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This paper deals with channel estimation in Mobileto-Mobile communication assuming three-dimensional scattering environment. It approximates the channel by a first-order autoregressive (AR(1)) model and tracks it by a Kalman filter. The common method used in the literature to estimate the parameter of AR(1) model is based on a correlation matching criterion. We propose another criterion based on the Minimization of the Asymptotic Variance of the Kalman filter, and we justify why it is more appropriate for slow fading variations. This paper provides the closed-form expression of the optimal AR(1) parameter under minimum asymptotic variance criterion and the approximated expression of the estimation variance in output of the Kalman filter, both for Fixed-to-Mobile and Mobile-to-Mobile communication channels.

I. INTRODUCTION

Different models are suitable to describe the radio-mobile communication channel, depending on the scattering environment and if only one or both terminals are in mobility. Regarding the scattering environment, one can adopt a twodimensional (2-D) scattering model, as in vehicular mobileradio reception, or a three-dimensional (3-D) scattering model, as for personal communication reception, particularly within buildings [START_REF] Clarke | 3-D Mobile Radio Channel Statistics[END_REF]. In the first case, we assume that a number of waves traveling only in the horizontal plane arise/leave the Receiver/Transmitter (R x /T x ) antenna. However, for the 3-D scattering model, the scattered waves may propagate by diffraction from the edges of buildings down to the street and, thus, not necessarily travel horizontally. That is the reason to adopt a 2-D scattering model for rural environments and a 3-D scattering model for urban environments [START_REF] Zajié | Maximum Likelihood Method for MIMO Mobile-to-mobile Channel Parameter Estimation[END_REF]. A 3-D scattering model is appropriate if the transmitted/received signal from the terminal arises/leaves from/for any direction with equal probability and the R x /T x has an isotropic response [START_REF] Clarke | 3-D Mobile Radio Channel Statistics[END_REF]. Regarding the mobility, this radio link can be a Fixed-to-Mobile (F-to-M) or a Mobile-to-Mobile (M-to-M) communication channels. The first case is seen with cellular communications, where the base station (BS) is fixed at a high altitude, receives the signal within a narrow beam-width, and the mobile station (MS) is surrounded by local scatterers. This is the so-called typical macro-cell [START_REF] Bakhshi | A Modified Two-Ring Reference Model for MIMO Mobile-to-Mobile Communication Channels[END_REF]. However, M-to-M communication channels have recently received much attention. They are expected to play an impor-
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tant role in many new applications, such as Mobile Ad-hoc NETworks (MANETs), Private Mobile Radio systems, i.e. Terrestrial Trunked Radio (TETRA) with direct mode operation (DMO), intelligent transportation systems for dedicated short range communications where the communication links must be extremely reliable, relay-based cellular networks, and intervehicular communications, i.e. safety, traffic efficiency, and infotainment mobile applications. In this case, both the R x and the T x are normally surrounded by local scatterers [START_REF] Zajié | Maximum Likelihood Method for MIMO Mobile-to-mobile Channel Parameter Estimation[END_REF]- [START_REF] Wang | Vehicle-to-Vehicle Channel Modeling and Measurements: Recent Advances and Future Challenges[END_REF]. The problem of channel estimation has been treated in several contexts, but the performance analysis of estimation algorithms in case of 3-D scattering model or M-to-M communication channel case is recent. To facilitate the design of an estimation algorithm, an approximated recursive linear model is simpler than the real channel variation model. In this perspective, an autoregressive model at order p (AR(p)) can be used. In many papers (see details and references in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] and [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF]), the AR(p) coefficients calculation for a given normalized Doppler frequency ( f d T ) is based on a Correlation Matching (CM) criterion. This CM criterion imposes that the autocorrelation coefficients of the approximated autoregressive process perfectly match the sampled autocorrelation function of the true Channel Gain (CG) for p lags [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], [START_REF] Komninakis | Multi-Input Multi-Output fading channel tracking and equalization using Kalman estimation[END_REF]. The hint that leads to use the CM criterion derives from the Yule-Walker equation adequate for the autoregressive model. In this work, we use the first order autoregressive AR(1) approximation as it has been widely used in various wireless communication systems ( [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF], [START_REF] Liu | Space-time coding and Kalman Filtering for time selective fading channels[END_REF], [START_REF] Komninakis | Multi-Input Multi-Output fading channel tracking and equalization using Kalman estimation[END_REF]). We extend our previous work in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] to the case of 3-D model and to both F-to-M and M-to-M cases, and we deal with the choice of the AR(1) coefficient required for improving the standard AR(1) model tuning. In fact, the CM coefficient tuning method may lead to poor performance for p = 1, in the case of slow fading Rayleigh channel with Jakes' spectrum, compared to other methods as pointed out in [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], and [START_REF] Ros | Paths complex gain tracking algorithms for OFDM receiver in slowly-varying channels[END_REF] for the one link scenario and in [START_REF] Ghandour-Haidar | Improving the tuning of First-Order Autoregressive Model for the estimation of Amplify and Forward Relay channel[END_REF] for the dual link scenario. Then, the AR(1) parameter can be tuned from another criterion like the minimization of the steady-state estimation error variance, which is called the Minimum Asymptotic Variance (MAV). This method is more effective than the CM method for a Rayleigh Jakes' channel, for both one-link [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] and Amplifyand-Forward Relay channel [START_REF] Ghandour-Haidar | Improving the tuning of First-Order Autoregressive Model for the estimation of Amplify and Forward Relay channel[END_REF]. In the first study [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], we provide analytic results and a closed-form expression for the optimum AR(1) parameter and the associated mean square error (MSE) for a given one link channel state ( f d T , SNR). To get an online real time estimation of the true channel, we can various filters, i.e. Kalman Filter (KF), particle filters, linear MMSE estimator or least square estimator. In this study, we keep using the KF to track the channel, based on an AR(1) approximation model following the literature and as in our previous works [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] [START_REF] Ghandour-Haidar | Improving the tuning of First-Order Autoregressive Model for the estimation of Amplify and Forward Relay channel[END_REF]. In a linear Gaussian problem, the KF minimizes the MSE of the estimated parameters when the KF state model closely matches the real system [START_REF] Kay | Fundamentals of Statistical Signal Processing -Estimation Theory[END_REF]. The paper is organized as follows: we first write the system model used to represent the mobile channel with 3-D scattering environment in section II. In section III, we provide a general theoretical frequency-domain analysis of the estimation error in terms of static and dynamic contributions. We use this analytic approach, for given Source and Destination Doppler frequencies and for a given Signal-to-Noise Ratio (SNR), to derive original approximate closed-form expressions of the optimal AR(1) coefficient and of the corresponding MSE under MAV criterion. These results are validated by simulation in section IV. Section V concludes.

