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Abstract. Traditional validation of atmospheric profiles is

based on the intercomparison of two or more data sets in pre-

defined ranges or classes of a given observational character-

istic such as latitude or solar zenith angle. In this study we

trained a self-organising map (SOM) with a full time series

of relative difference profiles of SCIAMACHY limb v5.02

and lidar ozone profiles from seven observation sites. Each

individual observation characteristic was then mapped to the

obtained SOM to investigate to which degree variation in

this characteristic is explanatory for the variation seen in the

SOM map. For the studied data sets, altitude-dependent re-

lations for the global data set were found between the differ-

ence profiles and studied variables. From the lowest altitude

studied (18 km) ascending, the most influencing factors were

found to be longitude, followed by solar zenith angle and lat-

itude, sensor age and again solar zenith angle together with

the day of the year at the highest altitudes studied here (up

to 45 km). After accounting for both latitude and longitude,

residual partial correlations with a reduced magnitude are

seen for various factors. However, (partial) correlations can-

not point out which (combination) of the factors drives the

observed differences between the ground-based and satellite

ozone profiles as most of the factors are inter-related. Clus-

tering into three classes showed that there are also some local

dependencies, with for instance one cluster having a much

stronger correlation with the sensor age (days since launch)

between 36 and 42 km. The proposed SOM-based approach

provides a powerful tool for the exploration of differences

between data sets without being limited to a priori defined

data subsets.

1 Introduction

Accurate knowledge on the quality and stability of long-term

measurements is required for time series trend analysis as

well as for merging multiple data sets (Nair, 2012). Remote

sensing products must therefore be compared and/or vali-

dated with independent measurements of known quality (as

determined by other data sources). In the case of satellite-

based atmospheric columns and profiles, this validation data

source is usually formed by acquisitions from other satellite

sensors (e.g. Nazaryan et al., 2007; Boersma et al., 2008),

ground-based and/or in situ observers (e.g. Herman et al.,

2009; van Gijsel et al., 2010; Takele Kenea et al., 2013), the

combination of both (e.g. Adams et al., 2012; Stiller et al.,

2012; Wetzel et al., 2013) or with the additional inclusion of

model data (e.g. Lamsal et al., 2010; Zhang et al., 2010).
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Traditionally, data validation and intercomparisons are

made for predefined classes or ranges of possibly correlated

variables which are then studied for inter-class differences to

determine limitations in the retrieval scheme. In atmospheric

validation studies, this usually comes down to dividing the

global data set into various latitude ranges, splitting obser-

vation characteristics such as solar or stellar zenith angle and

viewing angle into a few groups, studying secondary retrieval

output (uncertainty estimates, processing and cloud flags,

goodness-of-fit measures) and occasionally adding other data

(e.g. input used in the retrieval like temperature, difference

in equivalent latitude). Such a procedure has various limita-

tions. To start with, it requires a priori knowledge, or a sub-

stantial amount of testing, on how to divide each variable (in-

formation source) into classes. Moreover, the need to have a

group of classes is a limitation by itself as there might be a

gradual transition from one extreme to the other and depen-

dencies on multiple (correlated) variables further complicate

the analysis procedure.

Here we will present an alternative approach to data inter-

comparison that traces down possible explanatory variables

and patterns associated with the differences found in the data

sets that are being compared and that does not require a pri-

ori grouping of variables. The approach is based on the usage

of self-organising maps (SOMs; Kohonen, 2001), which are

a type of unsupervised artificial neural network used to per-

form data clustering, data-dimensionality reduction and data

mining in a wide variety of application domains (Demartines

and Herault, 1997; Gevrey et al., 2006; Zurita-Milla et al.,

2013; Augustijn and Zurita-Milla, 2014).

In atmospheric sciences, SOMs have mostly been used to

perform some kind of classification. For instance, they have

been used to detect changes in wind trends whilst separat-

ing the contributions from ozone depletion and green house

gas increases (Lee and Feldstein, 2013), to study El Niño

Southern Oscillation-induced variation in tropical convection

(Sakai and Iseri, 2010), to perform a climatological analysis

of Northern Atlantic mean sea level pressure (Reusch et al.,

2007), to relate increases in predicted precipitation in Green-

land to changes in synoptic weather patterns (Schuenemann

and Cassano, 2010) and to classify ozone profiles obtained

with balloon sondes at two tropical sites (Jensen et al., 2012).

