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Piecewise Deterministic Markov Modeling for

Traffic/Maintenance and Associated Hamilton-Jacobi

Integrodifferential Systems on Networks

Dan Goreac∗†‡, Magdalena Kobylanski∗§, Miguel Martinez∗¶

May 1, 2014

Abstract

We study optimal control problems in infinite horizon when the dynamics belong to a specific
class of piecewise deterministic Markov processes constrained to star-shaped networks (inspired
by traffic models). We adapt the results in [19] to prove the regularity of the value function
and the dynamic programming principle. Extending the networks and Krylov’s "shaking the
coefficients" method, we prove that the value function can be seen as the solution to a linearized
optimization problem set on a convenient set of probability measures. The approach relies en-
tirely on viscosity arguments. As a by-product, the dual formulation guarantees that the value
function is the pointwise supremum over regular subsolutions of the associated Hamilton-Jacobi
integrodifferential system. This ensures that the value function satisfies Perron’s preconization
for the (unique) candidate to viscosity solution. Finally, we prove that the same kind of lin-
earization can be obtained by combining linearization for classical (unconstrained) problems
and cost penalization. The latter method works for very general near-viable systems (possibly
without further controllability) and discontinuous costs.

Mathematics Subject Classification. 49L25, 93E20, 60J25, 49L20

1 Introduction

This paper aims at the study of optimal control problems in infinite horizon when the dynamics
belong to a specific class of piecewise deterministic Markov processes constrained to networks. The
starting point is a model inspired by traffic. Our point of view is the one of a traffic regulator who
observes the generic traffic X· and has the possibility to intervene in the regulation by imposing
speed limits via some (external) control. In this basic model, the generic vehicle should remain
on some star-shaped network containing several edges bound to a common intersection. At the
same time as the traffic, the regulator should ensure the maintenance of the network by observing
a second (pure jump) component Γ· (known as mode). The functionality of the network evolves
stochastically and damage to a specific edge occurs exponentially distributed with a parameter
λ (X,Γ, α) depending on the traffic, on the previous state of the network and on regulator’s control
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policy α. In this context of controlled switched Piecewise Deterministic Markov Processes (PDMP),
the regulator seeks to minimize its (discounted) operating cost

vδ (x, γ) := inf
α,X

x,γ,α
· ∈network

E

[∫ ∞

0
e−δtlΓx,γ,αt

(Xx,γ,α
t , αt) dt

]
.

In this paper, we study the Hamilton-Jacobi integrodifferential systems on networks associated to
the previous control problem.

To our best knowledge, for deterministic dynamics, the constrained optimal control problem
with continuous cost was studied for the first time in [18] (see also [19] for a stochastic framework).
The value function of an infinite horizon control problem with space constraints was characterized
as a continuous solution to a corresponding Hamilton—Jacobi—Bellman equation. For discontinuous
cost functionals, the deterministic control problem with state constraints was studied in [9], [10],
[16] using viability theory tools. However, the results of these papers do not directly apply to
(deterministic) control problems on star-shaped networks. Several very recent results are available
on this subject when dealing with deterministic systems (cf. [1], [3], [14], [17], [2]). The cited
papers rely on Bellman’s approach for the existence of solutions of the associated Hamilton-Jacobi
equation and propose several methods for the uniqueness part.

For our control problem governed by a switch PDMP with characteristic triple (f, λ,Q) (cf. [8],
see also Section 2 for the explicit construction), we proceed as follows. In the first part, we prove that
vδ satisfies, in some generalized viscosity sense the associated Hamilton-Jacobi integrodifferential
equation. As in the deterministic counterpart, we use Bellman’s approach. We begin Section 4 with
proving the regularity of the deterministic value function and the dynamic programming principle
(DPP) for this case. For available (active) roads, the controllability assumptions are the same as
those in [1]. However, entering inactive roads from intersection should be prohibited and other
assumptions must be made for this case in order to guarantee the uniform continuity of the value
function. Next, we iterate the value functions and the DPP between jumps to prove the uniform
continuity of the (stochastic) value function and the DPP. As a by-product, we prove that the value
function satisfies in a (relaxed) viscosity sense the associated Hamilton-Jacobi integrodifferential
system (in Section 5).

We then focus on a different notion of uniqueness (in Section 6): The well-known method of
Perron consists in proposing the supremum over regular subsolution as candidate to the viscosity
solution. Using this intuition, we proceed backward and prove that the value function given in
the previous section is the pointwise supremum over such regular subsolutions (with a slightly
modified notion). The major argument in proving this result is to extend the intersection with some
additional directions and impose convenient extensions of the dynamics. Then, we adapt Krylov’s
"shaking the coefficients" method (cf. [15], [4]) to exhibit a sequence of regular subsolutions of
our Hamilton-Jacobi system converging to the initial control problem. These arguments allow the
linearization of the value function. It is shown (in Theorem 27) that the value function can be
interpreted in connection to an optimization problem set on a family of convenient probability
measures. This family is completely described by the Dynkin operator of our process. Moreover,
the dual value allows one to state that the initial value function is, indeed, the pointwise supremum
over regular subsolutions.

Finally, we present a different approach which is independent of the structure of our network
and/or controllability assumptions. The linearization techniques allow us to extend the results to
more general networks in Section 7. We assume merely near-viability conditions and consider lower
semicontinuous cost functions. Then, the classical penalization of the cost function with a term
involving the distance to the (general) set of constraints is shown to converge to the primal linear
value function stated on the same family of probability measures as before (Section 6). The dual
value links, as before, the value function to the candidate in Perron’s method. This part generalizes
the approach in [12].
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The paper is organized as follows. In Section 2, we recall the basic construction of piecewise
deterministic Markov switch processes and give the main assumptions on the dynamics. We present
our traffic model and introduce the different types of admissible controls and the controllability
assumptions in Section 3. Section 4 is dedicated to the study of regularity of the value function
and the dynamic programming principles. The basic ingredient is the technical projection Lemma
6 allowing to prove the uniform continuity of the value function in the deterministic setting (in
Theorem 8). We proceed as in [19] by iterating the value function and the dynamic programming
principle. In Section 5, we introduce a sequential relaxation of the dynamics and prove that the
regular value function exhibited before satisfies, in some generalized viscosity sense, the associated
Hamilton-Jacobi intergrodifferential system. Section 6 is dedicated to the linearization of our value
function. We begin with extending the graph and the dynamics by mirroring the trajectories in the
inactive case and using the inertia otherwise. We briefly present the adaptation of Krylov’s "shaking
the coefficients" method and exhibit a family of regular subsolutions converging to the initial
value function (in Theorem 25). The main ingredients in proving the convergence are successive
projection arguments given by Lemmae 23 and 24 (whose proofs are postponed to the Appendix).
The main result (Theorem 27) shows that the value function can be interpreted in connection
to an optimization problem set on a family of convenient probability measures. Moreover, the
dual of this problem allows one to characterize the value as the pointwise supremum over regular
subsolutions (as predicted by Perron’s method). Finally, in Section 7 we present a penalization
approach leading to the same kind of value function. The advantage of the latter method is that it
needs neither controllability assumptions on the coefficients nor the continuity of the cost functional.
It is, therefore, applicable to (more) general settings and discontinuous costs.

2 Standard construction of controlled switched PDMPs

We consider A (the control space) to be a compact subspace of a metric space Rd and Rm be the
state space, for some d,m ≥ 1. Moreover, we consider a finite set E.

We summarize the construction of controlled piecewise deterministic Markov processes (PDMP)
of switch type (cf. [6], [7], [8]) having as characteristic triple fγ : R

m × A −→ Rm, λ : Rm × E ×
A −→ R+ and Q : Rm × E2 × A −→ [0, 1] . These functions are assumed to satisfy some usual
continuity conditions (to be made precise at the end of the section). We let L0 (Rm × E × R+;A)
denote the space of A-valued Borel measurable functions defined on Rm × E × R+. Whenever
α1 ∈ L0 (Rm × E × R+;A) and (t0, x0, γ0) ∈ R+ × Rm × E, we consider the ordinary differential
equation

{
dyγ0 (t; t0, x0, α1) = fγ0 (yγ0 (t; t0, x0, α1) , α1 (x0, γ0, t− t0)) dt, t ≥ t0,
yγ0 (t0; t0, x0;α1) = x0.

For the sake of simplicity, whenever t0 = 0, we denote by yγ0 (t;x0, α1) the solution of the previous
ordinary differential equation such that yγ0 (0;x0, α1) = x0.

We choose the first jump time τ1 such that the jump rate λ (yγ0 (t;x0, α1) , γ0, α1 (x0, γ0, t))
satisfies

P (τ1 ≥ t) = exp

(
−
∫ t

0
λ (yγ0 (s;x0, α1) , γ0, α1 (x0, γ0, s)) ds

)
.

The controlled piecewise deterministic Markov processes (PDMP) is defined by

(Xx0,γ0,α
t ,Γx0,γ0,αt ) = (yγ0 (t;x0, α1) , γ0) , if t ∈ [0, τ1) .

The post-jump location is denoted by (Y1,Υ1) and has δyγ0 (τ ;x0,α)×Q (yγ0 (τ ;x0, α) , γ0, α1 (x0, γ0, τ) , ·)
as conditional distribution given τ1 = τ. Starting from (Y1,Υ1) at time τ1, we select the inter-jump
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time τ2 − τ1 such that

P (τ2 − τ1 ≥ t / τ1, (Y1,Υ1)) = exp

(
−
∫ τ1+t

τ1

λ (yΥ1 (s; τ1, Y1, α2) ,Υ1, α2 (Y1,Υ1, s− τ1)) ds
)
,

where α2 ∈ L0 (Rm × E × R+;A). We set

(Xx0,γ0,α
t , Ix0,γ0,αt ) = (yΥ1 (t; τ1, Y1, α2) ,Υ1) , , if t ∈ [τ1, τ2) .

The post-jump location (Y2,Υ2) satisfies

P ((Y2,Υ2) ∈ Y × E / τ2, τ1, Y1,Υ1) = 1yΥ1 (τ2;τ1,Y1,α2)∈YQ (yΥ1 (τ2; τ1, Y1, α2) ,Υ1, E , α2 (Y1,Υ1, τ2 − τ1)) ,

for all Borel sets Y ⊂ Rm and E ⊂E. (Of course, the set E is endowed with the discrete topology.)
And so on.

Throughout the paper, unless stated otherwise, we assume the following:

(A1) The functions fγ : R
m × A −→ Rm are uniformly continuous on Rm × A and there exists

a positive real constant C > 0 such that

(A1) 〈fγ (x, a)− fγ (y, a) , x− y〉 ≤ C |x− y|2 , and |fγ (x, a)| ≤ C,

for all x, y ∈ Rm and all a ∈ A.
(A2) The function λ : Rm ×E ×A −→ R+ is uniformly continuous on R

m × {γ} ×A and there
exists a positive real constant C > 0 such that

(A2) |λ (x, γ, a)− λ (y, γ, a)| ≤ C |x− y| , and λ (x, γ, a) ≤ C,

for all x, y ∈ Rm, all γ ∈ E and all a ∈ A.
(A3) The function Q : Rm×E2×A −→ [0, 1] is a stochastic matrix : i.e.

∑
γ′∈E

Q (x, γ, γ′, a) = 1,

for all γ ∈ E and all (x, a) ∈ Rm × A. Moreover, we assume that Q (x, γ, γ, a) = 0, for all γ ∈ E
and that there exists some positive real constant C > 0 such that

(A3) sup
a∈A
γ,γ′∈E

∣∣Q
(
x, γ, γ′, a

)
−Q

(
y, γ, γ′, a

)∣∣ ≤ C |x− y| .

(A4) The cost functions lγ : R
m×A −→ R are uniformly continuous on R2×A and there exists

a positive real constant C > 0 such that

(A4) |lγ (x, a)− lγ (y, a)| ≤ C |x− y| , and |lγ (x, a)| ≤ C,

for all x, y ∈ R2 and all a ∈ A.

Remark 1 The assumptions (A1-A4) are quite standard when dealing with viscosity theory in
PDMP. They appear under this form in [19] and are needed to infer the uniform continuity of the
value function.

3 A traffic problem

We consider a traffic problem on a network given by :

- a family of vertex (ej)j=1,N , for some N ∈ N∗ r {1} ,
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- a central intersection denoted by O.

Fig. 1. The simple intersection

We let Jj := (0, 1) ej , for all j = 1, N, G : = ∪
j=1,N

[0, 1) ej and G : = ∪
j=1,N

[0, 1] ej .

Our point of view is the one of a traffic regulator who observes the generic traffic and has
the possibility to intervene in the regulation by imposing speed limits via some (external control).
Given an initial point x ∈ G, the generic vehicle will move (in a continuous trajectory Xt) on
G. At the same time as the actual traffic, the regulator observes the quality of the road (Γt) and
distinguishes between roads which are functional (active) and those which need repairing (inactive).
For functional roads, speeding up the traffic at the intersection in both directions is possible, whileas,
in the inactive case, the road needs clearing up.

This leads to controlled switch PDMP dynamics (Xx,γ,α
t ,Γx,γ,αt ) governed by the speed of the

vehicle f, a jump parameter λ depending on both the traffic and the quality of the road λ and
a postjump transition Q specifying functionality of the network. We denote by E the family of
all possible functionality variables (e.g. {0, 1}N ) and introduce, for all j = 1, N a partition of
E = Eactivej ∪ Einactivej .

Given an intial couple describing the position and configuration (x, γ) ∈ G × E, we introduce
the set of feasible (network-constrained) controls for the deterministic framework by setting

Aγ,x :=
{
α : R+ −→ A : α is Borel measurable, yγ (t;x, α) ∈ G, for all t ≥ 0,

}
,

for all (x, γ) ∈ G × E. Of course, one needs to guarantee that these sets are nonempty. We also
introduce the set of constant, locally-admissible controls for the deterministic problem by setting

Aγ,x =
{
a ∈ A : yγ (t;x, α) ∈ G, for some θ > 0 and all t ∈ [0, θ]

}
,

for all (x, γ) ∈ G × E.
Unless stated otherwise, throughout the paper, we will use the following assumptions.
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(Aa) There exist nonempty subsets Aγ,j ⊂ A such that

Aγ,x = Aγ,j , if x ∈ Jj ,
Aγ,O = ∪

j=1,N

{
a ∈ Aγ,j : f (O, a) ∈ R+ej

}
,

Aγ,ej =
{
a ∈ Aγ,j : 〈fγ (ej , a) , ej〉 ≤ 0

}
6= ∅,

for all γ ∈ E and all j = 1, N. Moreover, we assume that, for every γ ∈ E and every j = 1, N,
either Aγ,ej = Aγ,j or, otherwise, there exists some β > 0 and some aγ,j ∈ Aγ,j satisfying

〈fγ (ej , aγ,j) , ej〉 < −β.

(Ab) For all γ ∈ Eactivej , there exists some a+γ,j , a
−
γ,j ∈ Aγ,j such that

〈
fγ

(
O, a+γ,j

)
, ej

〉
> β and

〈
fγ

(
O, a−γ,j

)
, ej

〉
< −β.

For γ ∈ Einactivej , there exist some β > 0, 1 > η > 0, κ ∈ [0, 1) and a−γ,j , a0γ,j ∈ Aγ,j such that
〈
fγ

(
x, a−γ,j

)
, ej

〉
≤ −β 〈x, ej〉κ ,

for all x ∈ Jj , |x| ≤ η and fγ

(
O, a0γ,j

)
= 0. Moreover,

〈fγ (x, a) , ej〉 ≤ 0,

for all a ∈ Aγ,j and all x ∈ Jj , |x| ≤ η.
(Ac) Whenever γ ∈ Einactivej , lγ (O,α) = lγ (O) .