II. SYSTEM MODEL AND OBJECTIVES

A. Observation and State Models

The discrete-time observation equation r k at the destination D is:

r k = s k α k + w k (1) 
• s k is the transmitted symbol from the source S at symbol time index k. The modulation alphabet of the symbol can be Phase-Shift-Keying or Quadrature-Amplitude-Modulation. We assume {s k , k ∈ Z} is a zero-mean white sequence with variance σ 2 s . This sequence can be known (pilot-aided mode), or unknown (data-aided mode).

• α k is a zero-mean circular complex CG with variance σ 2 α . The sequence {α k , k ∈ Z} is a stationary narrow-band process with Power Spectral Density (PSD) Γ α ( f ).

• w k is the zero-mean additive white circular complex Gaussian noise at the destination D with variance (σ w ) 2 For theoretical analysis, we suppose the symbols are known (pilot-aided mode)1 or perfectly decided. The effect of decision error on the Bit-Error-Rate (BER) will be tested in simulation section. The observation equation ( 1) can be then normalized to the new observation equation

y k = r k s k = α k + n k (2) 
With n k is a white noise with variance σ 2 n = σ 2 w .K mod where

K mod = E{| 1 s k | 2 }
can be computed for a given modulation scheme (E denotes the expectation). The SNR after this normalization is:

SNR = 10 log 10 σ 2 α σ 2 n = SNR in -10 log 10 [K mod σ 2 s ]
where SNR in = 10 log 10

σ 2 s σ 2 α σ 2 w
is the SNR at the Destination (before normalization).

