the variations of N ωM defined in (4.2), for s(c

)k ∈ [k m , k M ].
Since we are on C n , k has the sign of c, see (3.14), which implies that ∂ k x has the sign of c, as seen from (3.19). We now study separately the two cases

ω M ⋍ k M and ω M ⋍ k 2 M : • Case ω M ⋍ k M : we need to study the three cases k ⋍ k α M for α < 1 2 , α = 1 2 and 1 2 < α < 1: k ⋍ k α M , α < 1 2 : we obtain from (3.11) that x ∼ y ∼ √ 2νω M , and (3.2a) shows that x 2 -y 2 ∼ x 2 0 + 4ν 2 k 2 ≪ p 2 , which gives N ωM (k) ∼ √ 2νω M (-p 2 (2νk + c) + 4νω M (-2νk + c)) ∼ √ 2νω M (-2νk(p 2 + 4νω M ) -c(p 2 -4νω M )).
Since k has the same sign as c, this last quantity has the sign of -c if p > √ 4νω M . |ρ| is therefore a decreasing function of x. If p < √ 4νω M , the right hand side vanishes for

k 0 = c 2ν 4νω M -p 2 4νω M + p 2 = O(1)
.

Therefore it has the sign of c if |k| |k 0 |, and the opposite sign otherwise. By the intermediate values theorem, N ωM vanishes for k4 ∼ k 0 , where a local maximum occurs.

k ⋍ k 1 2
M : in this case,

N ωM (k) ∼ 2νkω M x(x 2 -3y 2 -p 2 ) = 2νkω M x(2(2νk) 2 -(2νk) 4 + (4νω M ) 2 -p 2 ).
The right hand side vanishes for

k ′ 0 = s(c) 2 √ 3ν 2p 2 + p 4 + 3(4νω M ) 2 ⋍ k 1 2
M , and changes sign. Therefore, N ωM vanishes for k′ 4 ∼ k ′ 0 , where a local minimum occurs.

k ⋍ k α M , 1 2 < α 1: In this case we see from (3.2a) that x 2 -y 2 ≫ p 2 , z ∼ 4ν 2 k 2 + 4iνω M ∼ 2ν|k| + i ω M |k| ,
and the leading order term in N ωM is

N ωM (k) ∼ 4ν 2 k 2 (2νkx) + 4νω M (-2νω M + 2νck) ∼ (2νk) 4 s(c).
In conclusion, if p 2 4νω M , |ρ| has a single extremum, which is a minimum, and sup k ⋍ k M : we have now x ∼ 2ν|k|, y ∼ ωM |k| ⋍ k M , and the dominant term in N ωM is

k∈s(c)[km,kM ] R 0 (ω M , k, p) = max(R 0 (ω M , s(c)k M , p), R 0 (ω m , s(c)k M , p)). If p 2 4νω M , there is a maximum at k4 ∼ c 2ν 4νωM -p 2 4νωM +p 2 . If it is inside the segment, then sup k∈s(c)[km,kM ] R 0 (ω M , •, p) = max(R 0 (ω M , s(c)k M , p), R 0 (ω M , k4 , p)). • Case ω M ⋍ k 2 M :
N ωM ∼ 2ν x k (x 2 -3y 2 ) ∼ 2νkx(4ν 2 k 4 -3ω 2 M ).
Hence s(c)N ωM is negative for small k, and becomes positive for k > √ 3

2ν ω M . R 0 (ω M , •, p) therefore reaches a minimum in the neighborhood of

√ 3 2ν ω M .
In conclusion, there is a maximum at k4

∼ k2 (ω M ) ∼ c 2ν . If this value is inside the segment, then sup k∈s(c)[km,kM ] R 0 (ω M , •, p) = max(R 0 (ω M , s(c)k M , p), R 0 (ω M , k4 , p)). Otherwise sup s(c)[km,kM ] R 0 (ω M , •, p) = max(R 0 (ω M , s(c)k m , p), R 0 (ω M , s(c)k M , p)).
The conclusion of the Lemma now follows directly from the conclusion of the two cases. From the above analysis, we see that there are three local maxima of R 0 (ω, k, p):

southwest zsw =      z 1 if |ck m | < ω m , z 1 if |ck m | > ω m and | k3 (p)| ∈ [k m , ωm |c| ], z3 (p) if |ck m | > ω m and | k3 (p)| ∈ [k m , ωm |c| ], northwest zn =      z 4 if p > √ 4νω M , z 4 if p < √ 4νω M and | k4 (ω M , p)| ∈ [k m , k M ], z4 (ω M , p) if p < √ 4νω M and | k4 (ω M , p)| ∈ [k m , k M ], northeast z 3 , (4.4)
where z3 comes from Lemma 4.2 and z4 comes from Lemma 4.3.

We investigate now the asymptotic behavior of the convergence factor for large k M , in order to see which of the candidates of local maxima zsw , zn and z 3 will be important. Since zsw ⋍ 1, for p ⋍ √ k M , the convergence factor at zsw behaves asymptotically like

ρ 0 (z sw , p) = zsw -p zsw + p ∼ -1 + 2 zsw p , |ρ(z sw , p)| ∼ 1 -2 x sw p .
For zn , we have k ⋍ 1 and ω = ω M . Therefore zn ∼ √ 2νω M (1 + i) and the convergence factor at zn behaves asymptotically like

ρ 0 (z n , p) ∼ 1 + i - p √ 2νωM 1 + i + p √ 2νωM
.

We thus need to distinguish two cases for ρ 0 (z n , p):

1. If ω M ⋍ k M , |ρ(z n , p)
| is asymptotically a constant smaller than 1, which shows that the modulus is smaller than 1 independently of ω M , and thus also independent of k M . Therefore, for k M large enough, the convergence factor at zn is smaller than the convergence factor at zsw , where it tends to 1, and we do not need to take it into account in the min-max problem.

If ω

M ⋍ k 2 M , then p √ 2νωM = O(1)
, and the convergence factor at zn is asymptotically

|ρ 0 (z n , p)| ∼ 1 - p √ 2νω M ,
which means it could be important in the min-max problem.

We finally study the convergence factor at the last point z 3 , and again have to distinguish two cases:

1. If ω M ⋍ k M , z 3 ∼ 2νk M + i ωM +|c|kM kM
and the convergence factor at z 3 behaves asymptotically like

|ρ 0 (z 3 , p)| ∼ x 3 -p x 3 + p ∼ 1 - p νk M ,
which means it needs to be taken into account.

If ω

M = νk 2 M d
then z 3 ∼ 2νk M 1 + i d and the convergence factor behaves asymptotically like

|ρ 0 (z 3 , p)| ∼ 1 - d(d + √ 1 + d 2 ) 2(1 + d 2 ) p νk M ,
again possibly important for the min-max problem.

Determination of the Global Minimizer by Equioscillation:

We now compare the various points where the convergence factor can attain a maximum, in order to minimize the overall convergence factor by an equilibration process. We need to consider again the two basic cases of an implicit or explicit time integration scheme: 

1. If ω M ⋍ k M , for large ω M , large k M and p ⋍ √ k M ,
|ρ 0 (z 3 , p)| -|ρ 0 (z n , p)| ∼ p νk M d 2   1 - d + √ 1 + d 2 1 + d 2   .
The sign of this quantity is governed by the value of d with respect to d 0 :

If d > d 0 , |ρ 0 (z 3 , p)| > |ρ 0 (z n , p)|, If d < d 0 , |ρ 0 (z 3 , p)| < |ρ 0 (z n , p)|.
Hence there is again a value of p such that |ρ 0 (z sw , p)| = max(|ρ 0 (z 3 , p)|, |ρ 0 (z n , p)|).

