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A STOCHASTIC APPROXIMATION APPROACH TO QUASI-STATIONARY

DISTRIBUTIONS ON FINITE SPACES

MICHEL BENAÏM AND BERTRAND CLOEZ

ABSTRACT. This work is concerned with the analysis of a stochastic approximation algorithm for
the simulation of quasi-stationary distributions on finite state spaces. This is a generalization of a
method introduced by Aldous, Flannery and Palacios. It is shown that the asymptotic behavior of
the empirical occupation measure of this process is precisely related to the asymptotic behavior of
some deterministic dynamical system induced by a vector field on the unit simplex. This approach
provides new proof of convergence as well as precise rates for this type of algorithm. We then
compare this algorithm with particle system algorithms.
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1. INTRODUCTION

Let (Yn)n≥0 be a Markov chain on a finite state space F with transition matrix P = (Pi,j)i,j∈F .
We assume that this process admits an (attainable) absorbing state, say 0, and that F ∗ = F\{0} is
an irreducible class for P ; this means that Pi,0 > 0 for some i ∈ F ∗, P0,i = 0 for all i ∈ F ∗ and
∑

k≥0 P
k
i,j > 0 for all i, j ∈ F ∗. For all i ∈ F and any probability measure µ on F (or F ∗), we

set

Pi ( · ) = P ( · | Y0 = i) , Pµ =
∑

i∈F

µ(i)Pi,

and we let Ei,Eµ denote the corresponding expectations. Classical results [11, 12, 21, 26] imply
that Yn is absorbed by 0 in finite time and admits a unique probability measure ν on F ∗, called
quasi-stationary distribution (QSD), satisfying, for every k ∈ F ∗,

ν(k) = Pν(Y1 = k | Y1 6= 0) =

∑

i∈F ∗ ν(i)Pi,k
∑

i,j∈F ∗ ν(i)Pi,j
=

∑

i∈F ∗ ν(i)Pi,k

1−∑i∈F ∗ ν(i)Pi,0
.
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If we furthermore assume that P is aperiodic, then (see for instance [21, Proposition 1]) for any
probability measure µ on F ∗ and k ∈ F ∗,

lim
n→+∞

Pµ(Yn = k | Yn 6= 0) = ν(k). (1)

The existence (and uniqueness) of this measure can be proved through the Perron Frobenius Theo-
rem because a probability measure ν is a QSD if and only if it is a left eigenvector of P (associated
to some eigenvalue λ ∈ (0, 1)); namely

νP = λν ⇔ ∀k ∈ F ∗,
∑

i∈F ∗

ν(i)Pi,k = λν(k). (2)

Summing on k the previous expressions gives the following expression of λ:

λ = 1−
∑

i∈F ∗

ν(i)Pi,0. (3)

Quasi-stationary distributions have many applications as illustrated for instance in [11, 21, 25, 26]
and their computation is of prime importance. This can be achieved with deterministic algorithms
coming from numerical analysis [26, section 6] based on equation (2), but these type of method
fails to be efficient with large state spaces. An alternative approach is to use stochastic algorithms
(even if naive Monte-Carlo methods are not well-suited as illustrated in the introduction of [27]).
Our main purpose here is to analyze a class of such algorithms based on a method that was intro-
duced by Aldous, Flannery and Palacios [1] and which can be described as follows:
Let ∆ be the unit simplex of probabilities over F ∗. For x ∈ ∆, let K[x] be Markov kernel defined
by

∀i, j ∈ F ∗, K[x]i,j = Pi,j + Pi,0x(j). (4)

and let (Xn)n≥0 be a process on F ∗ such that

∀i, j ∈ F ∗, P (Xn+1 = j | Fn) = K[xn]i,j , on {Xn = i}, (5)

where

xn =
1

n+ 1

n
∑

k=0

δXk
(6)

