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Numerical simulations of a fluid-particle

coupling

Nina Aguillon

Abstract We present numerical simulations of a model of coupling between a in-

viscid compressible fluid and a pointwise particle. The particle is seen as a moving

interface, through which interface conditions are prescribed. Key points are to im-

pose those conditions at the numerical level, and to deal with the coupling between

an ordinary and a partial differential equations.

1 The model

We consider the following coupling, introduced in [2], between a pointwise particle

of position h, and a fluid governed by the isothermal Euler equations, having density

ρ(t,x) and velocity u(t,x) at time t and point x:











∂tρ + ∂x(ρu) = 0,

∂t(ρu)+ ∂x

(

ρu2 + c2ρ
)

=−D(ρ ,ρ(u− h′(t)))δh(t)(x),

mh′′(t) = D(ρ(t,h(t)),ρ(u(t,h(t))− h′(t))).

(1)

Here, c is the speed of sound. The fluid and the particle interact with each other

through the drag force D, which applies only at the point where the particle is lo-

cated. If D has the same sign as u− h′, it formally tends to bring the velocities of

the fluid and the particle closer to each other. Indeed the third line of (1), which

is nothing else than Newton’s law applied to the particle, yields that the particle

accelerates if its velocity is smaller than the fluid’s velocity. This system is a gen-

eralization of the coupling between a particle and an inviscid fluid introduced and

studied in [15], [5] and [4] (see references therein). In [6], one can find another

model of coupling between a pointwise particle and a compressible inviscid fluid.
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2 Nina Aguillon

The model is different, and local in time existence of solution for small subsonic data

is proved, with tools develop in [8]. Let us start with two remarks about System (1).

We denote by H the Heaviside function. With the new unknown w := H(x− h(t)),
which verifies ∂tw−h′(t)∂xw = 0, we can write (1) as a non-conservative system of

conservation laws. It is not strictly hyperbolic: its Jacobian matrix has eigenvalues

u− c, u+ c and h′, and is not diagonalizable when h′ = u± c. Moreover, as shocks

appear in finite time in the solutions of the Euler equations, the right hand-sides

of (1) are not well defined. However, it is possible to reformulate the System (1) as

an interface problem. In the sequel we denote by (ρ−,u−) and (ρ+,u+) the traces of

the fluid on the left and on the right of the particle: e.g. ρ−(t) = limx→h(t)− ρ(t,x).
Interface conditions are imposed by saying that the traces must belong to a certain

set. In the spirit of [3], we call that set the germ and we denote it by GD(h
′).

Definition 1. We denote by Fα an antiderivative of the function ρ 7→ α2/ρ+c2ρ
|D(ρ ,α)| . The

germ GD(h
′) is the set of ((ρ−,u−),(ρ+,u+)) in (R+×R)2 such that

1. ρ−(u−− h′) = ρ+(u+− h′). We denote by α this quantity;

2. Either Fα(ρ−)−Fα(ρ+) = sign(α), or there exists θ ∈ [0,1] and ρ0 ≤ |α |
c

such

that

a. ρ− ≤ α
c
≤ ρ+ and Fα(ρ−)−Fα(ρ0) = θ and Fα(

c2

α2ρ0
)−Fα(ρ+) = (1−θ );

b. ρ+ ≤ −α
c

≤ ρ− and Fα(ρ+)−Fα(ρ0) = θ and Fα(
c2

α2ρ0
)−Fα(ρ−) = (1−θ );

3. If u− > h′ and u−− h′ ≤ c, then u+− h′ ≤ c;

4. If u+ < h′ and u+− h′ ≥−c, then u−− h′ ≥−c.

This relation are obtained thanks to a thickening of the particle, where the Heaviside

function H is replaced by one of its regularization Hε . It appears that the densities

and velocities at the entry and at the exit of the particle are always linked by the

relations of Definition 1, whatever the size ε of the particle is, and which regular-

ization is chosen (see [2] for more details). The “Riemann invariants” of the wave

associated to eigenvalue h′ of System (1) are α = ρ(u− h′) and Fα −Hε .

