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3-D Mobile-to-Mobile channel tracking with

first-order autoregressive model-based Kalman filter
Soukayna GHANDOUR-HAIDAR, Laurent ROS, Jean-Marc BROSSIER

Abstract—This paper deals with channel estimation in Mobile-
to-Mobile communication assuming three-dimensional scattering
environment. It approximates the channel by a first-order au-
toregressive (AR(1)) model and tracks it by a Kalman filter. The
common method used in the literature to estimate the parameter
of AR(1) model is based on a correlation matching criterion.
We propose another criterion based on the Minimization of
the Asymptotic Variance of the Kalman filter, and we justify
why it is more appropriate for slow fading variations. This
paper provides the closed-form expression of the optimal AR(1)
parameter under minimum asymptotic variance criterion and the
approximated expression of the estimation variance in output of
the Kalman filter, both for Fixed-to-Mobile and Mobile-to-Mobile
communication channels.

Index Terms—Channel estimation, Autoregressive model,
Kalman filter, Mobile-to-Mobile communication, 3-D scattering
environment.

I. INTRODUCTION

Different models are suitable to describe the radio-mobile

communication channel, depending on the scattering envi-

ronment and if only one or both terminals are in mobility.

Regarding the scattering environment, one can adopt a two-

dimensional (2-D) scattering model, as in vehicular mobile-

radio reception, or a three-dimensional (3-D) scattering model,

as for personal communication reception, particularly within

buildings [1]. In the first case, we assume that a number

of waves traveling only in the horizontal plane arise/leave

the Receiver/Transmitter (Rx/Tx) antenna. However, for the 3-

D scattering model, the scattered waves may propagate by

diffraction from the edges of buildings down to the street and,

thus, not necessarily travel horizontally. That is the reason to

adopt a 2-D scattering model for rural environments and a 3-D

scattering model for urban environments [2]. A 3-D scattering

model is appropriate if the transmitted/received signal from

the terminal arises/leaves from/for any direction with equal

probability and the Rx/Tx has an isotropic response [1].

Regarding the mobility, this radio link can be a Fixed-to-

Mobile (F-to-M) or a Mobile-to-Mobile (M-to-M) commu-

nication channels. The first case is seen with cellular com-

munications, where the base station (BS) is fixed at a high

altitude, receives the signal within a narrow beam-width, and

the mobile station (MS) is surrounded by local scatterers. This

is the so-called typical macro-cell [3].

However, M-to-M communication channels have recently re-

ceived much attention. They are expected to play an impor-

The authors are with GIPSA-Lab, Image and Signal Department, BP46,
38402 Saint-Martin d’Héres, France, (email:soukayna.ghandour@gipsa-
lab.grenoble-inp.fr, laurent.ros@gipsa-lab.grenoble-inp.fr, jean-
marc.brossier@gipsa-lab.grenoble-inp.fr).

tant role in many new applications, such as Mobile Ad-hoc

NETworks (MANETs), Private Mobile Radio systems, i.e. Ter-

restrial Trunked Radio (TETRA) with direct mode operation

(DMO), intelligent transportation systems for dedicated short

range communications where the communication links must

be extremely reliable, relay-based cellular networks, and inter-

vehicular communications, i.e. safety, traffic efficiency, and

infotainment mobile applications. In this case, both the Rx and

the Tx are normally surrounded by local scatterers [2]–[6].

The problem of channel estimation has been treated in several

contexts, but the performance analysis of estimation algo-

rithms in case of 3-D scattering model or M-to-M com-

munication channel case is recent. To facilitate the design

of an estimation algorithm, an approximated recursive linear

model is simpler than the real channel variation model. In

this perspective, an autoregressive model at order p (AR(p))

can be used. In many papers (see details and references in

[7] and [8]), the AR(p) coefficients calculation for a given

normalized Doppler frequency ( fdT ) is based on a Correlation

Matching (CM) criterion. This CM criterion imposes that the

autocorrelation coefficients of the approximated autoregressive

process perfectly match the sampled autocorrelation function

of the true Channel Gain (CG) for p lags [13], [18]. The hint

that leads to use the CM criterion derives from the Yule-Walker

equation adequate for the autoregressive model.

