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Introduction

Suppose we have at hand a sample of independent and identically distributed (i.i.d.) random variables from some unknown density s with respect to some dominating measure µ and that we want to estimate s from the sample.

Hundreds of papers have been published about the solution of this estimation problem with as little prior information on s as possible. A widely used strategy consists in starting from a family of preliminary estimators (for instance kernel or histogram estimators) with some varying smoothing parameter (the bandwidth or the partition) and to select one candidate using the sample. Nevertheless, since the 30's [START_REF] Larson | The shrinkage of the coefficient of multiple correlation[END_REF] it is known that building estimators and evaluating their quality with the same data yields an overoptimistic result. Many solutions exist to overcome this problem. One natural procedure -called hold-out -consists in splitting the sample into two subsamples, building a family of estimators using the first subsample (which we shall call the training sample) and proceeding the selection using the second subsample (which we shall call the validation sample).

Concerning this selection part, Birgé (2006, Section 9) proposed a procedure -called T-hold-out in what follows -based on robust tests between the preliminary estimators. It can be derived from his construction of T-estimators 1 which are oriented to model selection. The definition of these estimators is introduced in the same paper but relies on old ideas arising from Le Cam (1973); [START_REF] Birgé | Approximation dans les espaces métriques et theorie de l'estimation[END_REF]Birgé ( , 1984b,a),a). Indeed, conditionally to the training sample, all the estimators are deterministic so that the models are reduced to points and the problem amounts to select one point from the validation sample.

The purpose of this paper is to provide an efficient algorithm that implements the T-holdout, made available in our R-package called Density.T.HoldOut. Our motivations are twofold. First, when we started this research in the summer of 2012 there was no practical application of T-estimation2 and we were very surprised to observe that most of the authors -including Birgé himself -considered this theory only as a theoretical tool, because of its supposed "too high computational complexity" as pointed out in [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF], Birgé (2007, p.45) and Baraud and Birgé (2009, p.241). Second, we thought it would be of interest to compare empirically T-estimation with classical resampling and penalization procedures since they are motivated by risk estimation, whereas T-estimators are based on robust tests and enjoy therefore some robustness properties. For this purpose we considered several finite collections of preliminary estimators. Histogram or kernel collections -leading to some well-known estimation problems: number of bin selection, partition selection, bandwidth selection, but also more complex collections mixing histograms and kernel estimators potentially completed with some parametric ones3 . Hold-out is not specific to the density framework. Indeed, in all cases where we have at hand two independent random samples X t and X v , one can build a collection of estimators using the training sample X t and proceed to the selection with the validation sample X v . In density estimation, holdout has been investigated theoretically for projection estimators (Arlot and Lerasle, 2012, Section 7.1) and kernel density estimates [START_REF] Devroye | Combinatorial Methods in Density Estimation[END_REF] among other examples. Searching for the best linear (or convex) combination of the preliminary estimators in the validation step leads to the linear (or convex) aggregation problem (see [START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF]). Moreover, theoretical properties of the hold-out have also been studied in classification [START_REF] Bartlett | Model selection and error estimation[END_REF][START_REF] Blanchard | Discussion: Local rademacher complexities and oracle inequalities in risk minimization[END_REF] and in regression [START_REF] Lugosi | Adaptive model selection using empirical complexities[END_REF][START_REF] Juditsky | Functional aggregation for nonparametric estimation[END_REF][START_REF] Nemirovski | Topics in Non-Parametric Statistics[END_REF][START_REF] Wegkamp | Model selection in nonparametric regression[END_REF], among other references.

Framework

Let us consider a sample X = {X 1 , . . . , X n } of i.i.d. random variables X i with values in the measured space (X , W, µ). We suppose that the distribution P s of X i admits a density s with respect to µ and aim at estimating s. We turn the set S of all probability densities with respect to µ into a metric space using the Hellinger distance h(t, u) = H(P t , P u ) where

H 2 (P, Q) = 1 2 √ dP -dQ 2 ,
dP and dQ being the densities of P and Q with respect to any dominating measure. Although Birgé's procedure relies on this distance, we shall also consider L q -distances -derived from L qnorms denoted . q -for q = 1, 2.

