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Abstract

The LIP (Logarithmic Image Processing) framework is classically devoted
to grayscale images. The aim of the present study is to extend this frame-
work to color images. This new model is noted LIPC for LIP Color. It
does not consist in applying the LIP Model to each channel R, G, B of a
color image. We define the transmittance of color images in order to give
a physical justification, on which will be based the definition of logarithmic
operators like addition, subtraction and scalar multiplication, respectively
noted in the LIPC : c, c and c.
As for the classical LIP Model, the laws c and c define a vector space
structure on the space of images which enables us to present notions requir-
ing such a structure. For example, we define a color logarithmic interpo-
lation by associating to a pair (F,G) of images the interval [F,G], set of
barycenters of F and G. A new notion of color contrast is defined, which
satisfies sub-additivity and homogeneity for scalar multiplication. This no-
tion is proved to be efficient for edge detection.
We note that the vector space structure opens the way to a lot of develop-
ments concerning the definition of metrics, norms, scalar products...and to
transfer to LIPC gauges theory, duality theory...
In this initial paper, we preferred insist on applications of the LIPC. For
example, color prediction is presented and discussed as well as stabilization
of images by dynamic range centring and enhancement of under-lighted im-
ages. Concerning the implementation of the LIPC operators and algorithms,
informations are given on their execution time.

Keywords: logarithmic image processing, image enhancement, color
images, human vision
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1. Introduction

1.1. The LIP Model framework

This part is devoted to recalls on the grey level LIP Model. At the very
beginning of the LIP Model, M. Jourlin in Jourlin and Pinoli (1985) put
forward this model as a mathematical framework where the addition of two
grey level functions F“+”G could be possible.

Mathematicians are familiar with the idea that the addition of two func-
tions is generally driven by the addition of the arrival space. In fact, given
a set E without any structure and two functions F and G defined on it,
with values for example in the real space R, an addition of F and G is
immediately available :

∀x ∈ E, (F“+”G)(x) = F (x)+G(x)

In the case of images defined on a same spatial support D ⊂ R
2 and with

values in the grey-scale [0,M [, such an approach is not possible because the
grey levels are bounded and consequently the addition of two grey levels
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would not always stay in the scale. Those remarks have caused some au-
thors to “truncate” the addition in order to limitate its values to the grey
scale.

Coming back to the LIP construction, M. Jourlin decided to try to find
a physical framework where the addition of two grey level functions re-
mains a grey level function. It appears that the case of images acquired in
transmission (i.e. when the observed scene is situated between the source
and the sensor) corresponds to this situation, because the physical addi-
tion of two semi-transparent objects produces an image. Thus, the addition
F G of two images defined on D ⊂ R

2 with values in [0,M [ is now possible
thanks to the transmittance law :

T
F G

= TF ×TG (1)

and thanks to the link between TF and the function F itself (see Jourlin
and Pinoli (2001)) :

TF = 1− F

M
(2)

Here, the transmittance TF (x) at a point x of D represents the probability
for an element of the source incident at x to “pass through” the object, i.e.
to be seen by the sensor. In physical terms :

TF (x) =
ΦO

x

ΦI
x

where ΦO
x designs the out-coming flux at x for F, and ΦI

x designs the in-
coming flux at each point of D, noted ΦI when this flux is supposed homo-
geneous (i.e. presenting the same value at each x ∈ D). Using relations (2)
in formula (1) yields to :

F G = F +G− FG

M
(3)

which appears as an internal addition on the space I(D, [0,M [) of images
defined on D with values in [0,M [, (cf figure 1).

From this addition, a scalar multiplication has been derived, starting of
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the particular situation where we add the same object to itself.

F F = 2F − F 2

M
that we can write : 2 F

The formula has been generalized to n F for each integer n ∈ IN, then to
each quotient of integers p

q and finally to each real number α according to :

α F = M −M

(

1− F

M

)α

(4)

M. Jourlin suggested that J.C. Pinoli works with him on the development of
this LIP Model, in the context of a PhD thesis, which resulted in presenting
the basic properties of the LIP Model through various initial publications :
Jourlin and Pinoli (1988) and Jourlin et al. (1989), and later in Jourlin and
Pinoli (1995). For the reader interested in more details, we recommend a
synthesis of further properties and applications in Jourlin and Pinoli (2001).
They concern the characterization of (I(D, [0,M [), , ) as the positive
cone of the vector space (F(D, ]−∞,M [), , ) of all functions defined on
D with values in ]−∞,M [.

From this vectorial structure, many mathematical tools are derived, like
interpolation (in a logarithmic sense), metrics, correlation and a scalar prod-
uct by Pinoli (1992), as well as an algorithm of stabilization of a signal (see
Jourlin and Pinoli (1995)) and a regression model in the previously defined
vector space (see Pumo and Dhorne (1998)).

An important property of the LIP Model has been established by Brailean
et al. (1991) : the LIP Model is consistent with human vision and thus
is applicable on images for which the processing must approach the hu-
man perceptual system, even when these images are acquired in a situation
of reflected light. Furthermore, a large number of materials observed in
reflection are semi-transparent : human skin, polymers, varnishes, paints,
cosmetic products... In all these cases, the interaction “light-material” must
take into account a non-linear attenuation of the source intensity through
the object. Such a remark considerably enlarges the Model’s field of interest.

Now let us consider the possibility of extending the LIP Model to color
images. A preliminary unrefined approach consists in processing each chan-
nel of a RGB image in a logarithmic manner. It produces some interesting
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results but it does not take into account the different sensitivities of the
human eye in the Red, Green and Blue channels, and can produce false
colors (see Garcia (2008) and figure 2).

Some previous studies have put forward solutions to perform color loga-
rithmic processing. An example is the model of V. Patrascu described in
Patrascu (2001) in his PhD thesis directed by V. Buzuloiu, Patrascu and
Buzuloiu (2001a), Patrascu and Buzuloiu (2001b), Patrascu and Buzuloiu
(2002), Patrascu and Buzuloiu (2003a), Patrascu and Buzuloiu (2003b).
The adopted solution consists in considering the interval [−1,+1] as the

grey scale and [−1,+1]3 as the color scale. Thanks to this presentation, the
vector structure is easy to define, but in our appreciation, the physical jus-
tification of the model is not established. The “Romanian school” directed
by V. Buzuloiu has developed works on this model by Florea et al. (2007)
and Zaharescu (2003).

Other solutions have been proposed, especially by Liévin and Luthon (2004)
and Luthon et al. (2010). They created the LUX (for Logarithmic hUe eX-
tension) Color System according to the following definitions :

L = (R +1)0.3(G+1)0.6(B +1)0.1 −1

U =







128
(

L+1
R +1

)

if R > L

256−128
(

R +1
L+1

)

otherwise

X =







128
(

L+1
B +1

)

if B > L

256−128
(

B +1
L+1

)

otherwise

and applied it with success in speech recognition for lips segmentation.