In order to obtain an explicit formula to equilibrate the convergence factor at two maxima, we get after a short calculation that |ρ 0 | equioscillates at the generic points Z 1 and Z 2 (i.e.

|ρ 0 (Z 1 , p)| = |ρ 0 (Z 2 , p)|) if and only if p = Re Z 1 |Z 2 | 2 -Re Z 2 |Z 1 | 2 Re Z 2 -Re Z 1 .
Therefore we can define a unique p * 0 for both asymptotic regimes by the equioscillation equations . Since zsw is bounded, we obtain the asymptotic results

     ω M ⋍ k M |ρ 0 (z sw , p * 0 ) = |ρ 0 (z 3 , p * 0 )|, ω M = νk 2 M d d > d 0 |ρ 0 (z sw , p * 0 )| = |ρ 0 (z 3 , p * 0 )|, d < d 0 |ρ 0 (z sw , p * 0 )| = |ρ 0 (z n , p * 0 )|.
         ω M ⋍ k M p * 0 ∼ xsw|z3| 2 x3 , ω M = νk 2 M d    d > d 0 p * 0 ∼ sxsw|z3| 2 x3 , d < d 0 p * 0 ∼ xsw|zn| 2 xn , which imply            ω M ⋍ k M p * 0 ∼ √ 2νk M x sw , ω M = νk 2 M d        d > d 0 p * 0 ∼ 2νk M x sw 2(1+d 2 ) d(d+ √ 1+d 2 ) , d < d 0 p * 0 ∼ 2νk M x sw 2 d . (4.6) 
We now need to prove that the values of the Robin parameter p * 0 we obtained by equioscillation are indeed local minima: Proof Consider for example the last case in (4.5), when zsw = z3 (p) and zn = z4 (ω M , p). By continuity,

F 0 (p) = max(|ρ 0 (z 3 (p), p)|, |ρ 0 (z 4 (ω M , p), p)|).
By the Taylor formula,

|ρ 0 (z 3 (p), p)| = |ρ 0 (z 3 (p * 0 ), p * 0 )| + δp(∂ p z3 (p * 0 )∂ k |ρ 0 (z 3 (p * 0 ), p * 0 ))| + ∂ p |ρ 0 (z 3 (p * 0 ), p * 0 ))| + O(δp) = |ρ 0 (z 3 (p * 0 ), p * 0 )| + δp∂ p |ρ 0 (z 3 (p * 0 ), p * 0 )| + O(δp), since ∂ k |ρ 0 (z 3 (p * 0 ), p * 0 ))| = 0.
In the same way,

|ρ 0 (z 4 (ω M , p), p)| = |ρ 0 (z 4 (ω M , p * 0 ), p * 0 )| + δp∂ p |ρ 0 (z 4 (ω M , p * 0 ), p * 0 )| + O(δp).
Therefore

F 0 (p) -F 0 (p * 0 ) = max(δp∂ p |ρ 0 (z 3 (p * 0 ), p * 0 )|, δp∂ p |ρ 0 (z 4 (ω M , p * 0 ), p * 0 ))| + O(δp),
which gives the lemma in this particular case. For the case where the extremum is reached at a corner of the domain, the argument is even simpler, since then no derivative in k occurs.

The derivative of R 0 in p is given by

∂ p R 0 (z, p) = -4x(|z| 2 -p 2 ) |z + p| 4 .
For p = p * 0 , z = zsw , the numerator is equivalent to 4xp 2 , whereas for z = zn , it is equivalent to

-4x|z| 2 . Therefore ∂ p |ρ 0 (z sw (p * 0 ), p * 0 )| × ∂ p |ρ 0 (z sw (ω M , p * 0 ), p * 0 ))| < 0, and F 0 (p) -F 0 (p * 0 ) < 0: p * 0 is a strict local minimizer of F 0 .
By Theorem 3.1, p * 0 is the global minimizer, and therefore coincides with p * 0 (0). In order to conclude the proof of Theorem 2.1, we can replace in (4.6) the term x sw by the notation A/4 from the theorem, to obtain

δ * 0 (L) = zsw -p zsw + p ∼ 1 -2 x sw p = 1 - A 2p .
The proof of Theorem 2.1 is now complete.

The Overlapping Case

We address now the two overlapping cases, and prove Theorem 2.2 for the continous algorithm, and Theorem 2.3 for the discretized algorithm. By Theorem 3.2, we know already that there is a unique minimizer in both cases, which we now again characterize by equioscillation. w ∪ C sw of D ∞ + , which is represented in Figure 4 for the three possible configurations of the boundary. In order to simplify the notation, we use l := L 2ν . We start with the variations of the convergence factor

R(ω, k, p, ℓ) = R 0 (ω, k, p)e -2ℓx
(4.7)

on the west boundary C ∞ w . Calculating the partial derivative of R with respect to ω leads to

∂ ω R(ω, k, p, ℓ) = (∂ ω R 0 (ω, k, p) -2ℓR 0 (ω, k, p)∂ ω x(ω, k))e -2ℓx = 4νy |z| 2 |z + p| 4 S k (x, y, p, ℓ), (4.8) 
where we introduced the function

S k (x, y, p, ℓ) = 2p(3x 2 -y 2 -p 2 ) -ℓ |z 2 -p 2 | 2 = 2p(3x 2 -y 2 -p 2 ) -ℓ [(x 2 -y 2 -p 2 ) 2 + 4x 2 y 2 ]. The root y = 0 of ∂ ω R(ω m , k, p, ℓ) corresponds to ω = -ck m , which is possible only if |ω m | |ck m |.
We study now S km (x, y, p, ℓ). Replacing

y 2 = x 2 -α 2 = x 2 -x 2 0 -4ν 2 k 2 m from (3.2a), we get Skm (x, p, ℓ) := 2p(2x 2 + α 2 -p 2 ) -ℓ ((α 2 -p 2 ) 2 + 4x 2 (x 2 -α 2 )),
which is now a second order polynomial in x 2 , Skm (x, p, ℓ) = -4ℓx 4 + 4(α

2 ℓ + p)x 2 -(p 2 -α 2 )(2p + ℓ(p 2 -α 2 )).
(4.9)

The following lemma gives the asymptotic behavior of the roots of this polynomial:

Lemma 4.5 For small ℓ, large p with ℓp small, Skm (x, p, ℓ) has two distinct real roots,

x′ 1 (p, ℓ) ∼ p √ 2 , x′ 2 (p, ℓ) ∼ p ℓ .
The first root is the real part of a minimum of the convergence factor, and the second root is the real part of a maximum of the convergence factor, say at z′ 2 . We thus obtain that

sup z∈C ∞ w |ρ(z, p, ℓ)| = max(|ρ(z 1 , p, ℓ)|, |ρ(z ′ 2 (p, ℓ), p, ℓ)|).
Proof The discriminant of the second degree polynomial Skm and its leading asymptotic part under the conditions of Theorem 2.2 are

∆ = 4(∆ a + 2α 2 ℓp (2 + ℓp)); ∆ a = 4p 2 (1 -2ℓp -ℓ 2 p 2 ).
Since ∆ ∼ ∆ a , Skm has two roots with asymptotic behavior

x′ 1 ∼ p √ 2 , x′ 2 ∼ p ℓ .

For z′

j = x′ j + i (x ′ j ) 2 -(x 2 0 + 4ν 2 k 2 m
), which we obtain from (3.2a), we compute

|ρ(z ′ 1 , p, ℓ)| ∼ 1 - √ 2 1 + √ 2 , |ρ(z ′ 2 , p, ℓ)| ∼ 1 -2 pℓ,
and |ρ(z ′ 1 , p, ℓ)| < |ρ(z ′ 2 , p, ℓ)| for small ℓp.

We analyze now the cases in Figure 4 in detail:

• 

∂ k R(ω, k, p, ℓ) = 4ν |z| 2 |z + p| 4 S ω (x, y, p, ℓ), S ω (x, y, p, ℓ) := 2p{(2νkx + cy)(x 2 -y 2 -p 2 ) + 2xy(-2νky + cx)} -ℓ (2νkx + cy)|z 2 -p 2 | 2 .
(4.10) With the same assumptions as in the previous lemma, for any z in C sw ,

S ωm (x, y, p, ℓ) ∼ -2p 3 (1 + ℓp 2 )(2νkx + cy) = -2p 3 (1 + ℓp 2 )∂ k x.
In case of Figure 4b, where | k1 (ω m )| k m , ∂ k x has a constant sign on the curve C sw , see the second case in Corollary 3.6, and hence the maximum of R is reached at z 1 . In case of Figure 4a, where k m | k1 (ω m )|, s(c)S ωM is positive for k m |k| < k1 (ω m ), and negative for |k| > k1 (ω m ). It must therefore vanish in a neighborhood of k1 (ω m ), where R has a maximum on C sw , at a point we call z′ 3 (p, ℓ) := z(ω m , k′ 3 (p, ℓ)), which is asymptotically equivalent to z1 where the vertical tangent occurs.

We now define the point z′ sw (p, ℓ) by

z′ sw (p, ℓ) = z 1 if ω m < |c|k m or | k′ 3 (p, ℓ)| k m ωm |c| , z′ 3 (p, ℓ) if k m | k′ 3 (p, ℓ)| ωm |c| ,
in order to write in compact form

sup z∈ D ∞ + |ρ(z, p, ℓ)| = max(|ρ(z ′ sw (p, ℓ), p, ℓ)|, |ρ(z ′ 2 (p, ℓ), p, ℓ)|).
Using the asymptotic expansions of |ρ(z ′ 2 , p, ℓ)| above, and

|ρ(z ′ sw , p, ℓ)| ∼ 1 -2 xsw p , we see that for small ℓ, |ρ(z ′ 2 , p, ℓ)| -|ρ(z ′ sw , p, ℓ)| ∼ 2( x sw p -pℓ).
This quantity is positive for p smaller than 3 xsw ℓ , and negative otherwise. Therefore it vanishes for one single value of p, and we have asymtotically

p * ∞ ∼ 3 x 2 sw ℓ , F L (p * ∞ ) ∼ 1 -2 3 ℓx sw . (4.11)
We verify that ℓp * ∞ tends to zero with ℓ, thus justifying all previous computations. The proof can now be completed like for the previous theorem, showing that p * ∞ is a strict local minimizer and therefore coincides with the global minimizer p * ∞ according to the abstract result.