• For a 3-D F-to-M communication channel [START_REF] Clarke | 3-D Mobile Radio Channel Statistics[END_REF]:

-The CG has a circular complex Gaussian Probability Density Function (PDF). This propagation model is called single Rayleigh link.

-The Doppler spectrum Γ α ( f ) is uniform out to the maximum positive and negative Doppler shifts f max = f d centered around 0 Hz in the Baseband representation. The temporal autocorrelation function for lag m, R α [m] = E{α k α * k-m }, is then a sinc function, where sinc(x) = sin(x) x and sinc(0) = 1.

• In general M-to-M cases, especially in indoor and microcellular propagation studies, the propagation model is not a Single Rayleigh link, a more realistic propagation model is the cascaded Rayleigh links [START_REF] Kovács | Investigations of Outdoor-to-Indoor Mobile-to-Mobile Radio Communication Channels[END_REF]. This scenario assumes partial signal combining on all the scatterers instead of grouped scatterers around the mobile terminals. In this case, the situation is similar to a succession of Mobile-Fixed and Fixed-Mobile Rayleigh links, then:

-The PDF is no longer Gaussian, but a modified Bessel function of the second kind of zero order [START_REF] Kovács | Investigations of Outdoor-to-Indoor Mobile-to-Mobile Radio Communication Channels[END_REF], [START_REF] Roque | A Low-Complexity Multicarrier Scheme with LDPC Coding for Mobile-to-Mobile Environment[END_REF], i.e. the distribution of the product of two Circular Complex Gaussian variables. -The Doppler spectrum designed by Γ α is a convolution of two uniform spectra. The expression and shape of Γ α ( f ) are given in Table I and figure 1 respectively. The normalized spectrum support f max T = f S T + f D T , where f S and f D are the source and destination Doppler frequencies respectively and T is the symbol period. The autocorrelation function is then the product of two sinc function [START_REF] Clarke | 3-D Mobile Radio Channel Statistics[END_REF], [START_REF] Akki | A Statistical Model of Mobile-to-Mobile Land Communication Channel[END_REF]:

R α [k] = sinc(2π f S k)sinc(2π f D k).
In the perspective to use KF, a state-space formulation of the CG dynamic is required. We approximate the time-varying CG α k by an AR(1) model αk :

αk = a. αk-1 + e k (3) 
where e k is the white circular complex Gaussian state noise with variance σ 2 e . The variances of the approximated and real processes are tuned to be the same,

σ 2 α = σ 2 α (i.e. R α [0] = R α [0]
). Therefore, the state noise variance is:

σ 2 e = (1 -a 2 )σ 2 α (4)

B. Tuning the AR(1) coefficient

It is straightforward from the Yuke Walker equations for autoregressive model, that the AR(1) coefficient a verifies

a = R α [1] R α [0] (5) 
where R α [0] and R α [START_REF] Clarke | 3-D Mobile Radio Channel Statistics[END_REF] are the two first autocorrelation coefficients of the AR(1) approximated process α. The remaining issue is to fix

R α [1] using the normalization R α [0] = R α [0].
In this paper, we refer to two main criteria:

1) The CM criterion [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF]. In this case, the correlation coefficients of the AR(1) process α coincide with the exact CG correlation coefficients (i.e.

R α [0] = R α [0], and R α [1] = R α [1]
). We denote by a CM the AR(1) coefficient under CM criterion.

2) The MAV criterion [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF] [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]. In this case, the coefficient of the AR(1) process is calculated in order to minimize Figure 1. Doppler PSD for different cases. In the F-to-M case, f d is the Doppler frequency of the mobile terminal. In the M-to-M case with triangular shape, the source and destination move at same velocity, with corresponding Doppler frequency f d . In the M-to-M case with trapezoïdal spectrum shape, f S and f D are the source and destination Doppler frequencies respectively. Without loss of generality, we suppose here that the destination moves at a velocity higher than the velocity of the source.
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Table I

Expression of Doppler PSD and the corresponding value of I α for different cases.

case

Γ α ( f )