Remark 2 (i) The condition (Ab) states that if the road is functional (active), then one has a
behavior similar to the one introduced in [1] (speeding up the traffic at the intersection in both
directions is possible).

If the road is inactive, then, for the cars that have "just" entered the road, the only possibility
is to move back into the intersection (Ab) (the road needs clearing up for repairing). A measure
(a−γ,j) is possible to get them off this inactive road within a controlled time and, eventually, they are

allowed to stay in O (due to the control a0γ,j) until the road is repaired.
The condition (Ac) is intended for technical reasons. It can be interpreted as : if the road is

inactive, the presence of vehicles at the entrance of the road prevents the authority to intervene and
repair the road and thus, involves high costs. However, if

{
a ∈ Aγ,j : f (O, a) ∈ R+ej

}
= Aγ,j, then

(Ac) is no longer necessary.
(ii) Under the assumption (Aa), if Aγ,ej 6= Aγ,j , then there exists 1

2 > η > 0 such that

〈fγ (x, aγ,j) , ej〉 < −β,

whenever |x− ej | ≤ η. Similarly, under the assumption (Ab), for every γ ∈ Eactivej and some η > 0,

〈
fγ

(
x, a−γ,j

)
, ej

〉
< −β,

〈
fγ

(
x, a+γ,j

)
, ej

〉
> β,

whenever |x| ≤ η.

As we have hinted before, the set Aγ,x needs not (in general) be nonempty. Nevertheless, these
assumptions guarantee

Proposition 3 Under the assumptions (Aa) and (Ab), the set Aγ,x is nonempty for all (x, γ) ∈
G × E.
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Proof. If γ ∈ Eactivej and x ∈ [0, 0.5) ej , we define

t+x,γ,ej := inf
{
t > 0 : yγ

(
t;x, a+γ,j

)
= ej

}
,

If x ∈ [0.5, 1] ej , we let
t−x,γ,O := inf {t > 0 : yγ (t;x, a) = O} ,

where a is any point of Aγ,ej . One notices that t
+
x,γ,ej

≥ 0.5
max(|f |0,1)

and t−x,γ,O ≥ 0.5
max(|f |0,1)

. For

x ∈ [0, 0.5) ej , we set

α0x,γ (t) :=

{
a+γ,j , if t ∈

[
0, t+x,γ,ej

)
∪
[
t+x,γ,ej + t

−
ej ,γ,O

, t+x,γ,ej + t
−
ej ,γ,O

+ t+O,γ,ej

)
∪ ...,

a, otherwise.

The estimates on t+,− imply that α0x,γ is defined on R+. Moreover, it is clear that α
0
x,γ ∈ Aγ,x.

Similar construction holds true for x ∈ [0.5, 1] ej . If γ ∈ Einactivej , one gets similar results by

replacing a+γ,j with a
0
γ,j . (In fact, in this case, if t

−
x,γ,O is finite, then the solution stays at O after

the time t−x,γ,O). This concludes the proof of our assertion.
We introduce the set Aad given by

(1) Aad :=
{

α : G × E × R+ −→ A : α is Borel measurable,

Xx0,γ0,α
t ∈ G, for all t ≥ 0,P−a.s., for all (x0, γ0) ∈ G × E

}

Here, Xx0,γ0,α
t is the continuous component of our PDMP constructed as in Section 2 by using

αi = α, for all i ≥ 1.

Remark 4 (a) Under the assumptions (Aa, Ab) it is clear that Aad is nonempty. In fact, it
suffices to notice that all the times t+, t− in the previous proposition are measurable functions of
(x, γ) .

(b) The set Aγ,x can be seen as a subset of Aad by choosing some α0 ∈ Aad and setting

α (y, η, t) =

{
α (t) , if (y, η) = (x, γ) ,
α0 (y, η, t) , otherwise,

for all α ∈ Aγ,x.

Example 5 Let us exhibit a simple example for which the previous assumptions (particularly (A1),

(Aa-Ab)) are satisfied. We consider N = 3 and e1 =

(
0
1

)
, e2 =

(
1
0

)
= −e3, A = [−1, 1] e1 ∪

[−1, 1] e2, E =
{
(0, 0, 0) , (0, 1, 1) ,
(1, 0, 0) , (1, 1, 1)

}
⊂ {0, 1}3 ,

fγ (x, a) = γ1 〈a, e1〉 e1 + γ2 〈a, e2〉 e2 − |a|
[
(1− γ1) 〈x, e1〉

1
2 e1 + (1− γ2)

(
〈x, e2〉+

) 1
2 e2

+(1− γ2)
(
〈x, e3〉+

) 1
2 e3

]
,

for x ∈ R × R+, γ = (γ1, γ2, γ3) ∈ E. Here, z+ = max (z, 0) , for z ∈ R. Then Einactive1 =
{γ ∈ E : γ1 = 0} and Einactive2 = Einactive3 = {γ ∈ E : γ2 = 0} . The reader is invited to note that
fγ is Lipschitz-continuous for active configurations. Also, we wish to note that, for this particular
case, whenever J2 is inactive (i.e. γ ∈ Einactive2 ), fγ (x1e2, a) = −fγ (−x1e2, a), for all x1 ∈ R. The
intersection acts as a mirror in the inactive case.

The cost l can be chosen increasing with the speed, very high as one reaches the intersection and
null at the destination vertex. Moreover, it can be chosen decreasing with respect to the number of
available/ active roads.
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(
e.g. lγ

((
x1
0

)
, a

)
= l0 +

1
γ1+γ2+1

(1− |x1|)2 + |a|
(
|x1| − |x1|2

)
and simetrically for

(
0
x2

))
.

Here, l0 > 0 is some minimal cost.

The rate λ can be chosen in a similar way as a propensity function : we define λ̃γ (x, a) =

λ0lγ (x, a) for some λ0 > 0, then λγ (x, a) =
∑

γ′∈Er{γ}
λ̃γ′ (x, a) . The jump measure Q can be chosen

proportional to the relative contribution to the propensity function

Q
(
x, γ, γ′, a

)
=

{
λ̃γ′ (x,a)

λγ(x,a)
, if γ′ ∈ E r {γ}
0, if γ′ = γ.

4 The dynamic programming principle and the regularity of the

value function(s)

The aim of the traffic regulator will be to minimize the expectation of the (infinite horizon, dis-
counted) operating cost l satisfying (for the time being and unless stated otherwise,) the assumption
(A4)

inf
α
E

[∫ ∞

0
e−δtlΓx,γ,αt

(Xx,γ,α
t , αt) dt

]
.

The discount δ > 0 will be fixed throughout the paper. The set of control policies (keeping the
vehicle on the network) as well as the meaning of αt will be given later on. The program of this first
part relies on the paper [19] : we study the regularity properties in the deterministic setting via
some projection argument, then define some iterated value functions. Next, we prove the uniform
continuity of these iterates and the dynamic programming principles (DPP). This leads to a regular
limit function satisfying a DPP. Throughout the paper, if φ is a bounded real-valued function on
some set X×F, where X ⊂ RM and F is compact such that φ (·, ς) is Lipschitz-continuous for all
ς ∈ F, we set

|φ|0 := sup
(y,ς)∈X×F

|φ (y, ς)| and Lip (φ) := sup
ς∈F

sup
y,y′∈X
y 6=y′

|φ (y, ς)− φ (y′, ς)|
|y − y′| .

Whenever f is not Lipschitz continuous (recall that (A1) is weaker than Lipschitz-continuity), by
abuse of notation, we let

Lip (f) := sup
(γ,a)∈E×A

sup
y,y′∈Rm
y 6=y′

〈fγ (y, a)− fγ (y′, a) , y − y′〉
|y − y′|2

.

Of course, whenever the function f is only defined and satisfies the regularity assumptions on G,
the supremum can be taken over j = 1, N and y, y′ which are colinear with ej and a ∈ Aγ,j .

4.1 A projection argument

Whenever ε > 0 is small enough, we let

tε := −
1

δ
ln

(
εδ

2 |f |0

)
, ρε :=

η

4
e−Lip(f)tε .

We will make extensive use of the following result.
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Lemma 6 We assume (Aa-Ac) and (A1-A4) to hold true.
(i) There exists some C > 0 such that, for every ε > 0, every γ ∈ E, x, y ∈ J1 ∪ {O, e1}

satisfying |x− y| ≤ ρ
2

1−κ
ε and every α ∈ Aγ,x, there exists Px,y (α) ∈ Aγ,y such that

(2) |yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤ C |x− y| 1−κ2 ,

and
(3)∣∣∣∣
∫ t

0
e−δslγ (yγ (s; y,Px,y (α)) ,Px,y (α) (s)) ds−

∫ t

0
e−δslγ (yγ (s;x, α) , α (s)) ds

∣∣∣∣ ≤ C |x− y| 1−κ2 ,

for all t ≤ tε.
(ii) Moreover, if α ∈ Aad, then, for every ε > 0 and every (γ, x) ∈ E×(J1 ∪ {O, e1}) , there exists

P(x,γ) (α) ∈ Aad such that the previous inequalities are satisfied with P(x,γ) (α) (y, γ, ·) replacing
Px,y (α) (·) , for all y ∈ J1 ∪ {O, e1} satisfying |x− y| ≤ ρ

2
1−κ
ε .

Proof. (a) (i) Let us assume that x = O. If y = O, then Px,y (α) = α. Otherwise, we let

ty,O := inf
{
t ≥ 0 : yγ

(
t; y, a−γ,1

)
= O

}
. Obviously,

ty,O ≤
|x− y|1−κ
(1− κ)β ≤ ρ2ε

(1− κ)β .

(These estimates are for the "inactive" case; for the "active" one, one can consider κ = 0). For ε
small enough, one can assume, without loss of generality that ρε

(1−κ)β < tε. We define

Px,y (α) (t) := a−γ,11[0,ty,O] (t) + α (t− ty,O)1(ty,O,∞) (t) ,

for all t ≥ 0. Then, one gets
|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤ |yγ (t; y,Px,y (α))− y|+ |y − x|+ |x− y (t;x, α)|

≤
(

2 |f |0
(1− κ)β + 1

)
|x− y|1−κ ≤

(
2 |f |0

(1− κ)β + 1
)
ρ2ε,

if t ∈ [0, ty,O] and
|yγ (t; y,Px,y (α))− yγ (t;x, α)| = |yγ (t;x, α)− yγ (t− ty,O;x, α)|

≤ |f |0
(1− κ)β |x− y|

1−κ ≤ |f |0
(1− κ)βρ

2
ε,

if t > ty,O. Moreover, for every T ≥ 0,
∣∣∣∣
∫ T

0
e−δtlγ (yγ (t; y,Px,y (α)) ,Px,y (α) (t)) dt−

∫ T

0
e−δtlγ (yγ (t;x, α) , α (t)) dt

∣∣∣∣

≤
∫ ty,O

0
e−δt |lγ (yγ (t; y,Px,y (α)) ,Px,y (α) (t))| dt+

∫ ty,O

0
e−δt |lγ (yγ (t;x, α) , α (t))| dt

+ 1T>ty,O

(
1− e−δty,O

)∫ T−ty,O

0
e−δt |lγ (yγ (t;x, α) , α (t))| dt

+ 1T>ty,O

∫ T

T−ty,O
e−δt |lγ (yγ (t;x, α) , α (t))| dt

≤ 2 |l|0
|x− y|1−κ
(1− κ)β +

1

δ
|l|0
(
1− e−δ

|x−y|1−κ

(1−κ)β

)
+ |l|0

|x− y|1−κ
(1− κ)β

≤ 4 |l|0
|x− y|1−κ
(1− κ)β ≤ 4 |l|0

(1− κ)βρ
2
ε.
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(ii) If α ∈ Aad, then we set

P(x,γ) (α) (y, η, t) =
{
Px,y (α (x, γ, t)) if η = γ, |x− y| ≤ ρ

2
1−κ
ε ,

α (y, η, t) , otherwise.

One only needs to notice that y 7→ ty,O is Borel measurable to deduce that Px,γ (α) ∈ Aad. In the
other cases, the construction is similar. We will just hint the measurability properties needed to
insure that the constructed function P(x,γ) (α) is Borel measurable in (t, y).

(b) If y = O, we distinguish two cases :
(b1) The road is "inactive". Then, we introduce tx,O (α) := inf {t > 0 : yγ (t;x, α) = O} and

define, if it is finite

Px,y (α) (t) := a0γ,11[0,tx,O(α)] (t) + α (t)1(tx,O(a0γ,1),∞)
(t) ,

where a0γ,1 is given by (Ab). Then, due to (Ab), it is clear that

|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤ |x− y| ≤ ρ2ε,

if t ≤ tx,O (α) and
|yγ (t; y,Px,y (α))− yγ (t;x, α)| = 0,

otherwise. We note that yγ (t; y,Px,y (α)) = O, for t ≤ tx,O (α) . Thus, the assumption (Ac) yields

∣∣∣∣
∫ T

0
e−δtl (yγ (t; y,Px,y (α)) ,Px,y (α) (t)) dt−

∫ T

0
e−δtl (yγ (t;x, α) , α (t)) dt

∣∣∣∣

≤
∫ T

0
e−δtLip(l) |x− y| dt ≤ Lip(l)

δ
|x− y| ≤ Lip(l)

δ
ρ2ε.

(b2) The road is "active". Then, we introduce ty,x := inf
{
t > 0 : yγ

(
t; y, a+γ,1

)
= x

}
. Similar

to (a), one easily proves that ty,x ≤ ρ2ε
β
. In this case, we define

Px,y (α) (t) := a+γ,11[0,ty,x] (t) + α (t− ty,x)1(ty,x,∞) (t) ,

and get the same kind of estimates as in (a).
(ii) This allows one to define Px,γ (α) (O, η, t) := Px,O (α (x, γ, t)) , if α ∈ Aad, η = γ and

|x| ≤ ρ
2

1−κ
ε and Px,γ (α) (O, η, t) = α (O, η, t) otherwise.

(c) We assume that x ∈ J1 ∪ {e1} and y ∈ J1. Then, α ∈ Aγ,x is admissible for y (at least for
some small time). We define t∗y (α) = inf {t > 0 : yγ (t; y, α) ∈ ∂J1}∧inf {t > 0 : yγ (t;x, α) = 0}∧tε.
One notices, as before, that y 7→ t∗y (α) is Borel measurable.

(c1) If t∗y (α) ≥ tε, then we let Px,y (α) (t) := α(t)1[0,tε) (t) + α0 (yγ (tε; y, α) , γ, t)1[tε,∞) (t) ,
where α0 ∈ Aad and have

|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤ eLip(f)t |x− y| ≤
√
|x− y| ≤ ρ

1
1−κ
ε ,

for all t ≤ tε. Also, one easily gets, for every T ≤ tε,

∣∣∣∣
∫ T

0
e−δtl (yγ (t; y,Px,y (α)) ,Px,y (α) (t)) dt−

∫ T

0
e−δtl (yγ (t;x, α) , α (t)) dt

∣∣∣∣

≤ Lip (l)

δ

√
|x− y| ≤ Lip (l)

δ
ρ

1
1−κ
ε .

Since α0 ∈ Aad, it follows that (t, y) 7→ Px,y (α) (t)1t∗y(α)≥tε is Borel-measurable.
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(c2) If t∗y (α) < tε and yγ
(
t∗y (α) ; y, α

)
= e1, then, in particular,

∣∣yγ
(
t∗y (α) ;x, α

)
− e1

∣∣ <
√
|x− y| ≤ ρ

1
1−κ
ε . Of course, this case is only interesting if α is no longer admissible. In particular,

whenAγ,e1 6= Aγ,1. Then, we introduce te1,yγ(t∗y(α);x,α)
:= inf

{
t ≥ 0 : yγ (t; e1, aγ,1) = yγ

(
t∗y (α) ;x, α

)}
.