In this work, we use the first order autoregressive AR(1)

approximation as it has been widely used in various wireless

communication systems ( [8], [16], [17], [18]). We extend

our previous work in [7] to the case of 3-D model and to

both F-to-M and M-to-M cases, and we deal with the choice

of the AR(1) coefficient required for improving the standard

AR(1) model tuning. In fact, the CM coefficient tuning method

may lead to poor performance for p = 1, in the case of slow

fading Rayleigh channel with Jakes’ spectrum, compared to

other methods as pointed out in [8], [7], and [9] for the one

link scenario and in [10] for the dual link scenario. Then,

the AR(1) parameter can be tuned from another criterion like

the minimization of the steady-state estimation error variance,

which is called the Minimum Asymptotic Variance (MAV).

This method is more effective than the CM method for a

Rayleigh Jakes’ channel, for both one-link [7] and Amplify-

and-Forward Relay channel [10]. In the first study [7], we

provide analytic results and a closed-form expression for the

optimum AR(1) parameter and the associated mean square

error (MSE) for a given one link channel state ( fdT , SNR).

To get an online real time estimation of the true channel, we

can various filters, i.e. Kalman Filter (KF), particle filters,

linear MMSE estimator or least square estimator. In this study,
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we keep using the KF to track the channel, based on an AR(1)

approximation model following the literature and as in our

previous works [7] [10]. In a linear Gaussian problem, the KF

minimizes the MSE of the estimated parameters when the KF

state model closely matches the real system [11].

The paper is organized as follows: we first write the system

model used to represent the mobile channel with 3-D scattering

environment in section II. In section III, we provide a general

theoretical frequency-domain analysis of the estimation error

in terms of static and dynamic contributions. We use this

analytic approach, for given Source and Destination Doppler

frequencies and for a given Signal-to-Noise Ratio (SNR), to

derive original approximate closed-form expressions of the

optimal AR(1) coefficient and of the corresponding MSE

under MAV criterion. These results are validated by simulation

in section IV. Section V concludes.

II. SYSTEM MODEL AND OBJECTIVES

A. Observation and State Models

The discrete-time observation equation rk at the destination

D is:

rk = skαk +wk (1)

• sk is the transmitted symbol from the source S at symbol

time index k. The modulation alphabet of the sym-

bol can be Phase-Shift-Keying or Quadrature-Amplitude-

Modulation. We assume {sk,k ∈ Z} is a zero-mean white

sequence with variance σ2
s . This sequence can be known

(pilot-aided mode), or unknown (data-aided mode).

• αk is a zero-mean circular complex CG with variance

σ2
α . The sequence {αk,k ∈Z} is a stationary narrow-band

process with Power Spectral Density (PSD) Γα( f ).
• wk is the zero-mean additive white circular complex

Gaussian noise at the destination D with variance (σw)
2

For theoretical analysis, we suppose the symbols are known

(pilot-aided mode)1 or perfectly decided. The effect of decision

error on the Bit-Error-Rate (BER) will be tested in simulation

section. The observation equation (1) can be then normalized

to the new observation equation

yk =
rk

sk

= αk +nk (2)

With nk is a white noise with variance σ2
n = σ2

w.Kmod where

Kmod = E{| 1
sk
|2} can be computed for a given modulation

scheme (E denotes the expectation). The SNR after this

normalization is:

SNR = 10 log10
σ2

α

σ2
n

= SNRin −10 log10[Kmodσ2
s ]

where SNRin = 10 log10
σ2

s σ2
α

σ2
w

is the SNR at the Destination

(before normalization).

