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 to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov's "shaking the coefficients" method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product, the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton-Jacobi integrodifferential system. This ensures that the value function satisfies Perron's preconization for the (unique) candidate to viscosity solution.

Introduction

This paper aims at the study of optimal control problems in infinite horizon when the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to networks. The starting point is a toy model inspired by traffic. Our point of view is the one of a traffic regulator who observes the generic traffic X • and has the possibility to intervene in the regulation by imposing speed limits via some (external) control. In this basic model, the generic vehicle should remain on some star-shaped network containing several edges bound to a common intersection. At the same time as the traffic, the regulator should ensure the maintenance of the network by observing a second (pure jump) component Γ • (known as mode). The functionality of the network evolves stochastically and damage to a specific edge occurs exponentially distributed with a parameter λ (X, Γ, α) depending on the traffic, on the previous state of the network and on regulator's control policy α. In this context of controlled switched Piecewise Deterministic Markov Processes (PDMP), the regulator seeks to minimize its (discounted) operating cost

v δ (x, γ) := inf α,X x,γ,α • ∈network E ∞ 0 e -δt l Γ x,γ,α t (X x,γ,α t , α t ) dt .
In this paper, we study the Hamilton-Jacobi integrodifferential systems on networks associated to the previous control problem.

To our best knowledge, for deterministic dynamics, the constrained optimal control problem with continuous cost was studied for the first time in [START_REF] Soner | Optimal control with state-space constraint[END_REF] (see also [START_REF] Soner | Optimal control with state-space constraint[END_REF] for a stochastic framework). The value function of an infinite horizon control problem with space constraints was characterized as a continuous solution to a corresponding Hamilton-Jacobi-Bellman equation. For discontinuous cost functionals, the deterministic control problem with state constraints was studied in [START_REF] Frankowska | Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with state constraints[END_REF], [START_REF] Frankowska | Existence of neighbouring trajectorie: applications to dynamic programming for state constraints optimal control problems[END_REF], [START_REF] Plaskacz | Discontinuous Mayer control problem under stateconstraints[END_REF] using viability theory tools. However, the results of these papers do not directly apply to (deterministic) control problems on star-shaped networks. Several very recent results are available on this subject when dealing with deterministic systems (cf. [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF], [START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF], [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF], [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]). The cited papers rely either on Bellman's approach or on Perron's method for the existence of solutions of the associated Hamilton-Jacobi equation and propose several methods for the uniqueness part. There is also an increasing literature on problems inspired by stratified domains or interfaces and discontinuities that partly share the same difficulties (e.g. [START_REF] Bressan | Optimal control problems on stratified domains[END_REF], [START_REF] Barnard | Flow invariance on stratified domains[END_REF], [START_REF] Rao | Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R-N[END_REF], [START_REF] Barles | A Bellman approach for regional optimal control problems in R N[END_REF]).

Our control problem is governed by a switch PDMP with characteristic triple (f, λ, Q) (cf. [START_REF] Davis | Markov models and optimization[END_REF], see also Section 2 for the explicit construction). A switch process is often used to model various aspects in biology (see [START_REF] Cook | Modelling stochastic gene expression: Implications for haploinsufficiency[END_REF], [START_REF] Crudu | Hybrid stochastic simplifications for multiscale gene networks[END_REF], [START_REF] Wainrib | Intrinsic variability of latency to first-spike[END_REF], [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF], [START_REF] Goreac | Viability, Invariance and Reachability for Controlled Piecewise Deterministic Markov Processes Associated to Gene Networks[END_REF]), reliability or storage (in [START_REF] Boxma | On/off storage systems with statedependent input, output, and switching rates[END_REF], [START_REF] Dufour | Piecewise deterministic markov processes and dynamic reliability[END_REF]), finance (in [START_REF] Rolski | Stochastic Processes for Insurance and Finance[END_REF]), communication networks ( [START_REF] Graham | Interacting multi-class transmissions in large stochastic networks[END_REF], [START_REF] Bardet | Total variation estimates for the tcp process[END_REF]). We proceed as follows. In the first part, we prove that v δ satisfies, in some generalized viscosity sense the associated Hamilton-Jacobi integrodifferential equation. As in the deterministic counterpart, we use Bellman's approach. We begin Section 4 with proving the regularity of the deterministic value function and the dynamic programming principle (DPP) for this case. For available (active) roads, the controllability assumptions are the same as those in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]. However, entering inactive roads from intersection should be prohibited and other assumptions must be made for this case in order to guarantee the uniform continuity of the value function. Next, we iterate the value functions and the DPP between jumps to prove the uniform continuity of the (stochastic) value function and the DPP. As a by-product, we prove that the value function satisfies in a (relaxed) viscosity sense the associated Hamilton-Jacobi integrodifferential system (in Section 5).

We then focus on a different notion of uniqueness (in Section 6): The well-known method of Perron consists in proposing the supremum over regular subsolution as candidate to the viscosity solution. Using this intuition, we proceed backward and prove that the value function given in the previous section is the pointwise supremum over such regular subsolutions (with a slightly modified notion). The major argument in proving this result is to extend the intersection with some additional directions and impose convenient extensions of the dynamics. Then, we adapt Krylov's "shaking the coefficients" method (cf. [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF], [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]) to exhibit a sequence of regular subsolutions of our Hamilton-Jacobi system converging to the initial control problem. These arguments allow the linearization of the value function. It is shown (in Theorem 27) that the value function can be interpreted in connection to an optimization problem set on a family of convenient probability measures. This family is completely described by the Dynkin operator of our process. Moreover, the dual value allows one to state that the initial value function is, indeed, the pointwise supremum over regular subsolutions.

The paper is organized as follows. In Section 2, we recall the basic construction of piecewise deterministic Markov switch processes and give the main assumptions on the dynamics. We present our traffic model and introduce the different types of admissible controls and the controllability assumptions in Section 3. Section 4 is dedicated to the study of regularity of the value function and the dynamic programming principles. The basic ingredient is the technical projection Lemma 6 allowing to prove the uniform continuity of the value function in the deterministic setting (in Theorem 8). We proceed as in [START_REF] Soner | Optimal control with state-space constraint[END_REF] by iterating the value function and the dynamic programming principle. In Section 5, we introduce a sequential relaxation of the dynamics and prove that the regular value function exhibited before satisfies, in some generalized viscosity sense, the associated Hamilton-Jacobi intergrodifferential system. Section 6 is dedicated to the linearization of our value function. We begin with extending the graph and the dynamics by mirroring the trajectories in the inactive case and using the inertia otherwise. We briefly present the adaptation of Krylov's "shaking the coefficients" method and exhibit a family of regular subsolutions converging to the initial value function (in Theorem 25). The main ingredients in proving the convergence are successive projection arguments given by Lemmas 23 and 24 (whose proofs are postponed to the Appendix). The main result (Theorem 27) shows that the value function can be interpreted in connection to an optimization problem set on a family of convenient probability measures. Moreover, the dual of this problem allows one to characterize the value as the pointwise supremum over regular subsolutions (as predicted by Perron's method).

Standard construction of controlled switched PDMPs

We consider A (the control space) to be a compact subspace of a metric space R d and R m be the state space, for some d, m ≥ 1. Moreover, we consider a finite set E.

We summarize the construction of controlled piecewise deterministic Markov processes (PDMP) of switch type (cf. [START_REF] Davis | Piecewise-deterministic Markov-processes -A general-class of non-diffusion stochastic-models[END_REF], [START_REF] Davis | Control of Piecewise-deterministic processes via discrete-time dynamicprogramming[END_REF], [START_REF] Davis | Markov models and optimization[END_REF]) having as characteristic triple

f γ : R m × A -→ R m , for all γ ∈ E, λ : R m × E × A -→ R + and Q : R m × E 2 × A -→ [0, 1]
. These functions are assumed to satisfy some usual continuity conditions (to be made precise at the end of the section). The switch PDMP is constructed on a space (Ω, F, P) allowing to consider a sequence of independent, [0, 1] uniformly distributed random variables (e.g. the Hilbert cube starting from [0, 1] endowed with its Lebesgue measurable sets and the Lebesgue measure for coordinate, see [START_REF] Davis | Markov models and optimization[END_REF]Section 23]). We let

L 0 (R + × R m × E; A) denote the space of A-valued Borel measurable functions defined on R m × E × R + . Whenever α 1 ∈ L 0 (R + × R m × E; A) and (t 0 , x 0 , γ 0 ) ∈ R + × R m × E,
we consider the ordinary differential equation dy γ 0 (t; t 0 , x 0 , α 1 ) = f γ 0 (y γ 0 (t; t 0 , x 0 , α 1 ) , α 1 (tt 0 ; x 0 , γ 0 )) dt, t ≥ t 0 , y γ 0 (t 0 ; t 0 , x 0 ; α 1 ) = x 0.

For the sake of simplicity, whenever t 0 = 0, we denote by y γ 0 (t; x 0 , α 1 ) the solution of the previous ordinary differential equation such that y γ 0 (0; x 0 , α 1 ) = x 0 .

We pick the first jump time τ 1 such that the jump rate is λ (y γ 0 (t; x 0 , α 1 ) , γ 0 , α 1 (t; x 0 , γ 0 )) i.e.

P (τ 1 ≥ t / y γ 0 (0; x 0 ; α 1 ) = x 0 ) = exp - t 0 λ (y γ 0 (s; x 0 , α 1 ) , γ 0 , α 1 (s; x 0 , γ 0 )) ds .
The controlled piecewise deterministic Markov processes (PDMP) is defined by

(X x 0 ,γ 0 ,α t , Γ x 0 ,γ 0 ,α t ) = (y γ 0 (t; x 0 , α 1 ) , γ 0 ) , if t ∈ [0, τ 1 ) .
The post-jump location is denoted by (Y 1 , Υ 1 ) . Since we deal with continuous switching, Y 1 = y γ 0 (τ 1 ; x 0 , α 1 ) and Υ 1 is a random variable who has Q (y γ 0 (τ ; x 0 , α) , γ 0 , α 1 (τ, x 0 , γ 0 ) , •) as conditional distribution given τ 1 = τ. Starting from (Y 1 , Υ 1 ) at time τ 1 , we select the inter-jump time τ 2τ 1 such that

P (τ 2 -τ 1 ≥ t / τ 1 , (Y 1 , Υ 1 )) = exp - τ 1 +t τ 1 λ (y Υ 1 (s; τ 1 , Y 1 , α 2 ) , Υ 1 , α 2 (s -τ 1 ; Y 1 , Υ 1 )) ds ,
where

α 2 ∈ L 0 (R + × R m × E; A). We set (X x 0 ,γ 0 ,α t , Γ x 0 ,γ 0 ,α t ) = (y Υ 1 (t; τ 1 , Y 1 , α 2 ) , Υ 1 ) , if t ∈ [τ 1 , τ 2 ) .
The post-jump location (Y 2 , Υ 2 ) satisfies 

P ((Y 2 , Υ 2 ) ∈ Y × E / τ 2 , τ 1 , Y 1 , Υ 1 ) = 1 y Υ 1 (τ 2 ;τ 1 ,Y 1 ,α 2 )∈Y Q (y Υ 1 (τ 2 ; τ 1 , Y 1 , α 2 ) , Υ 1 , E, α 2 (τ 2 -τ 1 ; Y 1 , Υ 1 )) ,
: R m × E 2 × A -→ [0, 1] is a stochastic matrix : i.e. γ ′ ∈E Q (x, γ, γ ′ , a) = 1,
for all γ ∈ E and all (x, a) ∈ R m × A. Moreover, we assume that Q (x, γ, γ, a) = 0, for all γ ∈ E and that there exists some positive real constant C > 0 such that Remark 1 (i) The assumptions (A1-A4) are quite standard when dealing with viscosity theory in PDMP. They appear under this form in [START_REF] Soner | Optimal control with state-space constraint[END_REF] and are needed to infer the uniform continuity of the value function.

(A3) sup a∈A γ,γ ′ ∈E Q x, γ, γ ′ , a -Q y, γ, γ ′ , a ≤ C |x -y| .
(ii) We have chosen this presentation in order to emphasize the continuity of the X component (continuous switch). Readers who are familiar with the construction in [START_REF] Soner | Optimal control with state-space constraint[END_REF], may skip this subsection and just think of a characteristic triple

f : R m+d × A -→ R m+d , f ((x, γ) , a) = (f γ (x, a) , 0 R d ) , λ = λ Q : R m+d × A → P R m+d , Q ((x, γ) , a, dy, dθ) = δ x (dy) Q (x, γ, dθ) .
Here, P R m+d stands for the family of probability measures on R m+d .

A traffic problem

We consider a traffic problem on a network given by : -a family of vertices (e j ) j=1,2,...,N , for some N ∈ N * {1} , -a central intersection denoted by O. Our point of view is the one of a traffic regulator who observes the generic traffic and has the possibility to intervene in the regulation by imposing speed limits via some (external control). Given an initial point x ∈ G, the generic vehicle will move (in a continuous trajectory X t ) on G. At the same time as the actual traffic, the regulator observes the quality of the road (Γ t ) and distinguishes between roads which are functional (active) and those which need repairing (inactive). For functional roads, speeding up the traffic at the intersection in both directions is possible. In the inactive case, the road needs repairing and the vehicles that have just entered the road are directed to the junction. We emphasize that we have a simplified toy model in which the x component stands for the position of a generic vehicle (in opposition with the usual density component in traffic models).

