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HIGHER ORDER EXPANSIONS VIA STEIN METHOD

L. COUTIN AND L. DECREUSEFOND

Abstract. This paper is a sequel of [3]. We show how to establish a functional
Edgeworth expansion of any order thanks to the Stein method. We apply the
procedure to the Brownian approximation of compensated Poisson process and
to the linear interpolation of the Brownian motion. It is then apparent that
these two expansions are of rather different form.

1. Introduction

For (µn, n ≥ 1), a sequence of probability measures which satisfies a central
limit theorem, i.e. µn converges weakly to a Gaussian measure, it may be natural
to ponder how this limit could be refined. That means, can we find an alternative
distribution µ so that the speed of convergence of µn towards µ is faster than the
convergence of µn to the Gaussian measure of the CLT ? For instance, for a sequence
of i.i.d. centered random variables (Xn, n ≥ 1) with unit variance, if we consider
Sn = n−1/2

∑n
j=1Xj , a Taylor expansion of the characteristic function of Sn yields

the expansion:

E
[

eitSn
]

= e−t
2/2

[

1 +
(it)3γ

6
√
n

+
(it)4(τ − 3)

24n
+

(it)6γ2

72n

]
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(

1

n

)

.

where γ = E
[

X3
1

]

and τ = E
[

X4
1

]

. This can be interpreted as the distribution of
Sn to be close to the measure with density gn given by

gn(x) =
e−x

2/2

√
2π

(

1 +
γ

6
√
n
H3(x) +

(τ − 3)

24n
H4(x) +

γ2

72n
H6(x)

)

,

where Hn is the n-th Hermite polynomial. As the comparison of the characteristic
functions of two probability measures does not give easily quantitative estimates
regarding probability of events, moments and so on; it is necessary to investigate
alternative distances between distribution of random variables.

One of the most natural distance is the so-called Kolmogorov distance defined,
for measures supported on R, by

dKol(µ, ν) = sup
x∈R

∣

∣

∣µ(−∞, x]− ν(−∞, x]
∣

∣

∣,

or more generally on R
k,

dKol(µ, ν) = sup
(x1,··· ,xk)∈Rk

∣

∣

∣µ(×kj=1(−∞, xj ])− ν(×kj=1(−∞, xj ])
∣

∣

∣.
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2 L. COUTIN AND L. DECREUSEFOND

This definition is hardly usable for probability measures on more abstract spaces like
Hilbert spaces, space of continuous functions, etc. On the contrary, the Rubinstein
distance can be defined in great generality. Assume that µ and ν are two probability
measures on a metric space (X, d). The space of d-Lipschitz functions is the set of
functions f such that there exists c > 0, depending only on f , satisfying

|f(x) − f(y)| ≤ c d(x, y), for all x, y ∈ X.
We denote by Lip1 the set of d-Lipschitz functions for which c can be taken equal
to 1. Then, the Rubinstein distance is defined by

dR(µ, ν) = sup
F∈Lip1

∫

X

F dµ−
∫

X

F dν.

It is well known (see [4]) that if (X, d) is separable, (µn, n ≥ 1) converges weakly
to µ if and only if dR(µn, µ) tends to 0 as n goes to infinity. Moreover, according
to [2],

(1) dKol(µ, ν) ≤ 2
√

dR(µ, ν).

The Stein method, which dates back to the seventies, is one approach to evaluate
such distances. Since [1, 5], it is well known that Stein method can also lead to
expansions of higher order by pursuing the development. In a previous paper [3], we
proved quantitative versions of some well known theorems: the Donsker Theorem,
convergence of Poisson processes of increasing intensity towards a Brownian motion
and approximation of a Brownian motion by increasingly refined linear interpola-
tions. We now want to show that the same framework can be used to derive higher
order expansions, even in functional spaces.

Before going deeply into technicalities, let us just show how this works on a simple
1 dimensional example. Imagine that we want to precise the speed of convergence
of the well-known limit in distribution:

1√
λ
(Xλ − λ) λ→∞−−−−→ N (0, 1),

where Xλ is a Poisson random variable of parameter λ. We consider the Rubinstein
distance between the distribution of X̃λ = λ−1/2(Xλ − λ) and N (0, 1), which is
defined as

(2) d(X̃λ, N (0, 1)) = sup
F∈Lip1

E

[

F (X̃λ)
]

− E [F (N (0, 1))] .

