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ABSTRACT 

 

As a complement to conventional sensors, Distributed 

Optical Fiber Sensors (DOFS) have gradually played a 

prominent role in Structural Health Monitoring (SHM) for 

the last decade. The distributed Brillouin sensor enables to 

measure strain along kilometers of cable with a spatial 

resolution of 1 meter. The challenge is to have a centimeter 

spatial resolution to improve structure defaults detection and 

localization. A numerical model, based on the sensor physic, 

is first proposed in order to study Brillouin spectra distortion 

depending on strain distribution within spatial resolution. 

Then, based on nonnegative least squares (NNLS) problem, 

Brillouin spectra are decomposed into several elementary 

spectra. The estimated central frequencies and maxima 

permit to estimate a centimeter frequency distribution within 

the spatial resolution. It has been verified with numerical 

and experimental data: that method enables to enhance the 

accuracy and spatial resolution of the sensor from meter to 

centimeter. 

 

Index Terms— NonNegative Matrix Factorization, 

NonNegative Least Square (NNLS) problem, spatial 

resolution enhancement, B-OTDA, Optical Backscatter 

Reflectometer, Structural Health Monitoring 

 

1. INTRODUCTION 

 

Durability of civil infrastructures is a crucial issue that can 

have major economical, social and environmental impacts. 

Infrastructure owners must face difficult challenges, such as 

optimization of maintenance and extension of service life. In 

this context, Structural Health Monitoring (SHM) is 

considered as a key procedure of industrial process, because 

it enables a real-time diagnosis of the state of wear/damage 

of an infrastructure. In complementary to traditional sensors, 

distributed fiber optic sensors (DOFS) are an attractive tool 

for SHM [1]. The distributed Brillouin sensor (DBS), in 

comparison with other fiber optic sensors, has the advantage 

of combining distributed temperature and strain 

measurements over few meters to kilometers. 

Several sensors are based on the Brillouin spectrum 

dependence on the temperature and strain into the optical 

fiber [2]. The article will focus on the functioning of an 

industrialized Brillouin Optical Time Domain Analyzer (B-

OTDA). Estimation of strain into the optical fiber is based 

on the determination of Brillouin frequency, defined as the 

abscissa of the maximum of Brillouin spectrum and 

calculated by fitting Lorentzian or pseudo-Voigt curves [3].  

The Brillouin spectrum is measured for a spatial base 

integration of one meter of the optical fiber and a sampling 

of 40cm. Several studies are summarized in [4], based on 

optic physic theory and on signal processing schemes [7]. 

The last method enables to quantify some strain defects on 

optical fiber but there is a lake of accuracy on its location. 

However, for our application, the determination of a precise 

strain profile is a prior. For that purpose, our article presents 

a new signal processing approach based on Nonnegative 

unmixing methodology. 

When local and substantial loads are applied on the optical 

fiber, several studies [5][6] showed that Brillouin spectrum 

is distorted. Peak frequency measurement obtained by the 

curves fitting technique gives only the global strain 

measurement. Indeed, in that case, Brillouin spectrum is 

asymmetric and broadening and can also have subpeaks. 

Information about local strain can be extracted from it. The 

aim of the article is to improve spatial resolution and strain 

accuracy. 

The proposed article introduces a numerical model to model 

the industrialized B-OTDA device. It enables to study 

Brillouin spectrum distortion depending on strain 

distribution types. An unmixing methodology, based on 

NonNegative Least Square (NNLS) algorithm, is proposed 

to unmix Brillouin spectra into several elementary spectra. 

Their frequencies and maxima are linked with frequency 

distribution within the spatial resolution. A methodology 

enables to retrieve a precise Brillouin frequency profile 

depending on distance. This methodology is tested by 

numerical and experimental data. 