This leads to controlled switch PDMP dynamics (X x,γ,α t , Γ x,γ,α t ) governed by the speed of the vehicle f, a jump parameter λ depending on both the traffic and the quality of the road λ and a postjump transition Q specifying functionality of the network. We denote by E the family of all possible functionality variables (e.g. {0, 1} N ) and introduce, for all j = 1, 2, ..., N a partition of

E = E active j ∪ E inactive j .
Given an initial couple describing the position and configuration (x, γ) ∈ G × E, we introduce the set of feasible (network-constrained) controls for the deterministic framework by setting A γ,x := α : R + -→ A : α is Borel measurable, y γ (t; x, α) ∈ G, for all t ≥ 0, , for all (x, γ) ∈ G × E. In general, without further assumptions, these sets might be empty. We will specify hereafter some controllability conditions that guarantee consistence of these sets. We also introduce the set of constant, locally-admissible controls for the deterministic problem by setting A γ,x = a ∈ A : y γ (t; x, a) ∈ G, for some θ > 0 and all t ∈ [0, θ] , for all (x, γ) ∈ G × E.

Unless stated otherwise, throughout the paper, we will use the following assumptions.

(Aa) There exist nonempty subsets A γ,j ⊂ A such that

A γ,x = A γ,j , if x ∈ J j , A γ,O = ∪ j=1,2,...,N a ∈ A γ,j : f (O, a) ∈ R + e j ,
A γ,e j = a ∈ A γ,j : f γ (e j , a) , e j ≤ 0 = ∅, for all γ ∈ E and all j = 1, 2, ..., N. Moreover, we assume that, for every γ ∈ E and every j = 1, 2, ..., N, either A γ,e j = A γ,j or, otherwise, there exists some β > 0 and some a γ,j ∈ A γ,j satisfying f γ (e j , a γ,j ) , e j < -β.

(Ab)

The active case : For all γ ∈ E active j , there exist some β > 0 and some a + γ,j , a - γ,j ∈ A γ,j such that f γ O, a + γ,j , e j > β and f γ O, a - γ,j , e j < -β.

The inactive case :

For γ ∈ E inactive j
, there exist some β > 0, 1 > η > 0, κ ∈ [0, 1) and a - γ,j , a 0 γ,j ∈ A γ,j such that

f γ x, a - γ,j , e j ≤ -β x, e j κ ,
for all x ∈ J j , |x| ≤ η and f γ O, a 0 γ,j = 0. Moreover,

f γ (x, a) , e j ≤ 0,
for all a ∈ A γ,j and all x ∈ J j , |x| ≤ η.

(Ac) Whenever γ ∈ E inactive j , l γ (O, a) = l γ (O) , for all a ∈ A γ,j .
Remark 2 (i) The condition (Ab) states that if the road is functional (active), then one has a behavior similar to the one introduced in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF] (speeding up the traffic at the intersection in both directions is possible). If the road is inactive, then, again according to (Ab), for the cars that have "just" entered the road, the only possibility is to move back into the intersection (the road needs clearing up for repairing). A measure (a - γ,j ) is possible to get them off this inactive road within a controlled time and, eventually, they are allowed to stay in O (due to the control a 0 γ,j ) until the road is repaired. The condition (Ac) is intended for technical reasons. It can be interpreted as : if the road is inactive, the presence of vehicles at the entrance of the road prevents the authority to intervene and repair the road and thus involves a certain cost. For vehicles that intend to get to e j , there is a global "waiting" cost at junction. However, if a ∈ A γ,j : f (O, a) ∈ R + e j = A γ,j , then (Ac) is no longer necessary.

(ii) Under the assumption (Aa), if A γ,e j = A γ,j , then there exists 1 2 > η > 0 such that

f γ (x, a γ,j
) , e j < -β, whenever |xe j | ≤ η. Similarly, under the assumption (Ab), for every γ ∈ E active j and some η > 0, f γ x, a - γ,j , e j < -β, f γ x, a + γ,j , e j > β, whenever |x| ≤ η.

Our assumptions guarantee the following.

Proposition 3 Under the assumptions (Aa) and (Ab), the set A γ,x is nonempty for all (x, γ) ∈ G × E.

Proof. If γ ∈ E active j and x ∈ [0, 0.5) e j , we define t + x,γ,e j := inf t > 0 : y γ t; x, a + γ,j = e j , If x ∈ [0.5, 1] e j , we let t - x,γ,O := inf {t > 0 : y γ (t; x, a) = O} , where a is any point of A γ,e j . One notices that t +

x,γ,e j ≥ 

α 0 x,γ (t) := a + γ,j , if t ∈ 0, t +
x,γ,e j ∪ t + x,γ,e j + t - e j ,γ,O , t + x,γ,e j + t - e j ,γ,O + t + O,γ,e j ∪ ..., a, otherwise.

The estimates on t +,-imply that α 0

x,γ is defined on R + . Moreover, it is clear that α 0 x,γ ∈ A γ,x . Similar construction holds true for x ∈ [0.5, 1] e j . If γ ∈ E inactive j , one gets similar results by replacing a + γ,j with a 0 γ,j . (In fact, in this case, if t - x,γ,O is finite, then the solution stays at O after the time t - x,γ,O ). This concludes the proof of our assertion. We introduce the set A ad given by (1)

A ad := α : R + × G × E -→ A : α is Borel measurable, X x 0 ,γ 0 ,α t ∈ G, for all t ≥ 0, P-a.s., for all (x 0 , γ 0 ) ∈ G × E .

Here, X x 0 ,γ 0 ,α t is the continuous component of our PDMP constructed as in Section 2 by using α i = α, for all i ≥ 1.

Remark 4 (a) Under the assumptions (Aa, Ab) it is clear that A ad is nonempty. In fact, it suffices to note that all the times t + , t -in the previous proposition are measurable functions of (x, γ) .

(b) The set A γ,x can be seen as a subset of A ad by choosing some α 0 ∈ A ad and setting α (t, y, η) := α (t) , if (y, η) = (x, γ) , α 0 (t; y, η) , otherwise, for all α ∈ A γ,x .

Example 5 Let us exhibit a simple example for which the previous assumptions (particularly (A1), (Aa-Ab)) are satisfied. We consider N = 3 and e

1 := 0 1 , e 2 := 1 0 =: -e 3 , A := [-1, 1] e 1 ∪ [-1, 1] e 2 , E := (0, 0, 0) , (0, 1, 1) , (1, 0, 0) , (1, 1, 1) ⊂ {0, 1} 3 , f γ (x, a) := γ 1 a, e 1 e 1 + γ 2 a, e 2 e 2 -|a| (1 -γ 1 ) x, e 1 1 2 e 1 + (1 -γ 2 ) x, e 2 + 1 2 e 2 + (1 -γ 2 ) x, e 3 + 1 2 e 3 , for x ∈ R × R + , γ = (γ 1 , γ 2 , γ 3 ) ∈ E. Here, z + = max (z, 0) , for z ∈ R. Then E inactive 1 := {γ ∈ E : γ 1 = 0} and E inactive 2 = E inactive 3 := {γ ∈ E : γ 2 = 0} .
The reader is invited to note that f γ is Lipschitz-continuous for active configurations. Also, we wish to note that, for this particular case, whenever J 2 is inactive (i.e. γ ∈ E inactive 2 ), f γ (re 2 , a) = -f γ (-re 2 , a), for all r ∈ R. The intersection acts as a mirror in the inactive case.

The cost l can be chosen increasing with the speed, very high as one reaches the intersection and null at the destination vertex. Moreover, it can be chosen decreasing with respect to the number of available/ active roads

l γ x 1 0 , a := l 0 + 1 γ 1 +γ 2 +1 (1 -|x 1 |) 2 + |a| |x 1 | -|x 1 | 2 and symmetrically for 0 x 2 .
Here, l 0 > 0 is some minimal cost.

The rate λ can be chosen in a similar way as a propensity function : we define λ γ (x, a) := λ 0 l γ (x, a) for some λ 0 > 0, then λ γ (x, a) := γ ′ ∈E {γ} λ γ ′ (x, a) . The jump measure Q can be chosen proportional to the relative contribution to the propensity function

Q x, γ, γ ′ , a := λ γ ′ (x,a) λγ (x,a) , if γ ′ ∈ E {γ} , 0, if γ ′ = γ.
4 The dynamic programming principle and the regularity of the value function(s)

The aim of the traffic regulator will be to minimize the expectation of the (infinite horizon, discounted) operating cost l satisfying (for the time being and unless stated otherwise), the assumption

(A4) inf α E ∞ 0 e -δt l Γ x,γ,α t (X x,γ,α t , α t ) dt .
The discount parameter δ > 0 will be fixed throughout the paper. The set of control policies (keeping the vehicle on the network) as well as the meaning of α t will be given later on.

The program of this first part relies on the paper [START_REF] Soner | Optimal control with state-space constraint[END_REF] : we study the regularity properties in the deterministic setting via some projection argument, then define some iterated value functions. Next, we prove the uniform continuity of these iterates and the dynamic programming principles (DPP). This leads to a regular limit function satisfying a DPP.

Throughout the paper, if φ is a bounded real-valued function on some set X ×F, where X ⊂ R M and F is compact such that φ (•, ς) is Lipschitz-continuous for all ς ∈ F, we set

|φ| 0 := sup (y,ς)∈X ×F |φ (y, ς)| and Lip (φ) := sup ς∈F sup y,y ′ ∈X y =y ′ |φ (y, ς) -φ (y ′ , ς)| |y -y ′ | .
Whenever f is not Lipschitz continuous (recall that (A1) is weaker than Lipschitz-continuity), by abuse of notation, we let

Lip (f ) := sup (γ,a)∈E×A sup y,y ′ ∈R m y =y ′ f γ (y, a) -f γ (y ′ , a) , y -y ′ |y -y ′ | 2 .
Of course, whenever the function f is only defined and satisfies the regularity assumptions on G, the supremum can be taken over j = 1, 2, ..., N and y, y ′ which are colinear with e j and a ∈ A γ,j .

A projection argument

Whenever ε > 0 is small enough, we let

t ε := - 1 δ ln εδ 2 |f | 0 , ρ ε := η 4 e -Lip(f )tε .
We will make extensive use of the following result.

Lemma 6

We assume (Aa-Ac) and (A1-A4) to hold true.

(i) There exists some C > 0 such that, for every ε > 0,

every γ ∈ E, x, y ∈ J 1 ∪ {O, e 1 } satisfying |x -y| ≤ ρ 2 1-κ ε
and every α ∈ A γ,x , there exists P x,y (α) ∈ A γ,y such that

(2) |y γ (t; y, P x,y (α)) -y γ (t; x, α)| ≤ C |x -y| 1-κ 2 , and (3) 
t 0 e -δs l γ (y γ (s;

y, P x,y (α)) , P x,y (α) (s)) ds - t 0 e -δs l γ (y γ (s; x, α) , α (s)) ds ≤ C |x -y| 1-κ 2 ,
for all t ≤ t ε .

(ii) Moreover, if α ∈ A ad , then, for every ε > 0 and every (γ, x) ∈ E×(J 1 ∪ {O, e 1 }) , there exists P (x,γ) (α) ∈ A ad such that the previous inequalities are satisfied with P (x,γ) (α) (•; y, γ) replacing

P x,y (α) (•) , for all y ∈ J 1 ∪ {O, e 1 } satisfying |x -y| ≤ ρ 2 1-κ ε .
Remark 7 (i) A brief look at the proof shows that the constant C in the previous lemma only depends on Lip (l) , |l| 0 , Lip (f ) , |f | 0 and β but not of the actual coefficient f nor of the actual cost function l.

(ii

) The assumption (Ac) is only needed if a ∈ A γ,1 : f (O, a) ∈ R + e 1 = A γ,1 .
Otherwise, both the cases (b1) and the analogous (c3.2) in the proof need not being treated as special cases.

At this point, we introduce the value function for the deterministic case (λ = 0, or, equivalently, the road functionality γ is immutable) by setting

v δ 0 (x, γ) = inf α∈Aγ,x ∞ 0 e -δt l γ (y γ (t; x, α) , α (t)) dt,
for all x ∈ G and all γ ∈ E.

As a consequence of our projection lemma, we get the following continuity result :

Theorem 8 The deterministic value functions v δ 0 (•, γ) are bounded and uniformly continuous on G.

Proof. Since the domain G is compact, it suffices to prove that v δ (•, γ) is continuous. Let us fix x ∈ G \ {O} and consider ε > 0. Without loss of generality, we assume that x ∈ J 1 ∪ {e 1 } . Then, there exists some α ∈ A γ,x such that

v δ 0 (x, γ) + ε ≥ tε 0 e -δt l γ (y γ (t; x, α) , α (t)) dt - 1 δ e -δtε |l| 0 .
Hence, for every y

∈ J 1 ∪ {e 1 , O} such that |x -y| ≤ ρ 2 1-κ ε
, using the previous lemma, there exists P x,y (α) ∈ A γ,y such that

v δ 0 (x, γ) + ε ≥ tε 0 e -δt l γ (y (t; x, P x,y (α)) , P x,y (α) (t)) dt -Cρ ε - 1 δ e -δtε |l| 0 ≥ ∞ 0 e -δt l γ (y (t; x, P x,y (α)) , P x,y (α) (t)) dt -Cρ ε - 2 δ e -δtε |l| 0 ≥ v δ 0 (y, γ) -Cρ ε - |l| 0 |f | 0 ε.
The continuity property follows by recalling that ε > 0 is arbitrary and lim ε→0 ρ ε = 0. In the case when x = O, the same arguments yield lim

y→O y∈J j v δ 0 (y, γ) = v δ 0 (O, γ) ,
for every j = 1, 2, ..., N. The proof of our theorem is now complete.