The quality of an approximation t ∈ S of the function s is measured by ℓ(t, s), where ℓ is a loss function (typically some power of a distance). The risk of an estimator s = s(X) of the function s is defined through this loss function by R s (s, ℓ) := E s [ℓ(s, s)], where E s denotes the expectation when s obtains. The Hellinger risk R s (s, h 2 ) comes from the loss ℓ = h 2 . The loss can also be defined as ℓ(t, s) = γ(t, X) -γ(s, X), where γ : S × X → [0, ∞) is a contrast function for which s appears as a minimizer of E s [γ(t, X)] when t ∈ S (Birgé and Massart, 1993, Definition 1). In this context, the L 2 -loss (resp. the Kullback-Leibler loss) is defined via the contrast function γ(t, x) = t 2 2 -2t(x) (resp. γ(t, x) = -log(t(x))) for any t ∈ S, x ∈ X .

About the Hold-Out

Formally, the hold-out (HO) is a two-steps estimation procedure which relies on a split of X into two non-empty complementary subsamples, X t and X v .

• Step one: Using the training sample X t , we build a finite set S = {ŝ m [X t ], m ∈ M} of preliminary estimators.

•

Step two: The validation sample X v is dedicated to the selection of one point m in M.

The final estimator might be either ŝ m[X t ] or ŝ m [X] depending on the authors. The goal is generally to select m ∈ M such that

R s (ŝ m[X t ], ℓ) ∼ inf m∈M R s (ŝ m [X t ], ℓ) or R s (ŝ m[X], ℓ) ∼ inf m∈M R s (ŝ m [X], ℓ),
where ℓ is the relevant loss function and the symbol ∼ means that quantities on both sides are of the same order.

Usually, after performing

Step one, one defines some random criterion crit(m) for each m and selects m ∈ M that minimizes crit(m). In the classical hold-out, this criterion is an estimation of the risk, made using the empirical contrast based on the validation sample:

crit HO (m, X t , X v ) = 1 |X v | X i ∈Xv γ(ŝ m [X t ], X i ),
where |A| denotes the cardinality of the set A. In this context one naturally selects the estimator with the smallest estimated risk,

m ∈ arg min m∈M crit HO (m, X t , X v ).
We shall note in what follows mLS and mKL for the estimators selected by the classical procedure using the contrast functions γ(t, x) = t 2 2 -2t(x) and γ(t, x) = -log(t(x)) respectively. We call least-squares hold-out (LSHO) and Kullback-Leibler hold-out (KLHO) the corresponding HO procedures. Few theoretical results exist concerning this classical HO in the density framework. Nevertheless, considering projection estimators together with the least-squares contrast, [START_REF] Arlot | V-fold cross-validation and V-fold penalization in least-squares density estimation[END_REF] have shown that the LSHO criterion can be written as a penalization criterion with some resampling-based penalty. They also proved an oracle inequality and provided variances computations for this criterion (see Theorem 3 and Appendix I in the supplementary material in [START_REF] Arlot | V-fold cross-validation and V-fold penalization in least-squares density estimation[END_REF]).

Overview of the paper

In practice the selection problem of Step two amounts to select one estimator in a given collection of |M| initial candidates. While the classical HO relies on the optimization of an empirical contrast function and thus requires at most |M| computations, T-estimation involves pairwise comparisons based on robust tests between probability balls leading to a quadratic number O(|M| 2 ) of tests.

The first goal of this paper is to provide an algorithm in a general framework of T-estimation which allows an efficient and exact implementation of T-estimation in the HO context. This algorithm breaks this quadratic bound. The second goal is to compare the risk performance of this T-hold-out for several losses and a large set of densities. We shall proceed a comparison against two types of procedures: those which select one point in a given family using the validation sample and those which estimate the density from the full sample. Moreover, we provide a faster, but approximate, version of this exact algorithm. We shall study both algorithms from a computational complexity point-of-view as well as the risk performances of the resulting estimators.

The paper is organized as follows. In Section 2 we recall the definition of the T-hold-out in a general framework. We introduce in Section 3 our exact and efficient algorithm which implements exact T-estimation and one approximate version derived from it. Section 4 presents the simulation protocol of our empirical study together with a short description of the R package Density.T.HoldOut. Section 5 is dedicated to the study of the quality of the exact T-hold-out in terms of risk. We also provide in this section comparisons with other selection methods. Section 6 is devoted to the empirical study of the complexity of the exact algorithm. Section 7 provides a comparison of exact and approximate algorithms both in terms of quality of estimation and complexity.

T-Hold-Out

Let us recall the T-hold-out procedure in a general framework where robust tests exist. We have at hand two independent samples, X t and X v , and we want to estimate some target s belonging to the metric space (S, d). Suppose that a family S = {ŝ m [X t ], m ∈ M} of estimators of s has been built from X t , and we want to proceed to the validation step with

X v . For m 1 , m 2 ∈ M, we note d(m 1 , m 2 ) instead of d(ŝ m 1 [X t ], ŝm 2 [X t ]).
The key assumption in the construction is the existence of some test having the following robustness property.