Proof of Theorem 2.3 (Robin Conditions with Overlap, Discrete): In order to prove the results for the discretized algorithm, suppose ℓ ⋍ k -1 M , p large , with ℓp small as in Lemma 4.5. The maximum at z′

2 on C + w is on the curve C w if x′ 2 ∼ p ℓ < x 4 ∼ √ 2νω M . We see that x′ 2 x 4 ∼ p 2νℓω M ⋍ √ p ≫ 1 if ω M ⋍ k M , p kM ≪ 1 if ω M ⋍ k 2 M ,
which indicates that the continuous analysis will only be important in the second case. We study now both cases in detail:

• ω M ⋍ k 2 M : Let p ⋍ p * 0,∞(L)
. An asymptotic study shows that the derivative in ω on the eastern curve |k| = k M satisfies S kM (z, p, ℓ) ∼ -ℓ(4ν 2 k 2 M + 16ν 2 ω 4 ) < 0. Therefore the maximum of |ρ| on the east is reached at z 3 = z(ω M , s(c)k M ). The same study on the north gives

S ωM (z, p, ℓ) ∼ -ℓ∂ k x((4ν 2 k 2 ) 2 + 16ν 2 ω 4 M
). The sign of S ωM (z, p, ℓ) is the opposite of the sign of x, the maximum of |ρ| on C n is therefore reached at z 4 . From this we conclude that all values of |ρ| on C n and C e are smaller than the value at z 4 . We now study the variations of R on the other boundaries. Since p ⋍ p * 0,∞(L) , the conclusions from Lemma 4.5 and after are all valid, there is a unique value p * (ℓ) of p such that

|ρ(z ′ 2 , p, ℓ)| = |ρ(z ′ sw , p, ℓ)|. It is for ℓ = L 2ν small asymptotically equivalent to p * 0,∞ (L). • ω M ⋍ k M :
We perform the asymptotic analysis in k M , assuming p ≪ √ ω M , and study the behavior of the convergence factor on all four boundary curves C w , C e , C sw and C n :

Behavior of R on C w : x′ 2 ≫ x 4
, and R has no local maximum on C w . Therefore

max Cw R = max(R(z 1 ), R(z ′ 2 )).
Behavior of R on C e : Since p ≪ k M , using that x ∼ 2νk M , we obtain

S kM (x, y, p, ℓ) ∼ -ℓ(2νk M ) 4 .
The maximum of R on the eastern side is therefore reached for z = z 3 .

Behavior of R on C sw : The behavior of R on the southern part remains unchanged: for

k m ω m /|c|, p = O( √ 2νk M ), the maximum of R(ω m , •, p) on -s(c)(k m , ω m /|c|) is reached at the sin- gle point z′′ 3 (p, ℓ) = z(ω m , k′′ 3 (p, ℓ))
, whose asymptotic behavior is given by k′′ 3 (p, ℓ) ∼ k1 (ω m ). The proof is similar to that of Lemma 4.2.

Behavior of R on C n : We extend the analysis in the proof of Lemma 4.3 to S ωM in (4.10). The variations of R are determined by the sign of

S ωM (k) = N ωM (k) - ℓ 2p |z 2 -p 2 | 2 ) (2νkx + cy) = 2p (x 2 0 + 4ν 2 k 2 -p 2 - ℓ 2p ((x 2 0 + 4ν 2 k 2 -p 2 ) 2 + 16ν 2 (ω M + ck) 2 )) (2νkx + cy) +4ν(ω M + ck)(-2νky + cx) .
Again we have to distinguish three cases for k ⋍ k α M : α 1 2 , 1 2 < α < 1 and α = 1:

k = O(k 1 2
M ): in this case S ωM (k) ∼ 2pN ωM (k), and therefore on the curve C n , S ωM vanishes for k′ 4 ∼ k4 under the conditions of case 2 in Lemma 4.3, and R has a maximum there.

For k ′′ 0 ⋍ √ k M , R has a minimum.
For k ⋍ k α M with 1 2 < α < 1, the overlap comes into play. We have

S ωM (k) ∼ 2p(2νk) 4 s(c)(1 - ℓ 2p (2νk) 2 ).
The right hand side vanishes for 2νk = 2p ℓ , and S ωM (k) vanishes therefore in a neighbourhood of that point,

k′′ 4 ∼ 1 2ν 2p ℓ ,
which corresponds to a maximum of R again.

For k ⋍ k M , the overlap dominates, and S ωM (k) ∼ -ℓ(2νk) 4 s(c). Therefore, there are two local maxima on the curve C n , and we must compare |ρ| at zn defined in (4.4),

|ρ(z n , p)| ∼ (1 + i) √ 2νω M -p (1 + i) √ 2νω M -p e -ℓ(1+i) √ 2νωM ∼ 1 - p √ 2νω M ,
and |ρ| at z′′

4 = z( k′′ 4 , ω M ), z′′ 4 ∼ 2ν| k′′ 4 | 1 + i ω M ν( k′′ 4 ) 2 ∼ 2p ℓ (1 + i νℓω M p ) ∼ 2p ℓ ,
which gives for |ρ| at z′′

4 |ρ(z ′′ 4 , p)| ∼ 2p ℓ -p 2p ℓ -p e - √ 2pℓ ∼ 1 -pℓ 2 1 + pℓ 2 (1 -2pℓ) ∼ 1 -2 2pℓ. Since p √ 2νωM ≫ √ 2pℓ, we find sup Cn |ρ(z, p)| = |ρ(z ′′ 4 , p)| ∼ 1 -2 2pℓ.
The rest of the proof is now similar to the proof of the nonoverlapping case, except that now the best p equilibrates the values of |ρ| at the points z′′ 4 and z′ w , which is equivalent to z sw . Asymptotically we have |ρ(z ′′ w )| ∼ 1 -2

x sw p , which gives for p and the optimized contraction factor the asymptotic values

p * (L) = 3 x 2 sw 2ℓ , δ * (L) ∼ 1 -2 x sw p * (L)
.

The full justification that p * (L) is indeed a strict local, and hence the global optimum is analogous to the nonoverlapping case and we omit it, and the proof is complete.

Optimization of Ventcel Transmission Conditions

This section is devoted to the proof of Theorems 2.4, 2.5 and 2.6. We start with a change of variables, s = p + q(z 2x 2 0 )/4ν = p + qz 2 , p = px 2 0 /4ν, q = q/4ν, with which we can further simplify the convergence factor, ρ(z, p, q, L) = p + q z 2z p + q z 2 + z e -Lz 2ν .

(5.1)

Note that we will still write the arguments in terms of p and q, which are now simply functions of p and q, and the min-max problem is still

inf (p,q)∈C 2 sup z∈ D |ρ(z, p, q, L)| = sup z∈ D |ρ(z, p * , q * , L)| =: δ * 1 (L).
(5.2)

The Nonoverlapping Case

Proof of Theorem 2.4 (Ventcel Conditions Without Overlap): by the abstract Theorem 3.3, the best approximation problem has a unique solution (p * 1 (0), q * 1 (0)). We search now for a strict local minimum for the function F 0 (p, q). We first analyze the variations of R on the boundaries, and identify three local maxima. Then we show that there exists (p * 1 , q * 1 ) such that these three values coincide, and we compute their asymptotic behavior, showing that they satisfy the assumptions. We finally show that (p * 1 , q * 1 ) constitutes a strict local minimum for the function F 0 on R + × R + , from which it follows that the local minimizer (p * 1 , q * 1 ) = (p * 1 (0), q * 1 (0)), the global minimizer. Local Maxima of the Convergence Factor: The following Lemma gives the local maxima of the convergence factor for the two asymptotic regimes of an explicit and implicit time integration we are interested in: Lemma 5.1 Suppose the parameters in the Ventcel transmission condition satisfy

p ⋍ k α M , q ⋍ k β M , 0 < α < 1 2 < β < 1, α + β 1. (5.3)
Then, we have for the two asymptotic regimes of interest 1. in the implicit case, when k M = C h ω M , the supremum of the convergence factor is given by

sup D+ |ρ 0 (z, p, q)| = max(|ρ 0 (z sw (p, q), p, q)|, |ρ 0 (z 1 (p, q), p, q)|, |ρ 0 (z 3 , p, q)|) if p q < ω M , max(|ρ 0 (z sw (p, q), p, q)|, |ρ 0 (z n (p, q), p, q)|, |ρ 0 (z 3 , p, q)|) if p q > ω M ,
where zn ∈ C n is defined in (5.13), and the asymptotic behavior is

|ρ 0 (z sw , p, q)| ∼ 1 -2 x sw p , |ρ 0 (z 3 , p, q)| ∼ 1 - 4 qk M , |ρ 0 (z 1 , p, q)| ∼ 1 -2 pq 2ν , |ρ 0 (z n , p, q)| ∼ 1 - p √ 2νω M P ( qω M p ), (5.4) 
where P (Q) is defined in (2.12).