One has te1,yγ(t∗y(α);x,α)
≤
√
|x−y|
β

. We define

Px,y (α) (t) := α (t)1[0,t∗y(α))
(t) + aγ,11[

t∗y(α),t
∗
y(α)+te1,yγ(t∗y(α);x,α)

] (t)

+ α
(
t− te1,yγ(t∗y(α);x,α)

)
1(
t∗y(α)+te1,yγ(t∗y(α);x,α)

,∞
) (t) .

The functions y 7→ t∗y (α) , y 7→ yγ
(
t∗y (α) ; y, α

)
are Borel measurable. Hence, so is y 7→ te1,yγ(t∗y(α);x,α)

.

It follows that
(t, y) 7→ Px,y (α) (t)1t∗y(α)<tε,yγ(t∗y(α);y,α)=e1

is also Borel-measurable. One has

|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤
√
|x− y|,

if t ≤ t∗y (α) ,

|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤
∣∣yγ
(
t− t∗y (α) ; e1, aγ,1

)
− e1

∣∣+
∣∣e1 − yγ

(
t∗y (α) ;x, α

)∣∣

+
∣∣yγ
(
t∗y (α) ;x, α

)
− yγ (t;x, α)

∣∣

≤
(
2 |f |0
β

+ 1

)√
|x− y|,

if t ∈
[
t∗y (α) , t

∗
y (α) + te1,yγ(t∗y(α);x,α)

]
. Finally, if t > t∗y (α) + te1,yγ(t∗y(α);x,α), then

|yγ (t; y,Px,y (α))− yγ (t;x, α)|

=

∣∣∣∣∣
yγ

(
t− t∗y (α) + te1,yγ(t∗y(α);x,α); yγ

(
t∗y (α) ;x, α

)
, α
(
t∗y (α) + ·

))

−yγ
(
t− t∗y (α) ; yγ

(
t∗y (α) ;x, α

)
, α
(
t∗y (α) + ·

))

∣∣∣∣∣

≤ |f |0
√
|x− y|
β

.

Moreover, if T ≤ tε, one gets (similar to (a)),

∣∣∣∣
∫ T

0
e−δtl (yγ (t; y,Px,y (α)) ,Px,y (α) (t)) dt−

∫ T

0
e−δtl (yγ (t;x, α) , α (t)) dt

∣∣∣∣

≤
∫ t∗y(α)

0
e−δtLip (l)

√
|x− y|dt+ 4 |l|0

β

√
|x− y|.

(c3) The case t∗y (α) < tε and yγ
(
t∗y (α) ; y, α

)
= O : In particular, one gets

∣∣yγ
(
t∗y (α) ;x, α

)∣∣ ≤
√
|x− y| ≤ ρ

1
1−κ
ε .

(c3.1) In the "active case", we consider tO,yγ(t∗y(α);x,α)
= inf

{
t > 0 : yγ

(
t;O, a+γ,1

)
= yγ

(
t∗y (α) ;x, α

)}

and define

Px,y (α) (t) := α (t)1[0,t∗y(α))
(t) + a+γ,11

[
t∗y(α),t

∗
y(α)+tO,yγ(t∗y(α);x,α)

] (t)

+ α
(
t− tO,yγ(t∗y(α);x,α)

)
1(
t∗y(α)+tO,yγ(t∗y(α);x,α)

,∞
) (t) .
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One gets the same estimates (and measurability properties) as in (c2).
(c3.2) The "inactive case" is similar to (b1). We consider

Px,y (α) (t) := α (t)1[0,t∗y(α))
(t) + a0γ,11

[
t∗y(α),t

∗
y(α)+tyγ(t∗y(α);x,α),O

] (t)

+ α
(
t− tyγ(t∗y(α);x,α),O

)
1(
t∗y(α)+tyγ(t∗y(α);x,α),O

,∞
) (t) ,

for all t ≥ 0. The functions y 7→ t∗y (α) , y 7→ yγ
(
t∗y (α) ;x, α

)
are Borel measurable. Hence, so is

y 7→ tyγ(t∗y(α);x,α),O
(
a01
)
. It follows that

(t, y) 7→ Px,y (α) (t)1t∗y(α)<tε,yγ(t∗y(α);y,α)=O
is also Borel-measurable.

One easily notices that

|yγ (t; y,Px,y (α))− yγ (t;x, α)| ≤
√
|x− y| ≤ ρε, if 0 ≤ t ≤ t∗y (α) + tyγ(t∗y(α);x,α),O,

and yγ (t; y,Px,y (α)) = yγ (t;x, α) if t > t∗y (α) + tyγ(t∗y(α);x,α),O
. Using the assumption (Ac) on

[
t∗y (α) , t

∗
y (α) + tyγ(t∗y(α);x,α),O

]
, one gets

∣∣∣∣
∫ T

0
e−δtl (yγ (t; y,Px,y (α)) ,Px,y (α) (t)) dt−

∫ T

0
e−δtl (yγ (t;x, α) , α (t)) dt

∣∣∣∣

≤
∫ t∗y(α)

0
e−δtLip (l)

√
|x− y|dt+

∫ (
t∗y(α)+tyγ(t∗y(α);x,α),O

)
∧T

t∗y(α)
e−δtLip(l)

√
|x− y|dt

≤ 1

δ
Lip(l)

√
|x− y|.

(c4) If t∗y (α) < tε and yγ
(
t∗y (α) ;x, α

)
= O, then we proceed as in (a). We let

tyγ(t∗y(α);y,α),O
:= inf

{
t ≥ 0 : yγ

(
t; yγ

(
t∗y (α) ; y, α

)
, a−γ,1

)
= O

}
.

Obviously, tyγ(t∗y(α);y,α),O
≤
√
|x−y|1−κ

(1−κ)β . We set

Px,y (α) (t) := α (t)1[0,t∗y(α))
(t) + a−γ,11

[
t∗y(α),t

∗
y(α)+tyγ(t∗y(α);y,α),O

] (t)

+ α
(
t− tyγ(t∗y(α);y,α),O

)
1(
t∗y(α)+tyγ(t∗y(α);y,α),O

,∞
) (t) ,

for all t ≥ 0 and the estimates follow. The measurability properties follow as before.
(d) Finally, we assume that y = e1. Again, we only modify α if Aγ,e1 6= Aγ,1. In this eventuality,

we define te1,x := inf {t ≥ 0 : yγ (t; y, aγ,1) = x} , where aγ,1 appears in (Aa). Then te1,x ≤ |x−y|
β
.

We let
Px,e1 (α) (t) := aγ,11[0,te1,x]

(t) + α (t− te1,x)1(te1,x,∞) (t) .
and get the conclusion.

The proof of our lemma is now complete.

Remark 7 (i) The reader is invited to note that the constant C in the previous lemma only depends
on Lip (l) , |l|0 , Lip (f) , |f |0 and β but not of the actual coefficients f nor of the actual cost function
l.

(ii) The assumption (Ac) is only needed if
{
a ∈ Aγ,1 : f (O, a) ∈ R+e1

}
6= Aγ,1. Otherwise, both

(b1) and the analogous (c3.2) need not be treated as special cases. Indeed, if
{
a ∈ Aγ,1 : f (O, a) ∈ R+e1

}
=

Aγ,1, then α is still locally admissible and we continue using it.
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At this point, we introduce the value function for the deterministic case (λ = 0, or, equivalently
the road functionality γ is immutable) by setting

vδ0 (x, γ) = inf
α∈Aγ,x

∫ ∞

0
e−δtlγ (yγ (t;x, α) , α (t)) dt,

for all x ∈ G and all γ ∈ E.
As a consequence of our projection lemma, we get the following continuity result :

Theorem 8 The deterministic value functions vδ0 (·, γ) are bounded and uniformly continuous on
G.

Proof. Since the domain G is compact, it suffices to prove that vδ (·, γ) is continuous. Let us fix
x ∈ G \ {O} and consider ε > 0. Without loss of generality, we assume that x ∈ J1 ∪ {e1} . Then,
there exists some α ∈ Aγ,x such that

vδ0 (x, γ) + ε ≥
∫ tε

0
e−δtlγ (yγ (t;x, α) , α (t)) dt−

1

δ
e−δtε |l|0 .

Hence, for every y ∈ J1 ∪ {e1, O} such that |x− y| ≤ ρ
2

1−κ
ε , using the previous lemma, there exists

Px,y (α) ∈ Aγ,y such that

vδ0 (x, γ) + ε ≥
∫ tε

0
e−δtlγ (y (t;x,Px,y (α)) ,Px,y (α) (t)) dt− Cρε −

1

δ
e−δtε |l|0

≥
∫ ∞

0
e−δtlγ (y (t;x,Px,y (α)) ,Px,y (α) (t)) dt− Cρε −

2

δ
e−δtε |l|0

≥ vδ0 (y, γ)− Cρε −
|l|0
|f |0

ε.

The continuity property follows by recalling that ε > 0 is arbitrary and lim
ε→0

ρε = 0. In the case

when x = O, the same arguments yield

lim
y→O
y∈Jj

vδ0 (y, γ) = vδ0 (O, γ) ,

for every j = 1, N. The proof of our theorem is now complete.

Remark 9 The reader is invited to note that the continuity modulus of vδ0 depends only on Lip (l) ,
|l|0 , Lip (f) , |f |0 and β but not of the actual coefficients f nor of the actual cost function l.

4.2 Iterated value function

Following the ideas of [19], we introduce the iterated value functions vδm defined by

vδm (x, γ) := inf
α∈Aad

Jm (x, γ, α) ,

where

Jm (x, γ, α) := E

[∫ τ1

0
e−δtlγ (X

x,γ,α
t , α (x, γ, t)) dt+ e−δτ1vδm−1 (Y1,Υ1)

]
.

We recall that (Y1,Υ1) are the post-jump locations at the first jump time τ1 depending on x, γ, α, (cf.
Section 2). Hence, we have (Y1,Υ1) = (X

x,γ,α
τ1 ,Γx,γ,ατ1 ) and τ1 = τx,γ,α1 . The process is constructed as

13



in section 2 using αi = α ∈ Aad, for all i ≥ 1. The reader is invited to note that a simple recurrence
argument yields

(4)
∣∣∣vδm (x, γ)

∣∣∣ ≤ |l|0
δ
, for all (x, γ) ∈ G × E.

Throughout the section, unless stated otherwise, we assume (Aa-Ac) and (A1-A4) to hold
true. In order to simplify our presentation, we assume that λ and Q are independent of the control
parameter a. The general case follows from similar arguments as those of Lemma 6 (the estimates
on l) if one assumes

(Ac’) Whenever γ ∈ Einactivej , Q (O, γ, γ′, a) = Q (O, γ, γ′) and λ (O, γ, a) = λ (O, γ) .

Again, (Ac’) is only needed for those j such that γ ∈ Einactivej and
{
a ∈ Aγ,j : f (O, a) ∈ R+ej

}
6=

Aγ,j .
The same arguments as those employed in Lemma 3.1of [19] yield

Lemma 10 Let us assume that vδm−1 (·, γ) is continuous on G. Then, for every T > 0, one has

vδm (x, γ) = inf
α∈Aad

E

[ ∫ τ1∧T
0 e−δtlγ (yγ (t;x, α) , α (x, γ, t)) dt

+e−δτ1vδm−1 (Y1,Υ1)1τ1≤T + e
−δT vδm (yγ (T ;x, α) , γ)1τ1>T

]
,

for all (γ, x) ∈ E × G.

The proof is identical (no changes needed) to the one of Lemma 3.1 of [19] and will be omitted
from our (already long enough) presentation.

Theorem 11 The functions vδm (·, γ) are uniformly continuous on G, for all m ≥ 0 and uniformly
with respect to γ ∈ E.

Proof. We prove our theorem by recurrence over m. For m = 0, we invoke theorem 8. Let us
assume that vδm−1 (·, γ′) is continuous for all γ′ ∈ E. We let ωm−1 be the continuity modulus

ωm−1 (r) := sup
{∣∣∣vδm−1

(
x, γ′

)
− vδm−1

(
y, γ′

)∣∣∣ : |x− y| ≤ r, γ′ ∈ E
}
.

We also introduce

ωm (γ, r) := sup
{∣∣∣vδm (x, γ)− vδm (y, γ)

∣∣∣ : |x− y| ≤ r
}
,

for all r > 0. Obviously, ωm (r) = sup
γ∈E

ωm (γ, r). It is straightforward that ωm (r) ≤ 2 |l|0δ . Let us

fix, for the time being, (γ, x, y) ∈ E × G2, ε > 0 and assume that |x− y| ≤ ρ
2

1−κ
ε . Then, due to the

previous lemma, there exists some admissible control process α ∈ Aad such that

vδm (x, γ) ≥ −ε+ E
[ ∫ τ1∧tε

0 e−δtlγ (yγ (t;x, α) , α (x, γ, t)) dt
+e−δτ1vδm−1 (Y1,Υ1)1τ1≤tε + e

−δtεvδm (yγ (tε;x, α) , γ)1τ1>tε .

]

We denote by α̃ the admissible control process P(x,γ) (α) ∈ Aad given by the assertion (ii) in Lemma
6. We introduce the following notations :

y(t) := yγ (t;x, α) , α(t) := α (x, γ, t) , λ (t) := λ (y (t) , γ) , Λ (t) = exp

(
−
∫ t

0
λ (s) ds

)
,

ỹ(t) := yγ (t; y, α̃) , α̃(t) := α̃ (y, γ, t) , λ̃ (t) := λ (ỹ(t), γ) , Λ̃ (t) = exp

(
−
∫ t

0
λ̃ (s) ds

)
.
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Then

vδm (y, γ) ≤
E

[∫ τ̃1∧tε
0 e−δtlγ (ỹ (t) , α̃ (t)) dt

]

+E
[
e−δτ̃1vδm−1

(
Ỹ1, Υ̃1

)
1τ1≤tε + e

−δtεvδm (ỹ (tε) , γ)1τ̃1>tε .
]

The right-hand member can be written as

Im (y, γ, α̃) =

∫ tε

0
λ̃ (t) Λ̃ (t)

∫ t

0
e−δslγ (ỹ (s) , α̃ (s)) dsdt(5)

+

∫ tε

0
λ̃ (t) Λ̃ (t) e−δt

∑
γ′∈E\{γ}

vδm−1
(
ỹ (t) , γ′

)
Q
(
ỹ (t) , γ, γ′

)
dt

+ Λ̃ (tε)

∫ tε

0
e−δtlγ (ỹ (t) , α̃ (t)) dt+ Λ̃ (tε) e

−δtεvδm (ỹ (tε) , γ) .

Then, using the estimates (2) in Lemma 6 and recalling that (A2) holds true, one has

Im (y, γ, α̃) ≤ C |x− y| 1−κ2 +

∫ tε

0
λ (t) Λ (t)

∫ t

0
e−δslγ (ỹ (s) , α̃ (s)) dsdt(6)

+

∫ tε

0
λ (t) Λ (t) e−δt

∑
γ′∈E\{γ}

vδm−1
(
ỹ (t) , γ′

)
Q
(
ỹ (t) , γ, γ′

)
dt

+ Λ(tε)

∫ tε

0
e−δtlγ (ỹ (t) , α̃ (t)) dt+ Λ(tε) e

−δtεvδm (ỹ (tε) , γ) ,

for some generic constant C > 0 independent of ε, γ, y, x, α which may change from one line to
another. This constant only depends on the supremum norm and the Lipschitz constants of λ,Q, f
and l. Again by (2), and using the assumption (A3), we get

∑
γ′∈E\{γ}

vδm−1
(
ỹ (t) , γ′

)
Q
(
ỹ (t) , γ, γ′

)
− ∑
γ′∈E\{γ}

vδm−1
(
y (t) , γ′

)
Q
(
y (t) , γ, γ′

)
(7)

≤ ωm−1
(
C |x− y| 1−κ2

)
+

∑
γ′∈E\{γ}

∣∣∣vδm−1
(
y (t) , γ′

)∣∣∣
∣∣Q
(
ỹ (t) , γ, γ′

)
−Q

(
y (t) , γ, γ′

)∣∣

≤ ωm−1
(
C |x− y| 1−κ2

)
+ C |x− y| 1−κ2 ,

for all t ≤ tε. Moreover

e−δtεvδm
(
ỹ (tε) , γ

′) ≤ e−δtεvδm
(
y (tε) , γ

′)+ e−δtεωm
(
C |x− y| 1−κ2

)
.