I α F-to-M σ 2 α 2 f d -f d < f < + f d σ 2 α 3 (2π f d T ) 2 M-to-M ( f D = f S = f d ) σ 2 α (2 f d ) 2 { -| f | + 2 f d if 0 < | f | < 2 f d 2σ 2 α 3 (2π f d T ) 2 M-to-M ( f D > f S σ 2 α 4 f S f D { 2 f S if 0 < | f | < f D -f S -| f | + f D + f S if f D -f S < | f | < f D + f S σ 2 α 3 [ (2π f S T ) 2 + (2π f D T ) 2 ]
the error variance in asymptotic regime. We denote by a MAV the AR(1) coefficient under MAV criterion. One contribution of this paper is to find the analytical expression of a MAV wrt the statistical parameters of the channel.

C. Kalman Filter Equations

The simplified observation (2) is then approximated by:

y k ≈ αk + n k (6) 
Given the state and observation equations ( 3) and ( 6), the Kalman equations are then reduced to (see [START_REF] Kay | Fundamentals of Statistical Signal Processing -Estimation Theory[END_REF]):

K k = [a 2 P k-1 + σ 2 e ]/[a 2 P k-1 + σ 2 e + σ 2 n ] (7) 
P k = (1 -K k )(a 2 P k-1 + σ 2 e ) (8) αk = a αk-1 + K k (y k -a αk-1 ) (9) 
where K k is the Kalman gain at iteration k and P k is the estimation error variance. We denote by αk the on-line unbiased estimate of the true α k .

III. MSE ANALYSIS AND OPTIMIZATION

Since the linear system (6) and ( 3) is observable and controllable, an asymptotic regime is reached ( [START_REF] Chui | Kalman Filtering with real-time applications[END_REF]). We calculate the asymptotic values of the Kalman Gain (K ∞ ) and the error variance (P ∞ ) based on [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] and [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], given a 2 = 1-σ 2 e σ 2 α :

P ∞ = σ 2 n (a 2 -1) -σ 2 e + √ ∆ 2a 2 K ∞ = a 2 P ∞ + σ 2 e a 2 P ∞ + σ 2 e + σ 2 n ( 10 
) with ∆ = (σ 2 n + σ 2 e -a 2 σ 2 n ) 2 + 4a 2 σ 2 n σ 2 e .
We assume that σ 2 e << σ 2 n and we are working in the range of SNR > 0 where SNR is in dB, which means that

σ 2 e << σ 2 n < σ 2 α
Then, under this assumption, we can approximate the expression of the asymptotic Kalman Gain (See [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF])

K ∞ ≈ σ e σ n (11) 
For the asymptotic regime, we use the Z-Transform (Z) of equation ( 9), then:

α(z) = L(z)Y (z) (12) 
L(z) = K ∞ z z -a(1 -K ∞ ) (13) 
ε(z) = [1 -L(z)] α(z) -L(z)N(z) (14) 
where L(z) is the steady-state transfer function of the KF, ε(z) = Z(ε(k)), and ε(k) = α kαk . The error is composed from two parts, the dynamic error related to α k and the static error related to n k :

MSE = E{|ε(k)| 2 } = MSE 1 + MSE 2 ( 15 
)
MSE 1 = ∫ + f max -f max 1 -L(e j2π f T ) 2 Γ α ( f )d f ( 16 
)
MSE 2 = ∫ 1 2T -1 2T L(e j2π f T ) 2 Γ n ( f )d f (17) 
where Γ α ( f ) is the CG spectrum as defined in table I, and Γ n ( f ) is the PSD of the noise n k . We assume that z -1 = e -j2π f T ≈ 1 -j2π f T for low normalized frequency range, i.e. for f T < f d T << 1, using ( 13), 1 -L(e j2π f T )

2 ≈ 2π f V LF T + j2π f T 2π f c T + j2π f T 2
, where, according to [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]:

• 2π f V LF T = 1 a -1 = [ 1 - σ 2 e σ 2 α ] -1 2 -1 ≈ 1 2
σ 2 e σ 2 α (using ( 4))

• 2π f c T = 1 -a(1 -K ∞ ) a(1 -K ∞ )
≈ σ e σ n (using ( 11))