The well known Stein Lemma stands that for any F ∈ Lip1, there exists ψF ∈ C2b
such that for all x ∈ R,

F (x) − E [F (N (0, 1))] = xψF (x)− ψ′
F (x).

‖ψ′
F ‖∞ ≤ 1, ‖ψ′′

F ‖∞ ≤ 2.

Hence, instead of the right-hand-side of (2), we are lead to estimate

(3) sup
‖ψ′‖∞≤1, ‖ψ′′‖∞≤2

E

[

X̃λψ(X̃λ)− ψ′(X̃λ)
]

.

This is where the Malliavin-Stein approach differs from the classical line of thought.
In order to transform the last expression, instead of constructing a coupling, we
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resort to the integration by parts formula for functionals of Poisson random variable.
The next formula is well known or can be viewed as a consequence of (12):

E

[

X̃λG(X̃λ)
]

=
√
λ E

[

G(X̃λ + 1/
√
λ)−G(X̃λ)

]

.

Hence, (3) is transformed into

(4) sup
‖ψ′‖∞≤1, ‖ψ′′‖∞≤2

E

[√
λ(ψ(X̃λ + 1/

√
λ)− ψ(X̃λ))− ψ′(X̃λ)

]

.

According to the Taylor formula

ψ(X̃λ + 1/
√
λ)− ψ(X̃λ) =

1√
λ
ψ′(X̃λ) +

1

2λ
ψ′′(X̃λ + θ/

√
λ),

where θ ∈ (0, 1). If we plug this expansion into (4), the term containing ψ′ is
miraculously vanishing and we are left with only the second order term. This leads
to the estimate

dR

(

X̃λ, N (0, 1)
)

≤ 1√
λ
·

We now want to precise the expansion. For, we go one step further in the Taylor
formula (assuming ψ has enough regularity)

ψ(X̃λ + 1/
√
λ)− ψ(X̃λ) =

1√
λ
ψ′(X̃λ) +

1

2λ
ψ′′(X̃λ) +

1

6λ3/2
ψ(3)(X̃ + θ/

√
λ).

Hence,

(5) E

[

X̃λψ(X̃λ)− ψ′(X̃λ)
]

=
1

2
√
λ
E

[

ψ′′(X̃λ)
]

+
1

6λ
E

[

ψ(3)(X̃ + θ/
√
λ)
]

.

If F is twice differentiable with bounded derivatives then ψF is three time dif-
ferentiable with bounded derivatives, hence the last term of (5) is bounded by

λ−1‖ψ(3)
F ‖∞/6. Moreover, the first part of the reasoning shows that

E

[

ψ′′
F (X̃λ)

]

= E [ψ′′
F (N (0, 1))] +O(λ−1/2).

Combining the last two results, we obtain that for F twice differentiable

E

[

F (X̃λ)
]

− E [F (N (0, 1))] = E

[

X̃λψF (X̃λ)− ψ′
F (X̃λ)

]

=
1

2
√
λ
E [ψ′′

F (N (0, 1))] +O(λ−1).

This line of thought can be pursued at any order provided that F is assumed to
have sufficient regularity and we get an Edgeworth expansion up to any power of
λ−1/2. Using the properties of Hermite polynomials, this leads to the expansion:

E

[

F (X̃λ)
]

− E [F (N (0, 1))] =
1

6
√
λ
E [(FH3)(N (0, 1))] +O(λ−1).

The paper is organized as follows. In Section 2, we recall the functional structure
on which the computations are made. In Section 3, we establish the Edgeworth
expansion for the Poisson approximation of the Brownian motion. In Section 4,
we apply the same procedure to derive an Edgeworth expansion for the linear
approximation of the Brownian motion, which turns to be of a very different flavor.
In [3], we computed the first order term in the Donsker Theorem, we could as well
pursue the expansion. It would be a mixture of the two previous kinds of expansion.
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2. Gaussian structure on l2