We propose in this paper a model called LIPC (for LIP Color), that uses the
eye wavelength sensitivity. It will be demonstrated that this model is clearly
mathematically and physically defined taking into account the sensitivity
of the eye and its perception of colors, associated to different operators as
in the LIP Model.

Fundamental remark : Since the LIP model uses images acquired in trans-
mission, the observed object is placed between the sensor and the lighting
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source. Let’s assume there is no object between the source and the sensor.
The image we get will be completely white. If a layer is added, the im-
age from the sensor will be darker since there is a semi-transparent object
in front of the source. However, by definition, the result should remain
unchanged if the neutral element is added. Thus, the neutral element cor-
responds to the value 0 and is the brightest grey level (white).

By adding an infinite number of objects, the sensor may not receive light
anymore and the image will be completely black. Therefore, the grey scale
[0,M[ has been chosen where 0 is the neutral element of the addition law.
It is the reason why it was called the “white” extremity (cf figure 3). The
other extremity M is generally equal to 28 = 256.

This point of view presents the advantage that in the extended space, noted
F(D, ]−∞,M [), the negative values correspond to opposite values of “true”
grey levels lying in [0,M [.

On the opposite, this choice does not correspond to the “classical” grey
scale [0,M [ where 0 is the black extremity. Nevertheless, it is easy to adapt
the LIP Model to this context by inversion of the grey-scale, that is to say
by replacing the value F (x) by M − F (x). Thus, the grey scale becomes
]0,M ] where 0 corresponds now to the black pixels. A translation of one
unit (F (x) replaced by M − F (x) − 1) yields to the current interval [0,M [.
Under such conditions, we must take care that the addition neutral element
becomes 255.

In this case, the over space F(D, ]−∞,M [) becomes F(D, ]0,+∞[), where
the values [0,M [ are the “true” grey values corresponding to images and
the interval [M,+∞[ represents the opposite values of [0,M [.

1.2. Color image processing

A color image represents multi-spectral data acquired through the vis-
ible domain. For “classical” color images, this domain is reduced in three
channels, one for each primary color : red, green and blue. A simple way to
process those images is to use the same algorithm on each channel (see fig-
ure 4). Nevertheless, this method doesn’t take into account the correlation
between the channels. Another approach consists in processing the entire
data at the same time (see figure 5).

7



In the example on figure 6, we apply a histogram equalization to image
“Lena” using those 2 approaches. With the first one, the red, green and
blue channels are well equalized separately but false colors appear. Hues
are preserved in the second one.

Some studies propose to classify colors in order to maintain the data cor-
relation. A lexicographic order consists for example to define the red color
“inferior” to the blue one because the letter R is placed after the letter B
in the alphabet. This concept is useful when an order relation is absolutely
necessary, like in the color mathematical morphology.

One solution to process color images is to change the color space. The aim
is to find a space where data are not correlated. The color space CIELAB
1931 has been created in order to represent our visual system behaviour. It
separates the luminance and the chrominance informations.

Therefore, common algorithms “adapted to the human vision” only work
on the luminance channel in the L*a*b* space (see figure 8). Thus, false
colors can’t be generated.

2. Logarithmic Image Processing for Color Images

In the next sections we differentiate LIP (Logarithmic Image Processing
for grey level images) and LIPC (Logarithmic Image Processing for Color
images).

Based on the LIP framework properties, LIPC must be mathematically
and physically justified, as well as consistent with human vision.

To define the transmittance of a color image, we use the same transmitted
signal approach than the one used for grey level LIP. A scene is typically
acquired through a camera with a Bayer filter or a 3-CCD sensor. The im-
age is then defined with Red, Green and Blue values and the display device
may be an 8 bits computer screen with the same 3 channels.

A color image is defined as a function F on a spatial support D ⊂ R
2 with

3 components Fr, Fg, Fb taking values in [0,255] for each channel R, G, B.

In this context, our color transmittance is linked to two models : on one
8



hand, the ocular perception of an image on a computer screen, and on the
other, the ocular perception of a transmittance (thanks to a light source
placed behind the semi-transparent layer).

Furthermore, in order to keep the human perceptual system approach, we
take into account the eye sensitivity in the visible domain by using a Color
Matching Functions table (see next section).

It will be demonstrated how the situation described in the precedent funda-
mental remark may be exactly adapted to the LIPC Model with 3 color com-
ponents lying in [0,M [ and giving for a 24 bits images the space I3(D, [0,255]3)
or I3 when no confusion is possible.

Mathematically, the over-space F3(D, [0,+∞[3) becomes a vector space for
the addition law c and the multiplication law c. The space of images
I3 represents its positive cone and the values in [M,+∞[3 the opposite of

real color values lying in [0,255]3.

Remark : Our color images are defined in the RGB space. In the case
of multi-spectral data on more than 3 channels, the model can be easily
adapted. We will develop this point in a further publication.

2.1. Obtaining classical image perception

Initially, we define how the eye perceives an image shown by a display
unit (cf (a) in figure 7). The eye is similar to a sensor called S (with 3 chan-
nels SR, SG and SB) and the perception P takes account of the observed
image F ∈ I3 and the light source L.

The sensor is divided into numerous cells, as many as the image pixels
number. Each is divided into 3 channels (R, G and B) and receives part of
the light coming from the image. Subsequently, Pi (with i ∈ [R,G,B]) can
be defined as the sum along the visible spectrum of these different elements.

Given a cell (x,y), we define :

Pi(x,y) =
∫ 780

λ=390
L(λ)Fi(x,y)Si(λ)dλ i ∈ [R,G,B] (5)
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Thus, the light coming from the image to the sensor, comes actually from
the 3 primaries of the display unit R = 700nm, G = 545nm and B = 435nm.
Thereby, the light source is separated into 3 components according to the
primaries, and balanced by some constants CR, CG, CB, depending on the
sensor sensitivity. In order to display a white sensation to the observer, a
certain amount of each primary has to be emitted, in relation with the eye
wavelength sensitivity.

From experiments on 49 observers, Stiles and Burch have measured this
sensitivity and created a table called Color Matching Functions (CMF, cf
tables in appendix F). The observers had to reproduce a monochromatic
color by merging R, G, B colors. The CMF describe the eye (S) behaviour
on values from 390 to 780nm every 5nm. The negative values (figure 9) cor-
respond to the unreproducible colors which require adding a certain amount
of a component (see Schanda (2007)).