• For a 3-D F-to-M communication channel [1]:

– The CG has a circular complex Gaussian Probability

Density Function (PDF). This propagation model is

called single Rayleigh link.

1As for example, in an OFDM system through multipath frequency selective
channel, where we have to track the CG for each pilot subcarrier [14].

– The Doppler spectrum Γα( f ) is uniform out to

the maximum positive and negative Doppler shifts

fmax = fd centered around 0 Hz in the Baseband

representation. The temporal autocorrelation function

for lag m, Rα [m] = E{αkα∗
k−m}, is then a sinc func-

tion, where sinc(x) = sin(x)
x

and sinc(0) = 1.

• In general M-to-M cases, especially in indoor and micro-

cellular propagation studies, the propagation model is not

a Single Rayleigh link, a more realistic propagation model

is the cascaded Rayleigh links [5]. This scenario assumes

partial signal combining on all the scatterers instead of

grouped scatterers around the mobile terminals. In this

case, the situation is similar to a succession of Mobile-

Fixed and Fixed-Mobile Rayleigh links, then:

– The PDF is no longer Gaussian, but a modified

Bessel function of the second kind of zero order

[5], [15], i.e. the distribution of the product of two

Circular Complex Gaussian variables.

– The Doppler spectrum designed by Γα is a convo-

lution of two uniform spectra. The expression and

shape of Γα( f ) are given in Table I and figure

1 respectively. The normalized spectrum support

fmaxT = fST + fDT , where fS and fD are the source

and destination Doppler frequencies respectively and

T is the symbol period. The autocorrelation function

is then the product of two sinc function [1], [12]:

Rα [k] = sinc(2π fSk)sinc(2π fDk).

In the perspective to use KF, a state-space formulation of the

CG dynamic is required. We approximate the time-varying CG

αk by an AR(1) model α̃k:

α̃k = a.α̃k−1 + ek (3)

where ek is the white circular complex Gaussian state noise

with variance σ2
e . The variances of the approximated and real

processes are tuned to be the same, σ2
α̃ = σ2

α (i.e. Rα̃ [0] =
Rα [0]). Therefore, the state noise variance is:

σ2
e = (1−a2)σ2

α (4)

B. Tuning the AR(1) coefficient

It is straightforward from the Yuke Walker equations for

autoregressive model, that the AR(1) coefficient a verifies

a =
Rα̃ [1]

Rα̃ [0]
(5)

where Rα̃ [0] and Rα̃ [1] are the two first autocorrelation coef-

ficients of the AR(1) approximated process α̃ . The remaining

issue is to fix Rα̃ [1] using the normalization Rα̃ [0] = Rα [0]. In

this paper, we refer to two main criteria:

1) The CM criterion [13]. In this case, the correlation

coefficients of the AR(1) process α̃ coincide with the

exact CG correlation coefficients (i.e. Rα̃ [0] =Rα [0], and

Rα̃ [1] = Rα [1]). We denote by aCM the AR(1) coefficient

under CM criterion.

2) The MAV criterion [8] [7]. In this case, the coefficient

of the AR(1) process is calculated in order to minimize
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Figure 1. Doppler PSD for different cases. In the F-to-M case, fd is the Doppler frequency of the mobile terminal. In the M-to-M case with triangular

shape, the source and destination move at same velocity, with corresponding Doppler frequency fd . In the M-to-M case with trapezoïdal spectrum shape, fS

and fD are the source and destination Doppler frequencies respectively. Without loss of generality, we suppose here that the destination moves at a velocity

higher than the velocity of the source.
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Table I
Expression of Doppler PSD and the corresponding value of Iα for different cases.

case Γα( f ) Iα

F-to-M
σ2

α
2 fd

− fd < f <+ fd
σ2

α
3
(2π fdT )2

M-to-M ( fD = fS = fd)
σ2

α

(2 fd)
2

{

−| f |+2 fd if 0 < | f |< 2 fd
2σ2

α
3
(2π fdT )2

M-to-M ( fD > fS)
σ2

α
4 fS fD

{

2 fS if 0 < | f |< fD − fS

−| f |+ fD + fS if fD − fS < | f |< fD + fS

σ2
α
3

[

(2π fST )2 +(2π fDT )2
]

the error variance in asymptotic regime. We denote by

aMAV the AR(1) coefficient under MAV criterion.