Then 1 -L(e j2π f T ) is mainly a high-pass filter with upper cutoff frequency f c , and with another very low cut-off frequency f V LF (see Figure 3 in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]), but with a negligible effect on the MSE computation. As seen in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], only the medium asymptote is useful for the MSE 1 computation, i.e. 1 -L(e j2π f T )

2 ≈ 2π f T 2π f c T 2 ≈ σ 2 n σ 2 e |2π f T | 2 .
Then

MSE 1 ≈ σ 2 n (1 -a 2 )σ 2 α ∫ + f max -f max (2π f T ) 2 Γ α ( f )d f ≈ σ 2 n (1 -a 2 )σ 2 α I α (18) 
where

I α = ∫ + f max -f max (2π f T ) 2 Γ α ( f )d f (19)
n k is a discrete-time additive white Gaussian noise,

Γ n ( f ) = σ 2 n T for -1 2T < f < 1 2T (20) 
Then using ( 13) and (20), we calculate MSE 2 and obtain (see appendix A):

MSE 2 = K 2 ∞ σ 2 n 1 -a 2 (1 -K ∞ ) 2 (21) 
Given equation ( 4), the approximated expression of K ∞ , and under the assumption σ 2 e << σ 2 n , we have:

MSE 2 ≈ σ 2 n σ e 2σ n = √ (1 -a 2 )σ n σ α 2 (22)
From ( 15), ( 18) and ( 22), it is easy to write MSE as a function of the parameter a :

MSE(a) = Ω 1 -a 2 + β √ 1 -a 2 (23)
where

Ω = σ 2 n σ 2 α I α and β = σ n σ α 2 .
We propose to find the AR(1) coefficient (a MAV ) that gives the minimum asymptotic estimation error variance. This verifies:

dMSE da = 0 and then (1 -a 2 MAV ) 3 2 = 2Ω β .
The AR(1) coefficient a MAV chosen under the MAV criterion and the expression of the resulting minimum asymptotic MSE MAV = MSE(a MAV ) are then given as a function of I α (which depends on the Doppler PSD via the integral (19)):

a MAV = √ 1 - [ 2Ω β ] 2 3 = 1 -3 √ 16σ 2 n I 2 α σ 6 α ( 24 
)
MSE MAV = Ω [ β 2Ω ] 2 3 + β [ 2Ω β ] 1 3 = 3 2 [ σ 4 n I α 2 ] 1 3 ( 25 
)
We consider three cases: F-to-M and M-to-M with same or different velocities. We need to find the overall channel spectrum in each case, and the corresponding I α , in order to know the value of the dynamic error. The calculations are given in the appendix B. We high that

I α = σ 2 α (2π f eq T ) 2 3 where f 2 eq = f 2 S + f 2 D (26)
We replace the expression of I α given by ( 26) in ( 24) and (25).

We have then:

a MAV = 1 -3 √ 16 9 σ 2 n σ 2 α (2π f eq T ) 4 ( 27 
)
MSE MAV = 3 √ 9 16 σ 4 n σ 2 α (2π f eq T ) 2 (28) 

IV. SIMULATION RESULTS

We present Monte Carlo simulations for three cases: F-to-M and M-to-M with same and different velocities. Excepted for the BER results (Figure 5), we consider pilot-aided mode, and then the results are independent on the modulation scheme according to observation equation ( 2)

A. F-to-M case

The Doppler spectrum is flat, and the autocorrelation function used to calculate a CM is a Sinc function. The results are shown in Figure 2. We compare the empirical MSE obtained (under CM and MAV criteria) to the theoretical value of MSE under MAV criterion (28). MSE is plotted as a function of Doppler frequencies for different values of SNR. With CM criterion, the MSE is approximately constant with respect to the Doppler frequency and is equivalent to σ 2 n for SNR = 10log 10

( σ 2 α σ 2 n )
> 10log 10 (2) ≈ 3 dB. This corroborates the results of [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] obtained for the 2-D scattering model. Under MAV criterion, the theoretical value MSE MAV seems to be approximately the same as the MSE computed by Monte Carlo simulation (denoted by MAV in the legend) for all the usual range of SNR between 0 and 20 dB, so we validate the closed-form expression (28), with here f eq = f d . 