Definition 2. A triplet (ρ ,u,h) ∈ L∞(R+×R)×L∞(R+×R)×W
2,∞
loc (R+) is called

an entropy solution of the problem (1) if:

1. The pair of functions (ρ ,u) is a weak entropy solution of the isothermal Euler

equations on the sets {(t,x)∈R
∗
+×R : x> h(t)} and {(t,x)∈R

∗
+×R : x< h(t)};

2. For almost every t > 0, the traces around the particle exist and belong to the germ

at speed h′(t): ((ρ−(t),u−(t)),(ρ+(t),u+(t)) ∈ GD(h
′(t));

3. For almost every t > 0, the particle is driven by the ODE:

mh′′(t) = c2(ρ−(t)−ρ+(t))

(

1− (u−(t)− h′(t))(u+(t)− h′(t))
c2

)

. (2)

The following Proposition, which is proven by simple computations, justifies the

first point of Definition 1 and the reformulation (2) of the ODE.
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Proposition 1. A solution (ρ ,u) of the Euler equation on the sets {x < h} and {x >
h}, with total bounded variations, conserves the total mass

∫

R
ρdx if and only if for

almost every time,

ρ−(u−− h′) = ρ+(u+− h′).

In that case, it conserves the total impulsion
∫

R
ρudx+mh′ if and only if for almost

every time, the particle is driven by Equation (2).

Proof. The proof consists in cutting integrals on R as integrals on {x < h} and

{x > h}. For the total impulsion, we obtain that h must verify

mh′′(t) = h′(ρ+u+−ρ−u−)+ (ρ−u2
−+ c2ρ−)− (ρ+u2

++ c2ρ+).

When the mass is conserved, we express u± in terms of ρ± and α := ρ±(u±− h′)
to obtain (2).

The main result of [2] exhibits some conditions under which the Riemann problem

for a motionless particle is well-posed.

Theorem 1. Consider a particle having a constant velocity equal to some real v. If

the drag force D has the same sign as α := ρ(u− v), is an increasing function of α
and if |D| is a decreasing function of ρ , then for all ((ρL,uL),(ρR,uR)) in (R+×R)2,

there exists a unique self similar solution to the Riemann problem











∂tρ + ∂x(ρu) = 0,

∂t(ρu)+ ∂x

(

ρu2 + c2ρ
)

=−D(ρ ,α)δvt(x),

(ρ(0,x),u(0,x)) = (ρL,uL)1x<0 +(ρR,uR)1x>0

(3)

The main difficulty is the non-hyperbolicity of the system. The Riemann problem

has a more complicated structure than in the strictly hyperbolic case, and in par-

ticular uniqueness can be lost (see for example [14] and [11]). This is the case for

the drag force D(ρ ,α) = ρ illustrated below, which violates the hypothesis of Theo-

rem 1. Remark that this source term is similar to the source term in the shallow water

equations with discontinuous topography. The Riemann problem (3) with ρL = 0.7,
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Fig. 1 Left : solutions at time T = 0.15 given by the Godunov scheme for different regularizations

of the Dirac measure. Right: the three solutions of the Riemann problem.
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ρR = 5, qL = 5, qR = 9, c = 2 and λ = 1.5 admits three solutions, depicted on the

right of Figure 1. As in [7], this coexistence of solutions persists at the numerical

level. We can see on the left of Figure 1 two solutions selected by the Godunov

scheme when replacing the Dirac measure by

x 7→ exp((x/η − ξ )2)/(η
√

2),

with η = 0.005 and ξ =−0.5 or ξ = 0.5. We used a splitting between the fluid part

and the regularized source term. The subsonic and supersonic solutions are obtained

for large range of parameter ξ , with a very quick transition between the two passing

through the mixed solution.

2 Finite volume schemes for the coupled system

In the sequel, we adopt classical notation for finite volume schemes. We denote by

q = ρu the momentum of the fluid. In particular, Un
j = (ρn

j ,q
n
j) is an approximation

of the solution at the n-th iteration in time and in the j-th cell, and g is the numerical

flux. Consider the case where the particle has a fixed constant velocity v, and denote

by jn
0 the cell where the particle lies at the n-th iteration in time. The three points

scheme














U
n+1/2
j =Un

j − ∆ t
∆x
(g(Un

j ,U
n
j+1)− g(Un

j−1,U
n
j )),

Un+1
jn0

=U
n+1/2

jn0
− ∆ t

∆x

(

0

D(ρ
n+1/2

jn0
,ρ

n+1/2
j0

(u
n+1/2

jn0
− v))