One contribution of this paper is to find the analytical expres-

sion of aMAV wrt the statistical parameters of the channel.

C. Kalman Filter Equations

The simplified observation (2) is then approximated by:

yk ≈ α̃k +nk (6)

Given the state and observation equations (3) and (6), the

Kalman equations are then reduced to (see [11]):

Kk = [a2Pk−1 +σ2
e ]/[a

2Pk−1 +σ2
e +σ2

n ] (7)

Pk = (1−Kk)(a
2Pk−1 +σ2

e ) (8)

α̂k = a α̂k−1 +Kk(yk −a α̂k−1) (9)

where Kk is the Kalman gain at iteration k and Pk is the

estimation error variance. We denote by α̂k the on-line

unbiased estimate of the true αk.

III. MSE ANALYSIS AND OPTIMIZATION

Since the linear system (6) and (3) is observable and

controllable, an asymptotic regime is reached ( [14]). We

calculate the asymptotic values of the Kalman Gain (K∞) and

the error variance (P∞) based on (7) and (8), given a2 = 1− σ2
e

σ2
α

:

P∞ =
σ2

n (a
2 −1)−σ2

e +
√

∆

2a2

K∞ =
a2P∞ +σ2

e

a2P∞ +σ2
e +σ2

n

(10)

with ∆ = (σ2
n + σ2

e − a2σ2
n )

2 + 4a2σ2
n σ2

e . We assume that

σ2
e << σ2

n and we are working in the range of SNR > 0

where SNR is in dB, which means that

σ2
e << σ2

n < σ2
α

Then, under this assumption, we can approximate the expres-

sion of the asymptotic Kalman Gain (See [7])

K∞ ≈ σe

σn

(11)

For the asymptotic regime, we use the Z-Transform (Z) of

equation (9), then:

α̂(z) = L(z)Y (z) (12)

L(z) =
K∞z

z−a(1−K∞)
(13)

ε(z) = [1−L(z)]α(z)−L(z)N(z) (14)

where L(z) is the steady-state transfer function of the KF,

ε(z) = Z(ε(k)), and ε(k) = αk − α̂k. The error is composed

from two parts, the dynamic error related to αk and the static

error related to nk:

MSE = E{|ε(k)|2}= MSE1 +MSE2 (15)

MSE1 =
∫ + fmax

− fmax

∣

∣1−L(e j2π f T )
∣

∣

2
Γα( f )d f (16)

MSE2 =
∫ 1

2T

−1
2T

∣

∣L(e j2π f T )
∣

∣

2
Γn( f )d f (17)

where Γα( f ) is the CG spectrum as defined in table I,

and Γn( f ) is the PSD of the noise nk. We assume that

z−1 = e− j2π f T ≈ 1 − j2π f T for low normalized frequency

range, i.e. for f T < fdT << 1, using (13),
∣

∣1−L(e j2π f T )
∣

∣

2 ≈
∣

∣

∣

∣

2π fV LF T + j2π f T

2π fcT + j2π f T

∣

∣

∣

∣

2

, where, according to [7]:

• 2π fV LF T =
1

a
−1 =

[

1− σ2
e

σ2
α

]− 1
2

−1 ≈ 1

2

σ2
e

σ2
α

(using (4))
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• 2π fcT =
1−a(1−K∞)

a(1−K∞)
≈ σe

σn

(using (11))