stands for the empirical occupation measure of the process and Fn = σ{Xk, k ≤ n}. In words,
the process behaves like (Yn)n≥0 until it dies (namely it hits 0) and, when it dies, comes back to
life in a state randomly chosen according to it’s empirical occupation measure.
Note that, we will use a slight different algorithm which allows us to choose a non-uniform mea-
sure on the past. This process is not Markovian and can be understood as an urn process or
a reinforced random walk. Using the natural embedding of urn processes into continuous-time
multi-type branching processes [2, section V.9], Aldous, Flannery and Palacios prove the conver-
gence of (xn) to the QSD. As well illustrated in [24], another powerful method for analyzing the
behavior of processes with reinforcement is stochastic approximation theory [7, 19] and its dy-
namical system counterpart [4]. Relying on this approach we recover [1, Theorem 3.8] in a more
general context with new rates of convergence. This enables us to compare it with a different
algorithm introduced by Del Moral and Guyonnet [14]. We describe it and give a new bound for
the convergence based on [6] in section 3. Also note that the process defined in (6) is an instance
of the (time) self-interacting Markov chain models studied in [16, 17] and we also extend some
of their results in this particular case. Indeed, [17, Theorem 1.2] and [16, Theorem 2.2] gives a
L1−bound for the convergence under a strong mixing assumption which is not always satisfied (a
Doeblin type condition). We will prove almost-sure convergence, a central limit theorem and the
convergence of (Xn)n≥0 when (xn)n≥0 is a weighted empirical measure.

Outline: the next subsection introduces our main results. The proofs are in section 2. Indeed we
study the dynamical system in 2.1, make the link with the sequence (xn)n≥0 in 2.2, and end the
proof in 2.3. Finally, Section 3 treats the second algorithm based on a particle system.
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1.1. Main results. Assume that F ∗ contains d ≥ 2 elements and let us define the unit simplex of

probability measures on F ∗ by ∆ =
{

x ∈ R
d
∣

∣

∣
xi ≥ 0,

∑d
i=1 xi = 1

}

. We embed R
d with the

classical l1-norm: ‖x‖ =
∑

i∈F ∗ |x(i)| and ∆ with the induced distance (which corresponds, up
to a constant, to the total variation distance). Given a law x ∈ ∆, we denote by π(x) the invariant

distribution of K[x], defined in (4), and we let h : ∆ → T∆ =
{

x ∈ R
d
∣

∣

∣

∑d
i=1 xi = 0

}

denote

the vector field given by h(x) = π(x)− x. Our aim is to study the weighted empirical occupation

measure (xn)n≥0, defined for every n ≥ 0 by

xn+1 = (1− γn)xn + γnδXn
= xn + γn(h(xn) + ǫn), (7)

where ǫn = δXn+1
− π(xn) and (γn)n≥0 is a decreasing sequence on (0, 1) verifying

∑

n≥0

γn = +∞ and lim
n→+∞

γn ln(n) = 0.

The variable Xn is distributed according to the transition (5). Let us set

τn =

n
∑

k=1

γk, and l(γ) = lim sup
n→+∞

ln(γn)

τn
. (8)

For instance, if

γn = An−α ln(n)−β, A > 0, α, β ≥ 0,

then

l(γ) =











0, if (α, β) ∈ (0, 1) × R+,

− 1/A if α = 1, β = 0,

−∞ if (α, β) ∈ {1} × (0, 1].

Remark 1.1. The sequence (6) corresponds to the choice γn = 1
n+1 . More generally, let (ωn)n≥0

be a sequence of positive number, if

γn =
ωn

∑n
i=0 ωk

⇔ ωn =
κγn

∏n
k=0(1− γi)

,

for some κ > 0, then

xn =

∑n
i=0 ωiδXi
∑n

i=0 ωi
.

Notice that with ωn = na for a > −1, γn ∼ 1+a
n .

The sequence (xn)n≥0 is often called a stochastic approximation algorithm with decreasing step
[4, 7, 19]. Its long time behavior can be related to the long time behavior of the flow Φ induced by
h; namely the solution to

{

∀t ≥ 0,∀x ∈ ∆, ∂tΦ(t, x) = h(Φ(t, x)),

Φ(0, x) = x.
(9)

In order to state our main result, let us introduce some notation. By Perron-Frobenius Theorem,
eigenvalues of P can be ordered as

1 > λ1 > |λ2| ≥ · · · ≥ |λd| ≥ 0,

where λ1 = λ is given by (3). Set

R = 1− (1− λ)max
i≥2

RE

(

1

1− λi

)

> 0, (10)

where RE is the real part application on C.
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Theorem 1.2 (Convergence of (xn)n≥0 to the quasi-stationary distribution). With probability one,

xn tends to ν. If furthermore l(γ) < 0, then

lim sup
n→+∞

1

τn
ln (‖xn − ν‖) ≤ max

(

−R,
l(γ)

2

)

a.s.