Returning to (6) and using (7) and the previous relation, we get

vδm (y, γ) ≤ vδm (x, γ) + ε+ C |x− y|
1−κ
2 + ωm−1

(
C |x− y| 1−κ2

)
+ e−δtεωm

(
C |x− y| 1−κ2

)
.

Hence, whenever |x− y| ≤ r ≤ ρ
2

1−κ
ε ,

ωm (r, γ) ≤ ε+ Cr
1−κ
2 + ωm−1

(
Cr

1−κ
2

)
+ e−δtεωm

(
Cr

1−κ
2

)
.

Taking supremum over γ ∈ E, we can replace ωm (r, γ) with ωm (r) . We can assume, without loss
of generality, that C > 1 and the conclusion follows (similar to Lemma 3.3 in [19]). Indeed, one

considers r = C
− 2
1+κ

[
( 1−κ2 )

−n−1
]

and iterates in the previous inequality to get

ωm

(
C
− 2
1+κ

[
( 1−κ2 )

−n−1
])
= ε

1

1− e−δtε + e
−δtε(n−1)

n−1∑
k=0

ωm−1

(
C
− 2
1+κ

[
( 1−κ2 )

−k−1
])

eδktε

+ e−δtε(n−1)
n−1∑
k=0

(
C
− 2
1+κ

[
( 1−κ2 )

−k−1
])

eδktε + 2e−δtεn
|l|0
δ
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for n large enough and recall that ε > 0 is arbitrary. Then, by the recurrence assumption and
allowing n→∞, one gets

ωm (0) ≤ ε
1

1− e−δtε =
ε

1− εδ
2|f |0

.

To complete the proof, one only needs to recall that this inequality holds true for arbitrary ε > 0.

Remark 12 In fact, all these continuity moduli depend only the supremum norm and the Lipschitz
constants of λ,Q, f and l but the particular choice of the coefficients is irrelevant (see also remark
9).

As a corollary, using the same proof as in the first part of Theorem 3.4 in [19], we get

Corollary 13 Under our assumptions (A1-A4, Aa-Ac, Ac’), the value function vδ (γ, ·) given
by

vδ (x, γ) := inf
α∈AN

ad

E

[
∑
n≥0

∫ τn+1

τn

e−δtlΓγ,x,ατn

(
yΓγ,x,ατn

(
t;Xγ,x,α

τn , αn+1
)
, αn+1

(
Xγ,x,α
τn ,Γγ,x,ατn , t− Γγ,x,ατn

))
]

is bounded and uniformly continuous on G, for all γ ∈ E. Moreover, it satisfies the following
Dynamic Programming Principle :

vδ (x, γ) = inf
α∈Aad

E

[ ∫ T∧τ1
0 e−δtlγ (yγ (t;x, α) , α (x, γ, t)) dt

+e−δ(T∧τ1)vδ
(
yγ (T ∧ τ1;x, α) ,Γγ,x,αT∧τ1

)
]
,

for all T > 0 and all (γ, x) ∈ E × G.

Again, once we have established the ingredients of uniform continuity in the previous theorem,
the proof is identical with the first part of Theorem 3.4 in [19] and will be omitted from our (long
enough) paper. One iterates Lemma 10 to get vδm and recalls that λ is bounded and, thus, the
jumping times cannot accumulate.

5 Existence of the viscosity solution

At this point, we introduce the following Hamilton-Jacobi integrodifferential system

(8) δvδ (x, γ) + sup
a∈Aγ,x

{ −
〈
fγ (x, a) , Dv

δ (x, γ)
〉
− lγ (x, a)

−λ (x, γ, a) ∑
γ′∈E

Q (x, γ, γ′, a)
(
vδ (x, γ′)− vδ (x, γ)

)
}
= 0.

5.1 Relaxing the dynamics

In addition to the standard assumptions (Aa-Ac), we will need the following.

(Ad) For every 1 ≤ j ≤ N, every γ ∈ E and every x ∈ Jj , there exists θ > 0 such that,
whenever α ∈ Aad, one has α (x, γ, t) ∈ Aγ,j for almost all t ∈ [0, θ] .

For every x∈G, we let Tx
(
G
)
denote the set of tangent directions to G at x : Tx

(
G
)
= Rej if

x ∈ Jj , Tej
(
G
)
= R−ej and TO

(
G
)
= ∪
1≤j≤N

R+ej . The setM+ (E) denotes the family of (positive)
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measures ζ = (ζ (γ))γ∈E ∈ RE+. The following standard notations will be employed throughout the
section.

FL (x, γ) :=





(ξ, ζ, η) ∈ Tx
(
G
)
×M+ (E)× R : ∃ (αn)n ⊂ Aad, (tn)n ⊂ R+, s.t.

lim
n→∞

tn = 0, lim
n→∞

1
tn

∫ tn
0 fγ (x, αn (x, γ, s)) ds = ξ,

lim
n→∞

1
tn

∫ tn
0 λ (x, γ, αn (x, γ, s))Q (x, γ, αn (x, γ, s)) ds = ζ,

lim
n→∞

1
tn

∫ tn
0 lγ (x, αn (x, γ, s)) ds = η





,

F (x, γ) :=





(ξ, ζ) ∈ Tx (G)×M+ (E) : ∃ (αn)n ⊂ Aad, (tn)n ⊂ R+, s.t.
lim
n→∞

tn = 0, lim
n→∞

1
tn

∫ tn
0 fγ (x, αn (x, γ, s)) ds = ξ,

lim
n→∞

1
tn

∫ tn
0 λ (x, γ, αn (x, γ, s))Q (x, γ, αn (x, γ, s)) ds = ζ.




,

f l (x, γ, a) := (fγ (x, a) , λ (x, γ, a)Q (x, γ, a) , lγ (x, a)) .

Remark 14 (a) The reader is invited to notice that, in the previous notations, ” (αn)n ⊂ Aad”
(resp. ”α (x, γ, s) ”) and can be replaced by ” (αn)n ⊂ Aγ,x” (resp. ”α (s) ”, see also the second part
of the remark 4).

(b) Also, the assumptions on the coefficients imply that

lim
n→∞

1

tn

∫ tn

0
fγ (x, αn (x, γ, s)) ds = lim

n→∞
1

tn

∫ tn

0
fγ (yγ (s;x, αn (x, γ, s)) , αn (x, γ, s)) ds,

and similar assertions hold true in the definition of η and ζ.

We begin with the following technical result.

Lemma 15 We assume (Aa-Ad) and (A1-A4) to hold true. For every x ∈ Gr {O} , the following
equality holds true

FL(x, γ) = cofl (x, γ) := co
{
fl (x, γ, a) : a ∈ Aγ,x

}
.

Moreover, for every j ≤ N,

FL(ej , γ) ⊂ cofl (ej , γ) := co
{
fl (ej , γ, a) : a ∈ Aγ,j

}
∩ (R−ej ×M+ (E)× R) .

Proof. Without loss of generality, we first assume that x ∈ J1. It is clear that

FL(x, γ) ⊂ co
{
fl (x, γ, a) : a ∈ Aγ,x

}
.

Indeed, it suffices to use the assumption (Ad) to get the existence of some θ > 0 such that whenever
α ∈ Aad, one has α (x, γ, t) ∈ Aγ,1 for almost all t ∈ [0, θ] . Then, for every (αn)n ⊂ Aad, and every
sequence (tn)n ⊂ R+ such that tn ≤ θ, one has




1
tn

∫ tn
0 fγ (x, αn (x, γ, s)) ds

1
tn

∫ tn
0 λ (x, γ, αn (x, γ, s))Q (x, γ, αn (x, γ, s))

1
tn

∫ tn
0 lγ (x, αn (x, γ, s))


 ∈ co

{
fl (x, γ, a) : a ∈ Aγ,x

}
.

If x = e1, then

1

tn

∫ tn

0
fγ (yγ (s; e1, αn) , αn (e1, γ, s)) ds =

yγ (tn; e1, αn)− e1
tn

∈ R−e1.

Hence, invoking part (b) of the Remark 14, it follows that

FL(e1, γ) ⊂ co
{
fl (e1, γ, a) : a ∈ Aγ,1

}
∩ (R−e1 ×M+ (E)× R) .
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For the converse inclusion, we fix x ∈ Gr {O}. One begins by noticing that FL(x, γ) is closed.
Hence, it suffices to prove that

co
{
fl (x, γ, a) : a ∈ Aγ,1

}
⊂ FL(x, γ).

We consider λi ≥ 0, i ∈ {1, ..,K} such that
K∑
i=1
λi = 1 and ai ∈ Aγ,1, pour tout i ∈ {1, ..,K} .

Since x ∈ J1, whenever tn <
min(|x|,|x−e1|)
max(|f |0,1)

, an admissible control α ∈ Aγ,x is obtained by setting

αn (t) =
K∑
i=1
ai1




i−1∑
j=1

λj


tn,




i∑
j=1

λj


tn



(t) and the conclusion follows.

The family of admissible test functions will be given by ϕ ∈ Cb
(
G
)
for which ϕ |Jj∈ C

1
b

(
Jj
)
,

for all j = 1, N. If x ∈ Jj , we recall that

Dϕ (x; ξ) := lim
t→0

ϕ (x+ tξ)− ϕ (x)
t

,

for all ξ ∈ Rej . We also recall that

Dϕ (ej ; ξ) := lim
t→0+

ϕ (ej + tξ)− ϕ (x)
t

,

for all ξ ∈ R−ej . If κ : [0, 1] −→ G is continuous and (tn)n ⊂ (0, 1] is such that limn→∞
tn = 0 and

lim
n→∞

κ (tn)

tn
= ξ,

we have

Dϕ (O; ξ) := lim
n→∞

ϕ (κ (tn))− ϕ (O)
tn

and note that this limit does not depend on the choice of κ. To simplify the notations, we will
also write 〈ξ,Dϕ (x)〉 instead of Dϕ (x; ξ). One notices easily that the choice of test functions is
equivalent to taking a family of test functions ϕj ∈ C1b

(
Jj
)
such that ϕj (O) = ϕj′ (O) , for all

1 ≤ j, j′ ≤ N.

We now introduce the definition of the generalized solution of the system (8).

Definition 16 A bounded, upper semicontinuous function V is said to be a generalized viscosity
subsolution of (8) if, for every (γ0, x0) ∈ E ×G whenever ϕ ∈ Cb

(
G
)
for which ϕ |Jj∈ C

1
b

(
Jj
)
, for

all j = 1, N is a test function such that x0 ∈ Argmax (V (·, γ0)− ϕ (·)) , one has

δV (x0, γ0) + sup
(ξ,ζ,η)∈FL(x0,γ0)

{ −〈Dϕ (x0; ξ)〉 − η
− ∑
γ′∈E

ζ (γ′) (V (x0, γ′)− V (x0, γ0))

}
≤ 0.

A bounded, lower semicontinuous function V is said to be a generalized viscosity supersolution
of (8) if, for every (γ0, x0) ∈ E×G whenever ϕ ∈ Cb

(
G
)
for which ϕ |Jj∈ C

1
b

(
Jj
)
, for all j = 1, N

is a test function such that x0 ∈ Argmin (V (·, γ0)− ϕ (·)) , one has

δV (x0, γ0) + sup
(ξ,ζ,η)∈FL(x0,γ0)

{ −〈Dϕ (x; ξ)〉 − η
− ∑
γ′∈E

ζ (γ′) (V (x0, γ′)− V (x0, γ0))

}
≥ 0.
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5.2 (A) Viscosity solution

We are now able to state and proof the main result of the section.

Theorem 17 We assume (Aa-Ad, Ac’) and (A1-A4) to hold true. Then, the value function vδ

is a bounded uniformly continuous generalized solution of (8).

Proof. We begin with the proof of the subsolution condition. Let us fix (γ0, x0) ∈ E × (G r {O})
and consider a regular test function ϕ such that x0 ∈ Argmax

(
vδ (·, γ0)− ϕ (·)

)
. Then

ϕ (x0)− ϕ (x) ≤ vδ (x0, γ0)− vδ (x, γ0) ,

for all x ∈ G. We can assume, without loss of generality, that ϕ (x0) = vδ (x0, γ0) . Let us consider
(ξ, ζ, η) ∈ FL (x0, γ0) . Then, there exist (αn)n ⊂ Aad, (tn)n ⊂ R+, s.t. limn→∞

tn = 0, and





lim
n→∞

1
tn

∫ tn
0 fγ0 (x0, αn (x0, γ0, s)) ds = ξ,

lim
n→∞

1
tn

∫ tn
0 λ (x0, γ0, αn (x0, γ0, s))Q (x0, γ0, αn (x0, γ0, s)) ds = ζ,

lim
n→∞

1
tn

∫ tn
0 lγ0 (x0, αn (x0, γ0, s)) ds = η.

We fix, for the time being, n ∈ N. We let τn1 be the first jumping time associated to αn (x, γ, ·).
Using the dynamic programming principle, one gets

0 = vδ (x0, γ0)− ϕ (x0) ≤ E
[ ∫ tn∧τn1

0 e−δslγ0 (yγ0 (s;x0, αn) , αn (x0, γ0, s)) ds

+e−δ(tn∧τ
n
1 )vδ

(
yγ0 (tn ∧ τn1 ;x0, αn) ,Γx0,γ0,αntn∧τn1

)
]
− ϕ (x0)

≤ E
[ ∫ tn∧τn1

0 e−δslγ0 (x0, αn (x0, γ0, s)) ds+
∫ tn∧τn1
0 e−δsLip (l) |f |0 sds

+e−δτ
n
1 vδ

(
yγ0 (τ

n
1 ;x0, αn) ,Γ

x0,γ0,αn
τn1

)
1τn1 <tn

+ e−δtnϕ (yγ0 (tn;x0, αn))1τn1 ≥tn

]

− ϕ (x0)

≤ |f |0 Lip (l) tnE [tn ∧ τn1 ] + |l|0
(∫ tn

0

(
1− e−δs

)
ds+ tnP (τ

n
1 < tn)

)
+ δ |ϕ|0 tnP (τn1 < tn)

E

[∫ tn

0
lγ0 (x0, αn (x0, γ0, s)) ds

]
+ e−δtnϕ (yγ (tn;x0, αn))− ϕ (x0)

+ E
[
e−δτ

n
1

(
vδ
(
yγ0 (τ

n
1 ;x0, αn) ,Γ

x0,γ0,αn
τn1

)
− ϕ (yγ0 (tn;x0, αn))

)
1τn1 <tn

]
.