Remark 9

The reader is invited to note that the continuity modulus of v δ 0 depends only on Lip (l) , |l| 0 , Lip (f ) , |f | 0 and β but not of the actual coefficient f nor of the actual cost function l.

Iterated value function

Following the ideas of [START_REF] Soner | Optimal control with state-space constraint[END_REF], we introduce the iterated value functions v δ m defined by

v δ m (x, γ) := inf α∈A ad J m (x, γ, α) ,
where

J m (x, γ, α) := E τ 1 0 e -δt l γ (X x,γ,α t , α (t; x, γ)) dt + e -δτ 1 v δ m-1 (Y 1 , Υ 1 ) .
We recall that (Y 1 , Υ 1 ) are the post-jump locations at the first jump time τ 1 depending on x, γ, α, (cf. Section 2). Hence, we have

(Y 1 , Υ 1 ) = (X x,γ,α τ 1 , Γ x,γ,α τ 1
) and

τ 1 = τ x,γ,α 1 
. The process is constructed as in section 2 using α i = α ∈ A ad , for all i ≥ 1. The reader is invited to note that a simple recurrence argument yields

(4) v δ m (x, γ) ≤ |l| 0 δ , for all (x, γ) ∈ G × E.
Throughout the section, unless stated otherwise, we assume (Aa-Ac) and (A1-A4) to hold true. In order to simplify our presentation, we assume that λ and Q are independent of the control parameter a. The general case follows from similar arguments as those of Lemma 6 (the estimates on l) if one assumes

(Ac') Whenever γ ∈ E inactive j , Q (O, γ, γ ′ , a) = Q (O, γ, γ ′ ) and λ (O, γ, a) = λ (O, γ) . Again, (Ac') is only needed for those j such that γ ∈ E inactive j and a ∈ A γ,j : f (O, a) ∈ R + e j = A γ,j .
The same arguments as those employed in [35, Lemma 3.1] yield

Lemma 10 Let us assume that v δ m-1 (•, γ) is continuous on G.
Then, for every T > 0, one has

v δ m (x, γ) = inf α∈A ad E τ 1 ∧T 0 e -δt l γ (y γ (t; x, α) , α (t; x, γ)) dt +e -δτ 1 v δ m-1 (Y 1 , Υ 1 ) 1 τ 1 ≤T + e -δT v δ m (y γ (T ; x, α) , γ) 1 τ 1 >T , for all (x, γ) ∈ G × E.
The proof is identical (no changes needed) to the one in [35, Lemma 3.1] and will be omitted from our (already long enough) presentation.

Theorem 11

The functions v δ m (•, γ) are uniformly continuous on G, for all m ≥ 0 and uniformly with respect to γ ∈ E.

Proof. We prove our theorem by recurrence over m. For m = 0, we invoke theorem 8. Let us assume that v δ m-1 (•, γ ′ ) is continuous for all γ ′ ∈ E. We let ω m-1 be the continuity modulus

ω m-1 (r) := sup v δ m-1 x, γ ′ -v δ m-1 y, γ ′ : |x -y| ≤ r, γ ′ ∈ E .
We also introduce

ω m (γ, r) := sup v δ m (x, γ) -v δ m (y, γ) : |x -y| ≤ r , for all r > 0. Obviously, ω m (r) = sup γ∈E ω m (γ, r). It is straightforward that ω m (r) ≤ 2 |l| 0 δ . Let us fix, for the time being, (γ, x, y) ∈ E × G 2 , ε > 0 and assume that |x -y| ≤ ρ 2 1-κ ε
. Then, due to the previous lemma, there exists some admissible control process α ∈ A ad such that

v δ m (x, γ) ≥ -ε + E τ 1 ∧tε 0 e -δt l γ (y γ (t; x, α) , α (t; x, γ)) dt +e -δτ 1 v δ m-1 (Y 1 , Υ 1 ) 1 τ 1 ≤tε + e -δtε v δ m (y γ (t ε ; x, α) , γ) 1 τ 1 >tε .
We denote by α the admissible control process P (x,γ) (α) ∈ A ad given by the assertion (ii) in Lemma 6. Moreover, we let τ 1 be the first jump time starting from (y, γ) and using the control α.

We introduce the following notations : Then

y(t) := y γ (t; x, α) , α(t) := α (t; x, γ) , λ (t) := λ (y (t) , γ) , Λ (t) = exp - t 0 λ ( 
v δ m (y, γ) ≤ E τ 1 ∧tε 0 e -δt l γ ( y (t) , α (t)) dt +E e -δ τ 1 v δ m-1 Y 1 , Υ 1 1 τ 1 ≤tε + e -δtε v δ m ( y (t ε ) , γ) 1 τ 1 >tε .
The right-hand member can be written as

I m (y, γ, α) = tε 0 λ (t) Λ (t) t 0 e -δs l γ ( y (s) , α (s)) dsdt (5) + tε 0 λ (t) Λ (t) e -δt γ ′ ∈E\{γ} v δ m-1 y (t) , γ ′ Q y (t) , γ, γ ′ dt + Λ (t ε ) tε 0 e -δt l γ ( y (t) , α (t)) dt + Λ (t ε ) e -δtε v δ m ( y (t ε ) , γ) .
Then, using the estimates (2) in Lemma 6 and recalling that (A2) holds true, one has

I m (y, γ, α) ≤ C |x -y| 1-κ 2 + tε 0 λ (t) Λ (t) t 0 e -δs l γ ( y (s) , α (s)) dsdt (6) + tε 0 λ (t) Λ (t) e -δt γ ′ ∈E\{γ} v δ m-1 y (t) , γ ′ Q y (t) , γ, γ ′ dt + Λ (t ε ) tε 0 e -δt l γ ( y (t) , α (t)) dt + Λ (t ε ) e -δtε v δ m ( y (t ε ) , γ) ,
for some generic constant C > 0 independent of ε, γ, y, x, α which may change from one line to another. This constant only depends on the supremum norm and the Lipschitz constants of λ, Q, f and l. Again by (2) and using the assumption (A3), we get

γ ′ ∈E\{γ} v δ m-1 y (t) , γ ′ Q y (t) , γ, γ ′ - γ ′ ∈E\{γ} v δ m-1 y (t) , γ ′ Q y (t) , γ, γ ′ (7) ≤ ω m-1 C |x -y| 1-κ 2 + γ ′ ∈E\{γ} v δ m-1 y (t) , γ ′ Q y (t) , γ, γ ′ -Q y (t) , γ, γ ′ ≤ ω m-1 C |x -y| 1-κ 2 + C |x -y| 1-κ 2 ,
for all t ≤ t ε . Moreover

e -δtε v δ m y (t ε ) , γ ′ ≤ e -δtε v δ m y (t ε ) , γ ′ + e -δtε ω m C |x -y| 1-κ 2
.

Returning to (6) and using [START_REF] Barnard | Flow invariance on stratified domains[END_REF] and the previous relation, we get

v δ m (y, γ) ≤ v δ m (x, γ) + ε + C |x -y| 1-κ 2 + ω m-1 C |x -y| 1-κ 2 + e -δtε ω m C |x -y| 1-κ 2 . Hence, whenever |x -y| ≤ r ≤ ρ 2 1-κ ε , ω m (r, γ) ≤ ε + Cr 1-κ 2 + ω m-1 Cr 1-κ 2 + e -δtε ω m Cr 1-κ 2 .
Taking the supremum over γ ∈ E, we can replace ω m (r, γ) with ω m (r) . We can assume, without loss of generality, that C > 1 and the conclusion follows (similar to Lemma 3.3 in [START_REF] Soner | Optimal control with state-space constraint[END_REF]). Indeed,

one considers r = C -2 1+κ ( 1-κ 2 )
-n -1 and iterates in the previous inequality to get

ω m C -2 1+κ ( 1-κ 2 ) -n -1 = ε 1 1 -e -δtε + e -δtε(n-1) n-1 k=0 ω m-1 C -2 1+κ ( 1-κ 2 ) -k -1 e δktε + e -δtε(n-1) n-1 k=0 C -2 1+κ ( 1-κ 2 ) -k -1 e δktε + 2e -δtεn |l| 0 δ ,
for n large enough and recall that ε > 0 is arbitrary. Then, by the recurrence assumption and allowing n → ∞, one gets

ω m (0) ≤ ε 1 1 -e -δtε = ε 1 -εδ 2|f | 0 .
To complete the proof, one only needs to recall that this inequality holds true for arbitrary ε > 0.

Remark 12

In fact, all these continuity moduli depend only the supremum norm and the Lipschitz constants of λ, Q, f and l but the particular choice of the coefficients is irrelevant (see also Remark 9).

As a corollary, using the same proof as in the first part of Theorem 3.4 in [START_REF] Soner | Optimal control with state-space constraint[END_REF], we get Corollary 13 Under our assumptions (A1-A4, Aa-Ac, Ac'), the value function v δ (γ, •) given by

v δ (x, γ) := inf α∈A N ad E n≥0 τ n+1 τn e -δt l Γ x,γ,α τn y Γ γ,x,α τn t; X x,γ,α τn , α n+1 , α n+1 t -Γ x,γ,α τn ; X x,γ,α τn , Γ x,γ,α
τn is bounded and uniformly continuous on G, for all γ ∈ E. Moreover, it satisfies the following Dynamic Programming Principle :

v δ (x, γ) = inf α∈A ad E T ∧τ 1 0 e -δt l γ (y γ (t; x, α) , α (t; x, γ)) dt +e -δ(T ∧τ 1 ) v δ y γ (T ∧ τ 1 ; x, α) , Γ x,γ,α T ∧τ 1 , for all T > 0 and all (γ, x) ∈ E × G.
Again, once we have established the ingredients of uniform continuity in the previous theorem, the proof is identical with the first part of Theorem 3.4 in [START_REF] Soner | Optimal control with state-space constraint[END_REF] and will be omitted from our (long enough) paper. One iterates Lemma 10 to get v δ m and recalls that λ is bounded and, thus, the jumping times cannot accumulate.

Existence of the viscosity solution

At this point, we introduce the following Hamilton-Jacobi integrodifferential system (8)

δv δ (x, γ) + sup a∈Aγ,x -f γ (x, a) , Dv δ (x, γ) -l γ (x, a) -λ (x, γ, a) γ ′ ∈E Q (x, γ, γ ′ , a) v δ (x, γ ′ ) -v δ (x, γ) = 0.

Relaxing the dynamics

In addition to the standard assumptions (Aa-Ac), we will need the following.

(Ad) For every 1 ≤ j ≤ N, every γ ∈ E and every x ∈ J j , there exists θ > 0 such that, whenever α ∈ A ad , one has α (t; x, γ) ∈ A γ,j for almost all t ∈ [0, θ] .

For every x∈G, we let T x G denote the set of tangent directions to G at x :

T x G = Re j if x ∈ J j , T e j G = R -e j and T O G = ∪ 1≤j≤N
R + e j . The set M + (E) denotes the family of (positive)

measures ζ = (ζ (γ)) γ∈E ∈ R E + .
The following standard notations will be employed throughout the section.

F L (x, γ) :=            (ξ, ζ, η) ∈ T x G × M + (E) × R : ∃ (α n ) n ⊂ A ad , (t n ) n ⊂ R + , s.t. lim n→∞ t n = 0, lim n→∞ 1 tn tn 0 f γ (x, α n (s; x, γ)) ds = ξ, lim n→∞ 1 tn tn 0 λ (x, γ, α n (s; x, γ)) Q (x, γ, α n (s; x, γ)) ds = ζ, lim n→∞ 1 tn tn 0 l γ (x, α n (s; x, γ)) ds = η            , F (x, γ) :=      (ξ, ζ) ∈ T x (G) × M + (E) : ∃ (α n ) n ⊂ A ad , (t n ) n ⊂ R + , s.t. lim n→∞ t n = 0, lim n→∞ 1 tn tn 0 f γ (x, α n (s; x, γ)) ds = ξ, lim n→∞ 1 tn tn 0 λ (x, γ, α n (s; x, γ)) Q (x, γ, α n (s; x, γ)) ds = ζ      , f l (x, γ, a) := (f γ (x, a) , λ (x, γ, a) Q (x, γ, a) , l γ (x, a)) .
Remark 14 (a) The reader is invited to note that, in the previous notations, " (α n ) n ⊂ A ad " (resp. "α (s; x, γ) ") and can be replaced by " (α n ) n ⊂ A γ,x " (resp. "α (s) ", see also the second part of Remark 4). (b) Also, the assumptions on the coefficients imply that

lim n→∞ 1 t n tn 0 f γ (x, α n (s; x, γ)) ds = lim n→∞ 1 t n tn 0 f γ (y γ (s; x, α n (s; x, γ)) , α n (s; x, γ)) ds,
and similar assertions hold true in the definition of η and ζ.

(c) Finally, we have dropped the dependency on λQ in these terms for the sake of simplicity. One should have written f (λQ) l, etc.

We begin with the following technical result.