CR =
1

SR(λR)
, CG =

1

SG(λG)
, CB =

1

SB(λB)

We note :

LR = CRL(700), LG = CGL(545), LB = CBL(435)

Under a matrix formulation, relation (5) can be written :







PR

PG

PB





=







LRSR(λR) LGSR(λG) LBSR(λB)
LRSG(λR) LGSG(λG) LBSG(λB)
LRSB(λR) LGSB(λG) LBSB(λB)













FR

FG

FB







and then :
P = KF

The result has to be bounded in order to stay within the definition do-
main. When the K matrix is applied to an image whose values are equal
(when normalized by the dynamic range) to the unit vector N = [1,1,1], the
normalized result (by M) of the operation KN must be equal to N. We
introduce the matrix X which allows us to obtain (KN) ∗ X = N where ∗

10



represents the “element by element” multiplication.

X =







XR

XG

XB





=









1
LRSR(λR)+LGSR(λG)+LBSR(λB)

1
LRSG(λR)+LGSG(λG)+LBSG(λB)

1
LRSB(λR)+LGSB(λG)+LBSB(λB)









We note Ḱ the result of K∗X

Ḱ =







XRLRSR(λR) XRLGSR(λG) XRLBSR(λB)
XGLRSG(λR) XGLGSG(λG) XGLBSG(λB)
XBLRSB(λR) XBLGSB(λG) XBLBSB(λB)







Finally we can express the sensor perception matrix of a classical image,
solely with the image data and the Ḱ matrix :

P = Ḱ







FR

FG

FB





 (6)

2.2. Obtaining transmittance perception

In order to describe the transmittance T of an image F ∈ I3, some ele-
ments have to be described :

• T (λ,x,y) is the wavelength distribution of the transmittance, depend-
ing on the position (x,y), which will be noted T (λ). Given the CMF
values, we can divide the visible domain into three parts T390→480,
T485→545 and T550→780 where the blue, green and red colors are re-
spectively dominant. It gives the matrix representation :

T =







T390→480

T485→545

T550→780







• L(λ) : wavelength distribution of the lighting source,

• Si(λ) : sensor wavelength distribution depending on the channel i ∈
{R,G,B}, in our case the eye.

Now let us assume the following hypotheses :
11



• the lighting source L(λ) is uniform on the spatial support which is a
reasonable hypothesis according to disposable light sources

• the transmittance T is piecewise continuous

Under such conditions, the sensor perception is defined as the integration
along the visible spectrum of the light source spectrum, the sensor sensitivity
and the transmittance (see (b) on figure 7). Each channel of the sensor
perception takes values in [0,255] and a transmittance is classically defined
on the interval [0,1]. So, the transmittance has to be multiplied by the
dynamic range M to correspond to the values of P previously defined in (6).

Pi = M

∫ 780

390
L(λ)T (λ)Si(λ)dλ

As T (λ) is piecewise continuous as said in the hypotheses, it can be extracted
out of the integration :

Pi = M
780
∑

j=390

Tj

∫ j+1

j
L(λ)Si(λ)dλ

where each interval (j,j +1) corresponds to a continuity domain of T . The
right part of the expression is noted :

Ui,j = M

∫ j+1

j
L(λ)Si(λ)dλ

and the corresponding matrix U can be reduced, merging the wavelength
domain into 3 parts :

U = M







UR,390→480 UR,485→545 UR,550→780

UG,390→480 UG,485→545 UG,550→780

UB,390→480 UB,485→545 UB,550→780







As we want the result of the multiplication of U by T to take values in
[0,1], given a transmittance T with values equal to the unit vector N, the
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result of U∗T must be N ; (UN)∗Y = N.

⇔ Y =







YR

YG

YB





=
N

UN
=

1

U
=





































1
780
∑

j=390

UR,j

1
780
∑

j=390

UG,j

1
780
∑

j=390

UB,j





































With the wavelength domain merged as previously, the outcoming matrix
of perception P may be expressed as :

P = ÚT where Ú = U∗







YR

YG

YB





 (7)

Thanks to CMF and D65 illuminant values, Ú can be easily computed (see
equation 14 for values). As det(Ú) 6= 0, the matrix Ú can be inverted :

T = Ú
−1

P (8)

Thanks to relation (6), the definition of P is well known, which gives us the
expression of T depending exclusively on the image F and the matrices U
and K :

T = Ú
−1

ḰF (9)

2.3. Internal addition on the set I3

In this section we will define the theoretical laws (internal addition,
external multiplication) in the space I3 of images : in the following sections,
the LIPC addition will be denoted by the symbol c. In the LIP framework
and more generally in the transmitted signal processing, the transmittance
of the addition of two images F ∈ I3, and G ∈ I3 is equivalent to the
multiplication of their transmittances TF and TG according to :

TF cG = TF ∗TG
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In 2.2 we have defined that P = ÚT ; for each pairs of images F,G ∈ I3

PF cG = Ú(TF ∗TG)

We replace TF, TG and PF cG by their relative expressions thanks to
relations (9) and (6) and we obtain :

Ḱ(F cG) = Ú(Ú
−1

ḰF∗ Ú
−1

ḰG)

⇔ F cG = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

Ḱ.G) (10)

As said previously, Ḱ can be inverted thanks to the values computed
from CMF and D65 (see formula 15).

2.4. External scalar multiplication

The symbol c denotes the external LIPC multiplication by a scalar
α ∈ R. We start from the addition of an image onto itself in the LIPC
framework. For F ∈ I3 :

F cF = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

Ḱ.F)

⇔ 2 cF = Ḱ
−1

Ú(Ú
−1

ḰF)2

We repeat the operation, making the addition between the image F and the
result of 2 cF :

F c(2 cF) = 3 cF

3 cF = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰF)2)

3 cF = Ḱ
−1

Ú(Ú
−1

ḰF)3

By recurrence, we prove in appendix A that for each n ∈ IN :

n cF = Ḱ
−1

Ú(Ú
−1

ḰF)n (11)

Then, it is generalized to α ∈ R in the same appendix A.

2.5. Subtraction of two images

The symbol c denotes the LIPC subtraction. The subtraction is a
combination of the two previous operators addition and multiplication.
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Given F and G ∈ I3 :

F c(−1 cG) = F cG

Replacing the corresponding expressions gives :

F cG = Ú
−1

Ḱ(Ú
−1

ḰF∗ Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰG)−1)

After simplification :

F cG = Ḱ
−1

Ú





Ú
−1

ḰF

Ú
−1

ḰG



 (12)

A condition for being compatible with the mathematical definition is that
values of F must be superior to G, otherwise the result is not in the defini-
tion domain [0,255]3 but in [0,+∞[3. We could also take into account only
positive values to bring the result back to the definition domain, paying
attention that the result is truncated, generating a loss of information.