 

2. BRILLOUIN SPECTRUM ACQUISITION 

 

B-OTDA device launches two counter propagative 

lightwaves into an optical fiber. An energy transfer, called 

Brillouin gain, occurs when the two encounter, which is 

amplified by the sensing medium. One of the lightwaves has 

a fixed frequency, whereas the other is frequency-

modulated.  
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Figure 1: Representation of the spatial redundancy into the 

optical fiber. 

The maximum energy transfer occurs when the difference 

between the two frequencies is exactly equal to the Brillouin 

frequency νB in the optical fiber, which is linearly dependent 

on the temperature and strain into the optical fiber [2]. The 

distributed character of such a sensor is achieved by time-

resolved measurements. The spatial resolution w is defined 

by the length of lightwave impulsion; a 10ns impulsion 

gives a 1m spatial resolution. The impulsion is moving into 

the optical fiber; therefore we have several measurements 

depending on the length of the sensing medium as seen in 

Figure 1. With those parameters, it can interrogate 

kilometers of fiber. z is the center of the spatial resolution. 

All along the sensing medium, the spatial resolution is 

shifted by Δz to another zone of the optical fiber. So, there is 

spatial redundancy between several spectra. z is defined as 

z=z0+k.Δz in (3) with k=1,…,Nd. Nd is the number of 

measured spectra into the optical fiber and is calculated as 

Nd=(L-w)/ Δz with L, the sensing length of the optical fiber. 

For each z, the Brillouin gain is acquired depending on the 

frequency difference of the two lightwaves, v. Therefore, the 

raw data of the device is a matrix G(v,z). 

Estimation of strain into the optical fiber is based on the 

determination of Brillouin frequency, defined as the abscissa 

of the maximum of Brillouin spectrum and calculated by 

fitting Lorentzian or pseudo-Voigt curves [3]. The 

relationship of Brillouin frequency shift between two states 

(a reference state R and a stressed state N) of the sensing 

medium, with the strain Δİ and temperature ΔT changes are 

expressed as [2]: 

 

)()()()( zCzTCzvzv TBRBA    (1) 

 

where CT and Cε are the temperature and strain 
proportionally coefficients. νBR(z) is the Brillouin frequency 

at the reference state depending on distance z. This article is 

focused on strain changes into the optical fiber, therefore, 

ΔT is considered negligible. 

 

3. MODEL DESCRIPTION 

 

The present work focuses on the formulation of a model 

which can fit the industrialized B-OTDA behavior. F. Ravet 

[6] presented a model taking into account optical parameters 

which are involved into the experimental device. The 

presented model is related to the industrialized device. In 

every part of the optical fiber, a natural Brillouin spectrum 

exists SN(v). It has a Lorentzian shape [3] and is centered on 

the local Brillouin frequency, noted vB(x). Several studies 

showed that optical parameters disturbed natural Brillouin 

spectrum shape [3]. In other words, the device has a transfer 

function f(v), which modifies Brillouin spectrum shape. The 

convolution between SN(v) and the transfer function of the 

device is an elementary Brillouin spectrum, Se (v) expressed 

as: 
 

)()()( vfvSvS Ne   (2) 

 

For a fixed z, the numerical Brillouin spectrum G(v,z), 

within the spatial resolution, w, is modeled as the integral of 

all the elementary spectra Se(v) centered in the local 

Brillouin frequencies :  
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where x is the curvilinear abscissa of the fiber. The problem 

can be reformulated as the convolution of Se(v) with the sum 

of Dirac function centered in vB(x). Se(v), depending on 

optical parameters and the optical fiber properties used, is 

found experimentally. Indeed, if the frequency distribution 

is uniform within w then the shape of ),(
~

zvG  is equal to the 

shape of Se(v). 

 

4. NUMERICAL SPECTRUM DISTORTION 

DEPENDING ON STRAIN DISTRIBUTION 

 

In experimental conditions, studies [5][6] showed that strain 

variation are smoothed (and thus Brillouin frequencies 

profile) within the spatial resolution w. A very local strain 

variation within w leads to a non uniform frequency 

distribution and a Brillouin spectrum distortion: it is 

broadening and asymmetric. 