)

,

corresponds to a splitting scheme between the evolution of the fluid (first line) and

the influence of the particle (second line). This scheme does not converge toward

the correct solution, even in the simplest case where D(ρ ,ρ(u− h′)) = λ ρ(u−
h′) (which fulfills the hypothesis of Theorem 1) and the initial data belongs to the

germ. It can be seen on Figure 2. This failure to capture a small scale phenomenon
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Fig. 2 Solution at time T = 0.04 given by the fluid-particle splitting.
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recalls the difficulties encountered when approximating non-classical shocks (see

for example [13]) or non-conservative systems (see for example [9] and [16]). It

illustrates that the reformulation as an interface problem of system (1) is necessary.

2.1 Schemes for a motionless particle

When the particle is motionless, we can easily implement schemes based on the

exact resolution of the Riemann problem, which is constructed in the proof of The-

orem 1. Since the particle is not moving, the particle is a fixed interface that we place

between cells numbered 0 and 1. We use a ghost-fluid approach (see [10] and [1])

to write the scheme







Un+1
j =Un

j − ∆ t
∆x
(g(Un

j ,U
n
j+1)− g(Un

j−1,U
n
j )) for j /∈ {0,1},

Un+1
0 =Un

0 − ∆ t
∆x
(g(Un

0 ,U
n
part,−)− g(Un

−1,U
n
0 )) for j = 0,

Un+1
1 =Un

1 − ∆ t
∆x
(g(Un

1 ,U
n
2 )− g(Un

part,+,U
n
1 )) for j = 1.

(4)

Here, Un
part,− = (ρn

part,−,q
n
part,−) and Un

part,+ = (ρn
part,+,q

n
part,+) are the values of the

density and the momentum of the fluid on lines x = 0− and x = 0+ of the unique

self similar solution to (3), with

ρL = ρn
0 , uL =

qn
0

ρn
0

, ρR = ρn
1 and uR =

qn
1

ρn
1

.

Remark that when g is the Godunov flux, Un+1
0 and Un+1

1 are the averages of the

exact solution with particle given by Theorem 1. In other words, it is the original

Godunov scheme for the fluid/particle coupling. If we start with a Riemann problem

belonging to GD(0), i.e. verifying the relations of Defintion 1, we obtain for all n,

Un
part,− =UL and Un

part,+ =UR.

Adopting the vocabulary of [12], it follows that the scheme (4) is well balanced

with respect to the whole germ GD(0). We used this scheme to simulate a clogged

organ pipe. The pipe is initially filled with a fluid at rest having density 5kg/m, and

we take c = 1m/s. At time t > 0, a constant flow of 3kg/s is imposed on the left

entry of the pipe, while the gas exits freely on the right. The pipe is blocked in its

middle by a porous particle that we model using the drag force D(ρ ,ρu) = ρu. At

time 0.041s, the shock emitted by the left boundary condition hits the particle. The

Riemann problem with the particle develops one shock on each side of the particle.

Roughly speaking, most of the air is stuck in front of the particle, causing an eleva-

tion of its density and a decrease of its velocity. A small part of the fluid manages

to pass through the particle, and has a large velocity on the exit of the particle by

conservation of momentum through the particle. The shock on the left of the particle

interacts with the left boundary at time 0.114s, creating another shock that meets the

particle at time 0.153s. Asymptotically, the fluid has constant momentum all over
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Fig. 3 Two successive interactions between shocks and particle in a clogged organ pipe

the pipe, with high density and low velocity before the particle, and low density and

high velocity afterwards. Shapes of the solution after the first two interactions of a

shock with the particle are depicted on Figure 3. This simulation illustrates the con-

vergence of the ghost fluid scheme (4) on Riemann problem. We used the Godunov

numerical flux but the results are similar with the Rusanov flux.