2.6. Transmittance operation’s properties

Let us demonstrate some properties of the previous operations :

• Associativity of LIPC addition (see appendix B)

∀F,G,H ∈ I3

F c(G cH) = (F cG) cH

• Commutativity of LIPC addition

Each pair of images F, G satisfies :

F cG = G cF

because of :

Ú
−1

ḰF∗ Ú
−1

Ḱ.G = Ú
−1

ḰG∗ Ú
−1

Ḱ.F

• Neutral element of LIPC addition
15



We can show that there exists an image G0, assimilated to a white
transparent layer, whose values are equal to the vector [255,255,255]
(for 24 bits color images), such that for each F ∈ I3 :

F cG0 = F

• Opposite element of LIPC addition

We define for each F ∈ I3 its opposite element cF, such that :

F c( cF) = G0

because :

F c( cF) = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

Ḱ( cF)) = G0

and
Ú

−1
ḰG0 = N

We show that :

cF = Ḱ
−1

Ú∗
(

1

Ú
−1

ḰF

)

Remark : such a function cF has been mathematically defined, but does
not lie in the space I3 of images. In fact, it takes values in [255,+∞[3. For

this reason, we will define an “over-space” on I3, noted F3(D, [0,+∞[3), or
F3.

At this step, we can conclude that F3 equipped with the law c presents
all the properties of an additive group.

Moreover, concerning the scalar multiplication, (F3, c) satisfies:

• Distributivity of scalar addition with respect to LIPC multiplication
(cf appendix C)

∀α,β ∈ R
+, ∀F ∈ I3

(α +β) cF = (α cF) c(β cF)
16



• Distributivity of LIPC scalar multiplication with respect to LIPC ad-
dition (cf appendix D)

∀α ∈ R
+,∀F,G ∈ I3

α c(F cG) = (α cF) cα cG)

• Associativity of LIPC multiplication (cf appendix E)

∀α,β ∈ R
+, ∀F ∈ I3:

α c (β cF) = (α ×β) cF

• Existence of a neutral element for LIPC Multiplication

For each F ∈ I3 there exists a neutral element noted 1 such that :

1 cF = Ḱ
−1

Ú(Ú
−1

ḰF)1 = F

2.7. Consequences

Thanks to the previous properties, one can afford that :

(F3, c, c) is a real vector space (in fact a vector space defined on[0,+∞[ )
(13)

and the space of images (I3, c, c) represents its positive cone.

Fundamental Remark : before presenting some applications of LIPC Model
in the next section, we ask the reader to pay attention to the following
points :

• considering the space (I3, c, c) is not a vector space itself does not
really limit the interest of such a strong structure : in fact, the behaviour of
(I3, c, c) related to the vector space (F3, c, c) is exactly comparable
to that of (R+)2 in R

2 : two elements lying in the positive cone are elements
(vectors) of the vector space. Thus, the numerous properties established by
mathematicians in the context of vector spaces or topological vector spaces
(see Grothendieck (1954), Michael (1952) and Bourbaki (2006)) are avail-
able in the positive cone, if they do not necessitate the use of “opposite”
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vectors or multiplication by a “negative” scalar (in fact lying in [M,+∞[).
As examples, we can mention the notions of interpolation between two im-
ages (presented below), scalar product, distances...

• Furthermore, the vector space structure opens very important transfers
from mathematics to image processing : duality theory, gauges theory (de-
velopment in progress). The possibility to define topologies compatible with
the vector structure (i.e. such that the laws c and c be continuous) will
allow to characterize some properties of operators defined on (I3, c, c)
with values in (I3, c, c) , which is the most common situation of image
transforms. As an example, it is very important (but rarely studied) to pre-
cise if an image processing operator is continuous or not (does it preserve the
proximity of resulting images if the distance between initial ones is small ?).

• A weak utilisation of the LIPC model consists in translating classical
operators (gradient, Laplacian, metrics...) into “logarithmic” ones. Gen-
erally, such a transcription does not present difficulties and then is of no
interest at a theoretical level. Nevertheless, it is often very useful because
the LIPC Model is consistent with human vision : in each situation of im-
age processing where we aim at imitating the human behaviour, the use of

c, c and c is efficient. The same situation was observed in the LIP
context : Deng et al. (1995), Deng and Cahill (1993), Deng (2009), Deng
and Pinoli (1998) and Panetta et al. (2008), for example have defined gra-
dient notions in a logarithmic way producing a better visual detection and
a more precise one in the dark parts of images.

• Let us insist on the fact that, at the beginning, the LIP Model was
adapted to images acquired in transmitted signal. In such situations the
use of LIPC operators will be also very efficient (see 2.9).

• Finally, considering that on one hand, the operators c and c result in
darkening or lightening a given image, and that α c simulates the thick-
ness increasing (α > 1) or decreasing (α < 1) of the semi-transparent obstacle
generating the image, it is evident that such operators are very well adapted
to process :

⋆ images with variable lightening

⋆ images acquired under low-lightening or very low lightening near night

18



vision

A special part of the paper will be devoted to that specific kind of applica-
tions.

2.8. Direct Applications

2.8.1. Addition

We choose the D65 illuminant, which is generally sufficient for common
images. The Ḱ and Ú matrices are computed once and for all, thanks to the
CMF tables given in appendix F, D65 tables in appendix G and formula (7).

Ú =







25,0440 53,1416 176,8144
21,3002 185,9744 47,7254
229,2474 19,9944 5,7583





 (14)

and

Ḱ =







0.6991 0.2109 0.0899
0.1947 0.8002 0.0049
0.0681 0.0002 0.9315





 (15)

Unlike the classical addition between two images, LIPC addition does not
exceed the bounds of the grey scale for each R, G and B channel.

The operation behaves as a superposition of two semitransparent layers tak-
ing account of subtractive synthesis. Colors and contrasts of the two initial
images (figure 12) are well preserved without visible false color generation.

2.8.2. Multiplication

The LIPC multiplication by a scalar allows darkening or brightening of
an image, depending on the value of the scalar. If the scalar ∈ ]0,1[, the
multiplication proceeds as a suppression of layers and the result is brighter
than the original image.

Conversely, using a scalar α ∈ ]1;+∞[ will return a darker image, corre-
sponding to the superposition of the image on itself α times.

One can see on the result (figure 13) that shadows are well upgraded, with-
out saturation of brighter areas. The result matches the initial colors.

19



2.8.3. Subtraction

The LIPC framework enables a subtraction of non diffusing images.
Given two images F and G, the result of LIPC addition of F and G then
subtracted by G (using LIPC subtraction), should be the original image F.
Using classical operators, the result differs markedly from the original image.