Thanks to the model, the proposed numerical frequency 

profile shown in Figure 2.a. generates numerical Brillouin 

matrix shown in Figure 2.b. It presents distorted spectra, 

between z= 4m and z= 6m, where the frequency profile 

presents high variations within w. The frequency is evolving 

from 10.93 GHz to 10.71 GHz in less than 2m. As observed 

in Figure 2.b., at z= 5.4m, the spectrum is highly distorted. 

Splitting w into several segments, considering a segment įx 

among w, we suppose that vB(x) is constant within įx and 

equal to vBi. N is the number of segments as N=w/įx. This 

remains to discrete the integral in Eq. 3. As several 

segments can have the same vBi, we can rewrite it as: 
                                (4) 

 

where,           is the spectral component contained in 

the distorted spectrum, centered in vBj, P is their number. 

The more the spectrum is broadening, the more P increases. 

For one spectral component m, am is the amplitude of the 

spectral component. It can be linked to the number of 

segments into w, noted     , with the same vBm:  
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a. b.  

Figure 2: a. Smoothed frequency profile depending on 

Brillouin frequency (GHz) and distance (m). b. 

Corresponding  numerical matrix G(v,z) depending on 

frequency (GHz) and distance (m). The color scale is 

relative to the gain. 
                  (5) 

     is considered as a distance of w where the optical fiber is 

similarly stressed. However, the spatial information of the 

layout of the strain is not conserved. Therefore, the goal of 

the article is to estimate characteristics of the spectral 

components: (aj,vBj)z; and then to estimate the frequency 

profile with a better spatial resolution. 

 

5. NONNEGATIVE DECOMPOSITION OF 

BRILLOUIN SPECTRUM 

 

The aim of the method is to find maxima and frequencies 

associated in order to find the frequency distribution within 

the spatial resolution. Several unmixing techniques exist but 

one property of the Brillouin spectrum is its positivity. 

Therefore methods like nonnegative matching pursuit [9], 

Nonnegative Matrix Factorization (NMF) [10], and Non 

Negative Least Square (NNLS) [11] can be used. The first 

two methods need a stopping criterion and the uniqueness of 

solutions has to be discussed. NMF estimates both mixing 

matrix and sources, while we need to estimate only the 

mixing matrix. NNLS is solved iteratively, and as shown by 

[11], convergence is respected. In our application, as proved 

in last paragraph, the form of the sources is known, which is 

the elementary Brillouin spectrum Se(v). 

Thanks to NNLS, the problem is formulated as: given a 

matrix E MNR  , the set of observed values given by g
NR , find a non negative vector a MR to minimize: 

 
2

2
gEa      (6) 

 

where g is a column of the measured Brillouin matrix G(v,z) 

at a fixed distance z, the matrix E is a dictionary constructed 

by shifted versions of the elementary spectrum Se (v) and a 

represents the corresponding weight vector.   

The m
th

 column of the matrix E is: 

     vmvvSmvE e  *),(  (7) 

the Δv is the frequency shift to be chosen, N is related to the 

frequency sampling of the B-OTDA device and M 

represents  the number of shifted versions of the elementary 

spectrum. It means that we defined M possible spectral 

components. The smaller the frequency shift Δv, the more 

accurate the estimation of a spectrum will be.  

The chosen algorithm enables to estimate the vector a 

depending on the dictionary E. It optimizes the number of 

non null values P among the M possibilities. As we work on 

normalized spectra, if the strain is uniform within w, P will 

be equal to 1 and a=1. Then the more the spectrum is 

distorted, the more P increases. 

It is repeated for each k
th

 measured Brillouin spectrum. 

Therefore, the result is a matrix A MxNdR  containing the 

weight vectors a for all the distances z=z0+k.Δz. 

