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ABSTRACT. In this paper we develop a statistical estimation technique to recover the transi-

tion kernel P of a Markov chain X = (Xm)m∈N in presence of censored data. We consider the

situation where only a sub-sequence of X is available and the time gaps between the obser-

vations are iid random variables. Under the assumption that neither the time gaps nor their

distribution are known, we provide an estimation method which applies when some transi-

tions in the initial Markov chain X are known to be unfeasible. A consistent estimator of P is

derived in closed form as a solution of a minimization problem. The asymptotic performance

of the estimator is then discussed in theory and through numerical simulations.

1. INTRODUCTION

Discrete Markov chains are one of the most widely used probabilistic framework for
analyzing sequence data in a huge range of application fields. Statistical inference in a
Markovian environment has been studied intensively in the literature, giving rise to the
definition of various models such as multiple Markov chains [2, 3], hidden Markov pro-
cesses [4, 15], random walks on graphs [9] or renewal processes [16] to cite a few.

1.1. Problem. In this paper we propose a statistical methodology to estimate the transi-
tion matrix P from a sequence of censored data. A simple homogenous Markov chain
X = (Xm)m∈N is observed at random times T1, ..., Tn so that the only available observations
consist in a sub-sequence Yk := XTk

of the initial process. The time gaps τk := Tk − Tk−1 (i.e.
the number of jumps) between two consecutive observations are assumed to be positive,
independent and identically distributed.

Problem: Can we estimate the transition matrix P of the initial chain X when neither the time gaps
τk nor their distribution µ are known?

Without any additional information on the transition kernel P, the problem is clearly not
identifiable. The novelty of our approach lies in solving this identifiability issue by assum-
ing that some transitions in the initial Markov chain X are known to be unfeasible, that is,
the support of P is contained in some maximal set S known to the user. However, even with
this new information, the identifiability is only ensured for specific values of S. We show
for instance that if S contains the entire diagonal or if it is the support of a full bipartite
graph, the problem is never identifiable, regardless of the distribution µ.

A key element in this framework is that the chain (Yk)k∈N remains Markovian, with
transition matrix Q that can be expressed as an analytic function of P. It results that the
problem is identifiable if P is the unique stochastic matrix with compatible support such
that there exists an analytic function f verifying Q = f (P). Even when assuming the iden-
tifiability, finding a consistent estimation procedure is not straightforward. Using standard
non parametric techniques to estimate f seems to be a dead-end, but emphasizes the fact
that f and P should be estimated simultaneously. Actually, the main tractable property is
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that P and Q share the same eigenvectors, although finding the eigenvalues of P from the
observations Y1, · · · , YN remains difficult, as the information on the support of P can not
be easily transposed onto conditions on the eigen-elements.

1.2. Main result. Our contribution can be described as follows: We estimate the transition
matrix P using only the commutativity between P and Q. We build an estimator by minimizing the

ℓ2-nom of the Lie bracket with respect to the empirical estimate Q̂ and provide an explicit formula.
Moreover, we show the asymptotic normality of the estimator and compute its asymptotic variance.
A Monte Carlo simulation study is provided to test its performance, with convincing results.

To illustrate this model, consider a continuous time Markov chain Z = (Zt)t>0 observed
at a discrete time grid t1 < ... < tn. In this situation, let X represent the jump process
of Z and τk denote the number of jumps occurring between two consecutive observations
Yk := Ztk

. If the discrete time grid is chosen independently from the chain, the time gaps
τk are independent random variables unknown to the practitioner. Their distribution µ is
Poisson in case of a uniform time grid, but one can easily imagine a more involved situ-
ation in which t1, ...tn are subject to unwanted random effects. The described framework
can be found in numerous application fields, since Markov chains are widely recognized
for providing faithful representations of real phenomena such as chemical reactions [1],
financial markets [11] or waiting lines in queuing theory [8]. Markov chains observed at
non-regular time intervals are also used for medical studies in [6] to describe the progres-
sion of a disease. More general applications of time-varying Markov processes are [14] and
[13].

In our setting, the restricted support of P plays a key role in the estimation methodology.
Among modern literature contributions, sparsity has become a major interest for statisti-
cal inference as it generally provides a significant amount of information that is difficult to
fully exploit (see [17, 12]). Here, the sparsity issue is addressed in a specific setting in which
the location of some zero entries of P is known. While this considerably simplifies the es-
timation problem if compared to a framework in which no information is available about
the support of P, it remains nonetheless a reasonable assumption for most real applications.
The spirit of this paper is to present a new approach for inference of sparse Markov transi-
tion kernels, as well as to provide a starting point to develop more sophisticated techniques
to fully exploit the sparsity in Markov models.