This leads to the following result which generalizes and precises the rates of convergence of [1,
Theorem 3.8]

Corollary 1.3. Suppose γn = A
n for some A > 0 (or, with the notation of remark 1.1, ωn = nA−1)

then for all θ < min (RA, 1/2), there exists a random constant C > 0 such that

∀n ≥ 0, ‖xn − ν‖ ≤ Cn−θ a.s.

Using general results on stochastic approximation, we are also able to quantify more precisely this
convergence; we have

Theorem 1.4 (Central limit theorem). If one of the following conditions is satisfied

i)
∑

k≥0 γk = +∞,
∑

k≥0 γ
2
k < ∞ and limk→+∞ γ−1

k ln(γk−1/γk) = 0;

ii)
∑

k≥0 γk = +∞,
∑

k≥0 γ
2
k < ∞ and limk→+∞ γ−1

k ln(γk−1/γk) = γ−1
∗ < 2R;

then there exists a covariance matrix V such that

γ−1/2
n (xn − v)

d−→
n→+∞

N (0, V ).

This gives the following trivial consequence:

Corollary 1.5 (Lp−bound for the convergence of (xn)n≥0). Under the previous assumptions,

there exists for all p ≥ 1 Cp > 0 such that for every n ≥ 0,

lim
n→∞

γ−1/2
n E

[

∑

i∈F ∗

|xn(i)− ν(i)|p
]1/p

= Cp

Note that this result extends [17, Theorem 1.2] and [16, Theorem 2.2] (at least for this example).
Finally, not only the (weighted) empirical occupation measure of (Xn)n≥0 converges almost surely
to ν but (Xn) itself converges in distribution to ν as shown by the next result.

Corollary 1.6 (Convergence in law to ν). Let (µn)n≥0 be the sequence of laws of (Xn)n≥0. Then

lim
n→+∞

‖µn − ν‖ = 0.

If we furthermore assume that the assumptions of Theorem 1.4 hold, there exists C > 0 and

0 < ρ < 1 such that

‖µn+p − ν‖ ≤ C(ρp + p
√
γn).

Proofs of these results are given in section 2 and in particular in 2.2.

2. STUDY OF THE FLOWS AND PROOFS OF OUR MAIN RESULTS

As explained in the introduction, the proof is based on the ODE method. We study Φ and apply its
properties to (xn)n≥0 with classical results on perturbed ODE. So we decompose this section into
three subsections: the study of the flow Φ, the study of the noise (ǫn)n≥0 and finally the proof of
the main theorems.
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2.1. Analysis of the flow. For any x, y ∈ ∆, we will use the following notation:

〈x, y〉 =
∑

i∈F ∗

x(i)y(i),

and 1 will denote the unit vector; namely 1(i) = 1 for every i ∈ F ∗. Let us begin by giving a
more tractable expression for π. As P̂ = (Pi,j)i,j∈F ∗ is sub-stochastic, the matrix A =

∑

k≥0 P̂
k

is well defined and is the inverse of I − P̂ , where I is the identity matrix, and we have

∀x ∈ ∆, π(x) =
xA

〈xA,1〉 . (11)

Indeed, if γ =
∑

i∈F ∗ π(x)(i)Pi,0 then we have

π(x)K[x] = π(x) ⇔ π(x) · (P̂ − I) = −γx ⇔ π(x) = γx · (I − P̂ )−1 = γx ·A,
and as π(x) ∈ ∆, we have

1 =
∑

i∈F ∗

π(x)(i) = γ
∑

i∈F ∗

(x · A)(i) = γ〈xA,1〉.