Then 1−L(e j2π f T ) is mainly a high-pass filter with upper cut-

off frequency fc, and with another very low cut-off frequency

fV LF (see Figure 3 in [7]), but with a negligible effect on the

MSE computation. As seen in [7], only the medium asymptote

is useful for the MSE1 computation, i.e.
∣

∣1−L(e j2π f T )
∣

∣

2 ≈
∣

∣

∣

2π f T
2π fcT

∣

∣

∣

2

≈ σ2
n

σ2
e
|2π f T |2. Then

MSE1 ≈ σ2
n

(1−a2)σ2
α

∫ + fmax

− fmax

(2π f T )2Γα( f )d f

≈ σ2
n

(1−a2)σ2
α

Iα (18)

where

Iα =
∫ + fmax

− fmax

(2π f T )2Γα( f )d f (19)

nk is a discrete-time additive white Gaussian noise,

Γn( f ) = σ2
n T for

−1

2T
< f <

1

2T
(20)

Then using (13) and (20), we calculate MSE2 and obtain (see

appendix A):

MSE2 =
K2

∞σ2
n

1−a2(1−K∞)2
(21)

Given equation (4), the approximated expression of K∞, and

under the assumption σ2
e << σ2

n , we have:

MSE2 ≈ σ2
n

σe

2σn

=

√

(1−a2)σnσα

2
(22)

From (15), (18) and (22), it is easy to write MSE as a function

of the parameter a :

MSE(a) =
Ω

1−a2
+β

√

1−a2 (23)

where Ω = σ2
n

σ2
α

Iα and β = σnσα
2

.

We propose to find the AR(1) coefficient (aMAV ) that gives the

minimum asymptotic estimation error variance. This verifies:
dMSE

da
= 0 and then (1−a2

MAV )
3
2 =

2Ω

β
.

The AR(1) coefficient aMAV chosen under the MAV criterion

and the expression of the resulting minimum asymptotic

MSEMAV = MSE(aMAV ) are then given as a function of Iα

(which depends on the Doppler PSD via the integral (19)):

aMAV =

√

1−
[

2Ω

β

]
2
3

=

√

√

√

√

1− 3

√

16σ2
n I2

α

σ6
α

(24)

MSEMAV = Ω
[

β
2Ω

]
2
3
+β

[

2Ω
β

]
1
3
=

3

2

[

σ4
n Iα

2

]

1
3

(25)

We consider three cases: F-to-M and M-to-M with same

or different velocities. We need to find the overall channel

spectrum in each case, and the corresponding Iα , in order to

know the value of the dynamic error. The calculations are

given in the appendix B. We high that

Iα =
σ2

α(2π feqT )2

3
where f 2

eq = f 2
S + f 2

D (26)

We replace the expression of Iα given by (26) in (24) and (25).

We have then:

aMAV =

√

√

√

√

1− 3

√

16

9

σ2
n

σ2
α

(2π feqT )4 (27)

MSEMAV =
3

√

9

16
σ4

n σ2
α(2π feqT )2 (28)

IV. SIMULATION RESULTS

We present Monte Carlo simulations for three cases: F-to-

M and M-to-M with same and different velocities. Excepted

for the BER results (Figure 5), we consider pilot-aided mode,

and then the results are independent on the modulation scheme

according to observation equation (2)

A. F-to-M case

The Doppler spectrum is flat, and the autocorrelation func-

tion used to calculate aCM is a Sinc function. The results are

shown in Figure 2. We compare the empirical MSE obtained

(under CM and MAV criteria) to the theoretical value of MSE

under MAV criterion (28). MSE is plotted as a function of

Doppler frequencies for different values of SNR.

With CM criterion, the MSE is approximately constant with

respect to the Doppler frequency and is equivalent to σ2
n for

SNR = 10log10

(

σ2
α

σ2
n

)

> 10log10(2)≈ 3 dB. This corroborates

the results of [7] obtained for the 2-D scattering model.