1.3. Paper organization. The paper is organized as follows. Section 2 gives an overview
of the statistical framework, describes the estimation problem in detail, and discuss the
identifiability issues. Section 3 shows how to characterize and build the estimator of the
transition kernel and discusses its asymptotic properties. Section 4 supports the study with
numerical results from a Monte Carlo simulation analysis. Proofs and technical lemmas for
our results are gathered in the Appendix.

2. THE PROBLEM

We consider an irreducible homogenous Markov chain X = (Xm)m∈N with finite state
space E = {1, ..., N}, N ≥ 3 and transition matrix P. We assume that X is observed at
random times T1, ..., Tn so that the only available observations consist in the sub-sequence
Yk := XTk

, k = 1, ..., n. The numbers of jumps τk := Tk−1 − Tk between two observations
Yk are assumed to be iid random variables with distribution µ on N and independent from
X. In this setting, the resulting process Y = (Yk)k∈N remains Markovian in view of the
equality:
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P(Yk+1 = j|Yk = i) = P(XSk+1
= j|XSk

= i)

= ∑
l≥0

P(XSk+l = j, τk+1 = l|XSk
= i)

= ∑
l≥0

P(Xl = j|X0 = i)µ(l).

Let Gµ : [−1, 1] → R denote the generator function of µ, the transition matrix of Y is thus
given by

(1) Q := Gµ(P) = ∑
l≥0

Plµ(l).

We are interested in estimating the original transition matrix P from the available ob-
servations Y1, ..., Yn. So far, the problem is not identifiable since neither the time gaps τk

nor their distribution µ are known. Nevertheless, this statistical identifiability issue can be
overcome by working with a sparse transition kernel P. In this case, we assume that some
transitions of the initial process (Xm)m∈N are known to be unfeasible, that is, there exists a

known set S ⊂ E2 such that

supp(P) = {(i, j) : Pij 6= 0} ⊆ S.

This additional information restrains the set of possible values of P to

A(S) := {A ∈ R
N×N : A1 = 1, supp(A) ⊆ S},

which is an affine space of dimension d− N, with d the size of S. Of course, P is also known
to have positive entries, although we choose to overlook this information for now, for sim-
plicity. Assuming that Q is known, we may consider as a solution any stochastic matrix
A ∈ A(S) such that Q = Gν(A) for some distribution ν on N. So, it is possible to recover P
exactly from Q if P is the only solution in A(S). By slightly relaxing this condition, we say
that the problem is identifiable if P is the only element in A(S) that commutes with Q, i.e., if

(2) A(S) ∩ Com(Q) = {P},

where Com(Q) denotes the commutant of Q. As illustrated in the following lemma, the
identifiability of the problem is mainly determined by the value of the support S.

Lemma 2.1. The set {A ∈ A(S) : A(S) ∩ Com(Gµ(A)) = {A}} is either empty or a dense
open subset of A(S).

This lemma establishes that the problem is either identifiable for almost every possi-
ble values of P (with respect to Lebesgue measure) or none, depending on S. Remark
for instance that the identifiability condition (2) is never verified if S contains the diago-
nal {(j, j), j = 1, ..., N}. Indeed, in this case, the identity matrix I lies in the intersection
A(S) ∩ Com(Q) as well as any convex combination α I+(1 − α)P for α ∈ (0, 1). Another
problematic situation arises if S is the support of a full bipartite graph, resulting in a peri-
odic Markov chain X. In this case, the support of P3 is also contained in S, which may cause

the problem to be non identifiable as soon as P3 6= P. Similar arguments hold of course
for periods other than 2. Moreover, the problem is not identifiable if S provides insufficient

information on P. This typically occurs when d, the size of S, is greater than N2 − N, or
equivalently, if the sparsity degree of P is less than N. In this situation, it is easy to show
that the dimension of the affine space A(S) ∩ Com(Q) is at least 1, which is obviously in-
compatible with the identifiability condition given by (2).

While we are able to provide necessary conditions on S for the problem to be identifiable,
sufficient conditions turn out to be much harder to obtain. Indeed, this issue involves
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the companion problem of the eigenvector characterization of weighted directed graphs.
Nevertheless, computational study suggests that the combination of the three conditions

• S is the support of an aperiodic irreducible Markov chain,
• d ≤ N(N − 1),
• ∃j, (j, j) /∈ S,

is sufficient to ensure the almost everywhere identifiability, as we were unable to exhibit a
counter-example.

To avoid considering critical situations, we will assume throughout the paper that (Xm)m∈N

is an aperiodic Markov chain. This implies in particular that P has a unique invariant dis-
tribution π = (π1, ..., πN) which is positive for all i. Moreover, we assume that the problem
is identifiable, i.e., A(S) ∩ Com(Q) = {P}, so that recovering P from the indirect observa-
tions Y1, ..., Yn is achievable.

3. CONSTRUCTION OF THE TRANSITION KERNEL ESTIMATOR

We start by introducing some notation. Let P0 be an arbitrary element in A(S) and φ =
(φ1, ..., φd−N) a basis of the difference space

Alin(S) = A(S)−A(S) = {A ∈ R
N×N : A1 = 0, supp(A) ⊆ S}.