2. in the explicit case, when ω M = 1 πC h k 2 M , the supremum of the convergence factor is given by sup D+ |ρ 0 (z, p, q)| = max(|ρ 0 (z sw (p, q), p, q)|, |ρ 0 (z 1 (p, q), p, q)|, |ρ 0 (z ′ n (p, q), p, q)|),

where zn (p, q) is defined in (5.15), and

z′ n (p, q) = z 3 if d > d 0 , zn (p, q) if d < d 0 , (5.5) 
and we have asymptotically

|ρ(z sw , p, q)| ∼ 1 -2 x sw p , |ρ(z 1 , p, q)| ∼ 1 -2 pq 2ν , |ρ 0 (z ′ n , p, q)| ∼ 1 - 4C qk M d 2 , (5.6) 
with C defined in (2.8).

Proof The proof of this lemma is rather long and technical, but follows along the same lines as in the Robin case: we first compute the derivatives of R 0 (ω, k, p, q) in ω and k, using the formulation (5.1), to obtain

∂ z ρ 0 = 2 (qz 2 -p) ( p+qz 2 +z) 2 , ∂ ω,k R 0 (ω, k, p, q) = 4Re (∂ z ρ 0 ρ0 ∂ ω,k z) = 4 Re ((qz 2 -p)(( p+qz 2 ) 2 -z 2 ) ∂ ω,k z) | p+qz 2 +z| 4 = 4 Re (N (z,z) ∂ ω,k z) | p+qz 2 +z| 4 , N (z, z) = (qz 2 -p)((p + qz 2 ) 2 -z2 ).
We now expand the numerator N (z, z), using X := x 2 0 + 4ν 2 k 2 and Y := 4ν(ω + ck), so that

z 2 = X + iY, z = x + iy, x 2 -y 2 = X, 2xy = Y.
Using this notation, we obtain

Re N (z, z) = (qX -p)(q 2 X 2 + (2pq -1)X + p2 ) + q(q 2 X + 3pq -1)Y 2 , Im N (z, z) = Y (-q 3 X 2 + 2pq 2 X + p(3pq -1) -q3 Y 2 ).
With the assumption on the coefficients p and q, pq ≪ 1, we have

Re N (z, z) ∼ q3 X(X 2 + Y 2 ) -q(X 2 + Y 2 ) + pX -p3 , Im N (z, z) ∼ Y (-q 3 (X 2 + Y 2 ) + 2pq 2 X -p).
(5.7)

We present now the remining three major steps in the proof:

1. We begin by studying, for fixed k, the variations of ω → R 0 (ω, k, p, q). Since

∂ ω z = 2ν(y + ix)/|z| 2 , ∂ ω R 0 (ω, k, p, q) = 8ν Re (N (z,z) (y+ix)) | p+qz 2 +z| 4 |z| 2 = 8ν Φω | p+qz 2 +z| 4 |z| 2 Φ ω = yRe N -xIm N ∼ y(q 3 X(X 2 + Y 2 ) -q(X 2 + Y 2 ) + pX -p3 -2x 2 (-q 3 (X 2 + Y 2 ) + 2pq 2 X -p).
(a) We study first the left boundary C w with k = k m , where X = O(1) is fixed. We define ξ = 2x 2 -X, and replace 2x 2 = ξ + X, X 2 + Y 2 = ξ 2 in the previous expression. This yields a third order polynomial in the ξ variable,

Φ ω ∼ yQ 3 (ξ) := y q3 ξ 3 + q(2q 2 X -1)ξ 2 + p(1 -2q 2 X)ξ + p(2X -2q 2 X 2 -p2 ) . (5.8)
The principal part of

Q 3 is Q 3 (ξ) ∼ q3 ξ 3 -qξ 2 + pξ -p3 . (5.9) 
Since y is always positive or vanishes for ω = -ck m if |c|k m ∈ (ω m , ω M ) (see Figure 2), the sign of ∂ ω R 0 (z, p, q) is the sign of Q 3 (ξ). Q 3 has asymptotically three positive roots

1 ≪ ξ 0 ∼ p2 ≪ ξ 1 = p q ≪ ξ 2 ∼ 1 q2 .
With the assumptions on p and q, the roots are separated. Therefore, by continuity, Q 3 has three roots ξ ′ 0 , ξ ′ 1 , ξ ′ 2 equivalent to ξ 0 , ξ 1 , ξ 2 , and ∂ ω R 0 (ω, k, p, q) has, in addition to -ck m , three zeros ωj ∼ ξ j /4ν, j = 0, 1, 2. ω0 and ω2 correspond to minima of R 0 . Note that z(ω j (k), k) = z(ω j (-k), -k), so that we can consider the part corresponding to k = s(c)k m only: there exists a unique maximum at z1 (p, q) = z(ω 1 (s(c)k m ), s(c)k m ), and two minima at z(ω 0 (s(c)k m ), s(c)k m ) and z(ω 2 (s(c)k m ), s(c)k m ), and we have the ordering

ω m ≪ ω0 ∼ p2 4ν ≪ ω1 ∼ p 4ν q ≪ ω2 ∼ 1 4ν q2 .
(5.10)

If ω M ⋍ k M , then ω2 ≫ ω M , and sup Cw |ρ 0 (z, p, q)| = max(|ρ 0 (z 1 , p, q)|, |ρ 0 (z 1 (p, q), p, q)|) if ω1 ∼ p 4ν q < ω M , max(|ρ 0 (z 1 , p, q)|, |ρ 0 (z 4 , p, q)|) if ω1 ∼ p 4ν q > ω M , with |ρ 0 (z 1 , p, q)| ∼ 1 -2 x 1 p , |ρ 0 (z 4 , p, q)| ∼ 1 - p + 4ν qω M √ 2νω M , |ρ 0 (z 1 , p, q)| ∼ 1 -2 2pq. If ω M ⋍ k 2 M , then ω2 ≪ ω M ,

and sup

Cw |ρ 0 (z, p, q)| = max(|ρ 0 (z 1 , p, q)|, |ρ 0 (z 1 , p, q)|, |ρ 0 (z 4 , p, q)|),

with |ρ 0 (z 1 , p, q)| ∼ 1 -2 x 1 p , |ρ 0 (z 4 , p, q)| ∼ 1 -2 √ 2νω M q, |ρ 0 (z 1 , p, q)| ∼ 1 -2 2pq.
(b) We now examine the behavior of Q 3 for |k| = k M . In that case, X = O(k 2 M ), and the asymptotics of the coefficients in Φ ω are different. We use the fact that q2 X ≫ 1, and

qX p ≫ 1, to obtain Re N (z, z) ∼ q3 X(X 2 + Y 2 ), Im N (z, z) ∼ -q 3 Y (X 2 + Y 2 ), (5.11) 
so that Φ ω = q3 y(X 2 + Y 2 )(yX + xY ) > 0,
and we obtain for the convergence factor

sup Ce |ρ 0 (z, p, q)| = |ρ 0 (z 3 , p, q)| ∼ 1 -2 x 3 q|z 3 | 2 .

Let us compute now the variations in k:

∂ k R 0 (ω, k, p, q) = 4 Re (N (z,z) (∂ k x+i∂ k y)) | p+qz 2 +z| 4 = 8ν Φ k | p+qz 2 +z| 4 |z| 2 , Φ k = |z| 2 2ν (∂ k xRe N (z, z) -∂ k yIm N (z, z)) = (2νkx + cy)Re N (z, z) -(-2νky + cx)Im N (z, z).
(a) We begin with the southwest curve C sw , defined by ω = ω m . Then k, X and Y are O(1), and the asymptotics for the coefficients are given by

Re N (z, z) ∼ -p 3 , Im N (z, z) ∼ -p, Φ k ∼ -|z| 2 2ν p3 ∂ k x if ∂ k x = 0. By Corollary 3.6, if | k1 (ω m )| k m , ∂ k x does not change sign in the interval, and |ρ 0 | is a decreasing function of x. If | k1 (ω m )| ∈ (k m , ω m /|c|), ∂ k x changes sign at k = k1
, and therefore ∂ k R 0 (ω, k, p, q) changes sign for a point k3 in the neighbourhood of k1 (ω m ), which produces a maximum for |ρ 0 | at z3 = z(ω m , k3 ). We define

zsw = z 1 if |ck m | < ω m or if |ck m | > ω m and | k3 | ∈ [k m , ωm |c| ], z3 ∼ z1 (ω m ) if |ck m | > ω m and | k3 | ∈ [k m , ωm |c| ],
and then obtain for the convergence factor

sup Csw |ρ 0 (z, p, q)| = |ρ 0 (z sw , p, q)| ∼ 1 -2 x sw p . (b) We study next the northern curve C n , i.e. ω = ω M , s(c)k ∈ (k m , k M ).
• For ω M ⋍ k m , we define Y 0 = 4νω M , and perform the asymptotic analysis in terms of Y 0 . We analyze the sign of Φ k in the five asymptotic cases 1) and Y ∼ Y 0 . The asymptotics for the coefficients are given by

k = O(1), k ⋍ Y θ 0 with 0 < θ < 1 2 , k ⋍ Y 1 2 0 , k ⋍ Y θ 0 with 1 2 < θ < 1, and k ⋍ Y 0 . If k = O(1), then X = O(
Re N (z, z) ∼ -(p 3 + qY 2 0 ), Im N (z, z) ∼ -Y 0 (p + q3 Y 2 0 ), x ∼ y ∼ Y0 2 , Φ k ∼ x -(p 3 + qY 2 0 )(2νk + c) + Y 0 (p + q3 Y 2 0 )(-2νk + c) .
With the assumptions on the coefficients, p2 ≪ Y 0 and q2 Y 0 ≪ 1, so that