2.2 Dealing with a moving particle

We now focus on the case where the particle is free to move under the influence of

the fluid. We saw in the introduction that it was necessary to treat the particle as an

interface. Therefore, the particle must end up at an interface between two cells at

the end of each time iteration. We could have used a mesh tracking the particle, but

with in mind more complex applications (with numerous particles for example) we

decided to use a fixed mesh and a Glimm’s approach to replace the particle. At each

time iteration, a real number xr is uniformly picked up in [0,∆x]. In the j-th cell, the

fluid is updated by the exact value of the solution at time ∆ t and at point xr of the

Euler equation with initial data

U0(x) =Un
j−11x<0 +Un

j 10<x<∆x +Un
j+11∆x<x.

Under the classical CFL condition ∆ t < ∆x
2maxx |u(x)|+c

, the solution consists in the

juxtaposition of two Riemann problems. When j corresponds to a neighbor cell of

the particle, one of these Riemann problems takes the particle into account. The

particle’s position is updated in accordance to xr. If the particle it at the interface

jn
0 + 1/2 at time n, and has speed vn, then at time n+ 1 we placed it:

1. at interface jn
0 + 3/2 if vn > 0 and xr < vn∆ t, in which case jn+1

0 = jn
0 + 1;

2. at interface jn
0 − 1/2 if vn < 0 and xr > ∆x+ vn∆ t, in which case jn+1

0 = jn
0 − 1;

3. at interface jn
0 + 1/2 otherwise, in which case jn+1

0 = jn
0 ;
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Eventually, we update the particle’s velocity using (2) and the numerical traces.

The following numerical simulation is inspired by [6]. A marble falls into a cylin-

der filled with a compressible inviscid gas, which is initially at rest and of density

1/225kg/m. Both the gas and the marble are subject to gravity and friction. The

complete system writes











∂tρ + ∂x(ρu) = 0

∂t(ρu)+ ∂x(ρu2 + c2ρ) =−λ (u− h′)δh(t)(x)−ρg−νF(ρ ,u)

mh′′(t) = λ (u(t,h(t))− h′(t))−mg−mνS(h
′(t))

where we take as in [6], νS(h
′) = 10−2h′, νF(ρ ,u) = 10−8ρu|u|, c = 15m/s, m =

0.004kg and g = 9.81m/s2. We took λ = 5m2 · kg/s. The first term of the ODE

Fig. 4 Left: velocity of the particle. Each discontinuity on its acceleration is caused by a shock

hitting the marble. Right: density of the fluid on the tube through time. We can see the shock with

decreasing strength trapped between the marble and the bottom of the tube.

should be understood as in Equation (2). At first, the marble compresses the gas

beneath it, creating a shock, and its velocity decreases due to friction. At some time,

the shock reflects on the closed bottom of the tube, and then hits the marble, creating

a discontinuity in its acceleration and accelerating it. This can be seen on Figure 4,

on the left. When the shock interacts with the marble, it is somehow split in two:

a part is reflected downward and a part passes through the marble and exits freely

on the top end of the tube. Therefore the shock trapped between the marble and

the bottom of the tube is of decreasing strength, as it can be seen on the plot of the

density on the right of Figure 4. The particle being very light, it is very sensible to the

fluid’s velocity, which is positive when the first shocks are moving upward. It causes

the marble to climb back up for a while, then the gravity becomes predominant

and the marble falls down again. The results are qualitatively the same as in [6].

However, they do not match perfectly, because the modeling is quite different. In

particular in [6], the friction between the fluid and the marble is taken into account

via a source term νI = 5
(

h′− u−+u+
2

)2
, while it is modeled directly through the

interface conditions of Definition 1 in the present work.
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Perspectives

Let us start with some remarks on System (1), for which we proved in [2] existence

and uniqueness to the Riemann problem when the particle is motionless, and give in

this paper some qualitative properties and illustrative numerical simulations. Further

theoretical study of System (1) seems difficult, as we have to deal with a system

which is neither conservative nor hyperbolic. Even the extension of Theorem 1 to

a freely moving particle is tricky, because the solution is not self-similar, and the

traces around the particle constantly change. It is not difficult to extend the result

to other pressure law, at least to p(ρ) = aργ , with 1 < γ ≤ 3, a > 0 and where no

vacuum appears. Therefore, this model could be used to model the influence of an

obstacle into the shallow water equation. Similarly, the extension to the full Euler

equations is interesting, and could take into account exchange of heat between the

fluid and the particle.
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