A matrix of the affine space A(S) can be decomposed in a unique fashion in function of P0

and φ as

Pβ = P0 +
d−N

∑
j=1

β jφj,

for some vector β = (β1, ..., βd−N)
⊤ ∈ R

d−N. In this setting, the problem of estimating P
turns into recovering the corresponding value β. Consider for convenience its vectoriza-

tion, which we denote by a small letter, e.g., p = vec(P) = (P1,1, ..., PN,1, ..., P1,N, ..., PN,N)
⊤.

The vector p can be expressed as function of β by the relation p = p0 + Φβ, with p0 =
vec(P0) and Φ = [vec(φ1), ..., vec(φd−N)]. When the problem is identifiable, P can be
characterized via the Lie bracket with respect to Q, as the unique solution in A(S) to
ℓ(Q, P) = QP − PQ = 0. Working with the vectorized matrices, the linear operator

p 7→ vec[ℓ(Q, P)] has canonical representation given by ∆(Q) := I⊗Q − Q⊤ ⊗ I, in view of

vec(QP − PQ) = (I⊗Q − Q⊤ ⊗ I) vec(P) = ∆(Q)p.

As a result, the information p = p0 + Φβ and ∆(Q)p = ∆(Q)[p0 + Φβ] = 0 is sufficient to
characterize p in this framework. The estimation of p only requires to compute a prelimi-

nary estimator of Q, say Q̂, which can be directly obtained from the available observations.

The most natural choice for Q̂ is arguably the empirical estimator obtained from the state
transition frequencies in the sequence Y1, ..., Yn,

(3) Q̂ij =
∑

n−1
k=1 1{Yk = i, Yk+1 = j}

∑
n−1
k=1 1{Yk = i}

, i, j = 1, ..., N.

An estimator p̂ = p0 + Φβ̂ is then quite naturally derived by considering the value β̂ for

which ∆(Q̂)[p0 + Φβ̂] is closest to zero. Precisely, we define β̂ as a minimizer of

(4) β 7→ ‖∆(Q̂)[p0 + Φβ]‖2 = [p0 + Φβ]⊤∆(Q̂)⊤∆(Q̂)[p0 + Φβ].

If Φ⊤∆(Q̂)⊤∆(Q̂)Φ is invertible, the solution is unique, given by

(5) β̂ = [Φ⊤∆(Q̂)⊤∆(Q̂)Φ]−1 Φ⊤∆(Q̂)⊤∆(Q̂)p0.

On the contrary, if Φ⊤∆(Q̂)⊤∆(Q̂)Φ is singular, we can still define the estimator by picking
an arbitrary value among the minimizers. For instance, the solution is obtained via the
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Moore-Penrose inverse as β̂ = (∆(Q̂)Φ)†∆(Q̂)p0 (we refer to [7] for more details on the
Moore-Penrose inverse operator). However, nothing indicates that this estimator is close

to the true value when ∆(Q̂)Φ is not one-to-one. Actually, the existence of a unique solu-
tion is crucial to make the estimator satisfactory. This issue turns out to be closely related

to the identifiability of the problem since we can show that condition (2) ensures ∆(Q̂)Φ
being of full rank with probability one asymptotically (see Lemma 6.1 for a detailed proof).
This guarantees that, asymptotically, a unique solution exists. Remark that if the problem

is non-identifiable, ∆(Q̂)Φ might be of full rank but not its limit as n → ∞, which would
result in a highly unstable, non-consistent estimator.

The closed expression of p̂ := p0 + Φβ̂ enables to derive its asymptotic properties di-

rectly from that of Q̂, which we summarize in the next lemma.

Lemma 3.1. The Markov chain Y is recurrent and share the same invariant distribution π =
(π1, ..., πN) as X, which is positive for all i = 1, .., N. Moreover, Q̂ is unbiased and asymptotically
Gaussian with

∀i, j, k, l = 1, ..., N, lim
n→∞

n cov(Q̂ij, Q̂kl) =







Qij(1 − Qij)/πi if (i, j) = (k, l),
−QijQil/πi if i = k, j 6= l,

0 otherwise.

This lemma gathers some well known results on the empirical transition matrix of a finite-
state Markov chain. A proof can be found for instance in Theorems 2.7 and 2.15 in [10].

From this result, we deduce that q̂ = vec(Q̂) is asymptotically Gaussian, i.e.
√

n(q̂ − q)
d−→ N (0, Σ)

for some matrix Σ whose expression can be deduced from Lemma 3.1. We now state our
main result.