On the result (image (d) on figure 14), we can see that with LIPC op-
erations, the result is the same image as the initial one. The subtraction
operator is also able to suppress the background layer from an image.

As a real condition test, we have decomposed a color image into two com-
plementary layers. For each pixel’s color, we are able to find two RGB
values whose LIPC addition gives that same initial color. One application
of this method is color prediction, described in 2.9. As you can see on figure
18, the result of the LIPC addition of our decomposition perfectly fits the
original image.

2.8.4. Interpolation

We can define the LIPC interpolation between 2 images. In fact, this
notion is classically associated to a vector space structure (or a positive cone
of a vector space). The interpolation between 2 images F and G ∈ I3 is
easily obtained by combination of LIPC addition and LIPC multiplication
according to :

[F,G] = {(λ cF) c [(1−λ) cG]}λ∈[0,1] (16)

where [F,G] designs the “segment” generated by F and G, i.e. the set of
interpolated images.

One can see in figure 19 that transition made by LIPC operations perfectly
reproduces the behaviour of transparent slides on each others. However,
since the LIPC framework was initially made for low values, we may have
better results for dark images than bright ones.

Such image interpolations were successfully used in the LIP context in var-
ious situations like :

• starting with the “physical” cuts of a 3D cell, if some cut lacks for any
reason (bad cutting) it is possible to replace it by the interpolation (with
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λ = 1
2) of the previous and next images (see Gremillet et al. (1991) and

Gremillet et al. (1994)).

• when using images acquired with X-ray scanner, the (x,y) resolution (pixel
size) inside a cut is generally much more precise than the z-resolution (voxel
thickness). This fact produces voxels 4 or 5 times higher than large. In or-
der to obtain voxels nearer to a cube shape, it is possible to create 3 or 4
interpolated images between two successive ones.

Such applications must be performed in the same manner for 3D color im-
ages (as for The Visible Human Project for example, see Ackerman (1994)).

2.9. Color prediction
Inspired from works of Hébert and Hersch (2006), Hébert and Hersch

(2009) and Hébert and Hersch (2011), we have tried and succeed to per-
form one kind of color prediction. Given a random RGB color with values
on [0,255]3, we can define this color as a LIPC addition of two colors. Let’s
assume that our target color has Rv, Gv and Bv values. The first color
must be chosen in ([Rv,255] , [Gv,255] , [Bv,255]) in a supervised or random
manner. The second color is then given by the LIPC subtraction of the
target color and our first color.

An example is given on figure 11, where we associate to a given set of
random colors (figure 11 (a)) a complementary set of colors (figure 11 (b))
that visually gives the same result for each couple of colors (figure 11 (c)
and (d)) : the first example aims to obtain a grey color whereas the second
one, using the same initial set, aims to obtain a red color.

We note that in the case of a target color with a high predominance of
a primary color, the complementary color will conserve the predominance.

2.10. Contrast definition
On a grey-scale image F , the contrast definition between two pixels x

and y is derived from the physicians’s one as :

Cx,y(F ) =
Max(F (x),F (y))−Min(F (x),F (y))

Max(F (x),F (y))+Min(F (x),F (y))
=

|F (x)−F (y)|
F (x)+F (y)

(17)

which clearly lies in [0,1]. Thus, it is obvious that in order to be displayed
on a screen, contrast result has to be normalized between 0 and 255. Thanks
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to this definition, low grey levels values are favoured by comparison to the
high ones.

A LIP version of contrast, noted C△
x,y(F ) has been proposed by Jourlin

et al. (1989). In their approach C△
x,y(F ) represents the grey level which

must be added to the Min in order to obtain the Max :

C△
x,y(F ) = Max(F (x),F (y)) Min(F (x),F (y)) =

|F (x)−F (y)|

1− Min(F (x),F (y)

M
(18)

Another approach using LIP Laplacian of Gaussian has been described by
Palomares et al. (2005).

This contrast, as well as the physicians’s one, links the perceptive approach
of LIP Model. It respects some useful mathematics properties as the scalar
LIP multiplication homogeneity (C△

x,y(λ F ) = λ C△
x,y(F )) and the sub-

additivity (C△
x,y(F G) ≤ C△

x,y(F ) C△
x,y(G)). Contrast can be computed

for two pixels of a same image or more generally for two images, by averag-
ing the contrast between F (x) and G(x) where x is lying in the definition
domain D or in a Region Of Interest of it. We propose a definition of a
color contrast using LIPC framework limited to the comparison of a point
to its neighbours.

Color contrast of a point of an image is defined thanks to his neighbours.
Given an image F with R, G, B channels FR, FG, FB, and a pixel x of
this image, each pixel Ni of the eight pixels of the N8 neighbourhood will
be tested in order to evaluate which one has the largest contrast thanks
to a LIPC subtraction. In order to avoid out of scale values, we shall not
subtract lower values to the current one, which implies LIPC subtraction is
computed as follows :

Sub(F,x, i) =







min(FR(x),FR(Ni))
min(FG(x),FG(Ni))
min(FB(x),FB(Ni))





 c







max(FR(x),FR(Ni))
max(FG(x),FG(Ni))
max(FB(x),FB(Ni))







(19)
In the same manner as the LIP contrast, where the greatest difference be-
tween two pixels is actually the lowest value (i.e. the darkest layer), the
greatest difference for a LIPC contrast will be the minimum norm of color
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values. Pixel contrast value can be assimilated to the subtraction value
which gives the minimum norm. A LIPC contrast can be defined by select-
ing among the 8 following values :

C△c
x = Sub(F,x,j), j ∈ [1,8]

that presenting a minimum norm :

‖Sub(F,x,j)‖ = mini=1...8 ‖Sub(F,x, i)‖
where ∀x ∈ R,‖x‖ =

√
x2

(20)

We chose to apply our contrast to the peppers’ image. On homogeneous
areas, the contrast is low but we can still discern the objects’ colors (see
figure 15). High contrasts are visible for each pepper’s borders. Thus,
one application of this color contrast may be edge detection. By applying
a linear darkening on the image, high contrasts on edges remain and the
result stays quite similar, which proves the efficiency of this approach on
dark images or images with variable lightening.

2.11. Enhancement and stabilization

2.11.1. Optimal multiplication factor

A dynamic centring for color images is possible by transposing a LIP
method described by Jourlin and Pinoli (1995). This algorithm suggests an
optimal factor λ0 to enhance the dynamic range.

λ0 is given by : λ0 =

ln













ln

(

1− f(a)

M

)

ln

(

1− f(b)

M

)













ln











1− f(b)
M

1− f(a)

M











with F (a) the maximum of the grey levels of the image and F (b) the mini-
mum of the grey levels of the image.