Φ k ∼ xY 0 (-2νk(p + qY 0 ) + c(p -qY 0 )) .
The quantity on the left changes sign for one value of k, therefore Φ k changes sign for k4 (p, q) ∼ c 2ν p -qY 0 p + qY 0 , z4 (p, q) = z(ω M , k4 (p, q)). The point z4 corresponds to a maximum, and is on C n if and only if the sign of k4 is the sign of c, and its modulus is larger than

k m . If α + β < 1, k4 (p, q) ∼ -c
2ν and has the wrong sign. Therefore z4 belongs to C n if and only if α + β = 1, and qY0 p < 1. At that point, p + qz 2 ∼ p + iY 0 q ⋍ Y α 0 ≪ z4 ∼ Y0 2 , and therefore

ρ 0 (z 4 (p, q), p, q) ∼ -(1 -2 p + qz 2 4 z4 ), |ρ 0 (z 4 (p, q), p, q)| ∼ 1 - 2 Y 0 (p + qY 0 ). If k ⋍ Y θ 0 with 0 < θ < 1 2 ], then Φ k ∼ 2νkx (Re N (z, z) + Im N (z, z)) ∼ -2νkx q3 Y 3 0 + qY 2 0 + pY 0 )
. This quantity has a constant sign equal to the sign of k, or equivalently to the sign of ∂ k x. Therefore in this area, |ρ 0 | is an increasing function of x.

If k ⋍ Y 1 2 0 ], then X ⋍ Y 0 , Y ∼ Y 0 , and inserting t = X/Y 0 , we have Re N (z, z) ∼ pX -q(X 2 + Y 2 0 ), Im N (z, z) ∼ -Y 0 (p + q3 (X 2 + Y 2 0 )), x ⋍ y ⋍ Y0 2 , Φ k ∼ 2νk (xRe N (z, z) + yIm N (z, z)) ∼ 2νk x(pX -q(X 2 + Y 2 0 )) -yY 0 (p + q3 (X 2 + Y 2 0 )) ∼ 2νkxY 0 pt -qY 0 (t 2 + 1) -( √ t 2 + 1 -t)(p + q3 Y 2 0 (t 2 + 1)) .
Since q3 Y 2 0 ≪ qY 0 , asymptotically the only remaining terms are Φ k ∼ 2νkxY 0 (p(2tt 2 + 1) -qY 0 (t 2 + 1)).

If α + β < 1, Φ k ∼ -2νkxqY 2 0 (t 2 + 1)) and does not vanish; |ρ 0 | is still a decreasing function of x in this zone. If α + β = 1, we define the function g

(t) = 2t- √ t 2 +1 t 2 +1
, drawn in Figure 5, and rewrite Φ k as Φ k ∼ 2νkxY 0 p(t 2 + 1)(g(t) -qY 0 p ).

(5.12)

The function g has a maximum at t 0 = 54 + 6 √ 33/6 ≈ 1.5676, with g 0 := g(t 0 ) ≈ 0.3690. Therefore, if Y0 q p > g 0 , kΦ k is negative for all t, and |ρ 0 | is a decreasing function of x. Otherwise, the right hand side in (5.12) changes sign twice: the first time at t 1 ( Y q p ) < t 0 corresponds to a local minimum, and the second time at t 2 ( Y q p ) > t 0 corresponds to a local maximum,

k5 (p, q) ∼ s(c) 2ν Y 0 t 2 ( Y 0 q p ), z5 (p, q) = z(ω M , k5 (p, q)). If k ⋍ Y θ 0 with 1 2 < θ < 1, then X ≫ Y 0 , Y ∼ Y 0 , and Re N (z, z) ∼ X(q 3 X 2 -qX + p), Im N (z, z) ∼ -Y 0 (p + q3 X 2 ), x ∼ √ X, y ∼ Y0 2 √ X , Φ k ∼ νkX -1 2 (2XRe N (z, z) + Y 0 Im N (z, z)) Φ k ∼ 2νkX 3 2 (q 3 X 2 -qX + p).
The right hand side, as a function of X, has only one root for 1

2 < θ < 1, 1 q2 , corresponding to a local minimum. If k ⋍ Y 0 , then X ⋍ Y 2 0 , Y ⋍ Y 0 , and Re N (z, z) ∼ q3 X 3 , Im N (z, z) ∼ -q 3 Y X 2 ), x ∼ √ X, y ∼ Y 2 √ X , Φ k ∼ νkX -1 2 (2XRe N (z, z) + Y Im N (z, z)) ∼ 2νk q3 X 3 2 (2X 2 -Y 2 ) ∼ 4νk q3 X 7 2 .
To summarize we have :

-

if α + β < 1, k → |ρ 0 (ω M , k, p, q)| has no local maximum on the curve C n . -if α + β = 1, k → |ρ 0 (ω M , k, p, q)
| has two local maxima on the curve C n , z4 (p, q) and z5 (p, q). To compare them, we define Q = qY0 p , and get

k5 (p, q) ∼ s(c) 2ν Y 0 t 2 (Q), z5 (p, q) = z(ω M , k5 (p, q)), |ρ 0 (z 5 , p, q)| ∼ 1-2( p |z 5 | 2 +q)Re z5 .
The convergence factors |ρ 0 (z 4 , p, q)| and |ρ 0 (z 5 , p, q)| are both 1-∝(ω

1 4
M ). In order to compare the two, we compute

|ρ 0 (z 4 , p, q)| ∼ 1-p 2 Y (1+Q), |ρ 0 (z 5 , p, q)| ∼ 1-p 2 Y 1 + t 2 (Q) 2 + 1( 1 t 2 (Q) 2 + 1 +Q).
It is easier to compare which implies for qY0 p > g 1 ≈ 0.3148 |ρ 0 (z 5 , p, q)| < |ρ 0 (z 4 , p, q)|, for qY0 p < g 1 ≈ 0.3148 |ρ 0 (z 5 , p, q)| > |ρ 0 (z 4 , p, q)|. We can now conclude the northern study for the case where ω M ⋍ k m . We define

h 2 (t) = 1 + g(t)
zn (p, q) =          z5 (p, q) if qY0 p < g 1 ≈ .1735, z4 (p, q) if g 1 < qY0 p < 1 and k m | k4 |, z 4 if g 1 < qY0 p < 1 and k m | k4 |, z 4 if qY0 p > 1.
(5.13)

Then we obtain for the convergence factor sup Cn |ρ 0 (z, p, q)| = max(|ρ 0 (z 3 , p, q)|, |ρ(z n (p, q), p, q)|).

with the asymptotic behavior (P (Q) is defined in (2.12))

|ρ 0 (z n (p, q), p, q)| ∼ 1 - 2 Y 0 pP (Q), |ρ 0 (z 3 , p, q)| ∼ 1 - 1 νk M q .
(5.14)

• If ω M ⋍ k 2 M , then Y 0 = O(k 2 M
), X ≪ Y , and we obtain that for k ≪ k M , the dominant part of Φ k is given by