Since A and P have the same eigenvectors and using classical results on linear dynamical system,
we deduce the following result

Lemma 2.1 (Long time behavior of Φ). For all α ∈ (0, R), there exists C > 0 such that for all

x ∈ ∆ and t ≥ 0, we have

‖Φ(t, x)− ν‖ ≤ Ce−αt‖Φ(t, x)− ν‖. (12)

Proof. Let us consider Φ1 : (t, x) 7→ x ·etA. Writing x = ν+(x−ν) and using νA = (1−λ)−1ν,
it comes

Φ1(t, x) = e(1−λ)−1t
(

ν + (x− ν)et(A−(1−λ)−1I)
)

. (13)

Let
β < (1− λ)−1 −max

i≥2
Re((1 − λi)

−1),

for t large enough, we have ‖et(A−(1−λ)−1I)‖ ≤ e−βt. Let now Φ2 be the semiflow on ∆ defined
for all t ≥ 0 and x ∈ ∆ by

Φ2(t, x) =
Φ1(t, x)

〈Φ1(t, x),1〉
.

It follows from (13) that for some C > 0,

∀t ≥ 0, ‖Φ2(t, x)− ν‖ ≤ Ce−βt‖x− ν‖.
Now, note Φ2 and Φ have the same orbits (up to a time re-parametrization). Indeed, differentiating
in t, we find that







∀t ≥ 0,∀x ∈ ∆, ∂tΦ2(t, x) = 〈Φ2(t, x)A,1〉
(

Φ2(t, x)A

〈Φ2(t, x)A,1〉
− Φ2(t, x)

)

,

∀x ∈ ∆, Φ2(0, x) = x.

Hence,
∀t ≥ 0, ∀x ∈ ∆, Φ(s(t, x), x) = Φ2(t, x), (14)

where

s(t, x) =

∫ t

0
〈Φ2(x, s)A,1〉ds.

This mapping is strictly increasing because Φ2(x, s) belongs to ∆ so that 〈AΦ2(x, s),1〉 > 0 for
all s ≥ 0. It follows from (13) that s(t, x)/t tends to (1 − λ)−1, uniformly in x ∈ ∆ as t tends
to infinity. Thus, fixing α < β(1 − λ) < R, for t large enough, we have βt > αs(t, x) and,
consequently,

‖Φ(s(t, x), x) − ν‖ ≤ Ce−αs(t,x)‖x− ν‖ ⇔ ‖Φ(s, x)− ν‖ ≤ Ce−αs‖x− ν‖,
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for s large enough. Replacing C by a sufficiently larger constant, the previous inequality holds for
all time and this proves the Lemma. �

Remark 2.2 (Probabilist interpretation of A,Φ1,Φ2). The flow Φ1 satisfies a linear equation with

a positive operator A. If we had A1 = 0 then it would be a the semi-group of a continuous-

time Markov chain. But the vector A1 has positive coordinates; indeed A represents the Green

function, we have

∀i, j ∈ F ∗, Ai,j = Ei





∑

k≥0

1Yk=j



 and (A1)i = Ei [T0] ,

where T0 = inf{n ≥ 0 | Yn = 0}. However, Φ1 can be understood as the main measure of a

branching particle system; Φ2 is then the renormalised main measure. See [8] or [9, Chapitre 4]
for details.

Corollary 2.3 (Gradient estimate). The matrix Dνh has all its eigenvalues with real part smaller

than −R.

Proof. Let us fix t ≥ 0 and set Φt(·) = Φ(t, ·). On the first hand, using Lemma 2.1 and Φt(ν) = ν,
we have

s−1‖Φt(ν + su)− Φt(ν)‖ ≤ Ce−αt‖u‖
for every s ≥ 0 and u ∈ R

d; taking the limit s → 0, we find

‖DνΦt · u‖ ≤ Ce−αt‖u‖,
for every α < R. On the other hand, we have

∂tΦt(x) = h(Φt(x)) ⇒ ∂tDνΦt = Dν∂tΦt = Dνh(Φt(x)) = DΦt(ν)h ·DνΦt = Dνh ·DνΦt,

and thus DνΦt = etDνh. Finally, if v is an eigenvector, whose eigenvalue is a+ ib, a, b ∈ R, then