2.1. Wiener measure. For the three examples mentioned above, we seek to com-
pare quantitatively the distribution of a piecewise differentiable process with that
of a Brownian motion, hence we need to consider a functional space to which the
sample-paths of both processes belong to. It has been established in [3] that a con-
venient space is the space of β-differentiable functions for any β < 1/2, which we
describe now. We refer to [8] for details on fractional calculus. For f ∈ L2([0, 1]; dt),
(denoted by L2 for short) the left and right fractional integrals of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1 dt , x ≥ 0,

(Iα1−f)(x) =
1

Γ(α)

∫ 1

x

f(t)(t− x)α−1 dt , x ≤ 1,

where α > 0 and I00+ = I01− = Id . For any α ≥ 0, any f, g ∈ L2 and g ∈ L2, we
have :

(6)

∫ 1

0

f(s)(Iα0+g)(s)ds =

∫ 1

0

(Iα1−f)(s)g(s)ds.

The Besov-Liouville space Iα0+(L2) := I+α,2 is usually equipped with the norm :

(7) ‖Iα0+f‖I+
α,2

= ‖f‖L2 .

Analogously, the Besov-Liouville space Iα1−(L2) := I−α,2 is usually equipped with
the norm :

‖Iα1−f‖I−
α,2

= ‖f‖L2 .

Both spaces are Hilbert spaces included in L2 and if (en, n ∈ N) denote a complete
orthonormal basis of L2, then (kαn := Iα1−en, n ∈ N) is a complete orthonormal

basis of I−α,2. Moreover, we have the following Theorem, proved in [3].

Theorem 2.1. The canonical embedding κα from I−α,2 into L2 is Hilbert-Schmidt

if and only if α > 1/2. Moreover,

(8) cα := ‖κα‖HS = ‖Iα0+‖HS = ‖Iα1−‖HS =
1

2Γ(α)

(

1

α(α − 1/2)

)1/2

.

To construct the Wiener measure on Iβ, 2, we start from the Itô-Nisio theorem.
Let (Xn, n ≥ 1) be a sequence of independent centered Gaussian random variables
of unit variance defined on a common probability space (Ω, A, P). Then,

B(t) :=
∑

n≥1

XnI
1
0+(en)(t)

converges almost-surely for any t ∈ [0, 1]. Moreover, the convergence holds in
L2(Ω; Iβ, 2), so that, µβ, the Wiener measure on Iβ,2 is the image measure of P by
the map B. Thus, µβ is a Gaussian measure on Iβ, 2 of covariance operator given
by

Vβ = Iβ0+ ◦ I
1−β
0+ ◦ I1−β1− ◦ I−β0+ .

This means that

Eµβ

[

exp(i〈η, ω〉Iβ, 2
)
]

= exp(−1

2
〈Vβη, η〉Iβ, 2

).
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We could thus in principle make all the computations in Iβ, 2. It turns out that we
were not able to be explicit in the computations of some traces of some involved
operators, the expressions of which turned to be rather straightforward in l2(N)
(where N is the set of positive integers). This is why we transfer all the structure
to l2(N), denoted henceforth by l2 for short. This is done at no loss of generality
nor precision since there exists a bijective isometry between Iβ, 2 and l2.

Actually, the canonical isometry is given by the Fourier expansion of the β-th
derivative of an element of Iβ, 2: for f ∈ Iβ, 2, we denote by ∂βf the unique element

of L2 such that f = Iβ0+∂βf . We denote by (xn, n ≥ 1) a complete orthonormal

basis of l2. In what follows, we adopt the usual notations regarding scalar product
on l2:

‖x‖2l2 =
∞
∑

n=1

|xn|2 and x.y =
∞
∑

n=1

xnyn, for all x, y ∈ l2.

For the sake of simplicity, we also denote by a dot the scalar product in (l2)⊗k for
any integer k.

Consider the map Jβ defined by:

Jβ : Iβ,2 −→ l2

f 7−→
∑

n≥1

(∫ 1

0

∂βf(s)en(s)ds

)

xn.

According to the properties of Gaussian measure (see [6]), we have the following
result.

Theorem 2.2. Let µβ denote the Wiener measure on Iβ, 2. Then J∗βµβ = mβ,

where mβ is the Gaussian measure on l2 of covariance operator given by

Sβ =
∑

n,m≥1

(∫ 1

0

k1−βn (s)k1−βm (s) ds

)

xn ⊗ xm.