Lemma 15

We assume (Aa-Ad) and (A1-A4) to hold true. For every x ∈ G {O} , the following equality holds true

F L(x, γ) = cof l (x, γ) := co f l (x, γ, a) : a ∈ A γ,x .
Moreover, for every j ≤ N, F L(e j , γ) ⊂ cof l (e j , γ) := co f l (e j , γ, a) :

a ∈ A γ,j ∩ (R -e j × M + (E) × R) .
Proof. Without loss of generality, we first assume that x ∈ J 1 . It is clear that

F L(x, γ) ⊂ co f l (x, γ, a) : a ∈ A γ,x .
Indeed, it suffices to use the assumption (Ad) to get the existence of some θ > 0 such that whenever α ∈ A ad , one has α (t; x, γ) ∈ A γ,1 for almost all t ∈ [0, θ] . Then, for every (α n ) n ⊂ A ad , and every sequence (

t n ) n ⊂ R + such that t n ≤ θ, one has    1 tn tn 0 f γ (x, α n (s; x, γ)) ds 1 tn tn 0 λ (x, γ, α n (s; x, γ)) Q (x, γ, α n (s; x, γ)) 1 tn tn 0 l γ (x, α n (s; x, γ))    ∈ co f l (x, γ, a) : a ∈ A γ,x . If x = e 1 , then 1 t n tn 0 f γ (y γ (s; e 1 , α n ) , α n (s; e 1 , γ)) ds = y γ (t n ; e 1 , α n ) -e 1 t n ∈ R -e 1 .
Hence, invoking part (b) of the Remark 14, it follows that

F L(e 1 , γ) ⊂ co f l (e 1 , γ, a) : a ∈ A γ,1 ∩ (R -e 1 × M + (E) × R) .
For the converse inclusion, we fix x ∈ G {O}. One begins by noticing that F L(x, γ) is closed. Hence, it suffices to prove that

co f l (x, γ, a) : a ∈ A γ,1 ⊂ F L(x, γ).
We consider λ i ≥ 0, i ∈ {1, .., K} such that K i=1 λ i = 1 and a i ∈ A γ,1 , pour tout i ∈ {1, .., K} .

Since x ∈ J 1 , whenever t n < min(|x|,|x-e 1 |) max(|f | 0 ,1) , an admissible control α ∈ A γ,x is obtained by setting

α n (t) = K i=1 a i 1     i-1 j=1 λ j   tn,   i j=1 λ j   tn  
(t) and the conclusion follows.

The family of admissible test functions will be given as in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF] by

ϕ ∈ C b G for which ϕ | J j ∈ C 1 b J j , for all j = 1, 2, ..., N. If x ∈ J j , we recall that Dϕ (x; ξ) := lim t→0 ϕ (x + tξ) -ϕ (x) t , for all ξ ∈ Re j .
We also recall that Dϕ (e j ; ξ) := lim

t→0+ ϕ (e j + tξ) -ϕ (x) t , for all ξ ∈ R -e j and Dϕ (O; ξ) := lim t→0+ ϕ (tξ) -ϕ (O) t , whenever ξ ∈ R + e j . If κ : [0, 1] -→ G is continuous and (t n ) n ⊂ (0, 1] is such that lim n→∞ t n = 0 and lim n→∞ κ (t n ) t n = ξ,
we have

Dϕ (O; ξ) := lim n→∞ ϕ (κ (t n )) -ϕ (O) t n
and one notes that this limit does not depend on the choice of κ. To simplify the notations, we will also write ξ, Dϕ (x) instead of Dϕ (x; ξ). One notices easily that the choice of test functions is equivalent to taking a family of test functions ϕ j ∈ C 1 b J j such that ϕ j (O) = ϕ j ′ (O) , for all 1 ≤ j, j ′ ≤ N. For further details of this family of test functions, the reader is referred to [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]Subsection 3.1].

We now introduce the definition of the generalized solution of the system (8).

Definition 16 A bounded, upper semicontinuous function V is said to be a generalized viscosity subsolution of (8) if, for every

(γ 0 , x 0 ) ∈ E × G whenever ϕ ∈ C b G for which ϕ | J j ∈ C 1 b J j , for all j = 1, 2, ..., N is a test function such that x 0 ∈ Argmax (V (•, γ 0 ) -ϕ (•)) , one has δV (x 0 , γ 0 ) + sup (ξ,ζ,η)∈F L(x 0 ,γ 0 ) -Dϕ (x 0 ; ξ) -η - γ ′ ∈E ζ (γ ′ ) (V (x 0 , γ ′ ) -V (x 0 , γ 0 )) ≤ 0.
A bounded, lower semicontinuous function V is said to be a generalized viscosity supersolution of (8) if, for every

(γ 0 , x 0 ) ∈ E × G whenever ϕ ∈ C b G for which ϕ | J j ∈ C 1 b J j , for all j = 1, 2, ..., N is a test function such that x 0 ∈ Arg min (V (•, γ 0 ) -ϕ (•)) , one has δV (x 0 , γ 0 ) + sup (ξ,ζ,η)∈F L(x 0 ,γ 0 ) -Dϕ (x; ξ) -η - γ ′ ∈E ζ (γ ′ ) (V (x 0 , γ ′ ) -V (x 0 , γ 0 )) ≥ 0.

(A) Viscosity solution

We are now able to state and proof the main result of the section.

Theorem 17

We assume (Aa-Ad, Ac') and (A1-A4) to hold true. Then, the value function v δ is a bounded uniformly continuous generalized solution of [START_REF] Biswas | Viscosity solutions for a system of integropdes and connections to optimal switching and control of jump-diffusion processes[END_REF].

Proof. We begin with the proof of the subsolution condition. Let us fix (γ 0 , x 0 ) ∈ E × (G {O}) and consider a regular test function ϕ such that

x 0 ∈ Argmax v δ (•, γ 0 ) -ϕ (•) . Then ϕ (x 0 ) -ϕ (x) ≤ v δ (x 0 , γ 0 ) -v δ (x, γ 0 ) ,
for all x ∈ G. We can assume, without loss of generality, that ϕ

(x 0 ) = v δ (x 0 , γ 0 ) . Let us consider (ξ, ζ, η) ∈ F L (x 0 , γ 0 ) . Then, there exist (α n ) n ⊂ A ad , (t n ) n ⊂ R + , s.t. lim n→∞ t n = 0 and        lim n→∞ 1 tn tn 0 f γ 0 (x 0 , α n (s; x 0 , γ 0 )) ds = ξ, lim n→∞ 1 tn tn 0 λ (x 0 , γ 0 , α n (s; x 0 , γ 0 )) Q (x 0 , γ 0 , α n (s; x 0 , γ 0 )) ds = ζ, lim n→∞ 1 tn tn 0 l γ 0 (x 0 , α n (s; x 0 , γ 0 )) ds = η.
We fix, for the time being, n ∈ N. We let τ n 1 be the first jumping time associated to α n (•; x, γ).

Using the dynamic programming principle, one gets

0 = v δ (x 0 , γ 0 ) -ϕ (x 0 ) ≤ E tn∧τ n 1 0 e -δs l γ 0 (y γ 0 (s; x 0 , α n ) , α n (s; x 0 , γ 0 )) ds +e -δ(tn∧τ n 1 ) v δ y γ 0 (t n ∧ τ n 1 ; x 0 , α n ) , Γ x 0 ,γ 0 ,αn tn∧τ n 1 -ϕ (x 0 ) ≤ E tn∧τ n 1 0
e -δs l γ 0 (x 0 , α n (s; x 0 , γ 0 )) ds +

tn∧τ n 1 0 e -δs Lip (l) |f | 0 sds +e -δτ n 1 v δ y γ 0 (τ n 1 ; x 0 , α n ) , Γ x 0 ,γ 0 ,αn τ n 1 1 τ n 1 <tn + e -δtn ϕ (y γ 0 (t n ; x 0 , α n )) 1 τ n 1 ≥tn -ϕ (x 0 ) ≤ |f | 0 Lip (l) t n E [t n ∧ τ n 1 ] + |l| 0 tn 0 1 -e -δs ds + t n P (τ n 1 < t n ) + δ |ϕ| 0 t n P (τ n 1 < t n ) E tn 0 l γ 0 (x 0 , α n (s; x 0 , γ 0 )) ds + e -δtn ϕ (y γ (t n ; x 0 , α n )) -ϕ (x 0 ) + E e -δτ n 1 v δ y γ 0 (τ n 1 ; x 0 , α n ) , Γ x 0 ,γ 0 ,αn τ n 1 -ϕ (y γ 0 (t n ; x 0 , α n )) 1 τ n 1 <tn .
We set λ (s) := λ (y γ 0 (s; x 0 , α n ) , γ 0 , α n (s; x 0 , γ 0 )) and Λ (s) := exp -s 0 λ (r) dr and one gets

0 =v δ (x 0 , γ 0 ) -ϕ (x 0 ) ≤ |f | 0 Lip (l) t n E [t n ∧ τ n 1 ] + Lip (ϕ) |f | 0 t n P (τ n 1 < t n ) + δ |ϕ| 0 t n P (τ n 1 < t n ) + |l| 0 tn 0
1e -δs ds + t n P (τ n 1 < t n ) + e -δtn (ϕ (y γ (t n ; x 0 , α n ))ϕ (x 0 )) + e -δtn -1 ϕ (x 0 ) + tn 0 l γ 0 (x 0 , α n (s; x 0 , γ 0 )) ds

+ tn 0 e -δs λ (s) Λ (s) γ ′ =γ 0 Q y γ 0 (s; x 0 , α n ) , γ 0 , γ ′ , α n (x 0 , γ 0 , s) v δ y γ 0 (s; x 0 , a) , γ ′ -ϕ (x 0 ) ds. (9) 
The reader is invited to note that

   e -δs λ (s) Λ (s) -λ (x 0 , α n (s; x 0 , γ 0 )) ≤ (|f | 0 Lip (λ) + |λ| 0 (δ + |λ| 0 )) t n , |Q (y γ 0 (s; x 0 , α n ) , γ 0 , γ ′ , a) -Q (x 0 , γ 0 , γ ′ , a)| ≤ |f | 0 Lip (Q) t n , v δ (y γ 0 (s; x 0 , α n ) , γ ′ ) -v δ (x 0 , γ ′ ) = ω δ (|f | 0 t n ) ,
whenever s ≤ t n , where ω δ denotes the continuity modulus of v δ . Also,

y γ (t n ; x 0 , α n ) -x 0 t n = tn 0 f γ (y γ (s; x 0 , α n ) , α n (s; x 0 , γ 0 )) ds t n = tn 0 f γ (x 0 , α n (s; x 0 , γ 0 )) ds t n +ω (t n ) ,
(where lim ε→0 ω (ε) = 0). We divide (9) by t n and allow n → ∞ to get

0 ≤ η -δϕ (x 0 ) + Dϕ (x 0 ; ξ) + γ ′ =γ ζ γ ′ v δ x 0 , γ ′ -v δ (x 0 , γ) .
The conclusion follows by recalling that (ξ, ζ, η) ∈ F L (x 0 , γ 0 ) is arbitrary.

To prove that v δ is a viscosity supersolution of the associated Hamilton-Jacobi integrodifferential equation, let us fix, for the time being, ε > 0. We equally fix (γ 0 , x 0 ) ∈ E × G and consider a test function ϕ such that x 0 ∈ Argmin v δ (•, γ 0 )ϕ (•) . Then

ϕ (x 0 ) -ϕ (x) ≥ v δ (x 0 , γ 0 ) -v δ (x, γ 0 ) ,
for all x ∈ G. We can assume, without loss of generality, that ϕ (x 0 ) = v δ (x 0 , γ 0 ). There exists an admissible control α ε such that

v δ (x 0 , γ 0 ) + ε ≥ E √ ε∧τ 1 0 e -δs l γ 0 (y γ 0 (s; x 0 , α ε ) , α ε (s)) ds +e -δ( √ ε∧τ 1) v δ y γ 0 ( √ ε ∧ τ 1 ; x 0 , α ε ) , Γ x 0 ,γ 0 ,α ε √ ε∧τ 1 .
(For notation purposes, we have dropped the dependency of γ 0 , x 0 in α ε ). As in the first part of our proof, τ 1 denotes the first jumping time associated to the admissible control process α ε . Using similar estimates to the first part, one gets

0 = v δ (x 0 , γ 0 ) -ϕ (x 0 ) ≥ -ε -|f | 0 Lip (l) √ εE √ ε ∧ τ 1 -Lip (ϕ) |f | 0 √ εP τ 1 < √ ε -δ |ϕ| 0 √ εP τ 1 < √ ε -|l| 0 √ ε 0 1 -e -δs ds + √ εP τ 1 < √ ε + e -δ √ ε ϕ y γ √ ε; x 0 , α ε -ϕ (x 0 ) + e -δ √ ε -1 ϕ (x 0 ) + √ ε 0 e -δs λ (s) Λ (s) γ ′ =γ 0 Q y γ 0 (s; x 0 , α ε ) , γ 0 , γ ′ , α ε (s) v δ y γ 0 (s; x 0 , α ε ) , γ ′ -ϕ (x 0 ) ds,
where λ (s) := λ (y γ 0 (s; x 0 , α ε ) , γ 0 , α ε (s)) and Λ (s) := exp -s 0 λ (r) dr . We recall that f, λ and Q are Lipschitz-continuous and bounded and v δ is uniformly continuous and bounded. The conclusion follows similarly to the subsolution case by dividing the inequality by √ ε, recalling the definition of F L (x 0 , γ 0 ) and allowing ε (or some subsequence) to go to 0.

6 Extending the intersection and linearizing the value function

Additional directions

Without loss of generality, we assume that -e j / ∈ G, for all j ≤ M ≤ N and -e j ∈ G, for all M < j ≤ N. We define

e j := -e j-N , E active j := E active j-N , E inactive j := E inactive j-N
, whenever N < j ≤ M + N. For every ε > 0, we complete G into G +,ε by adding [0, εe j ) for N < j ≤ M + N and (1, 1 + ε) e j , for j ≤ N.