‖DνΦt · v‖ = ‖etDνh · v‖ = eta‖eibt · v‖ ≤ Ce−αt‖v‖.
This ends the proof. �

2.2. Links between (xn)n≥0 and Φ. Let us rapidly recall some definitions of [4]. To this end,
we define the following continuous time interpolations X, X̄, ǭ, γ̄ : R+ → R

d by

X(τn + s) = xn + s
xn+1 − xn
τn+1 − τn

, X̄(τn + s) = xn, ǭ(τn + s) = ǫn and γ̄(τn + s) = γn,

for every n ∈ N and s ∈ [0, γn+1). We also set m : t 7→ sup{k ≥ 0 | t ≥ τk}. A continuous map
Z : R+ 7→ ∆ is called an asymptotic pseudo-trajectory of Φ if for all T > 0,

lim
t→+∞

sup
0≤h≤T

‖Z(t+ h)− Φh(t)‖ = 0.

Given r < 0, it is called a r−pseudo-trajectory of Φ if

lim sup
t→+∞

1

t
ln

(

sup
0≤h≤T

‖Z(t+ h)− Φh(t)‖
)

≤ r,

for some (or all) T > 0. We have

Lemma 2.4 (Pseudo-trajectory property of X). With probability one, X is an asymptotic pseudo-

trajectory of Φ. If furthermore l(γ) < 0 then X is almost surely a l(γ)/2-pseudo-trajectory of

Φ.
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Proof. The proof is similar to [3, Section 5] whose some ideas coming from [22]. For x ∈ ∆, let
us denote by Q[x] the solution of the Poisson equation:

(I −K[x])Q[x] = Q[x](I −K[x]) = I − π(x) · 1t.
Existence, uniqueness and regularity of a solution for this equation is standard [23, Chapter 17] or
[18, Theorem 35]; indeed let us recall that the state space is finite. We can write

γnǫn = δ1n + δ2n + δ3n + δ4n,

where, for all j ∈ F ∗, we have

δ1n(j) = γn
(

Q[xn]Xn+1,j −K[xn]Q[xn]Xn,j

)

,

δ2n(j) = γnK[xn]Q[xn]Xn,j − γn−1K[xn]Q[xn]Xn,j,

δ3n(j) = γn−1K[xn]Q[xn]Xn,j − γnK[xn+1]Q[xn+1]Xn+1,j,

and
δ4n(j) = γn

(

K[xn+1]Q[xn+1]Xn+1,j −K[xn]Q[xn]Xn+1,j

)

.

Continuity, smoothness of Q,M and compactness of ∆ ensure the existence of C > 0 such that

‖δ2n‖ ≤ C(γn−1 − γn), ‖
k
∑

i=n

δ3i ‖ ≤ Cγn and ‖δ4n‖ ≤ Cγn‖xn+1 − xn‖ ≤ Cγ2n.

Now, if Fn = σ{Xk | k ≤ n}, the last term is a Fn-martingale increment and there exists C1 > 0
such that ‖δ1n‖2 ≤ C1γ

2
n. From these inequalities, the proof is as [4, Proposition 4.4]. Let us now

prove that it is a l(γ)/2−pseudo-trajectory. Let

∆(t, T ) = sup
0≤h≤T

‖
∫ t+h

t
ǭ(s)ds‖ ≤ sup

0≤h≤T
‖
m(t+h)
∑

k=m(t)

γkǫk‖+ C2,

for some C2 > 0. Thanks to Inequality (11) of [4, Proposition 4.1] and the beginning of the proof
of [4, Proposition 8.3], it is enough to prove that lim supt→∞ ln(∆(t, T ))/t ≤ l(γ)/2. From the
previous decomposition, we have

∆(t, T ) ≤ sup
0≤h≤T

‖
m(t+h)
∑

k=m(t)

δ1k‖+ sup
0≤h≤T

‖
m(t+h)
∑

k=m(t)

δ2k‖+ sup
0≤h≤T

‖
m(t+h)
∑

k=m(t)

δ3k‖+ sup
0≤h≤T

‖
m(t+h)
∑

k=m(t)

δ4k‖

≤ sup
0≤h≤T

‖
m(t+h)
∑

k=m(t)

δ1k‖+Cγ̄(t) + Cγ̄(t) + CT γ̄(t).