 

6. ESTIMATION OF A FREQUENCY PROFILE 

 

Here, a method is proposed to organize the local frequencies 

within w. The first main key is to use the spatial redundancy 

property. Several spectra are linked with the same portion of 

the optical fiber as shown in Figure 1. Therefore, for three 

adjacent positions zi-1=z0+(i-1).Δz, zi=z0+i.Δz and 

zi+1=z0+(i+1).Δz, the means of the frequencies of each 

positions are compared, noted    . It enables to find a global 

behavior of the frequency distribution. From those 

behaviors, we defined local variation within w as shown in 

Tab. 1.  

Taking three adjacent spectra G(v,zi-1), G(v, zi) and G(v,zi+1), 

the NNLS algorithm estimate amplitudes and frequencies of 

the spectral components as shown in Fig. 3.a-c. The 

comparison of      in this example leads to the fourth 

scenario. It means that there is a local maximum in wi. The 

hypothesis is made that the local frequencies increase within 

wi-1; respectively, decrease within wi+1. Within wi, the 

maximum of vBi is put on the center and the left frequencies 

are order depending on the adjacent tendencies. This layout 

is shown in Fig. 3.d. This process is repeated on each w. As 

there is spatial redundancy, for one fixed segment of w, 

superposition of several frequencies may appear. Thus, the 

mean of those frequencies contained in a sliding window 

noted Δx is calculated. Therefore, we estimate a new 

Brillouin frequency profile depending on the new spatial 

sampling Δx as shown in Fig. 3.e. 

 

Cases Comparison Global Local 

1                     - 

2                     - 

3                     Maxima 

4                    

5                     Minima 

6                    
Tab. 1. Six scenarii defining the local tendencies of the 

frequencies contained into three adjacent integration bases: 

wi-1, wi, and wi+1. 
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Figure 3: a-c: Result of the estimation of the characteristics 

of three adjacent spectra measured in zi-1, zi, and zi+1. d. 

Layout of the frequencies within the wi. e. Estimation of the 

Brillouin frequencies profile depending on the new spatial 

sampling Δx. 

 

7. APPLICATION ON NUMERICAL DATA 

 

The proposed methodology has been tested on the numerical 

matrix shown in Figure 2.b. A sources dictionary E is 

constructed with a pseudo-Voigt elementary Brillouin 

spectrum Se(v) shifted by Δv= 10Hz, shown in Figure 4.a. 

For one spectrum, the NNLS algorithm finds the 

corresponding weight vector of each elementary spectrum as 

shown in Figure 4.b. for the example of the Brillouin 

spectrum acquired in z= 4.4m. It is obvious that P is 

maximum where the spectrum is the more distorted. For the 

Brillouin spectra matrix G(v,z), a corresponding weight 

matrix A shown in Figure 4.c.  

The estimated weights are coherent with the input frequency 

profile (Figure 2.a.): it found the right frequency where the 

frequency distribution is constant within w; the maximum 

frequency found is 10.93 GHz and the minimum is 10.71 

GHz. The resulting estimated frequency profile using the 

method proposed in section 6 is plotted in Figure 4.d with a 

chosen spatial sampling Δx=1cm.  

It is compared with a profile estimated by an industrial B-

OTDA device (crossed continuous line) and the input profile 

shown in Figure 2.b. Our estimation and the input are mixed 

up, whereas the bias is higher for B-OTDA profile where 

strain variations are important within w. If Δx is chosen 

greater, some strain variations won’t be detected and 
localized. To authors’ knowledge, it is the first time that a 
profile is given with such frequency accuracy and spatial 

resolution, from Brillouin spectra. Previous work [7] 

enables to detect and estimate some local strain but couldn’t 
give such precise profile. 

a. b.   

c. d.   