Under MAV criterion, the theoretical value MSEMAV seems to

be approximately the same as the MSE computed by Monte

Carlo simulation (denoted by MAV in the legend) for all the

usual range of SNR between 0 and 20 dB, so we validate the

closed-form expression (28), with here feq = fd .

Figure 2. MSE comparison of the AR(1) KF estimator based on the literature

CM criterion or on the MAV criterion, for different SNR, in the case of Flat

Doppler Spectrum, as functions of fdT .
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B. M-to-M with equal velocities

The Doppler spectrum is triangular. The results are shown

in Figure 3. There is always an amelioration in terms of MSE

with the MAV criterion compared to the CM criterion. We

validate the closed-form expression (28) in this case too, but

we have here feq =
√

2 fd . The same remarks are observed,

which is normal because we have the same formula wrt feq.

The curves of MSE in this figure are then the same as the

curves in Figure 2, but with ordinate axis shift due to the

shift
√

2 fd vs fd in the MSEMAV expression. This means

that for given fd , MSEMAV is multiplied by 2
1
3 equivalent to

10log
(

2
1
3

)

≈ 1dB.

Figure 3. MSE comparison of the AR(1) KF estimator based on the literature

CM criterion or on the MAV criterion, for different SNR, in the case of

Triangle Doppler Spectrum, as functions of fdT .
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C. M-to-M with different velocities case

The Doppler Spectrum is trapezoïdal. The MSE behavior is

the same as for a triangular Doppler Spectrum. In figure 4,

MSECM seems to be constant wrt feq and independent of fD

and fS. We see that MSEMAV is dependent on feqT only and

not fST or fDT . This can be justified from (28).

Table II shows the values of aCM versus aMAV . As aMAV

Figure 4. MSE comparison of the AR(1) KF estimator based on the literature

CM criterion or on the MAV criterion when feq is the same but fD and fS

values change.
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increases wrt SNR (it decreases with σ2
n ), and as aMAV

increases wrt feqT , we see that aMAV < aCM in the range of

our assumptions. This corroborates the results shown in [10]

for the 2-D dual link scenario.

In order to look at the consequences of our choice of AR(1)

coefficient, we compare the BER obtained under CM and

MAV criteria with fDT = 10−4 and fST = 10−3. We consider

Figure 5. BER versus SNR for the AR(1) KF estimator based on the CM and

MAV criteria, for fST = 10−4 and fDT = 10−3, in the case of Trapezoïdal

Doppler Spectrum, with TDM training scenario
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then a half-blind mode where 10 pilot symbols (known at the

receiver) every 100 symbols are placed in the transmitted se-

quence. We use Binary Phase Shift Keying (BPSK) modulation

for the normalized symbols (sk ∈ {−1;+1})2, then Kmod = 1,

σ2
s = 1, and SNR = SNRin. Figure 5 shows the behavior in this

case. We see significant improvement after channel estimation

with MAV-KF versus the CM-KF, for a wide range of SNR

which corresponds to the range of σ2
n valid for our assumption.

V. CONCLUSION

This paper addresses the problem of estimating a radio-

mobile channel using a first-order AR(1) model-based KF,

assuming a 3-D scattering environment. We calculate the

overall channel spectrum depending on the status of the source

and destination (F-to-M and M-to-M cases). We show by

simulations that the application of the CM criterion in order

to choose the AR(1) coefficient is not accurate for low SNR

and low Doppler frequencies. Therefore, we switch to an MAV

criterion (already proposed in [7]) to carry out the optimization

of the AR(1) model. We provide an approximate expression of

the MSE, and of the AR(1) (MAV) parameter for a given SNR

and Doppler scenario. This paper demonstrates that the MSE

of the AR(1) KF (MAV) is proportional to the (2/3) power

of the product σ2
n (2π feqT ), where σ2

n is the total observation

noise variance, and feq is the equivalent Doppler frequency,

such that f 2
eq = f 2

S + f 2
D.