B. M-to-M with equal velocities

The Doppler spectrum is triangular. The results are shown in Figure 3. There is always an amelioration in terms of MSE with the MAV criterion compared to the CM criterion. We validate the closed-form expression (28) in this case too, but we have here f eq = √ 2 f d . The same remarks are observed, which is normal because we have the same formula wrt f eq . The curves of MSE in this figure are then the same as the curves in Figure 2, but with ordinate axis shift due to the shift √ 2 f d vs f d in the MSE MAV expression. This means that for given f d , MSE MAV is multiplied by 2 1 3 equivalent to 10log

( 2 1 3 
) ≈ 1dB. 

C. M-to-M with different velocities case

The Doppler Spectrum is trapezoïdal. The MSE behavior is the same as for a triangular Doppler Spectrum. In figure 4, MSE CM seems to be constant wrt f eq and independent of f D and f S . We see that MSE MAV is dependent on f eq T only and not f S T or f D T . This can be justified from (28).

Table II shows the values of a CM versus a MAV . As a MAV increases wrt SNR (it decreases with σ 2 n ), and as a MAV increases wrt f eq T , we see that a MAV < a CM in the range of our assumptions. This corroborates the results shown in [START_REF] Ghandour-Haidar | Improving the tuning of First-Order Autoregressive Model for the estimation of Amplify and Forward Relay channel[END_REF] for the 2-D dual link scenario. In order to look at the consequences of our choice of AR(1) coefficient, we compare the BER obtained under CM and MAV criteria with f D T = 10 -4 and f S T = 10 -3 . We consider then a half-blind mode where 10 pilot symbols (known at the receiver) every 100 symbols are placed in the transmitted sequence. We use Binary Phase Shift Keying (BPSK) modulation for the normalized symbols (s k ∈ {-1; +1}) 2 , then K mod = 1, σ 2 s = 1, and SNR = SNR in . Figure 5 shows the behavior in this case. We see significant improvement after channel estimation with MAV-KF versus the CM-KF, for a wide range of SNR which corresponds to the range of σ 2 n valid for our assumption.

V. CONCLUSION

This paper addresses the problem of estimating a radiomobile channel using a first-order AR(1) model-based KF, assuming a 3-D scattering environment. We calculate the overall channel spectrum depending on the status of the source and destination (F-to-M and M-to-M cases). We show by simulations that the application of the CM criterion in order to choose the AR(1) coefficient is not accurate for low SNR and low Doppler frequencies. Therefore, we switch to an MAV criterion (already proposed in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]) to carry out the optimization of the AR(1) model. We provide an approximate expression of the MSE, and of the AR(1) (MAV) parameter for a given SNR and Doppler scenario. This paper demonstrates that the MSE of the AR(1) KF (MAV) is proportional to the (2/3) power of the product σ 2 n (2π f eq T ), where σ 2 n is the total observation noise variance, and f eq is the equivalent Doppler frequency, such that

f 2 eq = f 2 S + f 2 D . APPENDIX A. Calculation of MSE 2
Using ( 13) and ( 20)

MSE 2 = (K 2 ∞ σ 2 n T ) ∫ 1 2T -1 2T d f 1 + A 2 -2Acos(2π f T )
2 In this half-blind mode, in the third KF equation ( 9), we use y k = r k ŝk|k-1 instead of equation ( 2), where ŝk|k-1 = s k if s k is known (pilot) and ŝk|k-1

= sgn { ℜ( α * k-1 × r k )
} if s k is unknown (data) (sgn is the sign function). In this case, ŝk|k-1 represents the a priori decision, and the final decision will be ŝk

= sgn { ℜ( α * k × r k ) } . ( * ) is the transpose conjugate operator.
Table II Numerical values of a CM = sinc(2π f S T )sinc(2π f D T ) and of a MAV given in (27), for the M-to-M case with different velocities. In scenario 1, f S = 0.3 f eq , in scenario 2, f S = f D = feq √ 2 , in scenario 3, f S = 0.6 f eq , and in scenario 4, f S = 0.9 f eq . For a given f eq , the value of a CM depends on f D and f S but not on the SNR, while for a MAV , it is the opposite.