Φ k ∼ xqY 2 ((2νk + c)(q 2 X -1) + (-2νk + c)q 2 Y ) ∼ xqY 2 (2νk(q 2 (X -Y ) -1) + c(q 2 (X + Y ) -1)) ∼ xq 3 Y 3 (-2νk + c).
Remember that k2 (ω M ) is the point where ∂ k y vanishes. If | k2 (ω M )| k m , ∂ k y does not vanish on the curve C n , and

|ρ 0 | is a decreasing function of x. If | k2 (ω M )| > k m , ∂ k y does vanish on C n , at k4 (p, q) ∼ k2 (ω M ) ∼ c 2ν
, z4 (p, q) = z( k4 (p, q), p, q) ∼ Y 0 2 (1+i), ρ 0 (z 4 (p, q), p, q) ∼ 1-2 1 qz 4 , which implies for the modulus of the convergence factor

|ρ 0 (z 4 (p, q), p, q)| ∼ 1 -2Re 1 qz 4 ∼ 1 - 1 q 2 Y 0 . for k ⋍ k M Re N (z, z) ∼ q3 X(X 2 + Y 2 ), Im N (z, z) ∼ -q 3 Y (X 2 + Y 2 ), x ⋍ y ⋍ √ Y 0 , , Φ k ∼ 2νk q3 (X 2 + Y 2 )(xX -yY ) ∼ 2νkxq 3 (X 2 + Y 2 )(2X - √ X 2 + Y 2 ).
The right hand side changes sign for X = Y / √ 3 corresponding to a minimum. Since x is an increasing function of X,

z(k) ∈ C n ⇐⇒ Y 0 / √ 3 4ν 2 k 2 M .
Note as in the first part, ω M = ν d k 2 M , and thus

z(k) ∈ C n ⇐⇒ 1 d √ 3 1 ⇐⇒ d 1 √ 3 .
We define

zn (p, q) = z4 (p, q) if k m | k4 | ∼ |c| 2ν , z 4 if k m | k4 |, (5.15) 
and obtain

|ρ 0 (z n (p, q), p, q)| ∼ 1 - 1 q 2 Y 0 .
The maximum of |ρ 0 | on C n is therefore reached at zn or z 3 , with

|ρ 0 (z 3 , p, q)| ∼ 1 - 1 ν qk M d 2 d + √ d 2 + 1 d 2 + 1 .
A short computation shows that |ρ 0 (z 3 , p, q)| and |ρ 0 (z n , p, q)| are asymptotically of the same order, and that sup

Cn |ρ 0 (z, p, q)| = |ρ 0 (z 3 , p, q)| if d > d 0 |ρ(z n , p, q)| if d < d 0 ∼ 1 - 1 ν qk M C d 2 ,
in the notation of Theorem 2.1.

3. We can now finish with the southern part on the east, i.e. ω = -ω M , s(c)k ∈ (ω M /|c|, k M ). For this part to exist, ω M /|c| has to be smaller than k M , thus ω M = O(k M ), which implies that

X = O(k 2 M ) ≫ Y , and Φ k ∼ q3 X 2 (X -iY )(∂ k x + i∂ k y) ∼ q3 X 2 s(c) 2ν |z| 2 (X 2 + Y (|c| √ X - Y 2 ) ∼ q3 X 4 2νs(c) |z| 2 .
Therefore |ρ 0 | is an increasing function of x, and sup Cse |ρ 0 (z, p, q)| = |ρ 0 (z 3 , p, q)|.

We can now simply collect all the previous results, and returning to the variables p and q concludes the proof of this long lemma.

Determination of the Global Minimizer by Equioscillation:

The following lemma gives asymptotically the local minimizers for both the implicit and explicit time integration schemes:

Lemma 5.2 In the implicit case, when k M = C h ω M , there exist p * 1 ⋍ k 1 4 M , q * 1 ⋍ k -3 4
M such that |ρ 0 (z sw (p, q), p, q)| = |ρ 0 (z 1 (p, q), p, q)| = |ρ 0 (z 3 , p, q)|) if p q < ω M , |ρ 0 (z sw (p, q), p, q)| = |ρ 0 (z n (p, q), p, q)| = |ρ 0 (z 3 , p, q)|) if p q > ω M .

Defining Q 0 = 2 C h xsw , the coefficients are given asymptotically by

q * 1 ∼ 2p x sw k M , p * 1 ∼ 4 x 3 sw νk M if Q 0 > 1, 4 8νxswωM 
P (Q0) 2 . if Q 0 < 1.
In the explicit case, when

ω M = 1 πC h k 2 M , there exist p * 1 ⋍ k 1 4 M , q * 1 ⋍ k -3 4
M such that |ρ 0 (z sw (p, q), p, q)| = |ρ 0 (z 1 (p, q), p, q)| = |ρ 0 (z ′ n, p, q)|).

The coefficients are given by

q * 1 ∼ 2Cp x sw k M , p * 1 ∼ 4 νx 3 sw k M C .
Proof In each asymptotic regime for k M and ω M , we proceed in two steps:

• In the implicit case, ω M = 1 C h k M : 1. For p such that p ⋍ k α M , α < 1 2 , consider the equation |ρ 0 (z sw , p, q)| -|ρ 0 (z 3 , p, q)| = 0,
with the unknown q. By the expansions (5.6), we see that for any q

⋍ k -β M , 1 2 < β < 1, |ρ 0 (z sw , p, q)| -|ρ 0 (z 3 , p, q)| ∼ 4 qk M - 2 
x sw p , which can take positive or negative values according to the sign of the right hand side. Therefore it vanishes for q = q(p), with q(p) ∼ 2p x sw k M .

(5.16)

We verify that q(p) ⋍ k -β M , 1 2 < β < 1.

2. Consider now for large k M and Q 0 > 1 the equation in the p-variable, |ρ 0 (z sw , p, q(p))| -|ρ 0 (z 1 , p, q(p))| = 0.

By the asymptotic expansions above, for q = q(p),

|ρ 0 (z sw , p, q)| -|ρ 0 (z 1 , p, q)| ∼ 2 pq 2ν - x sw p ∼ 2 p 1 x sw k M - x sw p .
This quantity takes positive or negative values, and vanishes for a p * 1 with p * 1 ∼ 4 x 3 sw νk M .

Consider alternatively for Q 0 < 1 the equation in the p-variable,

|ρ 0 (z sw , p, q(p))| -|ρ 0 (z n , p, q(p))| = 0.
By the asymptotic expansions above, for q = q(p),

|ρ 0 (z sw , p, q)| -|ρ 0 (z n , p, q)| ∼ p √ 2νω M P (Q 0 ) -2 x sw p .
Again, this quantity vanishes for a p *

1 with p * 1 ∼ 4 8νx 2 sw ω M P (Q 0 ) 2 . • In the explicit case, ω M = 1 πC h k 2 M :
1. We first solve, for fixed p, the equation in q, |ρ(z sw (p, q), p, q)| -|ρ(z ′ n (p, q), p, q)| = 0.

By the expansions in (5.6), |ρ(z sw (p, q), p, q)| -|ρ(z ′ n (p, q), p, q)| ∼

4C qk M d 2 -2 x sw p ,
and |ρ(z sw (p, q), p, q)| -|ρ(z ′ n (p, q), p, q)| vanishes for

q = q(p) ∼ 2Cp x sw k M d 2 . 
2. We solve now for q = q(p), the equation |ρ(z sw (p, q), p, q)| -|ρ(z 1 (p, q), p, q)| = 0, whose asymptotic behavior is

|ρ(z sw (p, q), p, q)| -|ρ(z 1 (p, q), p, q)| ∼ 2 pq 2ν -2 xsw p ∼ 2p C νx sw k M d 2 -2 x sw p .
By the same arguments as before, |ρ(z sw (p, q), p, q)| -|ρ(z 1 (p, q), p, q)| vanishes for 

p * 1 ∼ 4 νx 3 sw k M C 2 d . δp δq D 1 D 2 D 3 (a) x 2 sw -3y 2 sw < 0 δp δq D 1 D 2 D 3 (b) x 2 sw -3y 2 sw > 0
(z ′ n , δp, δq) ∼ √ 2νω M (-δp + 4νω M δq) if d < d 0 2νCkM √ 2d ((2d - √ d 2 + 1)δp + 4 d 2 +1 d (νk M ) 2 δq) if d > d 0 . If d < d 0 ,
the situation is the same as in Figure 6. If d > d 0 , we obtain the conclusion as indicated in Figure 6.

The Overlapping Case

We follow along the same lines as in the Robin case, starting with the infinite case where only L is involved. Denoting by ℓ := L/2ν as before to simplify the notation, we obtain for the derivatives of the convergence factor

R(ω, k, p, q, L) = R 0 (ω, k, p, q)e -2ℓx , ∂ ω,k R(ω, k, p, q, L) = ∂ ω,k R 0 (ω, k, p, q) -2ℓ∂ ω xR 0 (ω, k, p, q) = 4Re (N (z,z) (∂ ω,k x+i∂ ω,k y))-2ℓ∂ωx|( p+qz 2 ) 2 -z 2 | 2 | p+qz 2 +z| 4 = 4 (Re N (z,z)-ℓ 2 M) ∂ ω,k x-Im N (z,z)∂ ω,k y | p+qz 2 +z| 4
, Hence we found all the possible maxima, and sup z∈ D+ |ρ(z, p, q, L)| = max(|ρ(z ′ sw , p, q, L)|, |ρ(z ′ 1 , p, q, L)|, |ρ(z ′ 4 , p, q, L)|).