We extend this method to color images by searching the maximum and
minimum values of grey levels over the 3 channels. For an image F ∈ I3 the
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enhanced image is given by λ0 cF, cf fig 20.

2.11.2. Fixed mean value

Another approach aims at a stabilization of images acquired under vari-
able lightening simulated by variable aperture values of the sensor objective.
It consists in applying a LIPC operation in order to maintain the mean value
at a desired level (125 for example, cf figure 22).

The darker the image, the more scattered the histogram will be, due to
the fact that dark images have a few grey levels and that mean centring
does not create new levels, but only expands them. Another result is given
for example in figure 21.

2.11.3. Enhancement

First let us propose an efficient approach dedicated to low-light images.
It consists on applying to the image a subtraction by an adequate constant
C in order to expand the dynamic range to the whole scale (grey or color).

• Concerning grayscale images (LIP framework)
If F denotes an underlighted image, it presents a small dynamic range
dr(F ), concentrated near the black extremety M of the grey scale [0,M [.
There exists a and b lying in D where F reaches respectively its maximal
and minimal values :

F (a) = Supx∈DF (x) F (b) = Infx∈DF (x)

Thus a and b represent the darkest and the brightest points of D for the
image F and we have :

dr(F ) = F (a)−F (b)

Given some grey level C, let us compute the values F (a) C and F (b) C

which may be negative ones if C > F (a).
The dynamic range of the image F C is given by :

dr(F C) = F (a) C −F (b) C =
F (a)−C

1− C
M

− F (b)−C

1− C
M

=
F (a)−F (b)

1− C
M

Remark : because 1− C
M

< 1 for each C ∈]0,M [, the dynamic range dr(F C)
is greater than dr(F ), and tends to infinity when C tends to M . For 8 bits
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images (M = 256), we propose to compute the value C0 of C satisfying
dr(f C0) = 255 :

F (a)−F (b)

1− C0
M

= 255 ⇔ C0 = M

[

1− F (a)−F (b)

M

]

It remains only to translate F C0 by the value −F (b) C0 in order to dis-
play it as an image.

• Concerning color images (LIPC framework)
The same approach is possible. If F represents now a color image (FR,FG,FB),
we compute :

Sup(F) = Supx∈D(FR(x),FG(x),FB(x))

and
Inf(F) = Infx∈D(FR(x),FG(x),FB(x))

Considering the dynamic range dr(F) as the difference Sup(F)−Inf(F) and
the fact that these two values lying in the interval [0,M [ (where 0 is the
“black value” in the LIPC model), one can apply the same expansion than
for a grey level image, which gives a unique value C0 defined by searching :

dr(F cC0) = (A cC0)− (B cC0) = Max

where A =







Sup(F)
Sup(F)
Sup(F)





 , B =







Inf(F)
Inf(F)
Inf(F)





 and Max =







255
255
255







C0 expression is given by :

C0 = Ḱ
−1

Ú





Ú
−1

ḰA− Ú
−1

ḰB

Ú
−1

ḰMax





Finally C0 which values are







C0

C0

C0





, is subtracted to F =







FR

FG

FB





 and the

result







FR

FG

FB





 c







C0

C0

C0





 is translated by −Inf













FR

FG

FB





 c







C0

C0

C0











 in
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order to be displayed (see figure 16).

Not many grey levels are employed in images acquired with low lightening
conditions. The greatest value of each channel is far from the maximum.
It is as if a dark semi-transparent image had been superposed on a bright
one. Enhancement can be approached by LIPC subtraction, by subtracting
a grey value, which value depends on the maximum of the three channels. If
the image minimum is 0, as it is commonly in dark scenes, the subtraction
brings a maximum dynamic to the new image. An example is given in figure
17 where one can see how improved is the image.

This method necessitates an important condition : bright dots must not
appear on the image, otherwise, since maximum is already high, enhance-
ment could be limited. Another approach consists on subtracting a grey
value, which is equivalent as to subtract a grey semi-transparent image.
This method was used in the case of outdoors acquisition with low light-
ning conditions. Using a common Bayer camera, we have taken a scene at
two different exposure times: 30 and 100ms. 20 to 40 lux were measured
under the street lamp, and approximatively 0.5 lux in dark areas. Obvi-
ously, images are brighter with a higher exposure time. We have compared
LIPC subtraction with the highest camera’s gain correction and with his-
togram equalization. It results that gain compensation is not enough and
that saturation areas appear with the equalization. With our algorithm,
more details are visible and the level of correction can be chosen (see figure
23).

2.12. Implementation

The execution time depends on the operation and on the image size.
We choose two images to illustrate the execution time of our algorithms.
One is the well known Lena (512x512), the other is a natural scene with
bigger dimensions (1920x1080) (see figure 10). The Hardware configuration
is composed by a Core i7 860 @ 2.80GHZ, with NVIDIA Quadro 2000 (192
multiprocessors).

For Matlab users, we compared a basic implementation and an improvement
using Mex (C language for Matlab). For C++ developers, we compared a
basic implementation and an improvement using NVIDIA CUDA’s parallel
programming model.
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For both images, there is a significant gain when using accelerations. We
note that Mex and C++ are quite similar. By using GPU computing, it is
even possible to do real-time color image processing in the sense of acquisi-
tion speed (25 images per second).

Remark : Complex values can appear when performing LIPC multiplication
and one must only keep real values. It is automatically done by Matlab.
For classical LIP operations, a speed-up is possible by using lookup tables.
It isn’t possible for LIPC as it would take too much memory. Furthermore,
it may be faster to process the image directly than calculating the LUT and
applying it.

Operation c c c

execution time Matlab (ms) 3453 5991 3778
execution time Mex (ms) 31 32 233
execution time C++ (ms) 19 25 88

execution time CUDA (ms) 0,59 0,66 0,6

Table 1: execution time depending on language used on image lena (size 512x512 pixels
see (a) on figure 10)

Operation c c c

execution time Matlab (ms) 26967 48086 28799
execution time Mex (ms) 203 219 1641
execution time C++ (ms) 157 198 1736

execution time CUDA (ms) 3,69 3,96 3,76

Table 2: execution time depending on language used on image P110 (size 1920x1080
pixels see (b) on figure 10)
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3. Conclusion

With adaptation of grey level Logarithmic Image Processing to color, we
provide new kinds of tools for manipulating color images within the frame-
work of a mathematically and physically justified model. These techniques
are well adapted for human perception thanks to the use of color matching
functions of the human eye in the elaboration of the model parameters. We
note that our results depend on the precision of the color matching function
we use, and that diffusion and reflection phenomena are not yet taken into
account.