Indeed,

‖
m(t+h)
∑

k=m(t)

δ4k‖ ≤ C

m(t+T )
∑

k=m(t)

γ2k = C

∫ T+t

t
γ̄(s)ds ≤ CT γ̄(t)

Now the end of the proof is the same as in the Robbins-Monro algorithm situation (see the proof
of [4, Proposition 8.3]). �

2.3. Proof of the main results.

Proof of Theorem 1.2. By Lemma 2.1, {ν} is a global attractor for Φ. Thus, it contains the limit
set of every (bounded) asymptotic pseudo-trajectory (see e.g [4, Theorem 6.9] or [4, Theorem
6.10]). Lemma 2.4 gives the almost-sure convergence. The second part of Theorem 1.2 follows
directly from [4, Lemma 8.7] and Lemma 2.4. �

Proof of corollary 1.3. Since the limsup in the definition of l(γ) is a limit, the result is a direct
consequence of Theorem 1.2. �
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Proof of Theorem 1.4. Let us check that our model satisfies the assumptions of [20, Theorem 2.1].
Lemma 2.3 gives that C1 holds. Using the notations of this paper and the one of the proof of
Lemma 2.4, we have

en = γ−1
n δ1n and rn = γ−1

n (δ2n + δ3n + δ4n).

Assumption C2(a) holds, Assumption C2(b) holds with Am = Am,k = Ω, where Ω is our
probability space. Note that xn → ν with probability one.
Assumption C2(c) is more tricky but usual. Indeed, one can see that en is similar to the one
introduced in [20, Section 4] (see the end of page 15), and then, we can use the decomposition
developed in page 16 of this article. Using the proof of Lemma 2.4, Assumption C3 is satisfied.
Finally, the last assumption is supposed to be true in our setting. �

Proof of Corollary 1.5. The Lp−norm are continuous bounded functions on ∆ thus the result is
straightforward. �

Proof of Corollary 1.6. By irreducibility of P (and hence K[ν]), νi > 0 for all i. Thus, K[ν]ii ≥
Pi0νi > 0 for all i such that Pi0 > 0. This shows that K[ν] is aperiodic. Therefore, by the ergodic
theorem for finite Markov chains, there exist C0 > 0 and ρ ∈ [0, 1) such that for all x ∈ ∆

‖xKn[ν]− ν‖ ≤ C0ρ
n.

In particular, ν is a global attractor for the discrete time dynamical system on ∆ induced by the
map x 7→ xK[ν]. To prove that µn → ν it then suffices to prove that (µn) is an asymptotic pseudo
trajectory of this dynamics (that is ‖µnK[ν] − µn+1‖ → 0) because the limit set of a bounded
asymptotic pseudo-trajectory is contained in every global attractor (see e.g [4, Theorem 6.9] or [4,
Theorem 6.10]). Now,

‖µnK[ν]− µn+1‖ =
∑

j∈F ∗

|µnK[ν](j) − µn+1(j)| =
∑

j∈F ∗

|E [K[ν]Xn,j −K(xn)Xn,j]|

=
∑

j∈F ∗

|E [PXn,0(ν(j) − xn(j))]| ≤ max
i∈F ∗

Pi,0E [‖ν − xn‖]

and the proof follows from Theorem 1.2 and dominated convergence.
If one now suppose that assumptions of Corollary 1.5 hold, then, in view of the preceding inequal-
ity, there exists C > 0 such that

‖µnK[ν]− µn+1‖ ≤ C
√
γn.

Therefore

‖µn+p − µnK[ν]p‖ = ‖
p−1
∑

i=0

(µn+iK[ν]− µn+i+1)K[ν]p+i−1‖ ≤ C

p−1
∑

i=0

√
γn+i ≤ pC

√
γn

and
‖µn+p − ν‖ ≤ ‖µn+p − µnK[ν]p‖+ ‖µnK[ν]p − ν‖ ≤ pC

√
γn + C0ρ

p.