Lemma 5.6 (local minimum for F L (p, q)) There exist p * L ⋍ k

1 5 M , q * L ⋍ k -3 5 
M such that the three values in Lemma 5.5 coincide. The coefficients and associated convergence factor are given asymptotically by

p * L ∼    5 x 4 sw 2ℓ , if ω M ⋍ k 2 M , 5 x 4 sw 4ℓ , if ω M ⋍ k M , q * L ∼ 4ν x 2 sw 2p 3 , sup z∈ D |ρ(z, p * L , q * L , L)| ∼ 1 -2 5 4ℓx sw .
Proof We skip the arguments which are similar to those previously, and retain only the conclusion. The case ω M ⋍ k 2 M is like in the previous analysis. In the other case, we prove as before that there exist p * L and q * L which solve the two equations

|ρ(z " sw , p, q, L)| -|ρ(z ′ 1 , p, q, L)| = 0, |ρ(z " sw , p, q, L)| -|ρ(z ′ 4 , p, q, L)| = 0.
The first one is the same as in the infinite case, providing the relation

2p 3 q ∼ x 2 sw ,
and the second one becomes

|ρ(z " sw , p, q, L)| -|ρ(z " 1 , p, q, L)| ∼ 2 2ℓ q - x sw p , which provides the relation 2ℓ p2 q ∼ x 2 sw ,
and the solution pL ∼ 2 -1 5 p∞ , q ∼ 2 We can conclude now the proof of Theorem 2.6 as in the other cases.

Numerical experiments

We now present a substantial set of numerical experiments in order to illustrate the performance of the optimized Schwarz waveform relaxation algorithm, both for cases where our analysis is valid, and for more general decompositions. We work on the domain Ω = (0, 1.2) × (0, 1.2) and chose for the coefficients in (2.1) ν = 1, a = (1, 1) and b = 0, and the time interval length T = 1. We discretized the problem using Q1 finite elements and simulate directly the error equations, f = 0, and start with a random initial error, to make sure all frequencies are present, see [START_REF] Gander | Schwarz methods over the course of time[END_REF] for a discussion of the importance of this. We use as the stopping criterion the relative residual reduction to 10 -6 . We start with the case of an implicit time integration method (Backward Euler), where one can choose ∆t = h 4 . We show in Table 2 the number of iterations needed by the various Schwarz waveform relaxation algorithms for the case of non-overlapping decompositions. We first note that the algorithms work also very well for decompositions into more than two subdomains, and the optimized parameters we derived are also very effective in that case. For example for a decomposition into 4 × 4 subdomains and a high mesh resolution, the Ventcell conditions need about 5 times less iterations than the Robin conditions for convergence, and the cost per iteration is virtually the same. In Table 3, we show the corresponding results for the overlapping algorithms, using an overlap of 2h. We see that overlap greatly enhances the convergence of the algorithms, as predicted by our analysis. At a high mesh resolution, the number of iterations on the 4 × 4 example can be reduced by a factor of 6 using overlap in the case of Robin conditions, and by a further factor of 2 when optimized Ventcell conditions are used.

We illustrate our asymptotic results now in Figure 8 by plotting in dashed lines the iteration numbers from Table 2 and 3 in log-log scale, and we add the theoretically predicted growth of the iteration numbers. We see that our asymptotic analysis for the two subdomain case also predicts quite well the behavior of the algorithms in the case of many subdomains.

Next, we investigate the setting of an explicit method (Forward Euler with mass lumping), where ∆t = h 2 /4. We show in Table 4 and 5 the number of iterations needed to reduce the relative residual again by a factor of 10 -6 .

We illustrate our asymptotic results now in Figure 9 by plotting in dashed lines the iteration numbers from Table 4 and 5 in log-log scale, and we add the theoretically predicted growth of the iteration numbers. As in the implicit case shown earlier, the asymptotic behavior we observe follows our analysis of the two subdomain case, also in the experiments with many subdomains. 

Iterative

Conclusion

We provide in this paper the complete asymtotically optimized closed form transmission conditions for optimized Schwarz waveform relaxation algorithms applied to advection reaction diffusion problems in higher dimensions. We showed the results for the case of two spatial dimensions, but the extension to higher dimensions d > 2 from there is trivial, it suffices to replace the Fourier variable contributions k 2 by ||k|| 2 , and ck by c • k, which implies to replace in the asymptotic analysis the highest frequency estimate

k M = π h by k M = √ d-1π h
, or replacing π by √ d -1π in the final asymptotically optimized closed form formulas. The formulas for Robin and Vencel conditions are derived such that limits to pure diffusion can be taken, and therefore also the associated time dependent heat equation optimization problems are solved by our formulas. The formulas are equally good for advection dominated problems, although one has to pay attention there to have fine enough mesh sizes to resolve boundary layers, in order for the asymptotically optimized formulas to be valid. We extensively tested our algorithms numerically, see also [START_REF] Halpern | Optimized schwarz waveform relaxation methods: A large scale numerical study[END_REF] for more scaling experiments, and these tests indicate that our theoretical asymtptotic formulas derived for two subdomain decompositions are also very effective for more general decompositions into many subdomains.
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 1 Figure 1: How the change of variables to simplify the convergence factor transforms the frequency domains

Theorem 3 . 1

 31 For any set of coefficients such that (3.3) is satisfied, and k M and ω M being finite, the min-max problem (3.4) with L = 0 has a unique solution (δ * 0 (0), p * 0 (0)) with δ * 0 (0) < 1. The optimized parameter p * 0 (0) is real and positive, and any strict local minimum on R of the real function F 0 (p) = sup z∈ D+ |ρ 0 (z, p)| (3.6)

Figure 2 :

 2 Figure 2: Illustration of the domain D + in the (x, y) plane

Figure 3 :

 3 Figure 3: Illustration of the domain D + in the (x, y) plane with the two special points z1 and z2 defined in Corollary 3.6

  Proof of Theorem 2.1 (Robin Conditions Without Overlap): by Theorem 3.1, the best approximation problem(3.4) on D has a unique solution (p * 0 (0), δ * 0 (0)), which is the minimum of the real function F 0 in (3.6). To characterize this minimum, we are guided by the geometric interpretation of the min-max problem: we search for a circle containing D + , centered on the real positive half line, and tangent in at least two points. From numerical insight, we make the ansatz that p * 0 (0) ⋍ √ 2νk M , which we will validate a posteriori by the uniqueness result from Theorem 3.1.Local Maxima of the Convergence Factor: We start by analyzing the variation of R 0 (ω, k, p) = |ρ 0 (ω, k, p)| 2 on the boundary curves C e (k = k m ) and C w (k = k M ).

Lemma 4 . 1

 41 For k M large, and p ⋍ √ 2νk M , we have 1. the maximum of R 0 on C e is attained for z = z 3 .2. the maximum of R 0 on C w is attained for z = z 4 or z = z 1 .

Lemma 4 . 2

 42 For k m ω m /|c|, and large p, the derivative of k → R(ω m , k, p) vanishes at a single point k3 (p) ∼ k1 (ω m ), yielding a maximum at z3 (p) = z(ω m , k3 (p)), and

  we study the cases k ⋍ k α M for α = 0, 0 < α < 1 and α = 1 separately: k ⋍ 1: we have x ∼ y ∼ √ 2νω M , and in N ωM the dominant term is 2xy(-2νky + cx), which vanishes at k2 (ω M ), from which we conclude that for |k| < | k2 (ω M )|, s(c)N ωM (k) is positive, and negative for |k| > | k2 (ω M )|. Therefore a local maximum is reached in the neighbourhood of k2 (ω M ).k ⋍ k α M , 0 < α < 1: we have again x ∼ y ∼ √ 2νω M , and the dominant term in N ωM is 2xy(-2νky), and N ωM ∼ -8νω M kx.

(4. 5 )

 5 In the first two cases, we get p *0 = xsw|z3| 2 -x3|zsw| 2 x3-xswand in the third case we obtain p *0 = xsw|zN | 2 -xN |zsw| 2 xN -xsw

Lemma 4 . 4

 44 For δp sufficiently small and p = p * 0 + δp F 0 (p) -F 0 (p * 0 ) = max(δp∂ p |ρ 0 (z sw (p * 0 ), p * 0 )|, δp∂ p |ρ 0 (z n (ω M , p * 0 ), p * 0 ))| + O(δp).

  km | k1 (ωm)|

Figure 4 :

 4 Figure 4: Illustration of the domain D ∞ + in the (x, y) plane

  Figure 4c, |ω m | < |ck m |: As ω runs through R, z runs through the full hyperbola, and sup z∈ D∞ + |ρ(z, p, ℓ)| = max(|ρ(z 1 , p, ℓ)|, |ρ(z 2 , p, ℓ)|). • Figure 4a and 4b, |ω m | > |ck m |: to study the variation of R on C sw = z(ω m , -s(c)[k m , ωm |c| ]), we compute
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 5 Figure 5: Graph of the fonction g

Figure 6 : 1 D 2 D 3 (b) x 2 sw -3y 2 sw > 0 Figure 7 : 2 M d with d > d 0 • 2 Md

 6123207202 Figure 6: Description of the analysis for ω M ⋍ k M

3 5

 3 q∞ . sup z∈ D+ |ρ(z, p, q, L)| ∼ 1 -2 5 4ℓx sw .