Assumption A There exists two constants a > 0, θ ∈ (0, 1/2), such that, for any m 1 and m 2 ∈ M, there exists a test ψ m 1 ,m 2 = ψ m 2 ,m 1 which chooses between m 1 and m 2 , which satisfies:

sup {s∈S|d(s,m 1 )≤θd(m 1 ,m 2 )} P s [ψ m 1 ,m 2 = m 2 ] ≤ exp -ad 2 (m 1 , m 2 ) , (1) sup {s∈S|d(s,m 2 )≤θd(m 1 ,m 2 )} P s [ψ m 1 ,m 2 = m 1 ] ≤ exp -ad 2 (m 1 , m 2 ) . (2)
Conditionally to the knowledge of S, that is conditionally to X t , the test ψ m 1 ,m 2 only depends on the validation sample X v . Under Assumption A, the T-hold-out (THO) criterion is given by crit

THO (m, X t , X v ) := sup j∈Rm d(ŝ j [X t ], ŝm [X t ]), with R m = {j ∈ M, j = m | ψ m,j = j}. One finally chooses m ∈ arg min m∈M crit THO (m, X t , X v ).
There are several theoretical differences with classical HO methods. The crit THO (m, X t , X v ) criterion does not estimate the risk but appears instead as a plausibility index. Its value is computed through robust tests between estimators, while the classical HO criterion is computed independently for any estimator and thus does not take the geometrical structure of S into account. Theoretical results about this HO procedure can be found in Birgé (2006, Corollary 9) for the Hellinger risk, and in Birgé (2013b, Corollary 1) for the L 2 -risk. Birgé (2013a)). To the best of our knowledge it is the first HO based on the Hellinger distance. Considering two densities ŝi [X t ] and ŝj [X t ], the test is defined by

In the density framework Assumption A is fulfilled with

d = h, a = (1 -2θ) 2 |X v | (see
ψ i,j =      i if T i,j ≤ 1 j otherwise (3)
where

T i,j = X k ∈Xv sin(θω) ŝi [X t ] + sin(ω(1 -θ)) ŝj [X t ] sin(θω) ŝj [X t ] + sin(ω(1 -θ)) ŝi [X t ] (X k ), (4) 
with

ω = arccos(1 -h 2 (ŝ i [X t ], ŝj [X t ])).

Efficient algorithms for T-estimation

In this section, we detail our algorithms which are at the core of the Density.T.HoldOut package to implement THO. Both algorithms may be useful in a general framework of T-estimation as they allow to drop the combinatorial complexity. While our first algorithm computes the true T-estimator, the second implements a lossy approach to reduce the complexity further when the family S is very large, while maintaining good performances in terms of Hellinger risk. In both cases, we assume that Step one has already been performed, hence our aim is only to select m among the finite S collection of preliminary estimators using X v , as described in Section 2. Since M is finite, we assume without loss of generality that M = {1, . . . , M }. Since the estimators ŝm [X t ] are built from a sample independent of X v , they are, conditionally to X t , deterministic points in S. From now on we note them s m -or m when no confusion is possible -and the THO criterion crit 

THO (m, X t , X v ) is denoted D(m) = max i∈Rm d(i,

Exact T-Hold-Out

The T-estimator search can be realized with a non-quadratic number of test, thanks to a simple argument which is summarized by the following lemma and its corollary. Proof. The proof, illustrated by Figure 1, is straightforward using similar arguments as in Lemma 1.

m 1 m 2 D(m 2 ) D(m 1 ) D(m 0 ) m 0 J J 2 1 J 0
It follows that, starting from m 0 , only a point inside B(m 0 , D(m 0 )) may be the T-estimator. If any point m 1 in this first ball satisfies D(m 1 ) < D(m 0 ), by Lemma 1, the T-estimator will belong to B(m 0 , D(m 0 )) B(m 1 , D(m 1 )). Again, criterion D need to be computed only for points inside this intersection. We keep intersecting balls B(m, D(m)) until there is no more point with a value of D smaller than its running value. This approach provides an exact computation of the T-estimator.