Theorem 3.2. The estimator

(6) p̂ =
[

I−Φ[Φ⊤∆(Q̂)⊤∆(Q̂)Φ]−1 Φ⊤∆(Q̂)⊤∆(Q̂)
]

p0

is consistent and asymptotically Gaussian with
√

n( p̂ − p)
d−→ N (0, BΣB⊤),

where B = Φ[Φ⊤∆(Q)⊤∆(Q)Φ]−1Φ⊤∆(Q)⊤∆(P).

It is worth noting that the value of p̂ does not depend on the initial element P0 nor on the
choice of the basis φ. Besides, nothing in the construction of p̂ guarantees that its entries are
non-negative. To solve this problem, a natural final step is to consider the stochastic matrix

closest to P̂, by vanishing all negative entries and rescaling it so as to obtain an acceptable
value. This final solution is clearly a more accurate estimation of P. However, we choose to
discuss only the properties of the original value p̂ as there are easier to derive and asymp-
totically equivalent when S = supp(P).

While the proposed transition kernel estimator p̂ turns out to be consistent, its efficiency
still needs to be discussed. Actually, one can show that p̂ is generally not asymptotically

optimal since its limit variance BΣB⊤ can be improved. Instead of defining β̂ through (4),
one may consider for instance minimizing a more general quadratic form

(7) β 7→ ‖Ω∆(Q̂)[p0 + Φβ]‖2 = [p0 + Φβ]⊤∆(Q̂)⊤(Ω⊤Ω)∆(Q̂)[p0 + Φβ],

for some suitably chosen matrix Ω ∈ R
q×N2

, possibly non-square. The only condition we

impose on Ω is that Φ⊤∆(Q)⊤(Ω⊤Ω)∆(Q)Φ must be invertible to guarantee the unicity
of the solution, in which case we say that Ω is admissible. Clearly, the operator Ω has an
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influence on the value of the minimizer β̂Ω, and therefore, on the asymptotic variance of
the resulting estimator

(8) p̂Ω := p0 + Φβ̂Ω.

By extending the proof of Theorem 3.2, we can show that p̂Ω is asymptotically Gaussian
with limit distribution given by

√
n( p̂Ω − p)

d−→ N (0, B(Ω)ΣB(Ω)⊤),
for

B(Ω) = Φ[Φ⊤∆(Q)⊤(Ω⊤Ω)∆(Q)Φ]−1Φ⊤∆(Q)⊤(Ω⊤Ω)∆(P).

This general approach obviously includes the original procedure corresponding to Ω = I.

Asymptotic optimality can then be derived by aiming for the minimal variance B(Ω)ΣB(Ω)⊤.
Using a similar argument as in Proposition 1 in [5], we show that the minimal variance is
reached for any Ω such that

(Ω⊤Ω) = (∆(P)Σ∆(P)⊤)†,

provided that Ω is admissible (see Lemma 6.2 for a detailed proof). This result raises the
problem that an optimal value Ω∗ is unknown in practice and has to be estimated be-
forehand, which can be difficult due to the discontinuity of the Moore-Penrose inversion.

Actually, a two-step procedure that consists in plugging-in an estimate Ω̂ of Ω∗ in (7) to

compute β̂
Ω̂

might work well in some cases, although theoretical results regarding its per-
formance requires regularity conditions that are hard to verify in practice. For this reason,
we suggest to favor the original procedure of Proposition 3.2 which provides a consistent
estimator p̂ by simple means, under no regularity conditions other than the identifiability
one given in (2). Nevertheless, the performances of the two-step estimator p̂

Ω̂
compared to

p̂ in various situations are discussed in the next Section via numerical simulations.

4. COMPUTATIONAL STUDY

This section is devoted to a Monte Carlo simulation analysis of the proposed methodol-
ogy. The computational study aims at veryfing the convergence of the estimator p̂ as well
as at evaluating the performances of the two-step estimator p̂

Ω̂
defined in (8). As discussed

in the previous section, the construction of p̂
Ω̂

involves a preliminary step, namely the es-

timation of the optimal scaling (Ω∗⊤Ω∗) = (∆(P)Σ∆(P)⊤)†. While ∆(P) can naturally be

estimated from ∆(P̂), it remains to build a consistent estimation of Σ. Actually, this can be
made quite easily from observations Y1, ..., Yn. To begin with, the invariant distribution π
can be estimated by its empirical version

∀i = 1, ..., N, π̂i =
1

n

n

∑
k=1

1{Yk = i}.

It is well known that the resulting estimator π̂ = (π̂1, ..., π̂N) converges to the invari-
ant distribution as soon as the Markov chain is recurrent, which is the case here. We
then obtain a consistent estimator Σ̂ by replacing Q and π by their empirical counter-
parts in the expression of Σ, given in Lemma 3.1. In the following study, the scaling

Ω̂ = Σ̂
1
2 ∆(P)⊤(∆(P̂)Σ̂∆(P)⊤)† is used for the construction of p̂

Ω̂
.