2.2. Dirichlet structure. By Ckb (l2; X), we denote the space of k-times Fréchet
differentiable functions from l2 into an Hilbert space X with bounded derivatives:
A function F belongs to Ckb (l2; X) whenever

‖F‖Ck
b
(l2;X) := sup

j=1, ··· , k
sup
x∈l2
‖∇(j)F (x)‖X⊗(l2)⊗j <∞.

Definition 1. The Ornstein-Uhlenbeck semi-group on (l2, mβ) is defined for any

F ∈ L2(l2,F ,mβ; X) by

P βt F (u) =

∫

l2
F (e−tu+

√

1− e−2t v) dmβ(v),

where the integral is a Bochner integral.

The following properties are well known.

Lemma 2.1. The semi-group P β is ergodic in the sense that for any u ∈ l2,

P βt F (u)
t→∞−−−→

∫

f dmβ.
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Moreover, if F belongs to Ckb (l2; X), then, ∇(k)(P βt F ) = exp(−kt)P βt (∇(k)F ) so

that we have
∫ ∞

0

sup
u∈l2
‖∇(k)(P βt F )(u)‖(l2)⊗(k)⊗X dt ≤ 1

k
‖F‖Ck

b
(l2;X).

We recall that for X an Hilbert space and A a linear continuous map from
X into itself, A is said to be trace-class whenever the series

∑

n≥1 |(Afn, fn)X |
is convergent for one (hence any) complete orthonormal basis (fn, n ≥ 1) of X .
When A is trace-class, its trace is defined as trace(A) =

∑

n≥1(Afn, fn)X . For
x, y ∈ X , the operator x ⊗ y can be seen either as an element of X ⊗ X or as a
continuous map from X into itself via the identification : x⊗ y(f) = (y, f)X x. It
is thus straightforward that such an operator is trace-class and that trace(x⊗ y) =
∑

n≥1(y, fn)X(x, fn)X = (x, y)X according to the Parseval formula. We also need

to introduce the notion of partial trace. For any vector space X , Lin(X) is the set
of linear operator from into itself. For X and Y two Hilbert spaces, the partial
trace operator along X can be defined as follows: it is the unique linear operator

traceX : Lin(X ⊗ Y ) −→ Lin(Y )

such that for any R ∈ Lin(Y ), for any trace class operator S on X ,

traceX(S ⊗R) = traceX(S)R.

For Hilbert valued functions, we define Aβ as follows.

Definition 2. Let Aβ denote the linear operator defined for F ∈ C2b (l2; X) by:

(AβF )(u) = u.(∇F )(u)− tracel2(Sβ∇2F (u)), for all u ∈ l2.
We still denote by Aβ the unique extension of Aβ to its maximal domain.

The map Aβ is the infinitesimal generator of P β in the sense that for F ∈
C2b (l2; X): for any u ∈ l2,

(9) P βt F (u) = F (u) +

∫ t

0

AβP βs F (u)ds.

As a consequence of the ergodicity of P β and of (9), we have the Stein representation
formula: For any sufficiently integrable function F : l2 → R,

(10)

∫

l2
F dmβ −

∫

l2
F dν =

∫

l2

∫ ∞

0

AβP βt F (x)dt dν(x).

3. Normal approximation of Poisson processes

Consider the process

Nλ(t) =
1√
λ
(N(t)− λt) = 1√

λ





∑

n≥1

1[Tn, 1](t)− λt





where (Tn, n ≥ 1) are the jump times of N , a Poisson process of intensity λ. It is
well known that Nλ converges in distribution on D (the space of cadlag functions)
to a Brownian motion as λ goes to infinity. Since

Iα0+
(

(.− τ)−β+

)

= Γ(α)−1

∫ t

τ

(s− τ)−β(t− s)α−1 ds

= Γ(1− β) (t− τ)α−β+ ,
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we have Iβ0+((. − τ)
−β
+ ) = Γ(1 − β)1[τ,1](t). Hence, the sample-paths of Nλ belong

to Iβ,2 for any β < 1/2. It also follows that

JβNλ =
∑

n≥1

1√
λ

∫ 1

0

k1−βn (s)(dN(s)− λds) xn,

where, for any integer n,

k1−βn (t) =
1

Γ(1− β)

∫ 1

t

(s− t)−βen(s)ds.