Fig 2. The complete intersection

Throughout the remaining of the paper we make the following assumption.

(B) Whenever M < j, j ′ ≤ N are such that e j ′ = -e j , then A γ,j = A γ,j ′ , for all γ ∈ E.

Remark 18 Roughly speaking, on the roads that cross the intersection (of type (-1, 1) e j ), the same family of (piecewise constant) controls can be used both at the entrance and at the exit of the intersection.

Inactive roads

The reader is invited to notice that, if e j , e j ′ = -e j ∈ G then, for every γ ∈ E inactive j ∩ E inactive j ′ , f γ (O, a) = 0, for all a ∈ A γ,j ∩ A γ,j ′ . This is a simple consequence of the assumption (Ab) which implies that f γ (O, a) , e j ≤ 0 and f γ (O, a) , e j ′ ≤ 0, for all a ∈ A γ,j ∩ A γ,j ′ . In particular, if (B) holds true, then f γ (O, a) = 0, for all a ∈ A γ,j (= A γ,j ′ ) whenever γ ∈ E inactive j ∩ E inactive j ′ . Hence, in order to obtain a similar behavior for the completed intersection, it is natural to strengthen the assumption (Ab). We will assume that, (Ab') Whenever γ ∈ E inactive j for some j ≤ M, then f γ (O, a) = 0, for all a ∈ A γ,j .

Remark 19 This is, of course, less general than the existence of one a 0 γ,j ∈ A γ,j guaranteed by (Ab). The assumption states that, whenever the road j is inactive, a vehicle that needs to go on this road should wait until it is repaired.

Extending the dynamics

Unless stated otherwise, we assume the (pseudo-)controllability conditions (Aa, Ab, Ad), the compatibility at the intersection (Ab', Ac'), the regularity of the coefficients and cost functions (A1-A4) and the compatibility condition (B) to hold true.

We are now able to extend f (and λ, Q) to j=1,2,...,N Re j × A by setting

f γ (x, a) =        f γ (x, a) , if x ∈ (0, 1) e j , j ≤ N, f γ (e j , a) , if x ∈ [1, ∞) e j , j ≤ N, -f γ (-x, a) , if γ ∈ E inactive j , x ∈ R -e j , j ≤ M, f γ (O, a) , if γ ∈ E active j , x ∈ R -e j , j ≤ M.
For the other elements (ϕ ∈ {λ, l, Q}), we set

ϕ (x, γ, a) =    ϕ (x, γ, a) , if x ∈ (0, 1) e j , j ≤ N, ϕ (e j , γ, a) , if x ∈ [1, ∞) e j , j ≤ N, ϕ (O, γ, a) , otherwise.
. (by abuse of notation, l (x, γ, a) = l γ (x, a)).

This particular construction for f is needed in order to guarantee that the assumptions (Aa) and (Ab) hold true for the new system on G +,ε . It basically suggests that in the active case, the vehicle will continue its road on the extension of the road with the same speed as in O. In the inactive case, the extension of the road is obtained by looking at the road j using a mirror.

Krylov's "shaking the coefficients" method

We wish to construct a family of regular functions satisfying a suitable subsolution condition and converging, as ε → 0 to our value function. Regularization can be achieved by classical convolution. However, because of the convolution, the subsolution condition should not only concern a point x but some neighborhood. This is the reason why, one needs to introduce a perturbation in the Hamiltonian or, equivalently, in the coefficients. The method is known as "shaking the coefficients" and has been introduced, in the framework of Brownian diffusions, in [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF].

For r > 0, we let B r denote the r-radius closed ball B r = {y ∈ R m : |y| ≤ r} . We set

f ρ γ (x, a, b) = f γ (x + ρb, a) , ϕ ρ (x, γ, a, b) = ϕ (x + ρb, γ, a) , if ϕ ∈ {λ, Q, l} , for all (x, a, b) ∈ ∪ j=1,2,...,N ([-ε, 1 + ε] e j × A × [-1, 1] e j )
, and all |b| ≤ 1. Let us fix, for the time being, ε ≥ ρ > 0 and consider the control problem on G +,ε . We denote by J ε,+ j := (0, 1 + ε) e j , for all j = 1, 2, ..., N, J ε,- j := (-ε, 0) e j , for j ≤ M, (-1ε, 0) e j , for M < j ≤ N, , J ε j := J ε,+ j ∪J ε,- j .

for all j = 1, 2, ..., N. We set

A := ∪ j=1,2,...,N A γ,j × [-1, 1] e j , A γ,j := A γ,j × [-1, 1] e j .
For this extended system, we will check that our controllability assumptions (Aa) and (Ab) hold true for explicit sets of controls. The reader is invited to notice that the following hold true :

(Aa) A γ,x = A γ,j , if x ∈ J ε,+ j , A γ,O = ∪ j=1,2,...,N A γ,j , A γ,(1+ε)e j = A γ,e j × [-1, 1] e j ,
for all j = 1, 2, ..., N. Let us fix j ≤ M.

(i) If γ ∈ E active j , then A γ,-εe j = (a, b) ∈ A γ,j : f γ (O, a) ∈ R + e j .
The set A γ,-εe j is nonempty. Indeed, the control a + γ,j , b (a + γ,j given by the assumption (Ab) and b ∈ [-1, 1] e j arbitrary) belongs to A γ,-εe j and

f ρ γ -εe j , a + γ,j , b , (-e j ) = f γ O, a + γ,j , (-e j ) < -β, for all b ∈ [-1, 1] e j . (ii) If γ ∈ E inactive j , then A γ,-εe j = A γ,j .
Indeed, f ρ γ (-εe j , a, b) , (-e j ) = -f γ (εe jρb, a) , (-e j ) = f γ (εe jρb, a) , e j ≤ 0, for ε small enough and all (a, b) ∈ A γ,j .

Thus, (Aa) holds true for the system driven by (f ρ , λ ρ , Q ρ ) .

Concerning the assumption (Ab), for the already existing branches, it suffices to take b = 0 and the controls a + γ,j , a - γ,j , a 0 γ,j . Let us now fix j ≤ M.

(i) If γ ∈ E active j , then γ ∈ E active
j+N , by construction. We recall that e j+N = -e j . Moreover we have f ρ γ O, a + γ,j , 0 , -e j < -β and f ρ γ O, a - γ,j , 0 , e j > β.

(ii) For γ ∈ E inactive j = E active j+N , f ρ γ x, a - γ,j , 0 , -e j = -f γ -x, a - γ,j , -e j ≤ -β -x, e j κ ,
for all x ∈ [-ε, 0] e j and f ρ γ O, a 0 γ,j , 0 = 0. We cannot have f ρ γ (x, (a, b)) , -e j ≤ 0, for all (a, b) ∈ A γ,j and all x ∈ J j , |x| ≤ η (close enough to O). Nevertheless, as we have already hinted before (see Remark 7 (ii)), this condition and the one in (Ac) are no longer necessary since every control is (locally) admissible at O. Thus, the conclusion of Lemma 6 holds true and so do all the assertions on the value functions in this framework. At this point, we consider the process X ρ,x 0 ,γ 0 ,α t , Γ ρ,x 0 ,γ 0 ,α t constructed as in Section 2 using (f ρ , λ ρ , Q ρ ) and controls α with values in A. We also let y ρ denote the solution of the ordinary differential equation driven by f ρ . Then, the value functions

v δ,ε,ρ (x, γ) := inf α∈A N ad E n≥0 τ n+1 τn e -δt l ρ Γ ρ,x,γ,α τn y ρ Γ ρ,γ,x,α τn t; X ρ,x,γ,α τn , α n+1 , α n+1 t -Γ ρ,x,γ,α τn ; X ρ,x,γ,α τn , Γ ρ,x,γ,α
τn are bounded, uniformly continuous and satisfy, in the generalized sense given by Definition 16 and Theorem 17 the Hamilton-Jacobi integrodifferential system (10)

δv δ,ε,ρ (x, γ)+ sup (a,b)∈Aγ,x -f γ (x + ρb, a) , Dv δ,ε,ρ (x, γ) -l γ (x + ρb, a) -λ (x + ρb, γ, a) γ ′ ∈E Q (x + ρb, γ, γ ′ , a) v δ,ε,ρ (x, γ ′ ) -v δ,ε,ρ (x, γ) ≤ 0,
for all (x, γ) ∈ G +,ε × E.

Another definition for solutions in the extended intersection

We define

cof l ρ (O, γ) := ∪ j=1,2,...,N co f l ρ (O, γ, (a, b)) : (a, b) ∈ A γ,j
and recall that

F L ρ (x, γ) = cof l ρ (x, γ) := co f l ρ (x, γ, a) : a ∈ A γ,x ,
for all x ∈ G +,ε {O} and, for every j ≤ N,

F L ρ ((1 + ε) e j , γ) ⊂ cof l ρ ((1 + ε) e j , γ) := co f l ρ ((1 + ε) e j , γ, a) : a ∈ A γ,e j ∩ (R -e j × M + (E) × R) .
Also, for every j ≤ M, F L ρ (-εe j , γ) ⊂ cof l ρ (-εe j , γ)

:= co f l ρ (-εe j , γ, a) : a ∈ A γ,e j ∩ (R + e j × M + (E) × R)
We consider another definition for viscosity subsolutions by taking more regular test functions.

Definition 20 A bounded, upper (resp. lower) semicontinuous function V is said to be a classical constrained viscosity subsolution (resp subsolution of (10) if, for every

(γ 0 , x 0 ) ∈ E × G +,ε (resp. E × G +,ε ), whenever ϕ ∈ C b G +,ε for which ϕ | J ε j ∈ C 1 b J ε j , for all j = 1, 2, ..., N is a test function such that x 0 ∈ Argmax (V (•, γ 0 ) -ϕ (•)) , one has δV (x 0 , γ 0 ) + sup (ξ,ζ,η)∈cof l ρ (x 0 ,γ 0 ) -Dϕ (x 0 ; ξ) -η - γ ′ ∈E ζ (γ ′ ) (V (x 0 , γ ′ ) -V (x 0 , γ 0 )) ≤ 0, (resp. ≥ 0).
We get the following characterization of v δ,ε,ρ .

Theorem 21

The bounded uniformly continuous function v δ,ε,ρ is a classical constrained viscosity subsolution of [START_REF] Bressan | Optimal control problems on stratified domains[END_REF]. Moreover, it satisfies the supersolution condition on E × G +,ε {O} .

Proof. The reader is invited to note that the test functions in this case are more regular than in Definition 16. Thus, the equality F L ρ (x, γ) = cof l ρ (x, γ) implies the viscosity sub/super condition at every point x ∈ G +,ε {O} . The supersolution condition at (1 + ε) e j (resp. -εe j ) follows from the inclusion

F L ρ ((1 + ε) e j , γ) ⊂ cof l ρ ((1 + ε) e j , γ) (resp. F L ρ (-εe j , γ) ⊂ cof l ρ (-εe j , γ)).
The constant control (a, b) ∈ A γ,1 is locally admissible at O (on the extended graph G +,ε ).

Hence, reasoning as in the subsolution part of theorem 17 (for constant

α n = (a, b)), one proves that if ϕ is a regular test function such that O ∈ Argmax v δ (γ, •) -ϕ (•) , then 0 ≤ l ρ γ (O, (a, b)) -δϕ (O) + D ϕ | J ε 1 (O) , f γ (x, (a, b)) + λ ρ (O, γ, (a, b)) γ ′ =γ Q ρ O, γ, γ ′ , (a, b) v δ,ε,ρ O, γ ′ -v δ,ε (O, γ) .
Thus, continuity and convexity arguments imply that

δϕ (O) + sup (ξ,ζ,η)∈co f l ρ (O,γ,(a,b)):(a,b)∈A γ,1 -Dϕ (O; ξ) -η - γ ′ ∈E ζ (γ ′ ) v δ,ε,ρ (O, γ ′ ) -v δ,ε,ρ (O, γ) ≤ 0
and the subsolution condition follows.

Remark 22

In order to have (classical) uniqueness, one has to impose further conditions at the junction O. For example, in the case when l γ (O, a) does not depend on a for all γ ∈ j≤N E active j , one reasons in the same way as in Section 5.2 of [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]. The arguments are quasi-identical and we prefer to concentrate on a different approach to uniqueness. Alternatively, one can impose the analog of the Assumption 2.3 in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], i.e.

{0} × M + (E) × inf a∈A l γ (O, a) ∩ co f l 0 (O, γ, (a, b)) : (a, b) ∈ A γ,j = ∅,
for all j such that γ ∈ E active j .

Convergence to the initial value function

Unless stated otherwise, we assume the controllability conditions (Aa, Ab, Ad), the compatibility at the intersection (Ab', Ac'), the regularity of the coefficients and cost functions (A1-A4) and the compatibility condition (B) to hold true.

(C) Throughout the subsection, we also assume that l does not depend on the control at O and the nodes e j .