APPENDIX

A. Calculation of MSE2

Using (13) and (20)

MSE2 = (K2
∞σ2

n T )
∫ 1

2T

−1
2T

d f

1+A2 −2Acos(2π f T )

2In this half-blind mode, in the third KF equation (9), we use yk =
rk

ŝk|k−1

instead of equation (2), where ŝk|k−1 = sk if sk is known (pilot) and ŝk|k−1 =
sgn

{

ℜ(α̂∗
k−1 × rk)

}

if sk is unknown (data) (sgn is the sign function). In this
case, ŝk|k−1 represents the a priori decision, and the final decision will be

ŝk = sgn
{

ℜ(α̂∗
k × rk)

}

. (∗) is the transpose conjugate operator.
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Table II
Numerical values of aCM = sinc(2π fST )sinc(2π fDT ) and of aMAV given in (27), for the M-to-M case with different velocities. In scenario 1, fS = 0.3 feq, in

scenario 2, fS = fD =
feq√

2
, in scenario 3, fS = 0.6 feq, and in scenario 4, fS = 0.9 feq. For a given feq, the value of aCM depends on fD and fS but not on the

SNR, while for aMAV , it is the opposite.

feqT = 0.0005 feqT = 0.001 feqT = 0.005

aCM scenario 1 0,999998355066833 0,999993420278139 0,999835515596909

aCM scenario 2 0,999998355066994 0,999993420280710 0,999835517204046

aCM scenario 3 0,999998355067016 0,999993420281050 0,999835517416166

aCM scenario 4 0,999998355066912 0,999993420279386 0,999835516376127

aMAV at 5 dB 0,999810109358414 0,999521436486264 0,995900917333125

aMAV at 20 dB 0,999939955205278 0,999848689693471 0,998705575182885

where A = a(1−K∞). We use a variable change u = tan(π f T )

MSE2 =
K2

∞σ2
n

π

∫ ∞

−∞

du

(1+A2)(1+u2)−2A(1−u2)

=
K2

∞σ2
n

π(1−A)2

∫ ∞

−∞

du

1+

[

1+A

1−A

]2

u2

=
K2

∞σ2
n

π(1−A)2

∫ ∞

−∞

[

1−A

1+A

]

ds

1+ s2

=
K2

∞σ2
n

π(1−A2)

[

tan−1(s)
]∞

−∞

MSE2 =
K2

∞σ2
n

1−A2
=

K2
∞σ2

n

1−a2(1−K∞)2
(29)

B. Calculation of Iα

From (19) and the expression of Γα given in table I, we

can calculate the value of Iα . For the F-to-M case:

Iα =
∫ + fd

− fd

(2πT )2 σ2
α

2 fd

f 2d f

= (2πT )2 σ2
α

2 fd

[

f 3

3

] fd

− fd

=
σ2

α(2π fdT )2

3

For the M-to-M with same velocities case:

Iα = 2

∫ 2 fd

0
(2πT )2 σ2

α

(2 fd)2
(− f 3 +2 f 2 fd)d f

= (2πT )2 σ2
α

2 f 2
d

[

(2 fd)
4

12

]

=
2σ2

α(2π fdT )2

3

For the M-to-M with different velocities case:

Iα = (2πT )2 σ2
α

4 fS fD

(2I)

with

I =
∫ ∆ f

0
(2 f 2 fS)d f +

∫ Σ f

∆ f
Σ f f 2d f −

∫ Σ f

∆ f
f 3d f

=
(2 fS −Σ f )(∆ f )3

3
+

(Σ f )4

3
− (Σ f )4

4
+

(∆ f )4

4

=
(Σ f )4

12
− (∆ f )4

12
=

8 f 3
D fS +8 fD f 3

S

12

where Σ f = fD + fS and ∆ f = fD − fS. Then

Iα =
σ2

α((2π fDT )2 +(2π fST )2)

3
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