The simulations are performed on three examples, corresponding to different values
of P. The first example deals with an arbitrary sparse transition matrix P for which the
support is randomly drawn beforehand. The second example investigates an application
of our statistical methodology to a queuing model. Finally, the third example considers
hollow matrices, for which all entries but the diagonal are non-zero. In each example the
transition matrix P is determined beforehand and fixed for the rest of the study. We denote
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its support with S := supp(P). In each case study we consider three different sample
sizes n = 200, n = 1000 and n = 5000 and three different distributions for the times gaps
τi, namely a binomial, Poisson and geometric distribution, the later defined for positive

integers only. The whole estimation experiment is repeated 104 times in each setting with
the transition matrix P being fixed. Mean squared errors for the two estimators

R( p̂) = E‖ p̂ − p‖2,(9)

R( p̂
Ω̂
) = E‖ p̂

Ω̂
− p‖2,(10)

are approximated by the error average over the 104 Monte Carlo repetitions.

Example 1: Random support. This example deals with an arbitrary sparse transition ma-
trix on a state space of size 5. The support is randomly drawn from independent Bernoulli
variables. P−entries are drawn from a uniform distribution on [0, 1], then rescaled so that
P is a transition kernel. The entries are rounded to 2 decimal digits for ease of readability.
We obtain the following transition matrix P:

(11) P =













0 0.61 0 0 0.39
0.07 0 0.48 0.27 0.18
0.53 0 0.30 0 0.17
0.18 0.20 0.27 0.35 0
0.20 0 0.69 0 0.11













.

For the computational study, we proceed as follows. We start by drawing the time gaps
τ1, ..., τn as iid random variables with a given distribution µ on N. We consider different
values for n and alternative distributions µ and repeat the experiment in each setting. We

let Sk = ∑
k
i=1 τi for k = 1, ..., n, and simulate a sequence X1, X2, ..., XSn of a Markov chain

with transition kernel P. We keep only the observations to Yk = XSk
so that we have a

sample of size n. The process is repeated until all states appear in the sequence Y1, ..., Yn (in
this way, we work conditionally to the event π̂i > 0). From these observations, we build p̂
following its closed expression in Theorem 3.2 and the two-step estimator p̂

Ω̂
defined in (8)

using the procedure detailed above. The whole experiment is repeated 104 times with the
same value of P for the three different sample sizes n = 200, n = 1000 and n = 5000 and
three different distributions, namely a binomial µ ∼ B(5, 0.3), standard Poisson µ ∼ P(1)
and geometric distribution µ ∼ G(0.5). Mean squared errors given in (9) and (10) are eval-
uated and reported in Table 1 below with standard deviations in brackets.

n 200 1000 5000
µ B(5, 0.3) P(1) G(0.5) B(5, 0.3) P(1) G(0.5) B(5, 0.3) P(1) G(0.5)

R( p̂)
0.5469
(0.0033)

0.5189
(0.0030)

0.3514
(0.0021)

0.1637
(0.0010)

0.1371
(0.0008)

0.0835
(0.0004)

0.0362
(0.0002)

0.0286
(0.0002)

0.0170
(0.0001)

R( p̂Ω̂)
1.2113
(0.0385)

1.0901
(0.0232)

0.4928
(0.0074)

0.1668
(0.0015)

0.1389
(0.0011)

0.0782
(0.0004)

0.0301
(0.0002)

0.0249
(0.0001)

0.0148
(0.0001)

TABLE 1. Monte Carlo Experiment Results. The table contains summary statistics of

Monte Carlo simulation results based on P matrix given in Eq. (11). Three different sam-

ple sizes n and three different distributions µ are considered. Mean squared errors R( p̂) and

R( p̂
Ω̂
) defined in Eq. (9)-(10) are reported with the corresponding standard deviations in

brackets. Monte Carlo errors are based on 104 repetitions.

Theoretical results described in previous sections are now confirmed by the Monte Carlo
simulation. For a small sample size (n = 200), the estimation of P is obviously difficult and
it shows a mean squared error R( p̂) = 0.35 in the most favorable case, corresponding to an
average squared error of approximately 0.022 per entry. The two-step procedure consider-
ably deteriorates the estimation for n = 200, regardless of the distribution of the time gaps.
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Interesting insights arise for the sample size n = 1000. In this case, the two estimators p̂
and p̂

Ω̂
show a comparable performance, with p̂ being slightly better for the binomial and

Poisson scenarios, while p̂
Ω̂

appears to be preferable for the geometric distribution. The
transition matrix P is relatively well estimated in this case, especially for geometric times,
with an average squared error of approximately 0.005 per entry. Finally, for a large sample
size n = 5000, the transition matrix P is very well estimated by both methods, with signifi-
cantly better results for the two-step estimator p̂

Ω̂
.