For the sake of notations, we introduce

Kλ =
1√
λ

∑

n≥1

k1−βn ⊗ xn =
1√
λ
K1.

The following theorem has been established in [3].

Theorem 3.1. For any λ > 0, for any F ∈ C3b (l2; R),

(11)

∣

∣

∣

∣

E [F (Nλ)]−
∫

l2
F dmβ

∣

∣

∣

∣

≤ 1

6
√
λ
c31−β ‖F‖C3

b
(l2;R).

The proofs uses a few basic notions of Malliavin calculus with respect to the Pois-
son process N which we recall rapidly now (for details, see [3, 7]). It is customary
to define the discrete gradient as

DτF (N) = F (N + δτ )− F (N), for any τ ∈ [0, 1],

where N + δτ is the point process N with an extra atom at time τ . We denote by

D2,1 the set of square integrable functionals F such that E

[

∫ 1

0
|DτF (N)|2 dτ

]

is

finite. We then have the following relationship:

(12) E

[

F (N)

∫ 1

0

g(τ)(dN(τ)− λdτ)

]

= λ E

[∫ 1

0

DτF (N) g(τ)dτ

]

,

for any g ∈ L2([0, 1]) and any F ∈ D2,1. Moreover,

Dτ

(∫ 1

0

g(s)(dN(s)− λds)

)

= g(τ).

so that DτJβNλ = Kλ(τ). In what follows, we make the convention that a sum

like
∑0

r=1 . . . is zero. For any integers r ≥ k ≥ 1, consider T kr the set of all k-

tuples (ordered lists of length k) of integers (a1, · · · , ak) such that
∑k

i=1 ai = r
and ai ≥ 1 for any i ∈ {1, · · · , k}. We denote by () the empty list and for any
r, T 0

r = {()} and Tr = ∪rj=1T jr . For a ∈ Tr, we denote by |a| its length, i.e.

the unique index j (necessarily less than r) such that a ∈ T jr . For two tuples
a = (a1, · · · , ak) and b = (b1, · · · , bn), their concatenation a⊕ b is the (k+n)-tuple
(a1, · · · , an, b1, · · · , bn). We define by induction the following constants :

Ξ() = 1, Ξ(j) =
1

(j + 2)!
and Ξa⊕(j) =

Ξa
(j + 1)!(r + j + 2k + 2)

for any j ∈ N, a ∈ T kr .

For instance, we have

Ξ(1) =
1

6
, Ξ(2) =

1

24
, Ξ(1,1) =

1

72
·
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For any tuple a = (a1, · · · , ak) ∈ Tr, we set

Ka =
k
⊗

l=1

∫ 1

0

K
⊗(al+2)
1 (τ)dτ ∈ (l2)⊗(r+2|a|).

Consider also the sequence (ξs, s ≥ 0) given by the recursion formula:

(13) ξs =
s+1
∑

j=2

1

(j + 1)!

ξs+1−j

3s+ 7− 2j
cj+1
1−β +

ηs+3

(s+ 3)!
,

and

ηs =
2

2 + s(1− 2β)

1

(1− 2β)s/2Γ(1− β)s/2 ·

Theorem 3.2. Let s be a non negative integer. We denote by ν∗λ the distribution

of JβNλ on l2. For F ∈ C3s+3
b (l2; R), we have

(14)

∫

l2
F (u) dν∗λ(u) =

∫

l2
F (u) dmβ(u)

+
s
∑

r=1

λ−r/2
∑

a∈Tr

Ξa

∫

l2
∇(r+2|a|)F (u).Ka dmβ(u) + Rem(s, F, λ)

where the remainder term can be bounded as

|Rem(s, F, λ)| ≤ ξs λ−(s+1)/2‖F‖C3s+3
b

(l2;R).