We set

λ (s) := λ (yγ0 (s;x0, αn) , γ0, αn (x0, γ0, s)) and Λ (s) := exp

(
−
∫ s

0
λ (r) dr

)

and one gets

0 =vδ (x0, γ0)− ϕ (x0)
≤ |f |0 Lip (l) tnE [tn ∧ τn1 ] + Lip (ϕ) |f |0 tnP (τn1 < tn) + δ |ϕ|0 tnP (τn1 < tn)

+ |l|0
(∫ tn

0

(
1− e−δs

)
ds+ tnP (τ

n
1 < tn)

)

+ e−δtn (ϕ (yγ (tn;x0, αn))− ϕ (x0)) +
(
e−δtn − 1

)
ϕ (x0) +

∫ tn

0
lγ0 (x0, αn (x0, γ0, s)) ds

+

∫ tn

0
e−δsλ (s) Λ (s)

(
∑
γ′ 6=γ0

Q
(
yγ0 (s;x0, αn) , γ0, γ

′, αn (x0, γ0, s)
) (
vδ
(
yγ0 (s;x0, a) , γ

′)− ϕ (x0)
))

ds.

(9)
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The reader is invited to notice that




∣∣e−δsλ (s) Λ (s)− λ (x0, αn (x0, γ0, s))
∣∣ ≤ (|f |0 Lip (λ) + |λ|0 (δ + |λ|0)) tn,

|Q (yγ0 (s;x0, αn) , γ0, γ′, a)−Q (x0, γ0, γ′, a)| ≤ |f |0 Lip (Q) tn,∣∣vδ (yγ0 (s;x0, αn) , γ′)− vδ (x0, γ′)
∣∣ = ωδ (|f |0 tn) ,

whenever s ≤ tn, where ω
δ denotes the continuity modulus of vδ. Also,

yγ (tn;x0, αn)− x0
tn

=

∫ tn
0 fγ (yγ (s;x0, αn) , αn (x0, γ0, s)) ds

tn
=

∫ tn
0 fγ (x0, αn (x0, γ0, s)) ds

tn
+ω (tn) ,

(where lim
ε→0

ω (ε) = 0). We divide (9) by tn and allow n→∞ to get

0 ≤ η − δϕ (x0) +Dϕ (x0; ξ) +
∑
γ′ 6=γ

ζ
(
γ′
) (
vδ
(
x0, γ

′)− vδ (x0, γ)
)
.

The conclusion follows by recalling that (ξ, ζ, η) ∈ FL (x0, γ0) is arbitrary.
To prove that vδ is a viscosity supersolution of the associated Hamilton-Jacobi integrodifferential

equation, let us fix, for the time being, ε > 0. We equally fix (γ0, x0) ∈ E × G and consider a test
function ϕ such that x0 ∈ Argmin

(
vδ (·, γ0)− ϕ (·)

)
. Then

ϕ (x0)− ϕ (x) ≥ vδ (x0, γ0)− vδ (x, γ0) ,
for all x ∈ G. We can assume, without loss of generality, that ϕ (x0) = vδ (x0, γ0). There exists an
admissible control αε such that

vδ (x0, γ0) + ε ≥ E
[ ∫ √ε∧τ1

0 e−δslγ0 (yγ0 (s;x0, α
ε) , αε (s)) ds

+e−δ(
√
ε∧τ1)vδ

(
yγ0 (

√
ε ∧ τ1;x0, αε) ,Γx0,γ0,α

ε
√
ε∧τ1

)
]
.

(For notation purposes, we have dropped the dependency of γ0, x0 in α
ε). As in the first part of

our proof, τ1 denotes the first jumping time associated to the admissible control process α
ε. Using

similar estimates to the first part, one gets

0 = vδ (x0, γ0)− ϕ (x0)
≥ −ε− |f |0 Lip (l)

√
εE
[√
ε ∧ τ1

]
− Lip (ϕ) |f |0

√
εP
(
τ1 <

√
ε
)
− δ |ϕ|0

√
εP
(
τ1 <

√
ε
)

− |l|0

(∫ √
ε

0

(
1− e−δs

)
ds+

√
εP
(
τ1 <

√
ε
)
)

+ e−δ
√
ε
(
ϕ
(
yγ
(√
ε;x0, α

ε
))
− ϕ (x0)

)
+
(
e−δ

√
ε − 1

)
ϕ (x0)

+

∫ √
ε

0
e−δsλ (s) Λ (s)

(
∑
γ′ 6=γ0

Q
(
yγ0 (s;x0, α

ε) , γ0, γ
′, αε (s)

) (
vδ
(
yγ0 (s;x0, α

ε) , γ′
)
− ϕ (x0)

))
ds,

where λ (s) := λ (yγ0 (s;x0, α
ε) , γ0, α

ε (s)) and Λ (s) := exp
(
−
∫ s
0 λ (r) dr

)
. We recall that f, λ

and Q are Lipschitz-continuous and bounded and vδ is uniformly continuous and bounded. The
conclusion follows similarly to the subsolution case by dividing the inequality by

√
ε, recalling the

definition of FL (x0, γ0) and allowing ε (or some subsequence) to go to 0.

6 Extending the intersection and linearizing the value function

6.1 Additional directions

Without loss of generality, we assume that −ej /∈ G, for all j ≤ M ≤ N and −ej ∈ G, for all
M < j ≤ N. We define

ej := −ej−N , Eactivej := Eactivej−N , Einactivej := Einactivej−N ,
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whenever N < j ≤ M + N. For every ε > 0, we complete G into G+,ε by adding [0, εej) for
N < j ≤M +N and (1, 1 + ε) ej , for j ≤ N.

Fig. 2. The complete intersection

To simplify the presentation, throughout the subsection, we make the following assumption :
(B) Whenever M < j, j′ ≤ N are such that ej′ = −ej , then Aγ,j = Aγ,j

′
, for all γ ∈ E.

Remark 18 Roughly speaking, on the roads that cross the intersection (of type (−1, 1) ej), the
same family of (piecewise constant) controls can be used both at the entrance and at the exit of the
intersection.

6.1.1 Inactive roads

The reader is invited to notice that, if ej , ej′ = −ej ∈ G then, for every γ ∈ Einactivej ∩ Einactivej′ ,

fγ (O, a) = 0, for all a ∈ Aγ,j ∩ Aγ,j′ . This is a mere consequence of the assumption (Ab) which
implies that 〈fγ (O, a) , ej〉 ≤ 0 and

〈
fγ (O, a) , ej′

〉
≤ 0, for all a ∈ Aγ,j ∩Aγ,j′ . In particular, if (B)

holds true, then fγ (O, a) = 0, for all a ∈ Aγ,j(= Aγ,j
′
) whenever γ ∈ Einactivej ∩ Einactivej′ .

Hence, in order to obtain a similar behavior for the completed intersection, it is natural to
strengthen the assumption (Ab). We will assume that,

(Ab’) Whenever γ ∈ Einactivej for some j ≤M, then fγ (O, a) = 0, for all a ∈ Aγ,j .

Remark 19 This is, of course, less general than the existence of one a0γ,j ∈ Aγ,j guaranteed by
(Ab). The assumption states that, whenever the road j is inactive, a vehicle that needs to go on
this road should wait until it is repaired.

6.2 Extending the dynamics

Unless stated otherwise, we assume the (pseudo-)controllability conditions (Aa, Ab, Ad), the
compatibility at the intersection (Ab’, Ac’), the regularity of the coefficients and cost functions
(A1-A4) and the compatibility condition (B) to hold true.
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We are now able to extend f (and λ,Q) to

(
⋃

j=1,N

Rej

)
×A by setting

fγ (x, a) =





fγ (x, a) , if x ∈ (0, 1) ej , j ≤ N,
fγ (ej , a) , if x ∈ [1,∞) ej , j ≤ N,
−fγ (−x, a) , if γ ∈ Einactivej , x ∈ R−ej , j ≤M,

fγ (O, a) , if γ ∈ Eactivej , x ∈ R−ej , j ≤M.

For the other elements (ϕ ∈ {λ, l, Q}), we set

ϕ (x, γ, a) =





ϕ (x, γ, a) , if x ∈ (0, 1) ej , j ≤ N,
ϕ (ej , γ, a) , if x ∈ [1,∞) ej , j ≤ N,
ϕ (O, γ, a) , otherwise.

.

(by abuse of notation, l (x, γ, a) = lγ (x, a)).
This particular construction for f is needed in order to guarantee that the assumptions (Aa)

and (Ab) hold true for the new system on G+,ε. It basically suggests that in the active case, the
vehicle will continue its road on the extension of the road with the same speed as in O. In the
inactive case, the extension of the road is obtained by looking at the road j using a mirror.

6.3 Krylov’s "shaking the coefficients" method

For r > 0, we let Br denote the r-radius closed ball Br =
{
y ∈ R2 : |y| ≤ r

}
. We set

{
fργ (x, a, b) = fγ (x+ ρb, a) ,

ϕρ (x, γ, a, b) = ϕ (x+ ρb, γ, a) , if ϕ ∈ {λ,Q, l} ,

for all (x, a, b) ∈ ∪
j=1,N

([−ε, 1 + ε] ej ×A× [−1, 1] ej) , and all |b| ≤ 1. Let us fix, for the time being,
ε ≥ ρ > 0 and consider the control problem on G+,ε. We denote by

Jε,+j := (0, 1 + ε) ej , for all j = 1, N, J
ε,−
j :=

{
(−ε, 0) ej , for j ≤M,

(−1− ε, 0) ej , for M < j ≤ N,
, Jεj := Jε,+j ∪Jε,−j .

for all j = 1, N.
We set

A := ∪
j=1,N

(
Aγ,j × [−1, 1] ej

)
, A

γ,j
:= Aγ,j × [−1, 1] ej .

Under the assumptions (Aa-Ab), (almost) the same kind of assertions (with the same Lipschitz
constants and bounds) still hold true for the new extended system :

The reader is invited to notice that the following hold true :

(Aa) Aγ,x = A
γ,j
, if x ∈ Jε,+j , Aγ,O = ∪

j=1,N
A
γ,j
, Aγ,(1+ε)ej = Aγ,ej × [−1, 1] ej ,

for all j = 1, N. Let us fix j ≤M.
(i) If γ ∈ Eactivej , then

Aγ,−εej =
{
(a, b) ∈ Aγ,j : fγ (O, a) ∈ R+ej

}
.

The set Aγ,−εej is nonempty. Indeed, the control
(
a+γ,j , b

)
(a+γ,j given by the assumption (Ab) and

b ∈ [−1, 1] ej arbitrary) belongs to Aγ,−εej and
〈
fργ

(
−εej , a+γ,j , b

)
, (−ej)

〉
=
〈
fγ

(
O, a+γ,j

)
, (−ej)

〉
< −β,
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for all b ∈ [−1, 1] ej .
(ii) If γ ∈ Einactivej , then

Aγ,−εej = A
γ,j
.

Indeed,

〈
fργ (−εej , a, b) , (−ej)

〉
= 〈−fγ (εej − ρb, a) , (−ej)〉 = 〈fγ (εej − ρb, a) , ej〉 ≤ 0,

for ε small enough and all (a, b) ∈ Aγ,j .
Thus, (Aa) holds true for the system driven by (fρ, λρ, Qρ) .

Concerning the assumption (Ab), for the already existing branches, it suffices to take b = 0
and the controls a+γ,j , a

−
γ,j , a

0
γ,j . Let us now fix j ≤M.

(i) If γ ∈ Eactivej , then γ ∈ Eactivej+N , by construction. We recall that ej+N = −ej . Moreover we
have 〈

fργ

(
O,
(
a+γ,j , 0

))
,−ej

〉
< −β and

〈
fργ

(
O,
(
a−γ,j , 0

))
, ej

〉
> β.

(ii) For γ ∈ Einactivej = Eactivej+N ,

〈
fργ

(
x,
(
a−γ,j , 0

))
,−ej

〉
=
〈
−fγ

(
−x, a−γ,j

)
,−ej

〉
≤ −β 〈−x, ej〉κ ,

for all x ∈ [−ε, 0] ej and fργ
(
O,
(
a0γ,j , 0

))
= 0.

We cannot have
〈
fργ (x, (a, b)) ,−ej

〉
≤ 0,

for all (a, b) ∈ Aγ,j and all x ∈ Jj , |x| ≤ η (close enough to O). Nevertheless, as we have already
hinted before (see Remark 7 (ii)), this condition and the one in (Ac) are no longer necessary since
every control is (locally) admissible at O. Thus, the conclusion of the Lemma 6 holds true and so
do all the assertions on the value functions in this framework.

At this point, we consider the process
(
Xρ,x0,γ0,α
t ,Γρ,x0,γ0,αt

)
constructed as in section 2 using

(fρ, λρ, Qρ) and controls α with values in A. We also let yρ denote the solution of the ordinary
differential equation driven by fρ.

Then, the value functions

vδ,ε,ρ (x, γ)

:= inf
α∈ANad

E

[
∑
n≥0

∫ τn+1

τn

e−δtlρ
Γρ,x,γ,ατn

(
yρ
Γρ,γ,x,ατn

(
t;Xρ,x,γ,α

τn , αn+1
)
, αn+1

(
Xρ,x,γ,α
τn ,Γρ,x,γ,ατn , t− Γρ,x,γ,ατn

))
]

are bounded, uniformly continuous and satisfy, in the generalized sense given by definition 16 and
Theorem 17 the Hamilton-Jacobi integrodifferential system

(10)

δvδ,ε,ρ (x, γ)+ sup
(a,b)∈Aγ,x

{ −
〈
fγ (x+ ρb, a) , Dv

δ,ε,ρ (x, γ)
〉
− lγ (x+ ρb, a)

−λ (x+ ρb, γ, a) ∑
γ′∈E

Q (x+ ρb, γ, γ′, a)
(
vδ,ε,ρ (x, γ′)− vδ,ε,ρ (x, γ)

)
}
≤ 0,

for all (x, γ) ∈ G+,ε × E.
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6.4 Another definition for solutions in the extended intersection

We define
coflρ (O, γ) := ∪

j=1,N
co
{
flρ (O, γ, (a, b)) : (a, b) ∈ Aγ,j

}

and recall that
FLρ(x, γ) = coflρ (x, γ)

(
:= co

{
flρ (x, γ, a) : a ∈ Aγ,x

})
,

for all x ∈ G+,ε r {O} and, for every j ≤ N,

FLρ((1 + ε) ej , γ) ⊂ coflρ ((1 + ε) ej , γ)(
:= co

{
flρ ((1 + ε) ej , γ, a) : a ∈ Aγ,ej

}
∩ (R−ej ×M+ (E)× R)

)
.

Also, for every j ≤M,

FLρ(−εej , γ) ⊂ coflρ (−εej , γ)(
:= co

{
flρ (−εej , γ, a) : a ∈ Aγ,ej

}
∩ (R+ej ×M+ (E)× R)

)

We also introduce the following

Definition 20 A bounded, upper (resp. lower) semicontinuous function V is said to be a classical
constrained viscosity subsolution (resp subsolution of (10) if, for every (γ0, x0) ∈ E × G+,ε (resp.
E × G+,ε), whenever ϕ ∈ Cb

(
G+,ε

)
for which ϕ |Jεj ∈ C

1
b

(
Jεj

)
, for all j = 1, N is a test function

such that x0 ∈ Argmax (V (·, γ0)− ϕ (·)) , one has

δV (x0, γ0) + sup
(ξ,ζ,η)∈coflρ(x0,γ0)

{ −〈Dϕ (x0; ξ)〉 − η
− ∑
γ′∈E

ζ (γ′) (V (x0, γ′)− V (x0, γ0))

}
≤ 0,

(resp. ≥ 0).

We get the following characterization of vδ,ε,ρ.

Theorem 21 The bounded uniformly continuous function vδ,ε,ρ is a classical constrained viscosity

subsolution of (10). Moreover, it satisfies the supersolution condition on E ×
(
G+,ε r {O}

)
.