Figure 8 :

 8 Figure 8: Plots of the iteration numbers from Table 2 and 3 when the methods are used iteratively, and theoretically predicted rates. Top left 2 × 1 subdomains, Top right 2 × 2 subdomain, bottom left 4 × 1 subdomains and bottom right 4 × 4 subdomains

Figure 9 :

 9 Figure 9: Plots of the iteration numbers from Table 4 and 5 when the explicitly discretized methods are used iteratively, and theoretically predicted rates. Top left 2 × 1 subdomains, Top right 2 × 2 subdomain, bottom left 4 × 1 subdomains and bottom right 4 × 4 subdomains

  1 , p 2 ) with p 1 > 0, we have |ρ 0 (z, -p 1 + ip 2 )| > |ρ 0 (z, p 1 + ip 2

	)|,
	and therefore we must have p * 1 > 0. Next, in order to show that |p * 2 | |p * 2 | > p * 1 , to reach a contradiction (in particular this means that p * 2 = 0). We calculate the gradient, p * 1 , we assume the contrary,

  the maximum of |ρ 0 | is reached at either zsw or z 3 . We therefore consider the difference |ρ 0 (z sw , p)| -|ρ 0 (z 3 , p)|, which is asymptotically equal to 2( p 2νkM -xsw p ). Depending on the relative values of p 2 2νkM and x sw , this difference can be positive or negative. Therefore, as a function of p, we can make it vanishes in the region p ⋍ √ k M .2. If ω M =

	νk 2

M

d , then the point zn comes into play: we compute asymptotically the difference

Table 2 :

 2 Number of iterations for an implicit time discretization setting ∆t = h

					Iterative				GMRES	
	h		0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025
		2x1	49	71	97	144	198	23	29	36	45	55
	Robin	2x2 4x1	53 52	74 72	101 101	145 140	202 204	30 30	38 40	48 50	59 63	73 78
		4x4	81	116 160	219	303	47	64	84	107	133
		2x1	13	15	18	21	24	10	12	14	16	18
	Ventcell	2x2 4x1	23 18	29 21	39 25	48 29	63 35	16 14	19 17	22 20	25 24	29 27
		4x4	30	37	44	54	65	22	28	34	40	46
	overlap										4 , algorithms without
					Iterative				GMRES	
	h		0.04 0.02 0.01 0.005 0.0025 0.04 0.02 0.01 0.005 0.0025
		2x1	12	14	16	19	23	8	10	12	14	17
	Robin	2x2 4x1	14 14	17 15	21 18	27 23	33 29	11 11	14 13	17 16	20 20	24 24
		4x4	19	24	32	41	52	14	20	26	32	40
		2x1	9	10	11	12	13	6	7	8	9	10
	Ventcell	2x2 4x1	12 12	14 11	17 11	20 14	23 16	8 10	10 9	11 9	13 11	16 13
		4x4	16	17	19	24	29	13	13	14	18	22
		2x1	54	106 189	360	733	27	40	58	83	117
	Classical	2x2 4x1	84 73	159 303 145 282	570 553	1058 969	37 38	56 60	82 89	118 127	166 179
		4x4 127 258 487	912	1706	54	94	143	209	296

Table 3 :

 3 Number of iterations for an implicit time discretization setting ∆t = h 4 , algorithms with overlap 2h 36

Table 4 :

 4 Number of iterations for an explicit time discretization setting ∆t = h 2 4 , without overlap

	GMRES

Table 5 :

 5 Number of iterations for an explicit time discretization setting ∆t = h 2 4 , with overlap 2h 38

We have now proved that there exist in all cases coefficients p and q satifying the relations in the lemma. They satisfy p * 1 ⋍ k

M , and are therefore conforming to the previous study with α + β = 1.

It remains to show that this is indeed a strict local minimum for the function F 0 . By the same argument as in the Robin case, we can prove that for δp and δq sufficiently small and p = p * 1 + δp, q = q * 1 + δq, F 0 (p, q) -F 0 (p * 1 , q * 1 ) = max µ ((δp ∂ p + δq ∂ q )|ρ 0 (z µ , p * 1 , q * 1 )|) + O(δp, δq), where the points zµ are those involved in the maximum: if ω M ⋍ k M , zsw and z 3 in any case, and either zn or z1 , and if ω M ⋍ k 2 M , zsw , z′ n and z1 . Therefore, (p * 1 , q * 1 ) is a strict local minimum of F 0 (p, q) if and only if for any (δp, δq), there exists a zµ such that (δp

To analyze this quantity, we rewrite the convergence factor in the form

This allows us to write the derivatives in the more elegant form

and at an extremum,

We therefore obtain

We now study the asymptotic behavior of Φ for the two cases of interest:

where M is given by

Therefore, (p * 1 , q * 1 ) is a strict local minimum of F 0 (p, q) if and only if the union of the following set equals R 2 :

The domains are shown in Figure 6: for large k M , the slopes of

Proof of Theorem 2.5 (Ventcel Conditions with Overlap, Continuous): we solve the min-max problem on the infinite domain D ∞ + . By the abstract Theorem 3.4, for sufficiently small L, the problem has a solution. We need to prove that F L has a strict local minimum, which will again be achieved by equioscillation. The proof consists of two steps, shown in the following lemmas:

where z′ sw ∼ z sw . The two other points belong to C ∞ w , with

Proof We make the assumptions on the coefficients p and q in (5.3). We start with the variations of R on the west boundary, i.e. as a function of ω for k = k m :

We rewrite M in terms of ξ as in (5.8), using Y ∼ ξ,

and we obtain Φ ℓ ω ∼ yQ 4 := y(-

The fourth-order polynomial Q 4 is a singular perturbation of Q 3 defined in (5.8). The roots are therefore perturbations of those already defined, with in addition ξ " 1 , whose principal part solves

By the same argument as before, Q 4 has four roots,

and ∂ ω R(ω, k, p, q) has, in addition to ω = -ck m , four zeros ω ′ 0 , ω ′ 1 , ω ′ 2 and ω 1 ", equivalent to the corresponding ξ/4ν. ξ ′ 0 and ξ ′ 2 correspond to minima of R, while z′

If |c|k m > ω m , the local extrema are z 1 , z′ 1 and z" 1 . If |c|k m < ω m , we must take C sw into account. We use the results derived in the nonoverlapping case to obtain

By the results in the previous section, since M = O(1), changes sign for a point k′ 3 in the neighbourhood of k1 (ω m ), which produces a maximum at z′ 3 = z(ω m , k′ 3 ). We thus define

, and obtain for the convergence factor

We can therefore conclude that

The coefficients are given asymptotically by

Proof We skip the arguments which are similar to those of the previous section, and show only the computation of the parameters. Since

we must have asymptotically

which gives the formulas in the lemma. Notice that they have the announced asymptotic behavior p *

), validating the computations made above. We finally recover the results in the Lemma by returning to the original variables p and q.

The proof that p * ∞ , q * ∞ is a strict local minimum of F L is analogous to that in the nonoverlapping case and therefore we omitted it. Then by the abstract Theorem 3.4, we found the global minimum, and the proof of Theorem 2.5 is complete.

Proof of Theorem 2.6 (Ventcel Conditions with Overlap, Discrete): the existence and uniqueness for the min-max problem is again covered by the abstract theorem. We thus only need to show the local maxima in the convergence factor, and the strict local minimizer for F L (p, q), which is done in the following two lemmas:

|ρ(z, p, q, L)| = max(|ρ(z ′ sw (p, q), p, q, L)|, |ρ(z ′ 1 (p, q), p, q, L)|, |ρ(z " 1 (p, q), p, q, L)|).

|ρ(z, p, q, L)| = max(|ρ(z ′ sw (p, q), p, q, L)|, |ρ(z ′ 1 (p, q), p, q, L)|, |ρ(z ′ 4 (p, q), p, q, L)|),

where z′

Proof We have already computed the extrema on C sw and C ∞ w . For the west boundary C w , we need to check if the computed values are indeed inside the bounded domain. With the assumptions on p and q, the first maximum on

In the other case, the minimum at ξ ′ 2 does not belong either to C w , and

We compute now the local extrema on the curve C n , treating again the two cases of interest:

and R is a decreasing function of x on C n .

• If ω M ⋍ k M , then we have the cases

M ⋍ Y 0 , ReN (z, z) ∼ -p 3 -q2 Y 2 0 ≫ Y 0 . Therefore the computations from the nonoverlapping case are valid. According to (5.13), since qY0 p ≫ 1, there is no maximum for k = O(k M ).

If k ⋍ k θ M , 1 2 < θ < 1, M ∼ X 2 (q 2 X -1) 2 , and

The polynomial on the right hand side is a singular perturbation of the polynomial in Φ k , q3 X 2 -qX + p, and it has asymptotically the following two roots:

The first one corresponds to a minimum, the second one to a maximum.