This "projection long-run compatibility condition" will allow to change the control process around the "critical" points in order to obtain, from admissible controls on G +,ε an admissible control keeping the trajectory in G. This assumption (C) is only needed to prove Lemma 23 in its full generality. We have chosen to give a deeper result in Lemma 23 for further developments on the subject. Let us fix ε > 0 small enough. We introduce the following notations:

t ε := - 1 δ ln εδ 2 |f | 0 , ρ ε := - ε 1+ 2Lip(f ) (1-κ)δ ln(ε) , r ′ ε ≤ ρ ε 2 , ω ε (t; r) := e Lip(f )t r + (2ρ ε ∨ 4r ′ ε )Lip (f ) t , t ≥ 0, r ≥ 0, Φ(ε) := |f | 0 (1 -κ)β + 1 ω ε t ε ; r ′ ε 1-κ .
The reader is invited to note that

ω ε (t; ω ε (t * ; r)) ≤ ω ε (t * + t; r),
for all t, t * , r ≥ 0. To get the best approximation and simplify the proof of Lemma 23, we also strengthen (A1) and ask that the restriction of f γ to [0, 1] e j be Lipschitz-continuous for γ ∈ E active j . We emphasize that this only affects the definition of ρ ε in Lemma 23 but not Theorem 25.

With these notations, we establish.

Lemma 23 Whenever γ ∈ E, x ∈ J ε 1 and α = (α, β) ∈ A γ,x , there exists P ε x (α) (also depending on γ) such that

(P ε x (α) , 0) ∈ A γ,x such that (11) y ρε γ (t; x, (P x (α) , 0)) -y ρε γ (t; x, α) ≤ ω ε (t ε ; Φ(ε)), for t ≤ t ε . Moreover, when (C) holds true, (12) 
lim ε→0 sup t≤tε t 0 e -δs l ρε γ (y ρε γ (t; x, (P ε x (α) , 0)) , (P ε x (α) (s) , 0)) ds t 0 e -δs l γ (y γ (s; x, α) , α (s)) ds = 0.

(ii) Moreover, if α = (α, β) ∈ A ad , then, for every ε > 0 there exists (P ε (α) , 0) ∈ A ad such that the previous inequalities are satisfied with P ε (α) (•, x, γ) replacing P ε x (α) .

We postpone the proof of this Lemma to the Appendix. We emphasize that whenever (α, 0) ∈ A ad , one has y ρε γ (t; x, (α, 0)) = y γ (t; x, α) (and similar for l ρε γ , Q ρε γ , λ ρε γ ), even though α may not belong to A γ,x . The second argument takes care of this later issue.

Lemma 24 Let us consider T > 0. Then, there exists a decreasing function ω : R + -→ R + such ω (0) = ω (0+) = 0 and whenever γ ∈ E, x ∈ G, and (α, 0) ∈ A γ,x , there exists P γ,x (α) ∈ A γ,x such that |y γ (t; x, α)y γ (t; x, P γ,x (α))| ≤ ω(ε),

sup t≤T t 0 e -δs l γ (y γ (t; x, P γ,x (α)) , P γ,x (α) (s)) ds - t 0 e -δs l γ (y γ (t; x, α) , α (s)) ds ≤ ω (ε) , and 
sup s≤T |Q (y γ (s; x, P γ,x (α)) , γ, γ ′ , P γ,x (α) (s)) -Q (y γ (s; x, α) , γ, γ ′ , α (s))| + |λ (y γ (s; x, P γ,x (α)) , γ, P γ,x (α) (s)) -λ (y γ (s; x, α) , γ, α (s))| ≤ ω (ε) ,
for all γ ′ ∈ E.

(ii) Moreover, if (α, 0) ∈ A ad , then, for every ε > 0 there exists P (α) ∈ A ad such that the previous inequalities are satisfied with P (α) (•, x, γ) replacing P γ,x (α) (•) .

Although the approach is rather obvious (when looking at the proofs of Lemmas 6 or 23), hints on the proof are given in the Appendix. We wish to emphasize that, although the trajectories can be kept close up to a fixed T due to the proximity of G +,ε and G, we cannot do better then ε. Thus, we are unable to give the same kind of estimates up to t ε . The main result of the subsection is the following convergence theorem.

Theorem 25 Under the assumption (C), the following convergence holds true

lim ε→0 sup x∈G,γ∈E v δ,ε,ρε (x, γ) -v δ (x, γ) = 0.
Proof. The definition of our value functions yields v δ,ε,ρε ≤ v δ on G × E. Hence, we only need to prove the converse inequality. The proof is very similar to that of Theorem 15 in [START_REF] Goreac | Viability, Invariance and Reachability for Controlled Piecewise Deterministic Markov Processes Associated to Gene Networks[END_REF]. Let us fix (x, γ) ∈ G × E, T > 0 and (for the time being,) ε > 0. Then using the dynamic programming principle for v δ,ε,ρε one gets the existence of some admissible control process α such that

(13) v δ,ε,ρε (x, γ) ≥ E T ∧τ 1 0 e -δt l ρε γ (y ρε γ (t; x, α) , α (t; x, γ)) dt +e -δ(T ∧τ 1 ) v δ y ρε γ (T ∧ τ 1 ; x, α) , Γ ρε,x,γ,α T ∧τ 1 -ε.
For simplicity, we let P and P ε denote the two projectors of the previous lemmas and introduce the following notations:

α t = α (t; x, γ) , α t = P (P ε (α)) (t; x, γ) , λ (t) = λ y ρε γ (t; x, α) , γ, α t , Λ (t) = exp - t 0 λ (s) ds λ (t) = λ (y γ (t; x, α) , γ, α t ) , Λ (t) = exp - t 0 λ (s) ds ,
for all t ≥ 0. We denote the right-hand member of the inequality (13) by I. Then, I is explicitly given by

I = T 0 λ(t)Λ (t)
t 0 e -δs l ρε γ y ρε γ (s; x, α) , α s dsdt

+ T 0 λ(t)Λ (t) e -δt γ ′ ∈E v δ,ε,ρε y ρε γ (t; x, α) , γ ′ Q ρε y ρε γ (t; x, α) , γ, γ ′ , α t dt + Λ (T )
T 0 e -δt l ρε γ y ρε γ (t; x, α) , α t dt + Λ (T ) e -δT v δ,ε,ρε y ρε γ (T ; x, α) , γ

= I 1 + I 2 + I 3 + I 4 .
The conclusion follows using the Lemmas 23 and 24. These estimates are tailor-made to allow substituting λ, Λ, l ρε γ and y ρε γ with λ, Λ, l γ and y γ and the error is some (generic) ω (ε) → ε→0 0 (the reader may also want to take a glance at the proof of Theorem 15 in [START_REF] Goreac | Viability, Invariance and Reachability for Controlled Piecewise Deterministic Markov Processes Associated to Gene Networks[END_REF]). In the following, this function ω may change from one line to another. Let us recall (see Remark 12) that v δ,ε,ρε have the same continuity modulus (denoted ω δ and independent of ε). Then, v δ,ε,ρε (y ρε γ (t; x, α) , γ ′ ) can be replaced by v δ,ε,ρε (y γ (t; x, α) , γ ′ ) with an error ω δ (|y ρε γ (t; x, α)y γ (t; x, α)|) , hence, again some ω (ε). The only interesting terms in I are I 2 and I 4 . For the term I 2 , one writes

I 2 ≥ T 0 λ(t)Λ (t) e -δt γ ′ ∈E v δ,ε,ρε y ρε γ (t; x, α) , γ ′ Q ρε y ρε γ (t; x, α) , γ, γ ′ , α t dt + ω (ε) ≥ T 0 λ(t)Λ (t) e -δt γ ′ ∈E v δ,ε,ρε y γ (t; x, α) , γ ′ Q y γ (t; x, α) , γ, γ ′ , α t dt + ω (ε) ≥ T 0 λ(t)Λ (t) e -δt γ ′ ∈E v δ y γ (t; x, α) , γ ′ Q y γ (t; x, α) , γ, γ ′ , α t dt - T 0 λ(t)Λ (t) e -δt dt sup γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) (14)
Similar, [START_REF] Davis | Piecewise-deterministic Markov-processes -A general-class of non-diffusion stochastic-models[END_REF] I 4 ≥ Λ (T ) e -δT v δ (y γ (T ; x, α)) -Λ (T ) e -δT sup

γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) .
Hence, using [START_REF] Crudu | Hybrid stochastic simplifications for multiscale gene networks[END_REF][START_REF] Davis | Piecewise-deterministic Markov-processes -A general-class of non-diffusion stochastic-models[END_REF], one gets

I ≥ T 0 λ(t)Λ (t)
t 0 e -δs l γ (y γ (s; x, α) , α s ) dsdt

+ T 0 λ(t)Λ (t) e -δt γ ′ ∈E v δ y γ (t; x, α) , γ ′ Q y γ (t; x, α) , γ, γ ′ , α t dt + Λ (T )
T 0 e -δt l γ (y γ (t; x, α) , α t ) dt + Λ (T ) e -δT v δ (y γ (T ; x, α) , γ)

- T 0 λ(t)Λ (t) e -δt dt + Λ (T ) e -δT sup γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) .
Then, using the dynamic programming principle for v δ and (13), one gets

v δ,ε,ρε (x, γ) ≥ v δ (x, γ) -1 -δ T 0 Λ (t) e -δt dt sup γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) ≥ v δ (x, γ) -1 -δ T 0 e -(δ+|λ| 0 )t dt sup γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) Thus, (0 ≤)v δ (x, γ) -v δ,ε,ρε (x, γ) ≤ 1 -δ T 0 e -(δ+|λ| 0 )t dt sup γ ′ ∈E,z∈G v δ,ε,ρε (z, γ ′ ) -v δ (z, γ ′ ) + ω (ε) .
The conclusion follows by taking the supremum over x ∈ G and γ ∈ E and allowing ε → 0.

Remark 26

We recall (cf. Remark 12) that v δ,ε,ρε have the same continuity modulus (independent of ε). Moreover, v δ,ε,ρε (•) ≤ |l| 0 δ . Therefore, applying Arzela-Ascoli Theorem, there exists lim ε→0 v δ,ε,ρε | G and this limit is uniformly continuous. It would have sufficed, therefore, to prove that lim ε→0 v δ,ε,ρε (x; γ) = v δ (x, γ) for all x ∈ ∪ i=1,2,...,N (0, 1) e i .

Linearizing the problem

We assume the (pseudo-)controllability conditions (Aa, Ab, Ad), the compatibility at the intersection (Ab', Ac'), the regularity of the coefficients and cost functions (A1-A4), the compatibility condition (B) and the projection compatibility condition (C) to hold true.

Smooth subsolutions

Starting from v δ,ε,ρε , we will construct a family of smooth subsolutions of (10) (with ε = ρ = 0) that converge to the value function v δ . To this purpose, we regularize the functions v δ,ε,ρε in each direction given by e j , for j = 1, 2, ..., N. Finally, we conveniently modify the value at the junction point O.

We begin by picking (ψ ǫ ) ǫ to be a sequence of standard mollifiers ψ ǫ (y) = 1 ǫ ψ y ǫ , y ∈ R, ǫ > 0, where ψ ∈ C ∞ (R) is a positive function such that Supp(ψ) ⊂ [-1, 1] and R ψ(y)dy = 1.

For every ε > 0 and every 0 < ǫ ≤ ρ ε , one can define regular functions v δ,j ε,ǫ by setting

v δ,j ε,ǫ (x, γ) = ε -ε v δ,ε,ρε (x -ye j , γ) ψ ǫ (y) dy, for all x ∈ (-ε, 1 + ε) e j , j = 1, M, or x ∈ (-1 -ε, 1 + ε) e j , if M < j ≤ N.
Using the same methods as those employed in [START_REF] Goreac | Linearization Techniques for Controlled Piecewise Deterministic Markov Processes; Application to Zubov's Method[END_REF], Appendix (see also [START_REF] Goreac | Viability, Invariance and Reachability for Controlled Piecewise Deterministic Markov Processes Associated to Gene Networks[END_REF], Appendix A2 or [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF] or [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF], Lemma 2.7), it is easy to prove that ( 16)

δv δ,j ε,ǫ (x, γ) +      -f γ (x, a) , Dv δ,j ε,ǫ (x, γ) -l γ (x, a) -λ (x, γ, a) γ ′ ∈E Q (x, γ, γ ′ , a) v δ,j ε,ǫ (x, γ ′ ) -v δ,j ε,ǫ (x, γ)      ≤ 0,
for all x ∈ [0, 1] e j , j ≤ N and all a ∈ A γ,j . Also, we note that

v δ,j ε,ǫ (x, γ) -v δ (x, γ) ≤ v δ,ε,ρε -v δ 0 + ω δ (ǫ) =: ω (ε, ǫ) ,
for all x, γ ∈ G ×E, where ω δ is the continuity modulus of v δ (with respect to the space component). Theorem 25 yields lim

ε,ǫ→0 ω (ε, ǫ) = 0.
We define an admissible test function by setting

v δ ε (x, γ) = v δ,j ε,ρε (x, γ) -v δ,j ε,ρε (O, γ) + min j ′ =1,2,...,N v δ,j ′ ε,ρε (O, γ) -4 |λ| 0 δ ω (ε, ρ ε ) , for x ∈ [0, 1] e j , 1 ≤ j ≤ N and γ ∈ E. Then v δ ε is a regular test function (continuous at O) which satisfies (17)      δv δ ε (x, γ) -f γ (x, a) , Dv δ ε (x, γ) -l γ (x, a) -λ (x, γ, a) γ ′ ∈E Q (x, γ, γ ′ , a) v δ ε (x, γ ′ ) -v δ ε (x, γ)
≤ 0, and

lim ε→0 v δ ε -v δ 0 = 0,
for all (x, γ, a) such that x ∈ [0, 1] e j , γ ∈ E, a ∈ A γ,j , j ≤ N . These functions are Lipschitz continuous on G. (In fact, the reader can check rather easily that the Lipschitz constant of v δ ε does

not exceed √ 2 max 1≤j≤N D v δ ε | [-1,1]e j 0 1- max i ′ ,j ′ ∈ { 1,...,M + N-M 2 } , i ′ =j ′ cos(e i ′ ,e j ′ )
). Hence, (using Kirszbraun's Theorem,) one can find an extension (explicitly given by

v δ ε (x, γ) := inf y∈G v δ ε (y, γ) + Lip v δ ε |x -y| )
which is Lipschitz continuous on R m . As a by-product, this function (identified with v δ ε (•, γ) whenever no confusion is at risk) is absolutely continuous on R m (AC (R m )) .