Proof. The reader is invited to note that the test functions in this case are more regular than in
definition 16. Thus, the equality FLρ(x, γ) = coflρ (x, γ) implies the viscosity sub/super condition
at every point x ∈ G+,ε r {O} . The supersolution condition at (1 + ε) ej (resp. −εej) follows from
the inclusion FLρ((1 + ε) ej , γ) ⊂ coflρ ((1 + ε) ej , γ) (resp. FL

ρ(−εej , γ) ⊂ coflρ (−εej , γ)).
The constant control (a, b) ∈ A

γ,1
is locally admissible at O (on the extended graph G+,ε).

Hence, reasoning as in the subsolution part of theorem 17 (for constant αn = (a, b)), one proves
that, if ϕ is a regular test function such that O ∈ Argmax

(
vδ (γ, ·)− ϕ (·)

)
, then

0 ≤ lργ (O, (a, b))− δϕ (O) +
〈
D
(
ϕ |Jε1

)
(O) , fγ (x, (a, b))

〉
+

λρ (O, γ, (a, b))
∑
γ′ 6=γ

Qρ
(
O, γ, γ′, (a, b)

) (
vδ,ε,ρ

(
O, γ′

)
− vδ,ε (O, γ)

)
.

Thus, simple continuity and convexity arguments imply that

δϕ (O) + sup
(ξ,ζ,η)∈co

{
flρ(O,γ,(a,b)):(a,b)∈Aγ,1

}

{ −〈Dϕ (O; ξ)〉 − η
− ∑
γ′∈E

ζ (γ′)
(
vδ,ε,ρ (O, γ′)− vδ,ε,ρ (O, γ)

)
}
≤ 0

and the subsolution condition follows.
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Remark 22 In order to have (classical) uniqueness, one has to impose further conditions at the
origin O. For example, in the case when lγ (O, a) does not depend on a for all γ ∈

⋃
j≤N

Eactivej , one

reasons in the same way as in Section 5.2 of [1]. The arguments are quasi-identical and we prefer
to concentrate on a different approach to uniqueness. Alternatively, one can impose the analog of
the Assumption 2.3 in [1], i.e.

(
{0} ×M+ (E)×

{
inf
a∈A

lγ (O, a)

})
∩ co

{
fl0 (O, γ, (a, b)) : (a, b) ∈ Aγ,j

}
6= ∅,

for all j such that γ ∈ Eactivej .

6.5 Convergence to the initial value function

Unless stated otherwise, we assume the controllability conditions (Aa, Ab, Ad), the compatibility
at the intersection (Ab’, Ac’), the regularity of the coefficients and cost functions (A1-A4) and
the compatibility condition (B) to hold true.

(C) Throughout the subsection, we also assume that l does not depend on the control at O and
the nodes ej .

This "projection long-run compatibility condition" will allow to change the control process
around the "critical" points in order to obtain, from admissible controls on G+,ε an admissible
control keeping the trajectory in G. This assumption (C) is only needed to prove Lemma 23 in its
full generality. We have chosen to give a deeper result in Lemma 23 for further developments on
the subject.

Let us fix ε > 0 small enough. We introduce the following notations:

tε := −
1

δ
ln

(
εδ

2 |f |0

)
, ρε := −

ε
1+

2Lip(f)
(1−κ)δ

ln(ε)
, r′ε ≤

ρε
2
,

ωε(t; r) := eLip(f)t
(
r + (2ρε ∨ 4r′ε)Lip (f) t

)
, t ≥ 0, r ≥ 0, Φ(ε) :=

( |f |0
(1− κ)β + 1

)(
ωε
(
tε; r

′
ε

))1−κ
.

The reader is invited to note that

ωε(t;ωε(t
∗; r)) ≤ ωε(t

∗ + t; r),

for all t, t∗, r ≥ 0. To get the best approximation and simplify the proof of Lemma 23, we also
strengthen (A1) and ask that the restriction of fγ to [0, 1] ej be Lipschitz-continuous for γ ∈ Eactivej .
We emphasize that this only affects the definition of ρε in Lemma 23 but not Theorem 25.

With these notations, we establish.

Lemma 23 Whenever γ ∈ E, x ∈ Jε1 and α = (α, β) ∈ Aγ,x, there exists Pεx (α) (also depending
on γ) such that (Pεx (α) , 0) ∈ Aγ,x such that

(11)
∣∣yρεγ (t;x, (Px (α) , 0))− yρεγ (t;x, α)

∣∣ ≤ ωε(tε; Φ(ε)),

for t ≤ tε. Moreover, when (C) holds true,

(12) lim
ε→0

sup
t≤tε

∣∣∣∣∣

∫ t
0 e

−δslρεγ (y
ρε
γ (t;x, (Pεx (α) , 0)) , (Pεx (α) (s) , 0)) ds

−
∫ t
0 e

−δslγ (yγ (s;x, α) , α (s)) ds

∣∣∣∣∣ = 0.

(ii) Moreover, if α = (α, β) ∈ Aad, then, for every ε > 0 there exists (Pε (α) , 0) ∈ Aad such
that the previous inequalities are satisfied with Pε (α) (x, γ, ·) replacing Pεx (α) .
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We postpone the proof of this Lemma to the Appendix. We emphasize that whenever (α, 0) ∈
Aad, one has yρεγ (t;x, (α, 0)) = yγ (t;x, α) (and similar for l

ρε
γ , Q

ρε
γ , λ

ρε
γ ), even though α may not

belong to Aγ,x. The second argument takes care of this later issue.

Lemma 24 Let us consider T > 0. Then, there exists a decreasing function ω : R+ −→ R+ such
ω (0) = ω (0+) = 0 and whenever γ ∈ E, x ∈ G, and (α, 0) ∈ Aγ,x, there exists Pγ,x (α) ∈ Aγ,x
such that

|yγ (t;x, α)− yγ (t;x,Pγ,x (α))| ≤ ω(ε),

supt≤T

∫ t
0 e

−δslγ (yγ (t;x,Pγ,x (α)) ,Pγ,x (α) (s)) ds
−
∫ t
0 e

−δslγ (yγ (t;x, α) , α (s)) ds
≤ ω (ε) ,

and

sup
s≤T

|Q (yγ (s;x,Pγ,x (α)) , γ, γ′,Pγ,x (α) (s))−Q (yγ (s;x, α) , γ, γ′, α (s))|
+ |λ (yγ (s;x,Pγ,x (α)) , γ,Pγ,x (α) (s))− λ (yγ (s;x, α) , γ, α (s))| ≤ ω (ε) ,

for all γ′ ∈ E.
(ii) Moreover, if (α, 0) ∈ Aad, then, for every ε > 0 there exists P (α) ∈ Aad such that the

previous inequalities are satisfied with P (α) (x, γ, ·) replacing Pγ,x (α) (·) .

Although the approach is rather obvious (when looking at the proofs of Lemmae 6 or 23), hints
on the proof are given in the Appendix. We wish to emphasize that, although the trajectories can
be kept close up to a fixed T due to the proximity of G+,ε and G, we cannot do better then ε. Thus,
we are unable to give the same kind of estimates up to tε.

The main result of the subsection is the following convergence theorem.

Theorem 25 Under the assumption (C), the following convergence holds true

lim
ε→0

sup
x∈G,γ∈E

∣∣∣vδ,ε,ρε (x, γ)− vδ (x, γ)
∣∣∣ = 0.

Proof. The definition of our value functions yields vδ,ε,ρε ≤ vδ on G × E. Hence, we only need
to prove the converse inequality. The proof is very similar to that of Theorem 15 in [11]. Let us
fix (x, γ) ∈ G × E, T > 0 and (for the time being,) ε > 0. Then using the dynamic programming
principle for vδ,ε,ρε one gets the existence of some admissible control process α such that

(13) vδ,ε,ρε (x, γ) ≥ E
[ ∫ T∧τ1

0 e−δtlρεγ (y
ρε
γ (t;x, α) , α (x, γ, t)) dt

+e−δ(T∧τ1)vδ
(
yρεγ (T ∧ τ1;x, α) ,Γρε,x,γ,αT∧τ1

)
]
− ε.

For simplicity, we let P and Pε denote the two projectors of the previous lemmae and introduce
the following notations:

αt = α (x, γ, t) , αt = P (Pε (α)) (x, γ, t) ,

λ (t) = λ
(
yρεγ (t;x, α) , γ, αt

)
, Λ (t) = exp

(
−
∫ t

0
λ (s) ds

)

λ (t) = λ (yγ (t;x, α) , γ, αt) , Λ (t) = exp

(
−
∫ t

0
λ (s) ds

)
,

for all t ≥ 0. We denote the right-hand member of the inequality (13) by I. Then, I is explicitly
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given by

I =

∫ T

0
λ(t)Λ (t)

∫ t

0
e−δslρεγ

(
yρεγ (s;x, α) , αs

)
dsdt

+

∫ T

0
λ(t)Λ (t) e−δt

∑
γ′∈E

vδ,ε,ρε
(
yρεγ (t;x, α) , γ

′)Qρε
(
yρεγ (t;x, α) , γ, γ

′, αt
)
dt

+ Λ(T )

∫ T

0
e−δtlρεγ

(
yρεγ (t;x, α) , αt

)
dt+ Λ(T ) e−δT vδ,ε,ρε

(
yρεγ (T ;x, α) , γ

)

= I1 + I2 + I3 + I4.

The conclusion follows using the Lemmae 23 and 24. These estimates are tailor-made to allow
substituting λ, Λ, lρεγ and y

ρε
γ with λ,Λ, lγ and yγ and the error is some (generic) ω (ε) →

ε→0
0 (the

reader may also want to take a glance at the proof of Theorem 15 in [11]). In the following, this
function ω may change from one line to another. Let us recall (see Remark 12) that vδ,ε,ρε have the
same continuity modulus (denoted ωδ and independent of ε). Then, vδ,ε,ρε (yρεγ (t;x, α) , γ′) can be
replaced by vδ,ε,ρε (yγ (t;x, α) , γ

′) with an error ωδ (|yρεγ (t;x, α)− yγ (t;x, α)|) , hence, again some
ω (ε). The only interesting terms in I are I2 and I4. For the term I2, one writes

I2 ≥
∫ T

0
λ(t)Λ (t) e−δt

∑
γ′∈E

vδ,ε,ρε
(
yρεγ (t;x, α) , γ

′)Qρε
(
yρεγ (t;x, α) , γ, γ

′, αt
)
dt+ ω (ε)

≥
∫ T

0
λ(t)Λ (t) e−δt

∑
γ′∈E

vδ,ε,ρε
(
yγ (t;x, α) , γ

′)Q
(
yγ (t;x, α) , γ, γ

′, αt
)
dt+ ω (ε)

≥
∫ T

0
λ(t)Λ (t) e−δt

∑
γ′∈E

vδ
(
yγ (t;x, α) , γ

′)Q
(
yγ (t;x, α) , γ, γ

′, αt
)
dt

−
∫ T

0
λ(t)Λ (t) e−δtdt sup

γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε)(14)

Similar,

(15) I4 ≥ Λ (T ) e−δT vδ (yγ (T ;x, α))− Λ (T ) e−δT sup
γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε) .

Hence, using (14, 15), one gets

I ≥
∫ T

0
λ(t)Λ (t)

∫ t

0
e−δslγ (yγ (s;x, α) , αs) dsdt

+

∫ T

0
λ(t)Λ (t) e−δt

∑
γ′∈E

vδ
(
yγ (t;x, α) , γ

′)Q
(
yγ (t;x, α) , γ, γ

′, αt
)
dt

+ Λ(T )

∫ T

0
e−δtlγ (yγ (t;x, α) , αt) dt+ Λ(T ) e

−δT vδ (yγ (T ;x, α) , γ)

−
[∫ T

0
λ(t)Λ (t) e−δtdt+ Λ(T ) e−δT

]
sup

γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε) .

Then, using the dynamic programming principle for vδ and (13), one gets

vδ,ε,ρε (x, γ) ≥ vδ(x, γ)−
[
1− δ

∫ T

0
Λ (t) e−δtdt

]
sup

γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε)

≥ vδ(x, γ)−
[
1− δ

∫ T

0
e−(δ+|λ|0)tdt

]
sup

γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε)
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Thus,

(0 ≤)vδ(x, γ)− vδ,ε,ρε (x, γ) ≤
[
1− δ

∫ T

0
e−(δ+|λ|0)tdt

]
sup

γ′∈E,z∈G

∣∣∣vδ,ε,ρε(z, γ′)− vδ(z, γ′)
∣∣∣+ ω (ε) .

The conclusion follows by taking the supremum over x ∈ G and γ ∈ E and allowing ε→ 0.

Remark 26 We recall (cf. Remark 12) that vδ,ε,ρε have the same continuity modulus (indepen-

dent of ε). Moreover, vδ,ε,ρε (·) ≤ |l|0
δ
. Therefore, applying Arzela-Ascoli Theorem, there exists

limε→0
(
vδ,ε,ρε |G

)
and this limit is uniformly continuous. It would have sufficed, therefore, to prove

that limε→0 vδ,ε,ρε (x; γ) = vδ (x, γ) for all x ∈ ∪
i=1,N

(0, 1) ei.

6.6 Linearizing the problem

We assume the (pseudo-)controllability conditions (Aa, Ab, Ad), the compatibility at the intersec-
tion (Ab’, Ac’), the regularity of the coefficients and cost functions (A1-A4), the compatibility
condition (B) and the projection compatibility condition (C) to hold true.

6.6.1 Smooth subsolutions

We wish to emphasize that one can interpret the system in the extended case (see also [3]) in
connection to

δv (x, γ) + sup
(a,b)∈Aγ,j

{ −〈fγ (x+ ρεb, a) , Dv (x, γ)〉 − lγ (x+ ρεb, a)
−λ (x+ ρεb, γ, a)

∑
γ′∈E

Q (x+ ρεb, γ, γ
′, a) (v (x, γ′)− v (x, γ))

}
≤ 0,

x ∈ (−ε, 1 + ε) ej , j = 1,M, or x ∈ (−1− ε, 1 + ε) ej , if M < j ≤ N.

For every ε > 0 and every 0 < ε ≤ ρε, one can define regular functions v
δ,j
ε,ε by setting

vδ,jε,ε (x, γ) =

∫ ε

−ε
vδ,ε,ρε (x− yej , γ)ψε (y) dy,

for all x ∈ (−ε, 1 + ε) ej , j = 1,M, or x ∈ (−1− ε, 1 + ε) ej , if M < j ≤ N.. Here, (ψε)ε is a
sequence of standard mollifiers ψε (y) =

1
ε
ψ
(
y
ε

)
, y ∈ R, ε > 0, where ψ ∈ C∞ (R) is a positive

function such that

Supp(ψ) ⊂ [−1, 1] and
∫

R

ψ(y)dy = 1.