While the distribution µ seems to have a non negligible impact on the efficiency of the
estimation, it is difficult to establish the nature of its influence. The geometric distribution
reveals to be the most favorable case here, which was to be expected since it is the only
one for which the event τi = 0 is ruled out. This means that two consecutive observations
in the process Y are always different, which is obviously desirable. For the binomial an
Poisson cases, it is not rare that the process remains unchanged for two or more consecutive
observations of Y which somewhat reduces the number of observations. This explains the
better results obtained for the case τ ∼ G(0.5) if compared to the other two settings.

Example 2: Queuing model. This example considers the application of our statistical method-
ology to a queuing model. We want to evaluate the influence of the number of persons in a
waiting line at time t on the sub-sequent state of the queue, i.e. at time t + 1. States repre-
sent the number of persons in the queue. For simplicity we assume that the only possible
transitions are the arrival or departure of someone. The state of the waiting line is mea-
sured only at particular times (e.g. every hour) and the number of transitions τk between
two consecutive observations Yk−1 and Yk are assumed iid with unknown distribution µ.
For convenience, we assume a maximum number of persons in the queue equal to 10. Thus,
the Markov chain X has 11 possible states and a transition matrix P whose only non-zero
entries are Pi+1,i and Pi,i+1 for i = 1, ..., 10. These entries are not chosen too far from 0.5 so
that π̂ is positive with relatively high probability, even for small sample sizes. The actual
transition matrix used for the simulations is the following matrix P:

(12) P =





































0 1 0 0 0 0 0 0 0 0 0
0.53 0 0.47 0 0 0 0 0 0 0 0

0 0.65 0 0.35 0 0 0 0 0 0 0
0 0 0.45 0 0.55 0 0 0 0 0 0
0 0 0 0.30 0 0.70 0 0 0 0 0
0 0 0 0 0.62 0 0.38 0 0 0 0
0 0 0 0 0 0.68 0 0.32 0 0 0
0 0 0 0 0 0 0.64 0 0.36 0 0
0 0 0 0 0 0 0 0.52 0 0.48 0
0 0 0 0 0 0 0 0 0.61 0 0.39
0 0 0 0 0 0 0 0 0 1 0





































.

Remark that the first and last rows of P are known since they contain only one non-zero
element. As in the previous example, we consider three sample sizes n = 200, n = 1000
and n = 5000 and three distributions µ = B(2, 0.5), µ = P(1) and µ = G(0.5). Results are
gathered in Table 2.

Although the number of states is more than doubled compared to the previous example,
the Monte Carlo simulation show similar results. This is due to the fact that the difficulty
in estimating P is mostly determined by its number of non trivial entries, rather than by
its dimension. These values are quite similar in both example (18 non trivial entries in this
example against 16 in the previous one). The first assumption for µ, namely the Binomial
distribution B(2, 0.5), leads to a sparse empirical transition matrix Q. Indeed, in this case,
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n 200 1000 5000
µ B(2, 0.5) P(1) G(0.5) B(2, 0.5) P(1) G(0.5) B(2, 0.5) P(1) G(0.5)

R( p̂)
0.5449
(0.0028)

0.6530
(0.0035)

0.4527
(0.0026)

0.1763
(0.0013)

0.2296
(0.0016)

0.1253
(0.0009)

0.0421
(0.0004)

0.0548
(0.0005)

0.0258
(0.0002)

R( p̂Ω̂)
1.0813
(0.0059)

1.2287
(0.0064)

0.8967
(0.0043)

0.3176
(0.0036)

0.3788
(0.0038)

0.2657
(0.0024)

0.0211
(0.0002)

0.0440
(0.0004)

0.0284
(0.0003)

TABLE 2. Monte Carlo Experiment Results. The table contains summary statistics of

Monte Carlo simulation results based on P matrix given in Eq. (12). Three different sam-

ple sizes n and three different distributions µ are considered. Mean squared errors R( p̂) and

R( p̂
Ω̂
) defined in Eq. (9)-(10) are reported with the corresponding standard deviations in

brackets. Monte Carlo errors are based on 104 repetitions.

Q is a convex combination of I, P and P2 which implies that its non-zero entries are at a

distance of at most 2 from the main diagonal. As a result, the estimation Q̂ is somehow
more accurate in this case compared to a situation in which all state transitions are possible
in the chain Y. On the other hand, the high probability of observing the same realization at
two consecutive times (due to µ(0) = 0.25) deteriorates the estimation of P. Nevertheless,
the most favorable case remains the geometric distribution for all sample sizes.

Similar conclusions can be drawn regarding the relative efficiency of p̂
Ω̂

and p̂, as it
appears clearly that p̂

Ω̂
outperforms p̂ only when a large number of observations are avail-

able. Interestingly, p̂ remains significantly better even for n = 5000 in the geometric sce-
nario.

Example 3: Hollow matrix. This final example deals with a transition matrix P with zero
diagonal, sometimes referred to as hollow matrix. This case corresponds to a Markov chain
X that necessarily changes state at each transition. The matrix P used for the simulation is
the following:

(13) P =









0 0.22 0.33 0.45
0.38 0 0.06 0.56
0.40 0.13 0 0.47
0.42 0.20 0.38 0









.