Occupation measures and embedding

To every admissible control α ∈ A N ad and γ ∈ E, x ∈ G, we can associate a probability measure µ x,γ,α ∈ P (R m × E × A) by setting

µ x,γ,α (A × B × C) = δE ∞ 0 e -δt 1 A×B×C (X x,γ,α t , Γ x,γ,α t , α t ) , for all Borel sets A × B × C ⊂ R m × E × A. As before, if (τ i ) i≥0 denote the switch times, then α t = α i+1 (t -τ i , X x,γ,α τ i , Γ x,γ,α τ i ) on t ∈ [τ i , τ i+1 ).
Obviously, the choice of admissible controls (under constraints) yields

Supp (µ x,γ,α ) ⊂ G × E × A := y, γ ′ , a ∈ G × E × A : a ∈ A γ ′ ,j whenever y ∈ J j .
We note that the set G × E × A is compact.

We denote by BAC (R m × E; R) the set of all bounded functions ϕ : R m × E -→ R such that ϕ (•, γ ′ ) ∈ AC (R m ) for all γ ′ ∈ E. Then, Itô's formula (see [START_REF] Davis | Markov models and optimization[END_REF]Theorem 31.3 ]) yields

δe -δT E ϕ X x,γ,α T , Γ x,γ,α T = δϕ (x, γ) + E T 0 δe -δs [-δϕ (X x,γ,α t , Γ x,γ,α t ) + U αt ϕ (X x,γ,α t , Γ x,γ,α t )] dt. (18) 
Here, U a ϕ y, γ ′ = f γ (y, a) , Dϕ y, γ ′ + λ y, γ ′ , a

γ ′′ ∈E Q y, γ ′ , γ ′′ , a ϕ γ ′′ , x -ϕ y, γ ′ , for regular ϕ (•, γ) ∈ C 1 b (R m )
is the classical generator of the PDMP. We recall that the extended domain of U a includes functions such that ϕ (•, γ ′ ) ∈ AC (R m ) (cf. Theorem 31.3 in [START_REF] Davis | Markov models and optimization[END_REF]). Hence, passing to the limit as T → ∞ in (18) (and recalling that ϕ is bounded), one gets

R m ×E×A U a ϕ y, γ ′ -δ ϕ y, γ ′ -ϕ (x, γ) µ x,γ,α dydγ ′ da = 0. We set (19) Θ 0 G (x, γ) := µ x,γ,α : α ∈ A N ad and Θ G (x, γ) := µ x,γ,α ∈ P G × E × A : ∀ϕ ∈ BAC (R m × E; R) R m ×E×A [-U a ϕ (y, γ ′ ) + δ [ϕ (y, γ ′ ) -ϕ (x, γ)]] µ (dydγ ′ da) = 0.
We are now able to state (and prove) the main linearization result.

Theorem 27

The following equalities hold true

δv δ (x, γ) = Λ δ (x, γ) := inf µ∈Θ G (x,γ) R m ×E×A l γ ′ (y, a) µ dydγ ′ da = Λ δ, * (x, γ) := sup η ∈ R : ∃ϕ ∈ BAC (R m × E; R) , for all (y, γ ′ , a) ∈ G × E × A, η ≤ U a ϕ (y, γ ′ ) + l γ ′ (y, a) -δ [ϕ (y, γ ′ ) -ϕ (x, γ)] . , for all (x, γ) ∈ G × E. Proof. Let us fix (x, γ) ∈ G × E. It is clear that δv δ (x, γ) ≥ inf µ∈Θ G (x,γ) R m ×E×A l γ ′ (y, a) µ dydγ ′ da since Θ 0 G (x, γ) ⊂ Θ G (x, γ) . Next, if η ≤ U a ϕ (y, γ ′ ) + l γ ′ (y, a) -δ [ϕ (y, γ ′ ) -ϕ (x, γ)] , for all (y, γ ′ , a) ∈ G × E × A, then, due to the definition of Θ G (x, γ) , if µ ∈ Θ G (x, γ) , by integrating the inequality w.r.t. µ, it follows that R m ×E×A l γ ′ (y, a) µ dydγ ′ da ≥ η.
Hence, Λ δ (x, γ) ≥ Λ δ, * (x, γ) . To complete the proof, one needs to prove Λ δ, * (x, γ) ≥ δv δ (x, γ). We use v δ ε given in Subsubsection 6.6.1 to infer

δv δ ε (x, γ) ≤ U a v δ ε y, γ ′ + l γ ′ (y, a) -δ v δ ε y, γ ′ -v δ ε (x, γ) , for all (y, γ ′ , a) ∈ G × E × A. Hence, δv δ ε (x, γ) ≤ Λ δ, * (x, γ) .
The proof is completed by taking the limit as ε → 0 and recalling that (17) holds true.

Conclusion and comments

The previous result can be interpreted in connection to Perron's method. If ϕ is a regular subsolution of (10) for ρ = 0, ε = 0 on G (i.e. such that U a ϕ y, γ ′ + l γ ′ (y, a)δϕ y, γ ′ ≥ 0, for all (y, γ ′ , a) ∈ G × E × A), then δϕ (x, γ) ≤ Λ δ, * (x, γ) = δv δ (x, γ) . Since we have exhibited a family ( v δ ε (x, γ) ε>0 ) converging to v δ (x, γ) , it follows that v δ is the pointwise supremum over such regular subsolutions, hence giving Perron's solution to the Hamilton-Jacobi integrodifferential system.

This implies a weak form of uniqueness for our solution. This approach has a couple of advantages. First, it provides an approximating scheme for the value function v δ in the spirit of [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF], [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF] or [START_REF] Biswas | Viscosity solutions for a system of integropdes and connections to optimal switching and control of jump-diffusion processes[END_REF]. However, the speed of convergence is given by the estimates in Lemma 23 and are less explicit than the Hölder ones exhibited in the cited papers. Second, having stated the equivalent problem on a linear space of measures should prove useful for optimality issues (see [START_REF] Finlay | Linear programming solutions of periodic optimization problems: approximation of the optimal control[END_REF] or, more recently, [START_REF] Dufour | On the existence of strict optimal controls for constrained, controlled Markov processes in continuous time[END_REF] in a general Markovian framework or [START_REF] Goreac | Optimality issues for a class of controlled singularly perturbed stochastic systems[END_REF] in a Brownian one).

In a deterministic framework, there is an increasing literature dealing with stronger forms of uniqueness based on comparison principles. Some of the papers deal with frameworks similar to ours (e.g. [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF]) and use the geodetic distance in the doubling variable approach . These results have been generalized and simplified in [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF]. Another approach consists in introducing "vertex test" functions. This allows to treat a generalized quasi-convex case in the recent preprint [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. A nice comparison between the different notions of solution (corresponding to [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF], [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] and [START_REF] Schieborn | Viscosity solutions of eikonal equations on topological networks[END_REF]) is also provided in [START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF]. Finally, let us note that, in our setting, the test functions only need to be substituted in the gradient and, hence, adapting the comparison methods of the previous papers should work rather smoothly.

With the assumptions of this section (in particular (C)), it follows that any regular subsolution in the sense of Definition 20 is also a regular subsolution in the sense of Definition 16. It follows that v δ cannot exceed the supremum over regular subsolutions in the sense of Definition 16. Equality is obtained whenever a classical comparison principle is available. 

t y,O ≤ |y| 1-κ (1 -κ) β ≤ ρ 2 ε (1 -κ) β .
(These estimates are for the "inactive" case; for the "active" one, one can consider κ = 0). For ε small enough, one can assume, without loss of generality that ρε (1-κ)β < t ε . We define 

P O,y (α) (t) := a - γ,1 1 [0,ty,O] (t) + α (t -t y,O ) 1 (t y,O ,∞) (t
, α)| ≤ 2 |f | 0 (1 -κ) β + 1 |y| 1-κ ≤ 2 |f | 0 (1 -κ) β + 1 ρ 2 ε , if t ∈ [0,
; O, α)| ≤ |f | 0 (1 -κ) β |y| 1-κ ≤ |f | 0 (1 -κ) β ρ 2 ε , if t >
≤ 2 |l| 0 |y| 1-κ (1 -κ) β + 1 δ |l| 0 1 -e -δ |y| 1-κ (1-κ)β + |l| 0 |y| 1-κ (1 -κ) β ≤ 4 |l| 0 |y| 1-κ (1 -κ) β ≤ 4 |l| 0 (1 -κ) β ρ 2 ε .
(ii) If α ∈ A ad , then we set

P (O,γ) (α) (t; y, η) = P O,y (α (t; O, γ)) if η = γ, |y| ≤ ρ 2 1-κ ε , α (t; y, η) , otherwise.
One only needs to notice that y → t y,O is Borel measurable to deduce that P O,γ (α) ∈ A ad . In the other cases, the construction is similar. We will just hint the measurability properties needed to insure that the constructed function P (x,γ) (α) is Borel measurable in (t, y, η).

(b) If y = O, we distinguish two cases : (b1) The road is "inactive". Then, we introduce t x,O (α) := inf {t > 0 : y γ (t; x, α) = O} and define, if it is finite

P x,y (α) (t) := a 0 γ,1 1 [0,tx,O(α)] (t) + α (t) 1 (t x,O (α),∞) (t) ,
where a 0 γ,1 is given by (Ab). Then, due to (Ab), it is clear that |y γ (t; y, P x,y (α))y γ (t; x, α)| ≤ |x -y| ≤ ρ 2 ε , if t ≤ t x,O (α) and |y γ (t; y, P x,y (α))y γ (t; x, α)| = 0, otherwise. We note that y γ (t; y, P x,y (α)) = O, for t ≤ t x,O (α) . Thus, the assumption (Ac) yields (b2) The road is "active". Then, we introduce t y,x := inf t > 0 : y γ t; y, a + γ,1 = x . Similar to (a), one easily proves that t y,x ≤ ρ 2 ε β . In this case, we define P x,y (α) (t) := a + γ,1 1 [0,ty,x] (t) + α (tt y,x ) 1 (ty,x,∞) (t) , and get the same kind of estimates as in (a). (1-κ)β . We set P x,y (α) (t) := α (t) 1 [0,t * y (α)) (t) + a - γ,1 1 t * y (α),t * y (α)+t yγ (t * y (α);y,α),O

+ α tt yγ (t * y (α);y,α),O 1 t * y (α)+t yγ (t * y (α);y,α),O ,∞ (t) , for all t ≥ 0 and the estimates follow. The measurability properties hold as before.

(d) Finally, we assume that y = e 1 . Again, we only modify α if A γ,e 1 = A γ,1 . In this eventuality, we define t e 1 ,x := inf {t ≥ 0 : y γ (t; y, a γ,1 ) = x} , where a γ,1 appears in (Aa). Then t e 1 ,x ≤ |x-y| β . We let P x,e 1 (α) (t) := a γ,1 1 [0,te 1 ,x] (t) + α (tt e 1 ,x ) 1 (te 1 ,x,∞) (t) .

and get the conclusion. The proof of our lemma is now complete. Proof of Lemma 23.. We will prove only the estimates on the trajectory. The estimates on the partial cost follow from the construction P x (α) which coincides with α except at the end points (where (C) applies; see also the similar condition (Ac) and the proof of Lemma 6). The assertion (ii) follows similar patterns to Lemma 6. We aim at constructing α := P x (α) . We let r 0 ≤ ε (to be specified later on). We can assume, without loss of generality, that x = O. (Should this not be the case, see Case 3). Then α is locally admissible. We set τ 0 := inf t ≥ 0 : d geo y γ (t; x, α), y ρε γ (t; x, α) ≥ r 0 .

If τ 0 ≥ t ε , the conclusion follows. Otherwise, the time where y γ meets again our target y ρε will be referred to as "renewal time". We give the construction of α on [τ 0 , t ε ] prior to renewal time. We let τ ε O be the exit time of the target from the branch, where we used the notation y * γ = y γ (t * ; x, α) and y ρε, * γ = y ρε γ (t * ; x, α). Even if this is not crucial for the rest of the proof, remark that renewal cannot occur before τ 0 + r 0 2|f | 0 , so that this iterative procedure will be applied only a finite number of times.