�

3. A SECOND MODEL BASED ON INTERACTING PARTICLES

A second method to simulate QSD was introduced and well studied by Del Moral and his co-
authors in several works on non-linear filtering; see [13]. This one is based on a particle system
evolving as follow: at each time, we choose, uniformly at random, a particle i and replace it
by another one j; this one is choosen following the probability Pi,j or uniformly on the others
particles with probability Pi,0. In this work we will study a slight modification; we allow us the
choice to replace the died particle on its previous position. More precisely, let N ≥ 2 and consider
(XN

n )n≥0 be the Markov chain on ∆ with transition

P

(

XN (n + 1) = x+
1

N
(δj − δi) | XN (n) = x

)

= pi,j(x), (15)
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where
pi,j(x) = Pi,j + Pi,0x(j) = K[x]i,j , (16)

for every x ∈ ∆, n ≥ 0, i, j ∈ F ∗. We are interested in the limit of Markov chains XN , when N
is large, and with the time scale δ = 1/N . The key element for such approximation is the vector
field F = (Fj)j∈F ∗ , defined by

∀x ∈ ∆,∀j ∈ F ∗, Fj(x) =
∑

i 6=j

(pi,j(x)− pj,i(x)),

which, for large N and short time intervals, gives the expected net increase share during the time
interval, per time unit. The associated mean-field flow Ψ is the solution to

{

∀t ≥ 0,∀x ∈ ∆, ∂tΨ(t, x) = F (Ψ(t, x)),

∀x ∈ ∆, Ψ(0, x) = x.
(17)

Using (16), we have

∀j ∈ F ∗,∀x ∈ ∆, Fj(x) =
∑

i∈F ∗

xi(Pi,j + xjPi,0)− xjPj,0,

and Ψ is then the conditioned semi-group of the absorbed Markov process (Ut)t≥0 generated by
(P − I). More precisely, for all j ∈ F ∗, t ≥ 0 and x ∈ ∆, we have

Ψ(t, x) =

∑

i∈F ∗ P (Ut = j | Ut = i)
∑

i∈F ∗ P (Ut 6= 0 | Ut = i)
=

xet(P−I)

〈xet(P−I),1〉 .

This model was studied in a more general setting in [6]. In particular if we set

∀s ∈ [0, 1), X̄N ((n + s)/N) = Xn + s(XN
n+1 −XN

n ),

then we have

Theorem 3.1 (Deviation inequality). There exists a (explicit) constant c > 0 such that for any

ε > 0, T > 0, x ∈ ∆ and N large enough,

P

(

max
0≤t≤T

‖X̄N (t)−Ψ(t, x)‖ ≥ ε | XN (0) = x

)

≤ 2de−cε2N/T .

In particular, for all θ < 1/2, we have

lim
N→+∞

N θ max
0≤t≤T

‖X̄N (t)−Ψ(t, x)‖ = 0 a.s.

and

lim
N→+∞

lim
n→+∞

XN
n = ν a.s.

Proof. It comes from [6, Lemma 1], Borel-Cantelli Lemma and [6, Proposition 6] �

In continuous time, we can compare this result with [28, Theorem 1], and [15, Theorem 1.1] which
gives a L1-bound in a more general setting. To our knowledge, it is the first bound almost-sure for
this algorithm.
We can also compare our Theorem 1.2 (and Corollary 1.5, more precisely) with [10, Corollary
1.5] (and its proof) and [10, Remark 2.8]. Indeed, using these references, we have that using
t = γ ln(N), for some γ > 0 gives a uniform error term in N−γ for the approximation of the
QSD, where γ depends on the rate of convergence of the conditioned semi-group to equilibrium
(as in our Theorem 1.2).

Remark 3.2 (Others algorithm). Article [6] leads us a new way to develop others methods. Indeed,

[6, Lemma 1] holds for others choice of F , and thus we have a convergence to the QSD if the flow

induced by F converges to the QSD. It is then the case for Φ and Φ2. For instance, in (15), one

can choose

pi,j(x) = Ai,j +Ai,0x(j).
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Remark 3.3 (Time versus spatial empirical measure). In this work, we compare two dynamics

based on K[µr] where µr is either the time occupation measure or the spatial occupation measure.

The analysis of the resultant flows, Φ and Ψ are very similar. This analogy was already observed

in others works with the Mc Kean-Vlasov equation; see [5].
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