At each step of the recursion, the current best point is denoted m with associated value D(m) denoted by D. The running intersection which contains the potentially better points than m is denoted J (this set does not contain m). The recursion stops when J is empty. At a given step of the recursion, a point j in J is better than m -and thus replaces it -if D(j) < D. In all cases, j is removed from the set J. During the iteration, |J| and D decrease ensuring that the algorithm stops. The last running m is the T-estimator. The pseudo-code implementing the efficient and exact search of the T-estimator is provided by Algorithm 1. Comments: This algorithm works for all the statistical frameworks of T-estimation. The "for" loop is realized on all k = j, as D(k) depends on all points and not only on those in J. If there are N points in the first ball, the number of computed tests is at most O(N * M ). Moreover, if the first ball is empty, i.e. if D(m) = 0, the algorithm stops immediately, returning m for m. In this case, the complexity of our algorithm is O(M ). Any preliminary estimator (maximum likelihood, least-squares, L 1 -minimizer, etc.) may be a starting point of our algorithm. We hope that by starting from a good preliminary estimator, there will be only few points in the first ball, resulting in less computations. The computation requires O(M 2 ) operations if J decreases by only one point at each step of the recursion which happens only if the selected j satisfies

max k∈J d(j, k) = max k,l∈J d(k, l)
at each iteration.

Fast algorithm for approximate T-Hold-Out

Assumption A ensures that as soon as the Hellinger distance between two estimators of S is large enough, the probability that the robust test does not choose the best estimator is small. However, as shown in Lemma 1 of [START_REF] Le | Convergence of estimates under dimensionality restrictions[END_REF], when this distance is smaller than c n -1/2 , where c is a small positive constant, the two corresponding probabilities cannot be separated by a test built on n observations anymore. From this remark, we derive a lossy version from our efficient and exact algorithm. The main difference consists in ignoring points in S as soon as their Hellinger distance to a previously considered one is smaller than a given threshold δ n > 0.

We introduce this distance control at two steps of our efficient and exact algorithm. As the interior points of B(m, δ n ) cannot be properly distinguished from m by any test, the set J becomes, at lines 2 and 10 of Algorithm 1, the intersection of rings instead of balls, obtained by removing from the original ball B(m, D(m)) the ball B(m, δ n ). In the same spirit, at line 5 of Algorithm 1, the current k, in the for loop, is considered if and only if its distance to T j is larger than δ n , where T j is made of the running j and the further points which have been tested against j. The pseudo-code of this lossy version is provided by Algorithm 2 and illustrated by Figure 2. 

m 1 D(m 1 ) D(m 0 ) m 0 J 1 J 0 δ n δ n

Simulation protocol

We considered X 1 , . . . , X n i.i.d. random variables from an unknown density s with respect to the Lebesgue measure on X = R. This framework is motivated by the fact that likelihood ratio tests are not robust in this context and we hoped to observe some differences in terms of risk. Simulations were carried out with four sample sizes n = 100, 250, 500, 1000. Our test functions s vary in a subset L made of the densities s 1 ,. . . , s 28 of the R-package benchden 4 which are in L 1 ∩ L 2 -to ensure that risks are computable. This set L is made of the densities s i for i ∈ {1, . . . , 5, 7, 11, 12, 13, 16, 17, 21, . . . , 27}. We considered several estimator collections:

• S R made of regular histograms with bin number varying from 1 to ⌈n/ log(n)⌉ as described in [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF];

• S I made of the maximum likelihood irregular histograms when the bin number only varies from 1 to 100 as described in [START_REF] Rozenholc | Combining regular and irregular histograms by penalized likelihood[END_REF];

• S K made of Gaussian kernel estimators with varying bandwidths to be specified later;

• S P made of parametric estimates obtained by moment's method for the Gaussian, exponential, log-normal, chi-square, gamma and beta distributions together with a maximum likelihood estimate of the uniform distribution;

• S C = S R ∪ S I as used in [START_REF] Rozenholc | Combining regular and irregular histograms by penalized likelihood[END_REF];

• S 1 = S R ∪ S I ∪ S K ; • S 2 = S R ∪ S I ∪ S K ∪ S P .
The estimation accuracy of a given procedure s has been evaluated using an empirical version of the risk R s (s, ℓ) = E s [ℓ(s, s)], obtained by generating 100 samples X (j) = (X j 1 , . . . , X j n ), 1 ≤ j ≤ 100, of size n and density s:

Rs (s, ℓ) = 1 100 100 j=1 ℓ(s[X (j) ], s),
where ℓ(t, u) = h 2 (t, u) for the Hellinger distance, and ℓ(t, u) = t -u q q for q = 1, 2.