However, to the best of our knowledge, SOMs have not been

used for the application considered here despite the fact that

they are likely more robust and effective than traditional

methods. This is supported by Hsieh (2004) who compared

nonlinear methods (including SOMs and other neural net-

works) and more traditional methods such as canonical corre-

lation analysis, principal component analysis (PCA), rotated

PCA, single spectrum analysis and Fourier spectrum analy-

sis and showed that traditional methods may be limited in

their capacity to capture geophysical patterns properly, espe-

cially when the data are no longer in the linear domain. Thus,

SOMs might be better suited to point out weaknesses in re-

trieval algorithms caused by non-linear effects (e.g. abrupt

changes caused by sensor degradation during the satellite’s

lifetime).

The remainder of this paper is organised as follows: Sect. 2

introduces the two data sets used to illustrate this study and

explains the five steps of the approach. Section 3 provides de-

tails on how the approach was applied to the SCIAMACHY

limb versus lidar ozone profile differences for each step and

discusses the results. Section 4 presents our conclusions.

2 Data and methods

To illustrate the proposed SOM-based approach to intercom-

pare data, we will use ozone profiles derived from SCIA-

MACHY limb measurements as well as from ground-based

lidar stations. Sections 2.1 and 2.2 describe these two data

sets and Sect. 2.3 will detail the five steps of the approach.

2.1 SCIAMACHY version 5.02 ozone profile data

SCIAMACHY stands for SCanning Imaging Absorption

spectroMeter for Atmospheric CHartographY. This instru-

ment was launched into space on board ENVISAT, which

was operational between March 2002 and April 2012, with

first SCIAMACHY data from August 2002. SCIAMACHY

is a passive remote sensing spectrometer observing backscat-

tered, reflected, transmitted or emitted radiation from the

Earth’s surface and atmosphere, in the wavelength range be-

tween 240 and 2380 nm and in three measurement modes:

occultation, nadir and limb geometry (Burrows et al., 1995;

Bovensmann et al., 1999). In limb viewing mode, scans are

made in steps of 3.3 km from (close to) the surface to an alti-

tude of 92 km. The vertical resolution of the retrieved ozone

profile product is typically ranging between 3 and 4 km. Here

SCIAMACHY ozone number density data are extracted from

the ozone profile product of the operational algorithm (level 2

version 5.02). The data retrieved in this version are most use-

ful for altitudes between about 15 and 40 km because there is

a reduced sensitivity to ozone above 40 km and below 20 km,

leading to substantially increased retrieval errors at those alti-

tudes (European Space Agency, 2011, 2013). The data are ac-

companied by quality flags indicating the validity and qual-

ity of the retrieved product (European Space Agency, 2013).

Initial validation results for version 5.01 (for ozone profiles

equivalent to version 5.02) showed a positive bias in the trop-

ics, especially below 20 km, a good agreement (within 5 %)

in the mid-latitudes and a variable bias was observed for the

polar regions, with larger deviations above 35 km (European

Space Agency, 2011; 2013).

2.2 Ground-based NDACC lidar data

In this study we have used ozone profiles obtained by

ground-based lidars that are part of the Network for the

Detection of Atmospheric Composition Change (NDACC;

http://www.ndacc.org; Kurylo and Solomon, 1990). To be-

Atmos. Meas. Tech., 8, 1951–1963, 2015 www.atmos-meas-tech.net/8/1951/2015/

http://www.ndacc.org


J. A. E. van Gijsel et al.: Using SOMs to explore ozone profile validation differences 1953

come associated with NDACC, it is obligatory to have a good

description of the data quality through intercomparison of

at least the retrieval software, followed by intercomparison

with other instruments. The latter can be done with other

instruments such as sondes, or with the NDACC travelling

standard, the NASA GSFC (Goddard Space Flight Center)

lidar. Ozone profiles are retrieved using differential absorp-

tion in sets of two wavelengths in the ultraviolet domain,

where ozone is in each set only strongly absorbed at one

of the two wavelengths. The difference of the slope of the

logarithm of the retrieved lidar signals as a function of alti-

tude is used to determine the ozone number density profile.

The retrieval is as such self-calibrating. All of the lidars used

operate under night-time conditions. The altitude range with

the highest data quality is mostly ranging between 20 and

35 km (Keckhut et al., 2004), depending on laser power, op-

tics and local atmospheric conditions. As the signal-to-noise

ratio decreases with altitude, the retrieval error correspond-

ingly increases, which can be partially compensated by de-

grading the vertical resolution. Typically the vertical resolu-

tion increases from several hundreds of metres in the lower

stratosphere to several kilometres in the upper stratosphere

(Godin et al., 1999).