Using the same methods as those employed in [13], Appendix (see also [11], Appendix A2 or [15]
or [4], Lemma 2.7), it is easy to prove that

(16) δvδ,jε,ε (x, γ) +





−
〈
fγ (x, a) , Dv

δ,j
ε,ε (x, γ)

〉
− lγ (x, a)

−λ (x, γ, a) ∑
γ′∈E

Q (x, γ, γ′, a)
(
vδ,jε,ε (x, γ′)− vδ,jε,ε (x, γ)

)




≤ 0,

for all x ∈ [0, 1] ej , j ≤ N and all a ∈ Aγ,j . Also, we note that
∣∣∣vδ,jε,ε (x, γ)− vδ (x, γ)

∣∣∣ ≤
∣∣∣vδ,ε,ρε − vδ

∣∣∣
0
+ ωδ (ε) =: ω (ε, ε) ,

for all x, γ ∈ G×E, where ωδ is the continuity modulus of vδ (with respect to the space component).
Theorem 25 yields

lim
ε,ε→0

ω (ε, ε) = 0.
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We define an admissible test function by setting

vδε (x, γ) = vδ,jε,ρε (x, γ)− vδ,jε,ρε (O, γ) + min
j′=1,N

vδ,j
′

ε,ρε (O, γ)− 4
|λ|0
δ
ω (ε, ρε) ,

for x ∈ [0, 1] ej , 1 ≤ j ≤ N and γ ∈ E. Then vδε is a regular test function (continuous at O) which
satisfies

(17)





(
δvδε (x, γ)−

〈
fγ (x, a) , Dv

δ
ε (x, γ)

〉
− lγ (x, a)

−λ (x, γ, a) ∑
γ′∈E

Q (x, γ, γ′, a)
(
vδε (x, γ

′)− vδε (x, γ)
)
)
≤ 0, and

limε→0
∣∣vδε − vδ

∣∣
0
= 0,

for all (x, γ, a) such that x ∈ [0, 1] ej , γ ∈ E, a ∈ Aγ,j , j ≤ N . These functions are Lipschitz
continuous on G. (In fact, the reader can check rather easily that the Lipschitz constant of vδε does

not exceed
√
2

max
1≤j≤N

∣∣∣D
(
vδε |[−1,1]ej

)∣∣∣
0√

1− max
i′,j′∈{1,...,M+N−M

2 }, i′ 6=j′
cos(ei′ ,ej′)

). Hence, (using Kirszbraun’s Theorem,) one can

find an extension (explicitly given by

ṽδε (x, γ) := inf
y∈G

(
vδε (y, γ) + Lip

(
vδε

)
|x− y|

)
)

which is Lipschitz continuous on R2. As a by-product, this function (identified with vδε (·, γ) when-
ever no confusion is at risk) is absolutely continuous on R2

(
AC

(
R2
))
.

6.6.2 Occupation measures and embedding

To every admissible control α ∈ ANad and γ ∈ E, x ∈ G, we can associate a probability measure
µx,γ,α ∈ P

(
R2 × E ×A

)
by setting

µx,γ,α (A×B × C) = δE

[∫ ∞

0
e−δt1A×B×C (X

x,γ,α
t ,Γx,γ,αt , αt)

]
,

for all Borel sets A × B × C ⊂ R2 × E × A. As before, if (τi)i≥0 denote the switch times, then
αt = αi+1 (X

x,γ,α
τi ,Γx,γ,ατi , t− τi) on t ∈ [τi, τi+1). Obviously, the choice of admissible controls (under

constraints) yields

Supp (µx,γ,α) ⊂ ̂G × E ×A :=
{(
y, γ′, a

)
∈ G × E ×A : a ∈ Aγ′,j whenever y ∈ Jj

}
.

We note that the set ̂G × E ×A is compact.
We denote by BAC

(
R2 × E;R

)
the set of all bounded functions ϕ : R2 × E −→ R such that

ϕ (·, γ′) ∈ AC
(
R2
)
for all γ′ ∈ E. Then, Itô’s formula (see Theorem 31.3 in [8]) yields

δe−δTE
[
ϕ
(
Xx,γ,α
T ,Γx,γ,αT

)]

= δϕ (x, γ) + E

∫ T

0
δe−δs [−δϕ (Xx,γ,α

t ,Γx,γ,αt ) + Uαtϕ (Xx,γ,α
t ,Γx,γ,αt )] dt.(18)

Here,

Uaϕ
(
y, γ′

)
=
〈
fγ (y, a) , Dϕ

(
y, γ′

)〉
+ λ

(
y, γ′, a

) ∑
γ′′∈E

Q
(
y, γ′, γ′′, a

) (
ϕ
(
γ′′, x

)
− ϕ

(
y, γ′

))
,
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for regular ϕ (·, γ) ∈ C1b
(
R2
)
is the classical generator of the PDMP. We recall that the extended

domain of Ua includes functions such that ϕ (·, γ′) ∈ AC
(
R2
)
(cf. Theorem 31.3 in [8]). Hence,

passing to the limit as T →∞ in (18) (and recalling that ϕ is bounded), one gets
∫

R2×E×A

[
Uaϕ

(
y, γ′

)
− δ

[
ϕ
(
y, γ′

)
− ϕ (x, γ)

]]
µx,γ,α

(
dydγ′da

)
= 0.

We set

(19)

Θ0G (x, γ) :=
{
µx,γ,α : α ∈ ANad

}
and

ΘG (x, γ) :=

{
µx,γ,α ∈ P

(
̂G × E ×A

)
: ∀ϕ ∈ BAC

(
R2 × E;R

)
∫
R2×E×A [−Uaϕ (y, γ′) + δ [ϕ (y, γ′)− ϕ (x, γ)]]µ (dydγ′da) = 0.

}

We are now able to state (and prove) the main linearization result.

Theorem 27 The following equalities hold true

δvδ (x, γ)

= Λδ (x, γ) := inf
µ∈ΘG(x,γ)

∫

R2×E×A
lγ′ (y, a)µ

(
dydγ′da

)

= Λδ,∗ (x, γ) := sup

{
η ∈ R : ∃ϕ ∈ BAC

(
R2 × E;R

)
, for all (y, γ′, a) ∈ ̂G × E ×A,

η ≤ Uaϕ (y, γ′) + lγ′ (y, a)− δ [ϕ (y, γ′)− ϕ (x, γ)] .

}
,

for all (x, γ) ∈ G × E.

Proof. Let us fix (x, γ) ∈ G × E. It is clear that

δvδ (x, γ) ≥ inf
µ∈ΘG(x,γ)

∫

R2×E×A
lγ′ (y, a)µ

(
dydγ′da

)

since Θ0G (x, γ) ⊂ ΘG (x, γ) . Next, if η ≤ Uaϕ (y, γ′) + lγ′ (y, a) − δ [ϕ (y, γ′)− ϕ (x, γ)] , for all
(y, γ′, a) ∈ ̂G × E ×A, then, due to the definition of ΘG (x, γ) , if µ ∈ ΘG (x, γ) , by integrating the
inequality w.r.t. µ, it follows that

∫

R2×E×A
lγ′ (y, a)µ

(
dydγ′da

)
≥ η.

Hence, Λδ (x, γ) ≥ Λδ,∗ (x, γ) . To complete the proof, one needs to prove Λδ,∗ (x, γ) ≥ δvδ (x, γ).
We use vδε given in subsubsection 6.6.1 to infer

δvδε (x, γ) ≤ Uavδε
(
y, γ′

)
+ lγ′ (y, a)− δ

[
vδε
(
y, γ′

)
− vδε (x, γ)

]
,

for all (y, γ′, a) ∈ ̂G × E ×A. Hence, δvδε (x, γ) ≤ Λδ,∗ (x, γ) . The proof is completed by taking the
limit as ε→ 0 and recalling that (17) holds true.

Remark 28 The previous result can be interpreted in connection to Perron’s method. Indeed, if ϕ
is a regular subsolution of (10) for ρ = 0, ε = 0 on G (i.e. such that

Uaϕ
(
y, γ′

)
+ lγ′ (y, a)− δϕ

(
y, γ′

)
≥ 0,

for all (y, γ′, a) ∈ ̂G × E ×A), then δϕ (x, γ) ≤ Λδ,∗ (x, γ) = δvδ (x, γ) . Since we have exhibited a
family (

(
vδε (x, γ)

)
ε>0
) converging to vδ (x, γ) , it follows that vδ is the pointwise supremum over

such regular subsolutions, hence giving Perron’s solution to the Hamilton-Jacobi integrodifferential
system.
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7 Penalizing the set of constraints (Revisiting the classics)

7.1 Preliminaries and assumptions

The previous arguments need, in a crucial way, the controllability conditions (Aa, Ab, Ad), the
compatibility at the intersection (Ab’, Ac’), the compatibility condition (B) and the projection
compatibility condition (C) to hold true. However, the same conclusion can be reached via an
alternative (classical) penalization method.

The control processes (without state constraints) are picked in the class L0 (Rm × E × R+;A) .
Throughout the remaining of the paper, we only require the regularity of the coefficients and

cost functions (A1-A3) assumptions to hold true. We deal with the general switch process on
Rm × E (in particular m = 2). We relax the assumptions on lγ and require

(A4-) The cost functions lγ : R
m×A −→ R are lower semicontinuous w.r.t. x ∈ Rm, uniformly

continuous w.r.t a ∈ A (uniformly in x ∈ Rm) and bounded.
Without loss of generality, we assume

lγ ≥ 0.

We let K denote some closed subset of the state space Rm (e.g. K = G in the traffic model).
The assertions of this section are valid for more general PDMP than the switch process, provided
one gets convenient estimates on the trajectories or adapts the compactness arguments of [13],
Section 3.4.

The inward pointing qualification conditions given by the assumptions (Aa-Ab) are closely
connected with viability theory. To relax these assumptions, we require

(Ax) The set K × E is near-viable (or ε-viable) w.r.t. the controlled PDMP (i.e. for every

(x, γ) ∈ K×E and every ε > 0 there exists an admissible control process α ∈
(
L0 (Rm × E × R+;A)

)N
such that

(20) E

[∫ ∞

0
e−δt (dK (X

x,γ,α
t ) ∧ 1) dt

]
≤ ε.

Here, dK stands for the distance function to the closed set K).

Remark 29 (i) In general, near-viability does not imply viability. Hence, the condition (20) is
weaker than (Aa-Ab) (take a glance to Proposition 3). However, under standard convexity con-
dition, if (Ax) is satisfied, then one can find, for every initial datum (x, γ) ∈ K × E an optimal
control u∗ for which

E

[∫ ∞

0
e−δt

(
dK

(
Xx,γ,u∗

t

)
∧ 1
)
dt

]
= 0.

In this case, the set K ×E is said to be viable. This implies that Aγ,x be nonempty for all (x, γ) ∈
K × E.

(ii) Explicit geometric conditions involving the first order normal cone and equivalent to (20)
are available (cf. [11],Theorem 2.6).

7.2 Another road to the (same) value function

In the switch case, for every γ ∈ E, x ∈ Rm, α ∈
(
L0 (Rm × E × R+;A)

)N
, one has

|Xx,γ,α
t | ≤ |x|+ |f |0 t, P−a.s, for all t ≥ 0.

We recall that if α ∈
(
L0 (Rm × E × R+;A)

)N
and γ ∈ E, x ∈ Rm, one defines the occupation

measure µx,γ,α ∈ P (Rm × E ×A) by setting

µx,γ,α (A×B × C) = δE

[∫ ∞

0
e−δt1A×B×C (X

x,γ,α
t ,Γx,γ,αt , αt)

]
,
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for all Borel sets A× B × C ⊂ Rm × E × A (of course, E is endowed with the discrete topology).
Then, ∫

Rm×E×A
|y|2 µx,γ,α (dydγda) ≤ δ

∫ ∞

0
(|x|+ |f |0 t)2 e−δt ≤ c

(
|x|2 + 1

)
,

where c does not depend on α. Hence, applying Prohorov’s Theorem (cf. [5]), the set

Θ0Rm×E×A (x, γ) :=
{
µx,γ,α : α ∈

(
L0 (Rm × E × R+;A)

)N}

is relatively compact. As before, we let

ΘRm×E×A (x, γ) :=

{
µ ∈ P (Rm × E ×A) : ∀ϕ ∈ BAC (Rm × E ×A;R)∫

Rm×E×A [−Uaϕ (y, γ′) + δ [ϕ (y, γ′)− ϕ (x, γ)]]µ (dydγ′da) = 0.

}

It is clear that ΘRm×E×A (x, γ) is closed and convex. Moreover it contains Θ0Rm×E×A (x, γ).
For every n ≥ 1, we define the (inf-convoluted and penalized) function lγ,n : Rm × A −→ R by

setting

lγ,n (y, a) = inf
z∈Rm

[lγ (z, a) + n |z − y|] + n (dK (y) ∧ 1) , for all y ∈ Rm, n ≥ 1.

This provides an increasing sequence of bounded, Lipschitz continuous functions growing to lγ (y, a)
when y ∈ K and to ∞ otherwise. We introduce the value functions

wδ,n (x, γ) := inf
α∈(L0(Rm×E×R+;A))N

E

[
∑
k≥0

∫ τk+1

τk

e−δtlΓx,γ,ατk
,n

(
yΓx,γ,ατk

(
t;Xx,γ,α

τk
, αk+1

)
, αk+1 (t)

)]
,

for all (x, γ) ∈ Rm × E, where αk+1 (t) := αk+1 (X
x,γ,α
τk ,Γx,γ,ατk , t− Γx,γ,ατk ) . We recall the following

result (cf. [13], Theorem 7).

Theorem 30 For every initial data (x, γ) ∈ Rm × E,

δwδ,n (x, γ)

= Λδ,n
Rm
(x, γ) := inf

µ∈ΘRm×E×A(x,γ)

∫

Rm×E×A
lγ′,n (y, a)µ

(
dydγ′da

)

= Λδ,n,∗
Rm

(x, γ) := sup

{
η ∈ R : ∃ϕ ∈ BAC (Rm × E;R) ,∀ (y, γ′, a) ∈ Rm × E ×A,

η ≤ Uaϕ (y, γ′) + lγ′,n (y, a)− δ [ϕ (y, γ′)− ϕ (x, γ)] .

}
.

In fact, the result of [13] states the previous equality for C1b functions ϕ but the proof is identical
(and follows the same ingredients we have developed in this paper, without state constraints).
Alternatively, one may want to invoke a density argument of C1b . Moreover, since Θ

0
Rm×E×A (x, γ)

is relatively compact, ΘRm×E×A (x, γ) is compact (as its closed convex hull, see [13], Corollary 8).
Inspired by (19), we also introduce

ΘK×E×A (x, γ) := {µ ∈ ΘRm×E×A (x, γ) : Supp (µ) ⊂ K × E ×A} .

Proposition 31 Under the assumption (Ax) (and without any controllability assumptions), the
set ΘK×E×A (x, γ) is non-empty.

Proof. The assumption (Ax) yields, for ε > 0, the existence of some αε ∈
(
L0 (Rm × E × R+;A)

)N
such that

E

[∫ ∞

0
e−δt

(
dK

(
Xx,γ,αε

t

)
∧ 1
)
dt

]
≤ ε.
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Hence, by considering the occupation measures, µε = µx,γ,α
ε ∈ ΘRm×E×A (x, γ) , one has

∫

Rm×E×A
(dK (y) ∧ 1)µε

(
dydγ′da

)
≤ ε.

The compactness of ΘRm×E×A (x, γ) allows one to extract a subsequence (still denoted µε) con-
verging to some µ ∈ ΘRm×E×A (x, γ) . Then, it is obvious that µ ∈ ΘK×E×A (x, γ) .

It is obvious that ΘK×E×A (x, γ) is a closed subset of a compact set (hence compact) and convex.
The main result of the section states that, under the assumption (Ax), for lower semicontinuous

costs lγ , the linear problem under constraints

ΛδK (x, γ) := inf
µ∈ΘK×E×A(x,γ)

∫

K×E×A
lγ′ (y, a)µ

(
dydγ′da

)
,

and the dual problem

Λδ,∗K (x, γ) := sup

{
η ∈ R : ∃ϕ ∈ BAC (Rm × E;R) , for all (y, γ′, a) ∈ K × E ×A,

η ≤ Uaϕ (y, γ′) + lγ′ (y, a)− δ [ϕ (y, γ′)− ϕ (x, γ)] .

}

coincide. Moreover, they can be obtained as limit of penalized problems δwδ,n.

Theorem 32 We assume the regularity of the coefficients (A1-A3), the lower semicontinuity of
the cost function (A4-) and the near viability of the constraints (Ax). Then, for all (x, γ) ∈ K×E,

lim
n→∞

δwδ,n (x, γ) = ΛδK (x, γ) = Λ
δ,∗
K (x, γ) .