In order to compare two procedures t1 and t2 , we introduce the normalized log 2 -ratio of their empirical risks, namely:

Ws ( t1 , t2 ) = 1 r log 2 Rs ( t1 , ℓ) Rs ( t2 , ℓ) = log 2 R1/r s ( t1 , ℓ) -log 2 R1/r s ( t2 , ℓ),
where r is equal to q for L q losses and 2 for the Hellinger loss. The aim of the normalization by r is to provide an easier comparison of Ws when the loss changes. In our empirical study, procedure t2 is thus considered better in terms of risk than t1 for a given loss function if the values of Ws ( t1 , t2 ) are positive when the density s varies.

We compared three hold-out methods described above: T-estimation, LS and KL. We first divided X in X t = (X 1 , . . . , X [pn] ) and X v = (X [pn]+1 , . . . , X n ) using proportions p equal to 1/2, 2/3 and 3/4. Second, we computed ŝm [X t ] for all m ∈ M. Finally we selected m which minimizes the respective HO criterion resulting in mT , mLS and mKL providing s as either ŝ

m[X t ] or ŝ m[X].
As m depends on the chosen proportion p, in order to explicitly specify the dependency of m with respect to this parameter, we will use the following notations ŝ m

[p] [X t ] or ŝ m[p] [X] when needed.
For the family S K , the bandwidths were chosen as

(max[X t ] -min[X t ])/2j for j = 1, . . . , ⌈n/ log(n)⌉.
In Algorithms 1 and 2, the input m has been set to mLS and j = arg max k∈J d(k, m), at line 4. In Algorithm 2, we fixed δ n = 1/ |X v | as a lower bound for the Hellinger distance between distinguishable probabilities, following [START_REF] Le | Convergence of estimates under dimensionality restrictions[END_REF].

Moreover, we also considered some calibrated estimation procedures which choose m in some particular families. These are not direct competitors with the T-estimation as they cannot deal with general families S but provide a good benchmark in terms of risk:

• for S R , S I , S C , the penalized maximum likelihood estimators, denoted spen introduced in [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF]; [START_REF] Rozenholc | Combining regular and irregular histograms by penalized likelihood[END_REF] and implemented in the R package5 histogram,

• for S K , the L 1 -version of the procedure introduced in Goldenshluger and Lepski (2011), denoted sGL .

Finally, for the family S K , we considered some bandwidth selectors (namely nrd, ucv, bcv, SJ) implemented in the density generic function available in R , providing some well-known estimators snrd , sbcv , sucv , sSJ of the density [START_REF] Silverman | Density Estimation[END_REF][START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF][START_REF] Scott | Multivariate Density Estimation: Theory, Practice, and Visualization[END_REF].

The R package 5 Density.T.HoldOut is a ready-for-use software that implements our algorithms in the density framework. The main function -called densityTestim -receives as input a sample X and a family of estimators and returns the selected estimator. The previously described families are available and can be extended or adapted by the user (default family is S 2 ). Other important input arguments are parameters p, θ and the starting point (default values are p = 1/2 , θ = 1/4 and mLS ). This function implements the exact and lossy algorithms, through the numeric csqrt (default value 0) which controls δ n = csqrt/ |X v | in Algorithm 2. The default value corresponds to the Algorithm 1 implementing the exact search. The estimator ŝ mT is either built with X t (last='training') or X (last='full', default).

Simulation results

This section, which was done thanks to Algorithm 1, is devoted to the study of the quality of the T-hold-out. We illustrate our results showing boxplots of Ws ( t1 , t2 ) for all 18 densities s ∈ L, various choices of the estimators t1 and t2 , various collections of estimators S when n equals to 100, 250, 500 and 1000. We begin by investigating how parameters θ and p influence the THO procedure. Then we provide two main comparison types. First we look at HO methods which select among a family of points using the validation sample. Then we compare the THO against some density estimation methods, which are not necessarily selection procedures anymore. In this subsection, we divide the presentation between calibrated selection procedures and some selectors obtained using asymptotic derivation of the risk for some specific loss.

Influence of θ

The robustness of the test is controlled through the parameter θ < 1/2 (see Eq. 4), the KLHO corresponding to θ = 0 (no robustness). We computed the empirical risk using the THO procedure with θ = 1/16, 1/8, 1/4, 3/8, 7/16, and n = 100, 250, 500, 1000. We observed that θ has little influence in terms of risk (θ = 1/16 being slightly worse) and decided to pursue the empirical study with θ = 1/4.

Influence of p

We examine the dependence of the THO with respect to p, the proportion of the initial sample dedicated to build the estimators, using the Hellinger risk. 