Moreover, some significant improvement has been realized (cf section 2.12)
considering algorithm execution time, demonstrating that real time treat-
ments can be performed.
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6. Main notations

LIP addition c LIPC addition
LIP subtraction c LIPC subtraction
LIP multiplication c LIPC multiplication

F,G grey levels images F,G,H color images
D definition domain of images S sensor sensitivity
α,β scalars elements α,β scalars elements
i, j,k integer elements i, j,k integer elements
M maximum value of an image P image perception by a sensor
I space of grey level images K matrix such that P = KF
F over-space of I X,Y normalisation matrices

TF transmittance of grey level image F Ḱ normalized matrix from K
Cx,y(F ) physicians’s contrast P image perception by a sensor
CR,CG,CB observer correction constants U matrix such that P = UT

C△
x,y(F ) LIP contrast Ú normalized matrix from U

dr(F ) dynamic range of image F I3 space of color images
F3 over-space of I3

TF transmittance of color image F
C△c

x,y(F) LIPC contrast

7. Appendices

A. Image multiplication demonstration

∀F ∈ I3:

2 cF = F cF = Ḱ
−1

Ú(Ú
−1

ḰF)2

3 cF = F c(2 cF)

3 cF = Ḱ
−1

Ú[Ú
−1

ḰF∗ Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰF)2]

3 cF = Ḱ
−1

Ú(Ú
−1

ḰF)3

We suppose ∀n ∈ IN+:

n cF = Ḱ
−1

Ú(Ú
−1

ḰF)n
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One can show that (n+1) cF = Ḱ
−1

Ú(Ḱ
−1

ÚF)n+1

(n+1) cF = F c(n cF)

(n+1) cF = Ḱ
−1

Ú[Ú
−1

ḰF∗ Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰF)n]

(n+1) cF = Ḱ
−1

Ú(Ú
−1

ḰF)n+1

And finally ∀n ∈ IN+:

n cF = Ḱ
−1

Ú(Ú
−1

ḰF)n

The last expression is extended to each quotient of integer by proving
∀F,G ∈ I3 and ∀p ∈ IN+, F = 1

p cG verifies the expression p cF = G.
Indeed :

p cF = G

⇐⇒ Ḱ
−1

Ú(Ú
−1

ḰF)p = G

⇐⇒ (Ú
−1

ḰF)p = Ú
−1

ḰG

⇐⇒ Ú
−1

ḰF = (Ú
−1

ḰG)
1

p

⇐⇒ F = Ḱ
−1

Ú(Ú
−1

ḰG)
1

p

⇐⇒ F =
1

p
cG

Next, ∀p ∈ N, ∀q ∈ N
+, α cF is defined ∀α ∈ R

+ as

α cF = ( lim
n→∞

pn

qn
) cF

α cF = lim
n→∞

(
pn

qn
cF)

α cF = lim
n→∞

[

Ḱ
−1

Ú(Ú
−1

ḰF)
pn
qn

]

α cF = Ḱ
−1

Ú(Ú
−1

ḰF)α with α = lim
n→∞

pn

qn
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B. Associativity of LIPC addition

∀F,G,H ∈ I3

F c(G cH) = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

Ḱ.(Ḱ
−1

Ú(Ú
−1

ḰG∗ Ú
−1

Ḱ.H)))

F c(G cH) = Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

ḰG∗ Ú
−1

Ḱ.H)

F c(G cH) = Ḱ
−1

Ú(Ú
−1

Ḱ(Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

ḰG))∗ Ú
−1

Ḱ.G)

F c(G cH) = (F cG) cH

C. Distributivity of scalar addition with respect to LIPC multi-
plication

∀α,β ∈ R
+, ∀F ∈ I3

(α +β) cF = Ḱ
−1

Ú(Ú
−1

ḰF)α+β

(α cF) c(β cF) = Ḱ
−1

Ú(Ú
−1

Ḱ[Ḱ
−1

Ú(Ú
−1

ḰF)α]∗ Ú
−1

Ḱ[Ḱ
−1

Ú(Ú
−1

ḰF)β])

(α cF) c(β cF) = Ḱ
−1

Ú(Ú
−1

ḰF)α+β

(α cF) c(β cF) = (α +β) cF
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D. Distributivity of LIPC scalar multiplication with respect to
LIPC addition

∀α ∈ R
+,∀F,G ∈ I3

α c(F cG) =

= Ḱ
−1

Ú[Ú
−1

Ḱ(Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

ḰG))]α

= Ḱ
−1

Ú(Ú
−1

ḰF∗ Ú
−1

ḰG)α

= Ḱ
−1

Ú[(Ú
−1

ḰF)α ∗ (Ú
−1

ḰG)α]

= Ḱ
−1

Ú[Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰF)α ∗ Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰG)α]

= (α cF) c(α cG)

E. Associativity of LIPC multiplication

∀α,β ∈ R
+, ∀F,G ∈ I3:

(α ×β) cF = Ḱ
−1

Ú(Ú
−1

ḰF)jk

α c (β cF) = Ḱ
−1

Ú[Ú
−1

ḰḰ
−1

Ú(Ú
−1

ḰF)β]α

= Ḱ
−1

Ú(Ú
−1

ḰF)jk

= (α ×β) cF
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F. Ten degrees RGB Color Matching Function of Stiles and Burch
(1959)

From http://cvrl.ucl.ac.uk/

Wavelength(nm) r g b Wavelength(nm) r g b
390 0,00 0,00 0,01 480 -0,38 0,34 0,35
395 0,00 0,00 0,02 485 -0,41 0,41 0,26
400 0,01 0,00 0,04 490 -0,43 0,47 0,18
405 0,02 -0,01 0,09 495 -0,45 0,55 0,13
410 0,04 -0,01 0,18 500 -0,44 0,63 0,09
415 0,05 -0,02 0,31 505 -0,41 0,71 0,06
420 0,07 -0,03 0,47 510 -0,37 0,79 0,04
425 0,08 -0,03 0,62 515 -0,28 0,87 0,02
430 0,07 -0,03 0,76 520 -0,19 0,95 0,01
435 0,06 -0,03 0,88 525 -0,04 0,99 0,00
440 0,03 -0,02 0,98 530 0,13 1,02 0,00
445 0,00 0,00 1,00 535 0,31 1,04 -0,01
450 -0,05 0,03 1,00 540 0,54 1,05 -0,01
455 -0,10 0,06 0,91 545 0,77 1,04 -0,01
460 -0,16 0,11 0,83 550 1,01 1,00 -0,01
465 -0,22 0,16 0,74 555 1,27 0,97 -0,01
470 -0,28 0,22 0,61 560 1,56 0,92 -0,01
475 -0,33 0,28 0,47 565 1,85 0,86 -0,01