Proof. Let us fix (x, γ) ∈ K × E. Hence, due to Theorem 30,

(21) δwδ,n (x, γ) = Λδ,n
Rm
(x, γ) = Λδ,n,∗

Rm
(x, γ) .

Moreover, sup
n

lγ,n (y, a) =

{
lγ (y, a) , if y ∈ K
∞, otherwise , which implies

(22) Λδ,n,∗
Rm

(x, γ) ≤ Λδ,∗K (x, γ) .

From the definition of ΘK×E×A (x, γ) , it is clear that

(23) Λδ,∗K (x, γ) ≤ ΛδK (x, γ) .

Indeed, let η ∈ R and ϕ ∈ BAC (Rm × E;R) be such that for all (y, γ′, a) ∈ K × E ×A,

η ≤ Uaϕ
(
y, γ′

)
+ lγ′ (y, a)− δ

[
ϕ
(
y, γ′

)
− ϕ (x, γ)

]
.

taking an arbitrary µ ∈ ΘK×E×A (x, γ) and integrating w.r.t. µ, one gets

η ≤
∫

Rm×E×A
lγ′ (y, a)µ

(
dydγ′da

)
=

∫

K×E×A
lγ′ (y, a)µ

(
dydγ′da

)

and the inequality (23) follows by taking the infimum over µ ∈ ΘK×E×A (x, γ) and supremum over
η.

To complete the proof, we need to show that

(24) ΛδK (x, γ) ≤ sup
n
δwδ,n (x, γ) .
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We recall that ΘK×E×A (x, γ) is nonempty to get

(25) δwδ,n (x, γ) ≤ δ |l|0 ,

for all n ≥ 1. By compactness of ΘRm×E×A (x, γ), for every n ≥ 1, there exists some optimal
µn ∈ ΘRm×E×A (x, γ) such that

δwδ,n (x, γ) = Λδ,n
Rm
(x, γ) =

∫

Rm×E×A
lγ′,n (y, a)µ

n
(
dydγ′da

)

≥
∫

Rm×E×A
n (dK (y) ∧ 1)µn

(
dydγ′da

)
.(26)

Also, there exists a subsequence, still denoted (µn)n converging to some µ
∗ ∈ ΘRm×E×A (x, γ) . By

(25) and (26), it follows that µ∗ ∈ ΘK×E×A (x, γ) . Let us fix, for the time being n ≥ 1. Recalling
that lγ′,k ≥ lγ′,n whenever k ≥ n ≥ 1, one infers from (26),

sup
k≥1

δwδ,k (x, γ) ( = lim
k→∞

δwδ,k (x, γ)) ≥ lim
k→∞

∫

Rm×E×A
lγ′,n (y, a)µ

k
(
dydγ′da

)

=

∫

K×E×A
lγ′,n (y, a)µ

∗ (dydγ′da
)
.

Thus, passing to the limit as n → ∞ and using a dominated convergence argument, we get (24).
The conclusion follows from (21), (22), (23) and (26).

8 Appendix

8.1 Proof of Lemma 23.

For any y ∈ [O, (1 + ε)ei] (with γ ∈ Eactivei ), we set

aopt,+γ,i (y) = argmax
a∈Aγ,y

〈fγ (y, a) , ei〉.

It is clear that

(27)

〈
fγ (y

′, a)− fγ
(
y, aopt,+γ,i (y)

)
, ei

〉
≤ sup
a′∈Aγ,ei

|fγ (y′, a′)− fγ (y, a′)| ≤ Lip (f) |y′ − y| ,
〈
fγ (y, a)− fγ

(
y, aopt,+γ,i (y)

)
, ei

〉
≤ 0,

for all y, y′ ∈ [O, (1 + ε)ei]. We also let

dgeo (x, y) :=

{
|x− y| , if x, y ∈ [−1− ε, 1 + ε] ei,

|x|+ |y| , if x ∈ [−1− ε, 1 + ε] ei, y ∈ [−1− ε, 1 + ε] ej , i 6= j
.

Proof. (of Lemma 23). We will prove only the estimates on the trajectory. The estimates on the
partial cost follow from the construction Px (α) which coincides with α except at the end points
(where (C) applies; see also the similar condition (Ac) and the proof of Lemma 6). The assertion
(ii) follows similar patterns to Lemma 6.

We aim at constructing α̃ := Px (α) . We let r0 ≤ ε (to be specified later on). We can assume,
without loss of generality, that x 6= O. (Should this not be the case, see Case 3). Then α is locally
admissible. We set

τ0 := inf
{
t ≥ 0 : dgeo

(
yγ(t;x, α), y

ρε
γ (t;x, α)

)
≥ r0

}
.
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If τ0 ≥ tε, the conclusion follows. Otherwise, the time where yγ meets again our target y
ρε will be

referred to as “renewal time”. We give the construction of α̃ on [τ0, tε] prior to renewal time. We
let τ εO be the exit time of the target from the branch,

τ εO = inf
{
t ≥ τ0 : y

ρε
γ (t;x, α) = O

}
.

(Hence, τ εO > τ0). Let us assume that α̃ has been constructed up to some time τ0 ≤ t∗ ≤ τ εO before
the renewal time such that

(R) dgeo
(
y∗γ , y

ρε,∗
γ

)
≤ ωε (t

∗, r0) ,

where we used the notation y∗γ = yγ (t
∗;x, α̃) and yρε,∗γ = yρεγ (t∗;x, α). Even if this is not crucial

for the rest of the proof, remark that renewal cannot occur before τ0 +
r0
2|f |0 , so that this iterative

procedure will be applied only a finite number of times.

Case 1: yγ and y
ρε
γ are on the same branch (say [O, (1 + ε)e1] ; the case when yγ and y

ρε

are on a "new" branch [O,−εe1] is similar), and yγ lies between the junction O and yρεγ (i.e.
0 ≤ 〈y∗γ , e1〉 < 〈yρε,∗γ , e1〉). We let

tout = inf
{
t ≥ 0 : yγ

(
t; y∗γ , α(t

∗ + ·)
)
= (1 + ε) e1

}
, tρεout = inf

{
t ≥ 0 : yρεγ

(
t; yρε,∗γ , α(t∗ + ·)

)
= (1 + ε) e1

}
,

tρε0 = inf
{
t ≥ 0 : yρεγ

(
t; y

ρε,∗
γ , α(t∗ + ·)

)
= O

}
, t0 = inf

{
t ≥ 0 : yγ

(
t; y∗γ , α(t

∗ + ·)
)
= O

}
.

Let us introduce tact = min (tout, t
ρε
out, t0, t

ρε
0 ). Obviously, prior to the renewal time, only t0 is relevant

(since tout, t
ρε
0 cannot occur without renewal and if tρεout < t0, then α is still locally admissible for

the follower yγ). We distinguish between the cases

(a1) If tact > 0, we extend α̃ by setting α̃(t) = α (t), if t∗ < t ≤ t∗ + tact. Gronwall’s inequality
yields

∣∣yγ (t;x, α̃)− yρεγ (t;x, α)
∣∣ ≤ ωε

(
t− t∗; |y∗γ − yρε,∗γ |

)
,

for all t∗ < t ≤ t∗ + tact.

(a2) If tact = t0 = 0, then we necessarily have that tρε0 > 0. In this case y∗γ = O and
〈yρεγ (t∗;x, α) , e1〉 > 0.

(a2.1) The active case (by far the most complicated) γ ∈ Eactive1 . In order to simplify our
notations, denote, in this case, a+γ,O = aopt,+γ,1 (O). We introduce

tcontrol = inf{t > 0 : yγ
(
t; , y∗γ , a

+
γ,O

)
= r′εe1}

tcollision = inf{t > 0 : yγ
(
t; , y∗γ , a

+
γ,O

)
= yρεγ

(
t∗ + t; , yρε,∗γ , α(t∗ + ·)

)
}

Note that because of the continuity of the trajectories and since r′ε > 0, we have tcontrol > 0 and
tcollision > 0. We extend naturally α̃ by setting

α̃ (t+ t∗) = a+γ,O, if t ∈ (0, tcollision ∧ tcontrol] .

With this extension, our assumptions guarantee that 〈yγ (t+ t∗;x, α̃) , e1〉 ≥ Lip(f)β > 0 and
the junction O is now a reflecting barrier for t 7→ yγ(t; y

∗
γ , a

+
γ,O). Note also that for any t ≤

tcollision ∧ tcontrol, we have 〈yρεγ (t+ t∗;x, α) , e1〉 > 0. For every 0 < t ≤ tcollision ∧ tcontrol, one uses
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(27) to get

∣∣yρεγ (t+ t∗;x, α)− yγ (t+ t∗;x, α̃)
∣∣ =

〈
yρεγ
(
t; yρε,∗γ , α (t∗ + ·)

)
− yγ

(
t; y∗γ , a

+
γ,O

)
, e1

〉

= 〈(yρε,∗γ − y∗γ), e1〉+
∫ t

0

〈
fρεγ
(
yρεγ
(
s; yρε,∗γ , α (t∗ + ·)

)
, α (t∗ + ·)

)
− fγ

(
yγ

(
s; y∗γ , a

+
γ,O

)
, a+γ,O

)
, e1

〉
ds

≤ 〈(yρε,∗γ − y∗γ), e1〉+
∫ t

0
Lip (f)

(
ρε +

∣∣yρεγ (s+ t∗;x, α)− yγ (s+ t∗;x, α̃)
∣∣) ds

+

∫ t

0



〈
fγ

(
yγ

(
s; y∗γ , a

+
γ,O

)
, α (t∗ + ·)

)
− fγ

(
O, a+γ,O

)

+fγ

(
O, a+γ,O

)
− fγ

(
yγ

(
s; y∗γ , a

+
γ,O

)
, a+γ,O

) , e1

〉
 ds

≤
∣∣yρε,∗γ − y∗γ

∣∣+ Lip (f)
[(
ρε + 2r

′
ε

)
t+

∫ t

0

∣∣yρεγ (s+ t∗;x, α)− yγ (s+ t∗;x, α̃)
∣∣ ds
]
.

Using Gronwall’s inequality and our assumptions on r′ε, we deduce that for any 0 < t ≤ tcontrol ∧
tcollision, ∣∣yγ (t+ t∗;x, α̃)− yρεγ (t+ t∗;x, α)

∣∣ ≤ ωε
(
t;
∣∣yρε,∗γ − y∗γ

∣∣) .
Thus, we have constructed an extension of t 7→ α̃(t) satisfying (R) during an increment of some
strictly positive time tcontrol ∧ tcollision.

(a2.2) In the inactive case, it suffices to continue with the control α (since, in this case,
fγ (O, a) = 0, for all a ∈ Aγ,1) up till tcollision (or tε).

Case 2 : We use the same notations as in the first case and aim at giving the control when
α̃ has been constructed up to some time τ0 ≤ t∗ ≤ τ εO such that renewal does not occur at t

∗ and
both motions are at time t∗ on the same active branch (say [O, (1 + ε)e1]). Contrary to Case 1, in
this case we are assuming that 0 < 〈yρε,∗γ , e1〉 < 〈y∗γ , e1〉. We distinguish the following cases

(b1) If tact > 0. In this case we proceed exactly as in case (a1) and get the same conclusion.
(b2) If tact = tout = 0 then y∗γ = (1 + ε)e1 and we have t

ρε
out > 0. This case is completely

symmetric to case (a2.1) but with motions starting at t∗ near (1 + ε)e1. The conclusion is similar.
(The case when y∗γ = −εe1 is similar to (a2.1) if γ ∈ Eactive1 and to (a2.2) in the inactive case.)
Case 3 : control when yρεγ (t∗;x, α) ∈ [O, (1 + ε)ej ] and yγ (t∗;x, α∗) ∈ [O, (1 + ε)ei] with i 6= j.

In particular, the two points may be at the intersection or the target is at the intersection and the
follower is not. We can assume, without loss of generality, that γ ∈ Eactivej . (Otherwise, recalling

that we start at the same initial point, this situation can only happen if yρε,∗γ = O and no active
branch exists. Then, whatever the control, yγ can only get closer to O.) In this case, we introduce

t̂O = inf{t > 0 : yγ
(
t; y∗γ , a

−
γ,i

)
= O}

t̂collision = inf{t > 0 : yγ
(
t; y∗γ , a

−
γ,i

)
= yρεγ (t

∗ + t;x, α)}

and we extend t 7→ α̃ (t) up to time t∗ + t̂O ∧ t̂collision by setting

α̃(t) = a−γ,i, for t
∗ < t < t∗ + t̂O ∧ t̂collision.

Since by assumption dgeo
(
y∗γ , y

ρε,∗
γ

)
≤ ωε(t

∗; r0), we have that

0 < t̂O ∧ t̂collision ≤
(ωε(t

∗; r0))
1−κ

(1− κ)β .

Hence, with such a construction we have that

dgeo
(
yγ
(
t; y∗γ , α̃

)
, yρεγ

(
t; yρε,∗γ , α

))
| ≤

( |f |0
(1− κ)β + 1

)
(ωε(t

∗; r0))
1−κ ,
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for all t < t̂O ∧ t̂collision. If t̂O = t̂O ∧ t̂collision, we arrive at yγ
(
t̂O; y

∗
γ , α̃
)
= O. If every road is

inactive, we continue to stay at O.
(c1) If yρεγ

(
t̂O; y

ρε,∗
γ , α

)
6= O we are back to case 1 but with r0 now replaced by r

′
0 lower than(

|f |0
(1−κ)β + 1

)
(ωε(t

∗; r0))
1−κ : even if there has been a deterioration of the distance between yγ and

yρε (not exceeding
(

|f |0
(1−κ)β + 1

)
(ωε(t

∗; r0))
1−κ because we are back to case 1, the situation of case

3 (and also the situation of (b2)) will never happen before some renewal time occurs. Consequently,
in the situation of case 3 we are always allowed to take in (R) the same value for r0 (and we choose
r0 = r′ε).

(c2) Finally, we assume yρεγ
(
t̂O; y

ρε,∗
γ , α

)
= O. If every road is inactive, then yγ stays at O and

yρεγ cannot go further than ρε. Otherwise, let us assume that some j
′ is active. Then, we take

α̃ (t) = a+γ,j′ for some very small (yet strictly positive) time t
∗ + t̂O < t ≤ t∗ + t̂O +

r′ε
2|f |0

and get

dgeo
(
yρεγ (t;x, α) , yγ (t;x, α̃)

)
≤ r′ε,

which allows one to iterate.
Conclusion Gathering all these results together, the constructed strategy α̃ is such that

∣∣yγ (t;x, α̃)− yρεγ (t;x, α)
∣∣ ≤ ωε(tε; Φ(ε)).

for any t ≤ tε and the lemma is proved.

8.2 Some hints on the proof of Lemma 24

The reader is invited to note that, if (C) holds true, then l (y, a) = l
(
ΠG (y) , a

)
,for all y ∈ G+,ε.

Hence, the same kind of cost can be reached by :
- hurrying to O when the target is at O, then wait for collision by

- staying at O when the target enters a fictive road from the intersection if a control a such
that f (O, a) = 0 exists (for example, in the inactive case).

- or mimic staying at O by making very small trips (see case (c2) of the previous Lemma);
- at e1 :

- if 〈f (e1, a) , e1〉 ≤ 0, for all a, we are done, since the target will never enter (1, 1 + ε] e1
(recall we start from G).

- otherwise, there exists 〈f (e1, ã) , e1〉 > β′ > 0 and, by our assumption, we also have
〈f (e1, aγ,1) , e1〉 < −β. Then, again, we mimic staying at e1 by making very small trips until
collision.

The same kind of assertion are valid for λ and Q (notice the definition of these terms on "fictive"

roads). The trajectories around O are close due to the ε distance from G+,ε to G and as in the
previous argument, coming around the intersection can only occur once before collision.
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