= ŝ m[1/2] [X t ].
We observe two different behaviors for families S R , S I , S C and S K on the one hand and for S 1 and S 2 on the other hand. For the first families p = 2/3 or 3/4 is better than p = 1/2. For the second ones p = 2/3 seems equivalent to p = 1/2 but p = 3/4 is worst than p = 1/2. Hence we consider preferable to use p = 2/3, which makes the best compromise for all families.

Comparing Hold-Out methods

Hold-out procedures are universal since they do not depend on the family S. They can be seen as methods that choose among some family of fixed points. Setting p = 2/3, we compare the THO to the KLHO and LSHO introduced in Section 1.2 on the 6 estimator collections described in the previous section. Figure 4 is built using t1 = ŝ mKL [X t ] and t2 = ŝ mT [X t ] considering Hellinger (upper line) and L 1 (bottom line) losses. In all cases, the median and most of the distribution are positive, meaning that the THO outperforms the KLHO estimator. For collections S I and S K , empirical risks for both losses are similar, with Ws (ŝ mKL [X t ], ŝ mT [X t ]) being respectively larger than -0.01 (except for the uniform density) for S I , and -0.2 for S K . When n grows, while for S I and S K the ratio remains stable, it increases for all other families in favor of the THO. Moreover when going from collection S 1 to S 2 , that is adding the parametric collection S P , we observe that the already good performances of the THO improve. We therefore suspect that the THO chooses the parametric estimator more often than KLHO when facing the corresponding densities. Figure 5: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ mLS [Xt], ŝ mT [Xt]) for p = 2/3, using collections S R , S I , S C , S K , S 1 and S 2 . Upper line, using Hellinger loss, bottom line using L 2 loss. See Figure 3 for more details.

Figure 5 is built using t1 = ŝ mLS [X t ] and t2 = ŝ mT [X t ] considering Hellinger (upper line) and L 2 (bottom line) losses. The THO performs better than the LSHO estimator for all collections except for the collection S I when n = 100. For the larger collections S 1 and S 2 , the THO outperforms the LSHO. However, as n grows, we observe that the relative quality of the two procedures remain stable.

Comparing final strategies for T-Hold-Out

As we now aim at comparing T-estimation versus calibrated methods, we first investigate whether ŝ mT [X t ] or ŝ mT [X] performs better. For this purpose, we study the Hellinger risk of ŝ mT [X] when p varies. Figure 6 is built using t1 = ŝ m[p] [X] for p equals 2/3 (upper line), 3/4 (bottom line) and t2 = ŝ m[1/2] [X]. We observe that against p = 2/3 or p = 3/4, the value p = 1/2 provides better results for the large families S 1 and S 2 while for the small families the results are more balanced. Hence we consider preferable to make use of this strategy with p = 1/2. We now compare the Hellinger risks of ŝ m[2/3] [X t ] -which appeared as the best competitor in Section 5.2 -and ŝ m

[1/2] [X]. Figure 7 is built using t1 = ŝ m[1/2] [X] and t2 = ŝ m[2/3] [X t ].
We observe that the strategy ŝ m[1/2] [X] is preferable, since its median (and even most of its distribution) is negative in all considered settings. It should be noticed that our simulations show that, more than the value of p, it is the use of X instead of X t which has the larger influence on the final risk. 

T-Hold-Out against dedicated estimation procedures

We now compare the THO competitor ŝ m[1/2] [X] against the so-called dedicated methods. Figure 8 is built using t1 = s[X] (s being either spen or sGL ) and t2 = ŝ m[1/2] [X] considering Hellinger (upper line) and L 1 (bottom line) losses. We observe that the THO is slightly worse than a well-calibrated procedure for histograms but outperforms the L 1 -version of the Goldenshluger-Lepski procedure. As Figure 11 exhibits mostly linear behaviors, we computed the slope in the linear model of log(N ) versus log(M -1) when n varies as an estimator of β. We observe that this estimator concentrates around respectively 1.2 and 1.4 for the collections S R and S K providing a good indicator that our algorithm is typically sub-quadratic. The larger value of β for the collection S K may be explained by the fact that, for our set of bandwidths, the kernel estimators may be very similar, inducing a slow decrease of the running intersection J in Algorithm 1.