For s = 0, this means that
∫

l2
F (u)dν∗λ(u) =

∫

l2
F (u)dmβ(u) + Rem(0, F, λ)

where the remainder is bounded by λ−1/2c31−β ‖F‖C3
b
(l2;R)/6. That is to say that it

is the exact content of Theorem [3.1]. For s = 1, we obtain

∫

l2
F (u)dν∗λ(u) =

∫

l2
F (u)dmβ(u)

+
λ−1/2

6

∫

l2
∇(3)F (u).K(1) dmβ(u) + Rem(1, F, λ)

where Rem(1, F, λ) = O(λ−1) and for s = 2, we get

∫

l2
F (u)dν∗λ(u) =

∫

l2
F (u)dmβ(u) +

λ−1/2

6

∫

l2
∇(3)F (u).K(1) dmβ(u)

+ λ−1

[

1

72

∫

l2
∇(6)F (u).K(1,1) dmβ(u) +

1

24

∫

l2
∇(4)F (u).K(2) dmβ(u)

]

+Rem(2, F, λ),

with Rem(2, F, λ) = O(λ−3/2).

Proof. As said before, for s = 0, the proof reduces to that of Theorem [3.1]. Let
s ≥ 1 and assume that (14) holds up to rank s−1. Let F ∈ C3s+2

b (l2;R) and x ∈ l2.
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Denoting by G(y) = F (y)x for y ∈ l2, we have

E [JβNλ.G(JβNλ)] =
1√
λ

∑

n≥1

E

[∫ 1

0

k1−βn (s)(dN(s)− λds) F (JβNλ)

]

xn.x

=
1√
λ

∑

n≥1

E

[∫ 1

0

k1−βn (τ)DτF (JβNλ)λdτ

]

xn.x

=
√
λ E

[∫ 1

0

DτF (JβNλ).K1(τ)dτ

]

.

According to the Taylor formula at order s+ 1,

DτF (JβNλ) = F (JβNλ +Kλ(τ)) − F (JβNλ)

=
s+1
∑

j=1

λ−j/2

j!
∇(j)F (JβNλ).K1(τ)

⊗j

+
λ−(s+2)/2

(s+ 1)!

∫ 1

0

(1− r)s+1 ∇(s+2)F (JβNλ + rKλ(τ)).K1(τ)
⊗(s+2) dr.

Thus, we get

(15) E [JβNλ.G(JβNλ)] =
s+1
∑

j=1

λ−(j+1)/2

j!

∫ 1

0

E

[

∇(j)F (JβNλ).K1(τ)
⊗(j+1)

]

dτ

+
λ−(s+1)/2

(s+ 1)!

∫ 1

0

∫ 1

0

(1− r)s+1
E

[

∇(s+2)F (JβNλ + rKλ(τ)).K1(τ)
⊗(s+3)

]

dr dτ.

By linearity and density, (15) holds for any G ∈ C3s+2
b (l2; l2). According to the

Stein representation formula (10), we get:

E [F (Nλ)] =

∫

l2
F (u)dmβ(u)

+
s+1
∑

j=2

λ−(j−1)/2

j!

∫ ∞

0

∫

l2
∇(j+1)P βt F (u).(

∫ 1

0

K1(τ)
⊗(j+1) dτ)dν∗λ(u)dt

+
λ−(s+1)/2

(s+ 1)!
×

∫

l2

∫ ∞

0

∫ 1

0

∫ 1

0

(1− θ)s+1∇(s+3)PtF (u+ θK1(τ)).K1(τ)
⊗(s+3) dθ dτ dt dν∗λ(u)

=

∫

l2
F (u)dmβ(u) +A1 +A2.

For any j, we apply the recursion hypothesis of rank s+ 1− j to the functional

Fj : u 7→
∫ ∞

0

∇(j+1)P βt F (u).K(j−1) dt.
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Thus, we have:

(16) A1 =

s+1
∑

j=2

λ−(j−1)/2

j!

s−j+1
∑

r=0

λ−r/2
∑

a∈Tr

Ξa

∫ ∞

0

∫

l2
∇(2|a|+r+j+1)P βt F (u).Ka⊕(j−1) dmβ(u)dt

+

s+1
∑

j=2

λ−(j−1)/2

j!
Rem(s+ 1− j, Fj , λ) = B1 +B2

According to the commutation relationship between ∇ and P β and since mβ is

P βt -invariant, it follows that

B1 =
s+1
∑

j=2

s−j+1
∑

r=0

λ−(r+j−1)/2

j!

×
∑

a∈Tr

Ξa
2|a|+ r + j + 1

∫

l2
∇(2|a|+r+j+1)F (u).Ka ⊗K(j−1) dmβ(u).