f eq T = 0.0005 f eq T = 0.001 f eq T = 0.005 a CM scenario 1 0, 999998355066833 0, 999993420278139 0, 999835515596909 a CM scenario 2 0, 999998355066994 0, 999993420280710 0, 999835517204046 a CM scenario 3 0, 999998355067016 0, 999993420281050 0, 999835517416166 a CM scenario 4 0, 999998355066912 0, 999993420279386 0, 999835516376127 a MAV at 5 dB 0, 999810109358414 0, 999521436486264 0, 995900917333125 a MAV at 20 dB 0, 999939955205278 0, 999848689693471 0, 998705575182885 where A = a(1 -K ∞ ). We use a variable change u = tan(π f T )

MSE 2 = K 2 ∞ σ 2 n π ∫ ∞ -∞ du (1 + A 2 )(1 + u 2 ) -2A(1 -u 2 ) = K 2 ∞ σ 2 n π(1 -A) 2 ∫ ∞ -∞ du 1 + [ 1 + A 1 -A ] 2 u 2 = K 2 ∞ σ 2 n π(1 -A) 2 ∫ ∞ -∞ [ 1 -A 1 + A ] ds 1 + s 2 = K 2 ∞ σ 2 n π(1 -A 2 ) [ tan -1 (s) ] ∞ -∞ MSE 2 = K 2 ∞ σ 2 n 1 -A 2 = K 2 ∞ σ 2 n 1 -a 2 (1 -K ∞ ) 2 (29) 
B. Calculation of I α From (19) and the expression of Γ α given in table I, we can calculate the value of I α . For the F-to-M case:

I α = ∫ + f d -f d (2πT ) 2 σ 2 α 2 f d f 2 d f = (2πT ) 2 σ 2 α 2 f d [ f 3 3 ] f d -f d = σ 2 α (2π f d T ) 2 3
For the M-to-M with same velocities case:

I α = 2 ∫ 2 f d 0 (2πT ) 2 σ 2 α (2 f d ) 2 (-f 3 + 2 f 2 f d )d f = (2πT ) 2 σ 2 α 2 f 2 d [ (2 f d ) 4 12 ] = 2σ 2 α (2π f d T ) 2 3
For the M-to-M with different velocities case: 

I α = (2πT ) 2 σ 2 α 4 f S f D (2I) with I = ∫ ∆ f 0 (2 f 2 f S )d f + ∫ Σ f ∆ f Σ f f 2 d f - ∫ Σ f ∆ f f 3 d f = (2 f S -Σ f f ) 3 3 + (Σ f ) 4 3 - (Σ f ) 4 4 + (∆ f

Figure 2 .

 2 Figure 2. MSE comparison of the AR(1) KF estimator based on the literature CM criterion or on the MAV criterion, for different SNR, in the case of Flat Doppler Spectrum, as functions of f d T .

Figure 3 .

 3 Figure 3. MSE comparison of the AR(1) KF estimator based on the literature CM criterion or on the MAV criterion, for different SNR, in the case of Triangle Doppler Spectrum, as functions of f d T .

Figure 4 .

 4 Figure 4. MSE comparison of the AR(1) KF estimator based on the literature CM criterion or on the MAV criterion when f eq is the same but f D and f S values change.

  with different velocities MAV f S = 0.3 f eq and f D = 0.954 f eq MAV f S = 0.6 f eq and f D = 0.

Figure 5 .

 5 Figure 5. BER versus SNR for the AR(1) KF estimator based on the CM and MAV criteria, for f S T = 10 -4 and f D T = 10 -3 , in the case of Trapezoïdal Doppler Spectrum, with TDM training scenario

) 4 4 =

 4 (Σ f )4 12-(∆ f ) 4 12 = 8 f 3 D f S + 8 f D f 3 S 12 where Σ f = f D + f S and ∆ f = f Df S . Then I α = σ 2 α ((2π f D T ) 2 + (2π f S T ) 2 ) 3

As for example, in an OFDM system through multipath frequency selective channel, where we have to track the CG for each pilot subcarrier[START_REF] Chui | Kalman Filtering with real-time applications[END_REF].