Study of the approximate T-Hold-Out

We provide a comparison of the estimators selected respectively using Algorithm 1 and 2, that is the exact T-estimator and its approximate version (denoted here by mg T ) computed with δ n = c/ |X v | for different values of c. We compare these estimators using the two strategies based on X t and X. Figure 12 is built using t1 = ŝ mT [X t ] and t2 = ŝ mg T [X t ] with p = 2/3 on the upper line and using t1 = ŝ mT [X] and t2 = ŝ mg T [X] with p = 1/2 on the bottom line. As expected, the exact THO is better in terms of risk. For histogram families, the degradation of the Hellinger risk is negligible. For families S K , S 1 and S 2 , we observe that the risk increases not more than 20% in most of the cases (y-axis reference value equals to -0.13). The empirical cumulative distribution function (CDF) of the complexity ratio defined in (5) is shown in Figure 13 for comparison with Figure 10. Clearly the CDFs of the lossy version are more concentrated around 0, showing a significant gain in terms of complexity when using Algorithm 2 (quantiles are divided by more than 2.5).

  m), where we recall that R m consists of the j ∈ {1, . . . , M } \ {m} which are chosen against m by the robust tests. Finally let us denote B(m, r) = {l ∈ {1, . . . , M } : d(m, l) ≤ r} the intersection of M with the closed ball with center m and radius r > 0. From a purely combinatorial point-of-view, the computation of m minimizing the plausibility radius D(m) requires the computation of O(M 2 ) tests with a "naive" algorithm, which is prohibitive as compared to the O(M ) operations needed to compute the classical HO estimator.

Figure 1 :

 1 Figure 1: Illustration of our exact search for T-estimation. Along the three first iterations, the estimator m i , i = 0, 1, 2 are considered with associated radius D(m i ) and the T-estimator belongs successively to J i where J 0 is B(m 0 , D(m 0 )), J 1 is the dotted and J 2 the hatched area. Lemma 1. For any point m 0 ∈ {1, . . . , M }, the T-estimator m belongs to B(m 0 , D(m 0 )). Proof. Suppose that there exists one point m 0 ∈ {1, . . . , M } such that m does not belong to the closed ball of radius D(m 0 ) centered at m 0 . Then it does not belong to R m 0 , and it follows that ψ m 0 , m = m 0 . Hence m 0 belongs to R m leading to D( m) ≥ d( m, m 0 ) > D(m 0 ) which provides a contradiction with D( m) = min m∈{1,...,M } D(m). Corollary 1. For any subset J ⊂ {1, . . . , M }, the T-estimator m belongs to

Algorithm 1 :

 1 Efficient and exact T-Hold-OutInput: m ∈ J = {1, . . . , M } 1 for (j = m) do compute ψm,j(Xv) 2 Compute D = D(m) and set J = B(m, D) \ {m} 3 while (|J| > 0) do 4 Set Dtmp = 0, select j ∈ J and set J = J \ {j} 5 for (k = j) do 6 Compute ψ k,j (Xv)// if it has not been done yet7 if (ψ k,j (Xv) == k) then // k ∈ Rj 8 Set Dtmp = max(Dtmp, d(j, k)) 9 if (Dtmp > D)then break // break the for loop 10 Set m = j, D = Dtmp and J = J B(m, D) Return: m // the T-estimator

Figure 2 :

 2 Figure2: Illustration of the approximate T-estimation search: J 0 is a ring around m 0 . The point following m 0 has changed with respect to Figure1as the previously selected m 1 is now inside B(m 0 , δn). J 1 (in grey) appears as the intersection of two rings.

Figure 3 :

 3 Figure 3: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ m[2/3] [Xt], ŝ m[1/2] [Xt]) (upper line) and Ws(ŝ m[3/4] [Xt], ŝ m[1/2] [Xt]) (bottom line) for the Hellinger loss, using collections S R , S I , S C , S K , S 1 and S 2 . Each subfigure shows the boxplot for n equals 100, 250, 500 and 1000. The horizontal red dotted line provides the reference value 0.

Figure 3

 3 Figure3is built using t1 = ŝ m[p] [X t ] for p equals 2/3 (upper line), 3/4 (bottom line) and t2 = ŝ m[1/2] [X t ]. We observe two different behaviors for families S R , S I , S C and S K on the one hand and for S 1 and S 2 on the other hand. For the first families p = 2/3 or 3/4 is better than p = 1/2. For the second ones p = 2/3 seems equivalent to p = 1/2 but p = 3/4 is worst than p = 1/2. Hence we consider preferable to use p = 2/3, which makes the best compromise for all families.

Figure 4 :

 4 Figure 4: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ mKL [Xt], ŝ mT [Xt]) for p = 2/3, using collections S R , S I , S C , S K , S 1 and S 2 . Upper line, using Hellinger loss, bottom line using L 1 loss. See Figure3for more details.

Figure 6 :

 6 Figure 6: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ m[2/3] [X], ŝ m[1/2] [X]) (upper line) and Ws(ŝ m[3/4] [X], ŝ m[1/2] [X]) (bottom line) for the Hellinger loss, using collections S R , S I , S C , S K , S 1 and S 2 . See Figure3for more details.