Following the same simulation structure described in the two previous examples, we con-
sider alternative sample sizes and distributions of time gaps. Results are summarized in
Table 3.

n 200 1000 5000
µ B(2, 0.5) P(1) G(0.5) B(2, 0.5) P(1) G(0.5) B(2, 0.5) P(1) G(0.5)

R( p̂)
0.3386
(0.0036)

0.3838
(0.0037)

0.2879
(0.0032)

0.1501
(0.0025)

0.1978
(0.0029)

0.1093
(0.0020)

0.0524
(0.0016)

0.0799
(0.0021)

0.0271
(0.0008)

R( p̂Ω̂)
0.3561
(0.0039)

0.4011
(0.0039)

0.3003
(0.0035)

0.1646
(0.0028)

0.2170
(0.0032)

0.1167
(0.0022)

0.0590
(0.0019)

0.0880
(0.0024)

0.0307
(0.0011)

TABLE 3. Monte Carlo Experiment Results. The table contains summary statistics of

Monte Carlo simulation results based on P matrix given in Eq. (13). Three different sam-

ple sizes n and three different distributions µ are considered. Mean squared errors R( p̂) and

R( p̂
Ω̂
) defined in Eq. (9)-(10) are reported with the corresponding standard deviations in

brackets. Monte Carlo errors are based on 104 repetitions.

In this example, p̂ and p̂
Ω̂

show comparable performances for all sample size, with yet
slightly better results for p̂. Surprisingly, the theoretical asymptotic results seem to not be
verified even for sample as large as n = 5000. A dedicated simulation for a sample size
n = 10000 has been performed and shows that the mean squared error of p̂

Ω̂
does eventu-

ally become smaller than that one of p̂, however this occurs for very large n, in some sense
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confirming that the regular procedure should be favored in most practical situations.

The Monte Carlo experiment is performed on three different situations allowing to draw
similar conclusions. We have observed the convergence of both estimators p̂ and p̂

Ω̂
to the

true value p in all considered examples. Moreover, the two-step procedure to construct the
asymptotically estimator p̂

Ω̂
has appeared unsatisfactory in most cases, with a significant

improvement with respect p̂ only for some cases with large samples (from n = 1000 or
even n > 5000 in the last example). These simulations confirm the theoretical results as
well as the conclusion that the regular estimator p̂ must be preferred for both its stability
and easiness of implementation. However, while the performances of p̂

Ω̂
are disappoint-

ing, we observe that the scaling Ω̂ used for its construction can be considered as a naive
estimation of the theoretical optimal scaling. The small sample properties of p̂

Ω̂
can per-

haps be improved by using different estimation techniques for Ω∗, although this has not
been investigated.

5. CONCLUSION

This paper investigates the problem of estimating the transition kernel P of a discrete
Markov chain in presence of censored data, i.e. when only a sub-sequence of the chain
is observable. The original contribution is the development and proposal of a statistical
methodology to recover the transition matrix P when the time intervals between two ob-
servations are random, iid and unknown. To overcome the identifiability issue in this set-
ting, P is assumed to be sparse with its zeroes location partially known. The novelty of our
approach lies in the role played by the sparsity of P when working in Markovian models
with censored data, since the proposed methodology is able to capture and exploit the in-
formation content behind this setting. In the framework studied in this paper, the available
observations consist of a Markov chain with a transition matrix Q that commutes with P.
Once characterized the transition matrix P via the Lie bracket with respect to Q, we show
how to build an estimator by means of the empirical transition matrix of the observations.

A consistent estimator p̂ is given in closed form as function of Q̂ and its asymptotic prop-
erties are derived. Theoretical results are supported by a Monte Carlo simulation study to
verify the convergence of the estimator and analyze its performance in various situations.

In this paper, we focus on a situation where the support of the transition matrix P is
partially known. While this assumption turns out to be important to make the problem
feasible, we can imagine practical cases in which P is sparse with unknown support. Nu-
merous questions arise in this context, such as recovering the minimal support for a matrix
in the commutant of Q or determining necessary and sufficient conditions for the problem
to be identifiable. We are optimistic that the current paper provides a significant starting
point to tackle these questions in future research works.

6. APPENDIX

6.1. Technical lemmas.

Lemma 6.1. The problem is identifiable if, and only if, ∆(Q)Φ is of full rank.

Proof. Writing the sets A(S) and Com(Q) as the Minkowsky sums A(S) = {P}+Alin(S)
and Com(Q) = {P}+ Com(Q), we deduce

A(S) ∩ Com(Q) = {P}+Alin(S) ∩ Com(Q).