In this study we used the following seven lidar sites

(see Table 1 for their coordinates): Alomar (Norway), Ho-

henpeißenberg (Germany), Observatoire Haute Provence

(France), Table Mountain (California), Mauna Loa (Hawaii),

Lauder (New Zealand) and Dumont d’Urville (Antarctica).

Four of the sites are located in the mid-latitudes, two in the

polar regions and one in the tropics.

2.3 Methodology

The flowchart in Fig. 1 summarises the SOM-based approach

as a series of five steps. In the first step, the data are prepared

as input for the neural network. This involves the data se-

lection (quality and collocation criteria), a calculation of the

differences between the data sets and includes a data normal-

isation to set the variance to unity.

The normalised differences are used to train the self-

organising map in the second step. The result of the training

is a self-organised map where each neuron now has a nor-

malised difference for each altitude that is similar to, but dis-

tinct from its neighbours, and is representative of one or mul-

tiple input vectors, but not necessarily identical to it (i.e. the

vector of normalised differences is likely a weighted average

of multiple input vectors) as also the neighbourhood affects

the values assigned to one neuron. This set of representative

normalised difference vectors is called the codebook vectors,

which is a three-dimensional matrix (composed by the two

dimensions of the SOM together with the altitude vector).

For each altitude we can visualise these codebook vectors as

a map, which will be called a component plane. In addition,

we can also derive which neuron has the most similar nor-

malised differences as the input data by finding the minimum
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Figure 1. Flowchart of the proposed five-step methodology to

explore origins of differences between ozone profiles. The self-

organising map (SOM) is trained using a set of normalised differ-

ences (number of samples× number of altitudes). The SOM con-

sists of a grid formed by a number of rows by columns that is de-

fined by the user. In this example, hexagonal-shaped neurons are

used resulting in six direct neighbours instead of four direct neigh-

bours in a regular rectangular grid (as indicated with the darker grey

hexagons in the upper right corner of the figure; the marked part cor-

responds to a radius of one neuron around the central neuron). The

output of the training are the organised differences, called codebook

vectors, which can be shown as a map (called component plane) for

each altitude bin (variation in the relative differences at one altitude

visualised by different grey-tones). Each data sample with associ-

ated explanatory variables (EVs) can be linked to a neuron on the

SOM by the mapping indices. Using these mapping indices, the EVs

can be projected onto the SOM (gradient in EV visualised by dif-

ferent grey-shades). The codebook vectors can be clustered to study

sub-groups (here, three clusters are created and shown with differ-

ent colours).

Euclidean distance between a data vector and codebook vec-

tors, so it is known for each input data vector to which neuron

it maps. This information is called the mapping index.

In the third step, the mapping indices are used to create

maps of each explanatory variable (EV) with the same di-

mensions as the SOM. When multiple input vectors (IDs)

map to the same neuron, it is necessary to calculate a mode,

mean or median (depending on the type of variable) of the

EV values of those IDs to associate to that neuron.

The codebook vectors can be clustered to help identify

patterns that are present over the entire range of altitudes in

the fourth step. Such a clustering is exemplified by the three

colours in cluster block in Fig. 1.

The fifth and final part of the analysis is to study the rela-

tions between the component planes (the codebook vectors)

and the explanatory variables, both on a global scale (entire

data set) and on a more detailed (local) level inside the clus-

www.atmos-meas-tech.net/8/1951/2015/ Atmos. Meas. Tech., 8, 1951–1963, 2015
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Table 1. Locations of the used lidar stations, with number of collocations per site used for the SOM analysis.

Site name Latitude Longitude # of collocations

Alomar 69.3◦ N 16.0◦ E 423

Dumont d’Urville 66.6◦ S 140.0◦ E 73

Hohenpeißenberg 47.8◦ N 11.0◦ E 3800

Lauder 45.0◦ S 169.7◦ E 2239

Mauna Loa 19.5◦ N 155.6◦W 4881

Observatoire Haute Provence 43.9◦ N 5.7◦ E 791

Table Mountain 34.4◦ N 117.7◦W 1539
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Figure 2. Fraction of not available difference data as a function of

altitude.

ters. This is done using visual inspection of the patterns in the

codebook vectors and EVs and by calculating their Pearson

linear correlations.

3 Practical implementation and discussion of results

To illustrate the analytical methods described in the previous

section, in this section we present a detailed example follow-

ing the five steps. Note that the third and fourth step can be

executed in parallel (i.e. their relative order is arbitrary).