Case 1: y γ and y ρε γ are on the same branch (say [O, (1 + ε)e 1 ] ; the case when y γ and y ρε are on a "new" branch [O, -εe 1 ] is similar), and y γ lies between the junction O and y ρε γ (i.e. 0 ≤ y * γ , e 1 < y ρε, * γ , e 1 ). We let 

t

  for all Borel sets Y ⊂ R m and E ⊂E. (Of course, the set E is endowed with the discrete topology.) And so on.Throughout the paper, unless stated otherwise, we assume the following:(A1) The functions f γ : R m × A -→ R m are uniformly continuous on R m × A and there exists a positive real constant C > 0 such that (A1) f γ (x, a)f γ (y, a) , xy ≤ C |x -y| 2 , and |f γ (x, a)| ≤ C, for all x, y ∈ R m and all a ∈ A. (A2) The function λ : R m × E × A -→ R + is uniformly continuous on R m × {γ} × A and there exists a positive real constant C > 0 such that (A2) |λ (x, γ, a)λ (y, γ, a)| ≤ C |x -y| , and λ (x, γ, a) ≤ C, for all x, y ∈ R m , all γ ∈ E and all a ∈ A. (A3) The function Q

(

  A4) The cost functions l γ : R m × A -→ R are uniformly continuous on R m × A and there exists a positive real constant C > 0 such that (A4) |l γ (x, a)l γ (y, a)| ≤ C |x -y| , and |l γ (x, a)| ≤ C, for all x, y ∈ R m and all a ∈ A.

Fig 1 .

 1 Fig 1. Original intersection

0. 5 max(|f | 0 , 1 )

 51 and t - x,γ,O ≥ 0.5 max(|f | 0 ,1) , where |f | 0 = max γ∈E, x∈G, a∈A |f γ (x, a)|. For x ∈ [0, 0.5) e j , we set

  s) ds , y(t) := y γ (t; y, α) , α(t) := α (t; y, γ) , λ (t) := λ ( y(t), γ) , Λ (t) = exp -t 0 λ (s) ds .

6 Proof of Lemma 6 .

 66 We will consider several cases and prove (i) in each case. We provide the construction for (ii) only in the first case (a) and hint what is needed for the remaining cases.(a) (i) Let us assume that x = O. If y = O, then P O,y (α) = α. Otherwise, we let t y,O := inf t ≥ 0 : y γ t; y, a - γ,1 = O . Obviously,

T 0 e 0 e 0 e

 000 -δt l (y γ (t; y, P x,y (α)) , P x,y (α) (t)) dt -T -δt l (y γ (t; x, α) , α (t)) dt ≤ T -δt Lip(l) |x -y| dt ≤ Lip

Obviously, t

  yγ (t * y (α);y,α),O ≤ √

7. 2

 2 Proof of Lemma 23.For any y ∈ [O, (1 + ε)e i ] (with γ ∈ E active i ), we seta opt,+ γ,i (y) = argmax a∈Aγ,y f γ (y, a) , e i .It is clear that(20) f γ (y ′ , a)f γ y, a opt,+ γ,i (y) , e i ≤ sup a ′ ∈Aγ,e i |f γ (y ′ , a ′ )f γ (y, a ′ )| ≤ Lip (f ) |y ′ -y| , f γ (y, a)f γ y, a opt,+ γ,i (y) , e i ≤ 0, for all y, y ′ ∈ [O, (1 + ε)e i ].We also letd geo (x, y) := |x -y| , if x, y ∈ [-1ε, 1 + ε] e i , |x| + |y| , if x ∈ [-1ε, 1 + ε] e i , y ∈ [-1ε, 1 + ε] e j , i = j .

  τ ε O = inf t ≥ τ 0 : y ρε γ (t; x, α) = O .(Hence, τ ε O > τ 0 ). Let us assume that α has been constructed up to some time τ 0 ≤ t * ≤ τ ε O before the renewal time such that (R)d geo y * γ , y ρε, * γ ≤ ω ε (t * , r 0 ) ,

  t y,O . Moreover, for every T ≥ 0, -δt l γ (y γ (t; y, P O,y (α)) , P O,y (α) (t)) dt -

								T	e -δt l γ (y γ (t; O, α) , α (t)) dt
								0
	≤	0	t y,O	e -δt |l γ (y γ (t; y, P O,y (α)) , P O,y (α) (t))| dt +	0	t y,O	e -δt |l γ (y γ (t; O, α) , α (t))| dt
	+ 1 T >t y,O 1 -e -δt y,O	0	T -t y,O	e -δt |l γ (y γ (t; O, α) , α (t))| dt
	+ 1 T >t y,O	T T -t y,O	e -δt |l γ (y γ (t; O, α) , α (t))| dt

T 0 e

  out = inf t ≥ 0 : y γ t; y * γ , α(t * + •) = (1 + ε) e 1 , t ρε out = inf t ≥ 0 : y ρε γ t; y ρε, * γ , α(t* + •) = (1 + ε) e 1 , t ρε 0 = inf t ≥ 0 : y ρε γ t; y ρε, * γ , α(t * + •) = O , t 0 = inf t ≥ 0 : y γ t; y * γ , α(t * + •) = O .Let us introduce t act = min (t out , t ρε out , t 0 , t ρε 0 ). Obviously, prior to the renewal time, only t 0 is relevant (since t out , t ρε 0 cannot occur without renewal and if t ρε out < t 0 , then α is still locally admissible for the follower y γ ). We distinguish between the cases (a1)If t act > 0, we extend α by setting α(t) = α (t), if t * < t ≤ t * + t act . Gronwall's inequality yields y γ (t; x, α)y ρε γ (t; x, α) ≤ ω ε tt * ; |y * γy ρε, * γ | , for all t * < t ≤ t * + t act . (a2) If t act = t 0 = 0, then we necessarily have that t ρε 0 > 0. In this case y * γ = O and y ρε γ (t Note that because of the continuity of the trajectories and since r ′ ε > 0, we have t control > 0 and t collision > 0. We extend naturally α by setting α (t + t * ) = a + γ,O , if t ∈ (0, t collision ∧ t control ] . With this extension, our assumptions guarantee that y γ (t + t * ; x, α) , e 1 ≥ Lip(f )β > 0 and the junction O is now a reflecting barrier for t → y γ (t; y * γ , a + γ,O ). Note also that for any t ≤ t collision ∧ t control , we have y ρε γ (t + t * ; x, α) , e 1 > 0. For every 0 < t ≤ t collision ∧ t control , one uses (20) to get y ρε γ (t + t * ; x, α)y γ (t + t * ; x, α) = y ρε γ t; y ρε, * γ , α (t * + •)y γ t; y * γ , a + γ,O , e 1 + •)f γ y γ s; y * γ , a + γ,O , a + γ,O , e 1 ds

	= (y ρε, * γ γ , α (t ≤ (y ρε, * -y * γ ), e 1 + t 0 f ρε γ y ρε γ s; y ρε, * γ -y * γ ), e 1 + t 0 Lip (f ) ρ ε + y ρε γ (s + t + t 0   f γ y γ s; y * γ , a + γ,O , α (t * + •) -f γ O, a + γ,O +f γ O, a + γ,O -f γ y γ s; y * γ , a + γ,O γ,O , a +	, e 1	  ds
	≤ y ρε, *		

* ; x, α) , e 1 > 0. (a2.1) The active case (by far the most complicated) γ ∈ E active

1

. In order to simplify our notations, denote, in this case, a + γ,O = a opt,+ γ,1 (O). We introduce

t control = inf{t > 0 : y γ t; , y * γ , a + γ,O = r ′ ε e 1 } t collision = inf{t

> 0 : y γ t; , y * γ , a + γ,O = y ρε γ t * + t; , y ρε, * γ , α(t * + •) } * + •) , α (t * * ; x, α)y γ (s + t * ; x, α) ds γ y * γ + Lip (f ) ρ ε + 2r ′ ε t + t 0 y ρε γ (s + t * ; x, α)y γ (s + t * ; x, α) ds . Using Gronwall's inequality and our assumptions on r ′ ε , we deduce that for any 0 < t ≤ t control ∧ t collision , y γ (t + t * ; x, α)y ρε γ (t + t * ; x, α) ≤ ω ε t; y ρε, * γ y * γ .
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(c) We assume that x ∈ J 1 ∪ {e 1 } and y ∈ J 1 . Then, α ∈ A γ,x is admissible for y (at least for some small time). We define t * y (α) = inf {t > 0 : y γ (t; y, α) ∈ ∂J 1 }∧inf {t > 0 : y γ (t; x, α) = 0}∧t ε . One notices, as before, that y → t * y (α) is Borel measurable. (c1) If t * y (α) ≥ t ε , then we let P x,y (α) (t) := α(t)1 [0,tε) (t) + α 0 (t; y γ (t ε ; y, α) , γ) 1 [tε,∞) (t) , where α 0 ∈ A ad and have |y γ (t; y, P x,y (α))y γ (t; x, α)| ≤ e Lip(f )t |x -y| ≤ |x -y| ≤ ρ 1 1-κ ε , for all t ≤ t ε . Also, one easily gets, for every T ≤ t ε , T 0 e -δt l (y γ (t; y, P x,y (α)) , P x,y (α) (t)) dt -T 0 e -δt l (y γ (t; x, α) , α (t)) dt

Of course, this case is only interesting if α is no longer admissible. In particular, when A γ,e 1 = A γ,1 . Then, we introduce t e 1 ,yγ(t * y (α);x,α) := inf t ≥ 0 : y γ (t; e 1 , a γ,1 ) = y γ t * y (α) ; x, α .

. We define 

Moreover, if T ≤ t ε , one gets (similar to (a)),

T 0 e -δt l (y γ (t; y, P x,y (α)) , P x,y (α

(c3) The case t * y (α) < t ε and y γ t * y (α) ; y, α = O : In particular, one gets

x, α and define

One gets the same estimates (and measurability properties) as in (c2). (c3.

2) The "inactive case" is similar to (b1). We consider (c4) If t * y (α) < t ε and y γ t * y (α) ; x, α = O, then we proceed as in (a). We let

Thus, we have constructed an extension of t → α(t) satisfying (R) during an increment of some strictly positive time t control ∧ t collision . (a2.2) In the inactive case, it suffices to continue with the control α (since, in this case, f γ (O, a) = 0, for all a ∈ A γ,1 ) up till t collision (or t ε ).

Case 2 : We use the same notations as in the first case and aim at giving the control when α has been constructed up to some time τ 0 ≤ t * ≤ τ ε O such that renewal does not occur at t * and both motions are at time t * on the same active branch (say [O, (1 + ε)e 1 ]). Contrary to Case 1, in this case we are assuming that 0 < y ρε, * γ , e 1 < y * γ , e 1 . We distinguish the following cases (b1) If t act > 0. In this case we proceed exactly as in case (a1) and get the same conclusion. (b2) If t act = t out = 0 then y * γ = (1 + ε)e 1 and we have t ρε out > 0. This case is completely symmetric to case (a2.1) but with motions starting at t * near (1 + ε)e 1 . The conclusion is similar.

(The case when y * γ = -εe 1 is similar to (a2.1) if γ ∈ E active 1 and to (a2.2) in the inactive case.) Case 3 : control when y ρε γ (t * ; x, α) ∈ [O, (1 + ε)e j ] and y γ (t * ; x, α * ) ∈ [O, (1 + ε)e i ] with i = j. In particular, the two points may be at the intersection or the target is at the intersection and the follower is not. We can assume, without loss of generality, that γ ∈ E active j . (Otherwise, recalling that we start at the same initial point, this situation can only happen if y ρε, * γ = O and no active branch exists. Then, whatever the control, y γ can only get closer to O.) In this case, we introduce tO = inf{t > 0 :

and we extend t → α (t) up to time t * + tO ∧ tcollision by setting α(t) = a - γ,i , for t * < t < t * + tO ∧ tcollision . Since by assumption d geo y * γ , y ρε, * γ ≤ ω ε (t * ; r 0 ), we have that

Hence, with such a construction we have that (1-κ)β + 1 (ω ε (t * ; r 0 )) 1-κ : even if there has been a deterioration of the distance between y γ and y ρε (not exceeding |f | 0 (1-κ)β + 1 (ω ε (t * ; r 0 )) 1-κ because we are back to case 1, the situation of case 3 (and also the situation of (b2)) will never happen before some renewal time occurs. Consequently, in the situation of case 3 we are always allowed to take in (R) the same value for r 0 (and we choose r 0 = r ′ ε ). (c2) Finally, we assume y ρε γ tO ; y ρε, * γ , α = O. If every road is inactive, then y γ stays at O and y ρε γ cannot go further than ρ ε . Otherwise, let us assume that some j ′ is active. Then, we take α (t) = a + γ,j ′ for some very small (yet strictly positive) time t * + tO < t ≤ t * + tO + Conclusion Gathering all these results together, the constructed strategy α is such that y γ (t; x, α)y ρε γ (t; x, α) ≤ ω ε (t ε ; Φ(ε)). for any t ≤ t ε and the lemma is proved.

Some hints on the proof of Lemma 24

The reader is invited to note that, if (C) holds true, then l (y, a) = l Π G (y) , a ,for all y ∈ G +,ε .

Hence, the same kind of cost can be reached by : -hurrying to O when the target is at O, then wait for collision by -staying at O when the target enters a fictive road from the intersection if a control a such that f (O, a) = 0 exists (for example, in the inactive case).

-or mimic staying at O by making very small trips (see case (c2) of the previous Lemma); -at e 1 :

-if f (e 1 , a) , e 1 ≤ 0, for all a, we are done, since the target will never enter (1, 1 + ε] e 1 (recall we start from G).

-otherwise, there exists f (e 1 , a) , e 1 > β ′ > 0 and, by our assumption, we also have f (e 1 , a γ,1 ) , e 1 < -β. Then, again, we mimic staying at e 1 by making very small trips until collision.

The same kind of assertion are valid for λ and Q (notice the definition of these terms on "fictive" roads). The trajectories around O are close due to the ε distance from G +,ε to G and as in the previous argument, coming around the intersection can only occur once before collision.