Table 3: Ten degrees RGB Color Matching Function of Stiles and Burch(1959) (from
390nm to 475nm)
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Wavelength(nm) r g b Wavelength(nm) r g b
570 2,15 0,78 -0,01 675 0,17 0,00 0,00
575 2,43 0,70 -0,01 680 0,12 0,00 0,00
580 2,66 0,60 -0,01 685 0,09 0,00 0,00
585 2,92 0,51 -0,01 690 0,06 0,00 0,00
590 3,08 0,42 0,00 695 0,04 0,00 0,00
595 3,16 0,34 0,00 700 0,03 0,00 0,00
600 3,17 0,26 0,00 705 0,02 0,00 0,00
605 3,10 0,19 0,00 710 0,01 0,00 0,00
610 2,95 0,14 0,00 715 0,01 0,00 0,00
615 2,72 0,09 0,00 720 0,01 0,00 0,00
620 2,45 0,06 0,00 725 0,00 0,00 0,00
625 2,17 0,04 0,00 730 0,00 0,00 0,00
630 1,84 0,02 0,00 735 0,00 0,00 0,00
635 1,52 0,01 0,00 740 0,00 0,00 0,00
640 1,24 0,00 0,00 745 0,00 0,00 0,00
645 1,01 0,00 0,00 750 0,00 0,00 0,00
650 0,78 0,00 0,00 755 0,00 0,00 0,00
655 0,59 0,00 0,00 760 0,00 0,00 0,00
660 0,44 0,00 0,00 765 0,00 0,00 0,00
665 0,33 0,00 0,00 770 0,00 0,00 0,00
670 0,24 0,00 0,00 775 0,00 0,00 0,00

780 0,00 0,00 0,00

Table 4: Ten degrees RGB Color Matching Function of Stiles and Burch(1959) (from
570nm to 780nm)
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G. D65 power spectral distribution

From http://cvrl.ucl.ac.uk/

wavelength (nm) spectral distribution wavelength (nm) spectral distribution
390 54,65 485 112,37
395 68,70 490 108,81
400 82,75 495 109,08
405 87,12 500 109,35
410 91,49 505 108,58
415 92,46 510 107,80
420 93,43 515 106,30
425 90,06 520 104,79
430 86,68 525 106,24
435 95,77 530 107,69
440 104,86 535 106,05
445 110,94 540 104,41
450 117,01 545 104,22
455 117,41 550 104,05
460 117,81 555 102,02
465 116,34 560 100,00
470 114,86 565 98,17
475 115,39 570 96,33
480 115,92 575 96,06

580 95,79

Table 5: CIE Standard Illuminant D65 relative spectralpower distribution (from 390nm
to 580nm)
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wavelength (nm) spectral distribution wavelength (nm) spectral distribution
585 92,24 685 74,00
590 88,69 690 69,72
595 89,35 695 70,67
600 90,01 700 71,61
605 89,80 705 72,98
610 89,60 710 74,35
615 88,65 715 67,98
620 87,70 720 61,60
625 85,49 725 65,74
630 83,29 730 69,89
635 83,49 735 72,49
640 83,70 740 75,09
645 81,86 745 69,34
650 80,03 750 63,59
655 80,12 755 55,01
660 80,21 760 46,42
665 81,25 765 56,61
670 82,28 770 66,81
675 80,28 775 65,09
680 78,28 780 63,38

Table 6: CIE Standard Illuminant D65 relative spectralpower distribution (from 585nm
to 780nm)
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H. Figures

(a) (b)

(c)

Figure 1: (a) and (b) initial grey level images, (c) LIP addition of (a) by (b)

(a) (b)

Figure 2: (a) initial image, (b) false color generation by grey level LIP multiplication on
each channel, in order to maintain each mean channel value to 125
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Figure 3: grey scales differences between LIP and classical

Figure 4: Scalar processing of an image

Figure 5: Vectorial processing of an image

(a) (b)

Figure 6: (a) scalar processing with histogram equalization on each channel, (b) vectorial
treatment with histogram equalization on the entire data at the same time
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(a) (b)

Figure 7: (a) perception of an image by the eye : image I lighted by L and viewed by S,
(b) sensor perception depending on the light L, the transmittance T and the sensor S

Figure 8: Common color algorithm

Figure 9: R, G and B color matching functions

(a) (b)

Figure 10: (a) image Lena (512x512 pixels), (b) : image P110 (1920x1080 pixels)
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(a) (b)

(c)

(d)

Figure 11: (a) original set of colors, (b) complementary set of colors to obtain a grey
color, (c) Result of the LIPC addition of (a) and (b), (d) result of the LIPC addition
when using a red complementary
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(a) (b)

(c)

Figure 12: (a) and (b) initial images, (c) LIPC addition of (a) and (b)

(a) (b)

Figure 13: initial image with result of multiplication in superposition, (a) multiplication
by 0.4, (b) multiplication by 2.6
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(a) (b)

(c)

(d)

(e)

Figure 14: (a) and (b) initial images, (c) LIPC addition of (a) by (b), (d) LIPC subtrac-
tion of (c) by (b), (e) normalized result of classical subtraction of (c) by (b)
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Figure 15: First row : initial peppers image (left) and darken peppers image (right),
second row : corresponding contrast, third row : corresponding norm
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(a) (b)

(c)

(d)

(e)

Figure 16: (a) : image taken with low lightening conditions , (b) : corrected LIPC
subtraction of (a) by CO, (c) : histogram R, G and B of (a), (d) : histogram R, G and
B of LIPC subtraction of (a) by C0 , (e) histogram R, G and B of (c)− Inf((c))

(c) (d)

Figure 17: (a) initial image with Inf=0, (b) LIP subtraction of (a) by Sup((a))
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(a) (d)

(b) (c)

Figure 18: (a) initial image from Berkeley Segmentation Dataset and Benchmark (see
Martin et al. (2001)), (b) and (c) complementary images of (a), LIPC addition of (b)
and (c)

(a) (b)

(c)

Figure 19: (a) and (b) initial images (i=6 and i=0), (c) transition steps (i=5 to to i=1)
for n=6
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(a) (b)

Figure 20: (a) initial image with low lighting conditions, (b) corrected image with dy-
namic centring by optimal λ0

(a) (b)

Figure 21: (a) initial image, (b) mean centring of initial image near to 90
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Figure 22: Left column : initial images and associated (R, G, B) histograms aperture
values (4,6,8,12,16), right column : corrected images to a constant mean value (125) and
corresponding histograms
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(a) (b)

Figure 23: column (a) : image taken at 3O ms exposure time, column (b) : image
taken at 100 ms exposure time, first row : intial images, second row : maximum gain
augmentation, third row : LIPC subtraction by 250, fourth row : histogram equalization
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