Figure 4: a. Dictionary of sources centered in local Brillouin 

frequencies in GHz. b. A distorted Brillouin spectrum 

(continuous line) and the associated estimated elementary 

spectra (dotted lines) for z= 4.4m. c. Estimated weights 

matrix. d. Estimated profile (blue circle line) with Δx=1cm, 

reference profile (red continuous line) and measured by B-

OTDA device (blue crossed line). 

 

8. APPLICATION ON EXPERIMENTAL DATA 

 

A controlled laboratory experiment has been carried out in 

order to validate our methodology. In a controlled 

temperature atmosphere, an optical fiber cable has been 

installed. The experimental bench enables to pull the cable 

constantly between two fixed points (10.5m and 14m). For 

each device, two measurements are made: when the cable is 

relaxed; then when it is pulled. 

An Optical Backscatter Reflectometer (OBR) was used to 

measure the relative frequency shift between the two states 

of the cable with a spatial resolution of 1 centimeter [8]. 

Thanks to (1), the calculated strain, considered as the strain 

reference, is shown in Figure 5.a. and Figure 5.b. as the 

solid red curve. We can observe two important strain 

variations, around 2000µm/m within few centimeters where 

the cable was fixed. An industrialized B-OTDA device was 

used to measure two Brillouin spectra matrices for each 

state of the cable. The parameters of this device are: w= 1m 

and Δz= 40cm. From Brillouin spectra, the device estimates 

Brillouin frequency profiles. The strain is calculated thanks 

to (1) and plotted (stars) in Figure 4.a. Comparing with the 

reference strain, where the strain variations are important 

within w, the strain estimated by the B-OTDA is not enough 

precise.  

As strain variations are important, Brillouin spectra G(v,z1) 

and G(v,z2) are distorted due to integration of several shifted 

elementary spectra within w. First of all, the elementary 

spectrum Se(v) is estimated where the strain distribution into 

the optical fiber is constant.  
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a.  

b.  

c.  

Figure 5: OBR strain measurement (red continuous line) 

and: a. B-OTDA interpolated strain measurement (blue 

points): w=1m, Δz= 40cm. b. Estimated strain profile by the 

proposed method (dotted line) with Δx=1cm. c. Relative 

errors in percents between OBR:  and interpolated B-OTDA 

strain profile (dotted line); and estimated one (continuous 

line) 

 

Then, the presented algorithm decomposes each Brillouin 

spectrum using a dictionary matrix E. To construct this 

matrix, the frequency shift chosen is Δv=1MHz, and the new 

spatial sampling chosen is Δx=1cm. Thanks to our 

methodology, two frequency profiles are estimated. Using 

relation (1), the strain can be estimated and shown in Figure 

5.b. As observed, the spatial resolution has been enhanced 

from 1m to 1cm.  

The relative errors are calculated as L2 norm between a 

strain reference: the OBR strain profile; and the two 

methodologies: the device strain profile and our estimated 

profile. They are plotted in Figure 5.c. The device strain 

profile has been interpolated in the purpose of comparison. 

It enables to observe that a second crucial point has been 

verified: the strain accuracy of the sensor has been improved 

where the strain distribution is not uniform within w. Thanks 

to that experiment, the model has been verified and the 

methodology validated.  

 

     9. CONCLUSION 

 

The proposed article introduces a direct model of a B-

OTDA device in order to study the Brillouin spectrum 

distortion when the strain distribution within the spatial 

resolution is non uniform. The proposed unmixing 

methodology enables to estimate amplitudes and local 

Brillouin frequencies of spectral components contained in 

distorted spectra. This approach is based on NNLS 

algorithm. A simple but novelty approach in this domain is 

the organization of estimated Brillouin local frequencies 

within the spatial resolution. This approach enables to 

improve the accuracy of the sensor and its spatial resolution. 

Simulated and experimental data has validated this 

methodology. However, it merits further investigations in 

order to decrease estimation errors. In further works, others 

method will be tested as an inversion approach based on the 

proposed numerical model of the device. 
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