We now proceed to the change of variables r ← r+ j− 1, j ← j− 1 so that we have

B1 =

s
∑

r=1

λ−r/2
r
∑

j=1

×
∑

a∈Tr−j

Ξa
(j + 1)!(2|a|+ r + 2)

∫

l2
∇(2|a|+r+2)F (u).Ka ⊗K(j) dmβ(u).

If a belongs to Tr−j then b = a⊕ (j) belongs to Tr and 2|a|+ r+2 = 2|b|+2. In the
reverse direction, for b ∈ Tr, by construction, the last component (say on the right)
of b belongs to {1, · · · , r}. Let j denote the value of this component, it uniquely
determines a such that b = a ⊕ (j) with a ∈ Tr−j thus ∪rj=1Tr−j = Tr (where the

union is a disjoint union) and B1 can be written as

B1 =

s
∑

r=1

λ−r/2
∑

a∈Tr

Ξa

∫

l2
∇(r+2|a|)F (u).Ka dmβ(u).

Now, we estimate the remainder at rank s. According to the previous expansions,

Rem(s, F, λ) = A2 +B2 =

s+1
∑

j=2

λ−(j−1)/2

(j + 1)!
Rem(s+ 1− j, Fj , λ)

+
λ−(s+1)/2

(s+ 1)!

∫

l2

∫ ∞

0

∫ 1

0

(1− θ)s+1∇(s+3)PtF (u+ θK1(τ)).K1(θ)
(s+3) dθ dt dν∗λ(u)

≤
s+1
∑

j=2

λ−(j−1)/2

(j + 1)!
ξs+1−jλ

−(s+2−j)/2‖Fj‖C3(s+1−j)+3
b

(l2;R)
+
λ−(s+1)/2

(s+ 1)!
×

∫

l2

∫ ∞

0

e−(s+3)t

∫ 1

0

(1− θ)s+1Pt∇(s+3)F (u+ θK1(τ)).K1(θ)
(s+3) dθ dt dν∗λ(u)
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Since ∇(s+3)F is bounded and P β is a Markovian semi-group, for any t ≥ 0,

P βt ∇(s+3)F is bounded by ‖F‖Cs+3
b

(l2;R). Hence,

Rem(s, F, λ) ≤ λ−(s+1)/2
s+1
∑

j=2

ξs+1−j

(j + 1)!
‖F‖C3s+6−3j

b
(l2;R)

+
λ−(s+1)/2

(s+ 3)!
cs+1
1−β‖F‖Cs+3

b
(l2;R)

≤ λ−(s+1)/2
s+1
∑

j=2

ξs+1−j c
j+1
1−β

(j + 1)! (3s+ 7− 2j)
‖F‖C3s+7−2j

b
(l2;R)

+
λ−(s+1)/2

(s+ 3)!
cs+1
1−β‖F‖Cs+3

b
(l2;R).

Since sup
j=2,··· ,s+1

3s+ 7− 2j = 3s+ 3 and s+ 3 ≤ 3s+ 3, the result follows. �

4. Linear interpolation of the Brownian motion

For m ≥ 1, the linear interpolation B†
m of a Brownian motion B† is defined by

B†
m(0) = 0 and dB†

m(t) = m

m−1
∑

i=0

(B†(i+ 1/m)−B†(i/m))1[i/m, (i+1)/m)(t)dt.

Thus, JβB
†
m is given by

JβB
†
m =

(

m

m−1
∑

i=0

(B†(i+ 1/m)−B†(i/m))

∫ (i+1)/m

i/m

k1−βn (t)dt, n ≥ 1

)

.

Consider the L2([0, 1])-orthonormal functions

emj (s) =
√
m1[j/m, (j+1)/m)(s), j = 0, · · · , m− 1, s ∈ [0, 1]

and F †
m = span(emj , j = 0, · · · , m−1).We denote by pF †

m
the orthogonal projection

over F †
m. Since B†

m is constructed as a function of a standard Brownian motion,
we work on the canonical Wiener space (C0([0, 1]; R), I1, 2, m†). The gradient we
consider, D†, is the derivative of the usual gradient on the Wiener space and the
integration by parts formula reads as:

(17) Em†

[

F

∫ 1

0

u(s)dB†(s)

]

= Em†

[
∫ 1

0

D†
sF u(s)ds

]

for any u ∈ L2([0, 1]). We need to introduce some constants which already appeared
in [3]. For any α ∈ (0, 1], let

dα = max

(

sup
z≥0

∫ z

0

sα−1 cos(πs)ds, sup
z≥0

∫ z

0

sα−1 sin(πs)ds

)

.