Thus, the identifiability condition is equivalent to Alin(S) ∩ Com(Q) = {0}. Since Φ is of
full rank, ker[∆(Q)Φ] = {0} holds if, and only if, ker[∆(Q)] ∩ Im(Φ) = {0}, where Im
denotes the image. The result follows by pointing out that ker[∆(Q)] = vec[Com(Q)] :=
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{vec(A) : A ∈ Com(Q)} and Im(Φ) = vec[Alin(S)].

Lemma 6.2. If Φ⊤∆(Q)⊤
(

∆(P)Σ∆(P)⊤
)†

∆(Q)Φ is invertible, any matrix Ω∗ such that

Ω∗⊤Ω∗ =
(

∆(P)Σ∆(P)⊤
)†

,

is asymptotically optimal in the sense that B(Ω)ΣB(Ω)⊤ − B(Ω∗)ΣB(Ω∗)⊤ is positive semi-
definite for all admissible Ω.

Proof. Let Ω∗ be such a matrix and let D = Ω∗∆(Q)Φ. The operator I−D(D⊤D)−1D⊤ is
an orthogonal projector and is therefore positive semi-definite. Let Ω be admissible and

C =
[

Φ⊤∆(Q)⊤(Ω⊤Ω)∆(Q)Φ
]−1

Φ⊤∆(Q)⊤∆(P)Ω∗⊤.

We know that CC⊤ − CD(D⊤D)−1D⊤C⊤ is also positive semi-definite, which yields the
wanted result.

6.2. Proofs.

Proof of Lemma 2.1. Recall that A(S) = {Pβ = P0 + ∑
d−N
j=1 β jφj : β ∈ R

d−N}. From Lemma

6.1, we know the problem is identifiable if, and only if, ∆(Gµ(P))Φ is of full rank, i.e. if

det(Φ⊤∆(Gµ(P))⊤∆(Gµ(P))Φ) 6= 0.

Since the map g : β 7→ det(Φ⊤∆(Gµ(Pβ))
⊤∆(Gµ(Pβ))Φ) is analytic, g−1({0}) is either

equal to R
d−N or is a nowhere dense closed subset of R

d−N.

Proof of Theorem 3.2. If the problem is identifiable, then ker[∆(Q)Φ] = {0} and the map

F : A 7→
[

I − Φ
[

Φ⊤∆(A)⊤∆(A)Φ
]−1

Φ⊤∆(A)⊤∆(A)

]

p0

is continuously differentiable at A = Q. Since Q̂ converges in probability to Q, we get by
Cramer’s theorem

(14)
√

n( p̂ − p) =
√

n(F(Q̂)− F(Q)) =
√

n ∇FQ(Q̂ − Q) + oP(1),

where ∇FQ denotes the differential of F at Q. Direct calculation gives for H ∈ R
N×N ,

∇FQ(H) = lim
t→0

F(Q + tH)− F(Q)

t

=− Φ
[

Φ⊤∆(Q)⊤∆(Q)Φ
]−1

Φ⊤
[

∆(Q)⊤∆(H) + ∆(H)⊤∆(Q)
]

p.

Noticing that ∆(Q)p = 0 and ∆(H)p = −∆(P)h, we get

∇FQ(H) = Φ
[

Φ⊤∆(Q)⊤∆(Q)Φ
]−1

Φ⊤∆(Q)⊤∆(P)h.

We now use that
√

n(q̂ − q)
d−→ N (0, Σ) combined with (14) to complete the proof.
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[12] JÄÄSKINEN, V., XIONG, J., CORANDER, J., AND KOSKI, T. Sparse markov chains for sequence data. Scandi-

navian Journal of Statistics (2013).

[13] MACRAE, E. C. Estimation of time-varying Markov processes with aggregate data. Econometrica 45, 1 (1977),

183–198.

[14] PITTENGER, A. O. Time changes of Markov chains. Stochastic Process. Appl. 13, 2 (1982), 189–199.

[15] RABINER, L. A tutorial on hidden markov models and selected applications in speech recognition. Proceed-

ings of the IEEE 77, 2 (1989), 257–286.

[16] SMITH, W. L. Renewal theory and its ramifications. Journal of the Royal Statistical Society. Series B (Methodolog-

ical) (1958), 243–302.

[17] STEWART, W. J. Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling.

Princeton University Press, 2009.

FB IS WITH RISK METHODOLOGIES, GROUP FINANCIAL RISKS, GROUP RISK MANAGEMENT, UNICREDIT

S.P.A, 20154 MILANO. NOTE THAT THE VIEWS PRESENTED IN THIS PAPER ARE SOLELY THOSE OF THE AUTHOR

AND DO NOT NECESSARILY REPRESENT THOSE OF UNICREDIT SPA.

E-mail address: flavia.barsotti@unicredit.eu

YDC IS WITH LABORATOIRE DE MATHÉMATIQUES D’ORSAY, UNIVERSITÉ PARIS-SUD, FACULTÉ DES SCIENCES
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