Figure 7 :

 7 Figure 7: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ m[1/2] [X], ŝ m[2/3] [Xt]) for Hellinger loss, using collections S R , S I , S C , S K , S 1 and S 2 . See Figure 3 for more details.

Figure 8 :

 8 Figure 8: From left to right, normalized log 2 -ratio of the empirical risks Ws(s[X], ŝ m[1/2] [X]) using collections S R , S I , S Cand S K with Hellinger (upper line) and L 1 (bottom line) losses. For the 3 first collections s is spen and sGL for S K . Each subfigure shows the boxplot for n equals 100, 250, 500 and 1000. The horizontal red dotted line provides the reference value 0.

Figure 11 :

 11 Figure 11: Graphs of log(N ) versus log(M -1) for each density when using the collections S R (left) and S K (right).

Figure 12 :

 12 Figure 12: From left to right, normalized log 2 -ratio of the empirical risks Ws(ŝ mT [Xt], ŝ mg T [Xt]) (upper line) and Ws(ŝ mT [X], ŝ mg T[X]) using c = 1 (bottom line) for the Hellinger loss, using collections S R , S I , S C , S K , S 1 and S 2 . See Figure3for more details.

recently, Sart has applied robust tests in the special cases of dyadic partition selection[START_REF] Sart | Estimation of the transition density of a Markov chain[END_REF] and parameter selection[START_REF] Sart | Robust estimation on a parametric model with tests[END_REF] 

The scripts, developed for this paper using our R-package, are available on the RunMyCode website (http: //www.runmycode.org) to increase transparency and reproducibility

Benchden (see[START_REF] Mildenberger | The benchden package: Benchmark densities for nonparametric density estimation[END_REF]) implements the benchmark distributions of[START_REF] Berlinet | A comparison of kernel density estimates[END_REF]. Available on the CRAN http://cran.r-project.org/web/packages/benchden/index.html.

available on the CRAN http://cran.r-project.org/web/packages/histogram/index.html.

For the sake of completeness, we also provide in Figure 9 the comparison between the THO and well-known estimators of the density derived from bandwidth selectors available in the density generic function of R. We observe that sucv and sSJ perform well (particularly for the L 1 -loss), whereas the THO outperforms snrd and sbcv .

Empirical complexity of the exact algorithm

To evaluate the complexity of our algorithms let us denote by N the number of tests needed in the computation of the THO for each generated sample of our simulations. As N is between M -1 and M (M -1)/2, we define the so-called "THO complexity" as the ratio of N -M + 1 over its maximal value, that is

For any run, this ratio belongs to [0, 1] by construction. For each fixed n, we get a global sample of size 10800 corresponding to "18 densities" times "6 families" times "100 simulations". Figure 10 shows the empirical cumulative distribution function (CDF) of the latter sample with the quantiles 0.75, 0.9 and 0.95. We observe from this figure that the complexity our algorithm tends to improve with n. Moreover, 75% of the THO complexities are smaller than 0.1 for n equals 250, 500 and 1000 and 95% are smaller than 0.4 for all values of n. In order to complete this study of the complexity, we focused on the two collections S R and S K for which the number of estimators depends on n as M = ⌈n/ log(n)⌉. Having in mind that N is not smaller than M -1 and not larger than M (M -1)/2, we assumed N to be of order (M -1) β with β in [1,2]. For each density and each value of n, we compute the average of log(N ) over the 100 runs. In Figure 11 these average values are drawn versus log(M -1) for the two collections and for each density. A further study, using c = 2 in the approximate algorithm, shows that the risk increases up to 75% in most of the cases and does not offer a good trade-off between complexity and accuracy.

Conclusion

We introduce an efficient and exact algorithm, together with an approximate version, for Testimation in the context of hold-out. We study the performances of this T-hold-out in the density framework. Calibration study shows that, when building the final estimate only with the training sample, a good choice of the ratio between training and validation sample sizes is p = 2/3. However, risks can be improved using the full sample to build the final estimate when using p = 1/2. Our procedure is competitive compared to classical hold-out derived from Kullback-Leibler or leastsquares contrasts. It still behaves well against model selection procedures derived from a calibrated penalized contrast for histogram selection, and against most of the bandwidth selectors for kernel estimators. Empirically, we observe that this algorithm improves clearly the combinatorial complexity. Moreover, it can be speeded up thanks to our proposed lossy version, which offers the expected trade-off between complexity and estimation quality.