Moreover,

Theorem 4.1 (cf. [3]). Let ν†m be the law of JβB
†
m on l2 and let

H†
m = (pF †

m
k1−βn , n ≥ 1).
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For any F ∈ C2b (l2; R),

∣

∣

∣

∣

∫

l2
F dν†m −

∫

l2
F dmβ

∣

∣

∣

∣

≤
γ†m,β
2
‖F‖C2

b
(l2;R),

where, for any 0 < ε < 1/2− β, for any p such that p(1/2− β − ε) > 1,

γ†m,β ≤
d1/2+εc1−βζ1/2+ε, p

Γ(1/2 + ε)





∑

n≥1

1

n1+2ε





1/2

m−(1/2−β−ε),

with for any p ≥ 1, α ∈ (1/p, 1],

ζα, p = sup
‖f‖Iα, p=1

‖f‖Hol0(α−1/p).

Theorem 4.2. For any integer s, for any F ∈ C2s+2
b (l2; R), we have the following

expansion:

Eν†
m
[F ] =

s
∑

j=0

1

2j j!

∫

l2
〈∇(2j)F (u), (S†

m − Sβ)⊗j〉(l2)⊗2j dmβ(u)

+ Rem†(s, F, m),

where S†
m = traceL2([0, 1])(K

†
m ⊗K†

m) and Rem†(s, F, m) can be bounded by

∣

∣

∣Rem†(s, F, m)
∣

∣

∣ ≤
(γ†m,β)

s+1

2s+1
‖F‖C2s+2

b
(l2;R)·

Proof. For s = 0, the result boils down to Theorem [4.1]. We proceed by induction
on s. According to the induction hypothesis and to the Stein representation formula
[3], for F sufficiently regular,

∫

l2
F (u)dν†m(u)−

∫

l2
F (u)dmβ(u)

=

∫

l2

∫ ∞

0

∇(2)P βt F (u). (S
†
m − Sβ)dt dν†m(u)

=
s
∑

j=0

1

2j j!

∫

l2
∇(2)(

∫ ∞

0

∇(2j)P βt F (u). (S
†
m − Sβ)⊗(j) dt).(S†

m − Sβ)dmβ(u)

+ Rem†(s,

∫ ∞

0

∇(2)P βt F.(S
†
m − Sβ)dt, m)

=

s
∑

j=0

1

2j j!

∫

l2

∫ ∞

0

∇(2j+2)P βt F (u). (S
†
m − Sβ)⊗(j+1) dt dmβ(u)

+ Rem†(s,

∫ ∞

0

∇(2)P βt F.(S
†
m − Sβ)dt, m).
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Since ∇(j)P βt F (u) = e−jtP βt ∇(j)F (u) and since mβ is invariant under the action
of P β , we obtain
∫

l2
F (u)dν†m(u) =

∫

l2
F (u)dmβ(u)

+

s
∑

j=0

1

2j+1

∫

l2
∇(2j+2)F (u). (S†

m − Sβ)⊗(j+1) dmβ(u)

+ Rem†(s,

∫ ∞

0

∇(2)P βt F. (S
†
m − Sβ)dt, m).

By a change of index in the sum, we obtain the main part of the expansion for the
rank s+ 1. Moreover,

|Rem†(s+ 1, F, m)| ≤
(γ†m,β)

s

2s+1(s+ 1)!
‖
∫ ∞

0

∇(2)P βt F.(S
†
m − Sβ)dt‖

C
2(s+1)
b

(l2)

≤
(γ†m,β)

s

2s+1

‖S†
m − Sβ‖l2

2
‖F‖

C
2(s+2)
b

(l2)
.

Since the norm of a bounded operator is bounded by its trace provided that the

latter exists, we have ‖S†
m − Sβ‖l2 ≤ γ†m,β , hence the result. �
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