3.1 Data selection, collocation and preprocessing

We selected all SCIAMACHY and lidar ozone number den-

sity data from the period 2002–2012 having a reported error

of 30 % or less and having valid processing flags. Colloca-

tions of SCIAMACHY and ground-based lidar ozone pro-

files were sought within 20 h and 800 km and the number of

collocations with each site is listed in Table 1. The profiles

are interpolated to a common altitude grid with a 1 km res-

olution using a nearly linear spline, followed by the calcu-

lation of the relative differences with respect to the lidar as
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Figure 3. Box plot of the relative differences at a given altitude.

The lower and upper boundaries of the boxes indicate the lower

and upper quartiles. The lines between these boundaries correspond

to the median. The dashed lines extending from the boxes show

the range 1.5 times the interquartile range from the ends of each

box. Outlier values outside this range are indicated with a +. The

horizontal grey line indicates 0 % difference.

follows: SCIAMACHY-lidar
lidar

×100%. The resulting data set con-

sists of over 25 000 difference profiles between the collocated

pairs, together with metadata (i.e. EVs) providing informa-

tion on the observation characteristics. These differences are

assumed to be to the largest extent attributable to the satel-

lite retrieval as the lidar data are of high and known quality

(Sect. 2.2). Here we further filtered the data to remove par-

tial profiles; that is, where not for all altitudes between 18

and 45 km data were available for both the lidar and SCIA-

MACHY observations (see Fig. 2 where the fraction of not

available data is indicated for each altitude).

This filtered data set consists of 13 746 difference profiles

(with the matching metadata), which corresponds to 54 % of

the input data having information for all selected altitudes.

The histograms of the differences per altitude show close to

Gaussian distributions, except for the lowest altitudes where

the distribution is somewhat skewed, which is also visualised

in the box plots shown in Fig. 3. Figure 4 shows the me-

Atmos. Meas. Tech., 8, 1951–1963, 2015 www.atmos-meas-tech.net/8/1951/2015/
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Figure 4. Relative differences between SCIAMACHY version 5.02

limb and lidar ozone profiles as a function of altitude colour-coded

by collocated lidar site. The continuous lines indicate the median

differences, the dash-dotted lines correspond to the mean differ-

ences and the dotted lines show the mean plus or minus one standard

deviation of the relative differences.

dian and mean (± one standard deviation) of the relative dif-

ferences versus altitude colour coded by the collocated lidar

site. The overall agreement between stations is very good at

the altitude range where the lidar data are of highest qual-

ity. The most outstanding site is Dumont d’Urville, which

besides being at an extreme location also has a limited num-

ber of collocations in our data selection. The top part (above

40 km) shows the largest divergence and increasing standard

deviations which can be attributed to the increasing contribu-

tion of the a priori in the SCIAMACHY data.

The differences are normalised to set the variance to unity.

As the transformation is linear, the distribution shapes are

preserved. Figure 5 shows the Pearson linear correlation of

the normalised relative differences between the 28 altitude

bins. The correlation ranges between −0.09 and 0.95 (off-

diagonal). It can be seen that differences at low altitudes

are hardly correlated to those at higher altitudes and that at

higher altitudes similar differences are found over a larger

range of nearby altitudes.

3.2 Training of the SOM

The normalised data were used to train a SOM. Here

we used the SOM toolbox for MATLAB version 2.0 beta

by Alhoniemi, Himberg, Parhankangas and Vesanto avail-

able at http://www.cis.hut.fi/projects/somtoolbox. The self-

organising map was set up as a lattice grid of 46 by 75 hexag-

onal neurons.

The dimensions were chosen to theoretically allow an av-

erage of four input vectors to map onto a single neuron,

which was chosen as a trade-off between complexity and
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Figure 5. Correlation of the normalised relative differences between

altitudes.

over-simplification. Different ratios determine the level of

detail that can be studied, but the principles remain the same.

In the case of a greatly extended geographical input space,

one could additionally go for a high-resolution representation

with more neurons than input vectors (Skupin and Esperbé,

2011).

The training was done in two phases. The initial phase

consisted of 200 iterations where a rough training was car-

ried out with an initial neighbourhood covering a radius of

10 neurons which gradually decreased to cover a radius of

2.5 neurons at the end of this phase. The second, fine-tuning

phase was then run for 400 iterations with a neighbourhood

covering a radius of 2.5 neurons gradually decreasing to a

radius of a single neuron at the end of the training. In both

cases we have used the batch training algorithm.

Most of the neurons get organised with inputs from one

(37 %) to two (38 %) sites, about 18 % with inputs from three

sites and very few (less than 5 % in total) can be related to

four or five sites. Assignation of six or all seven sites to the

same neuron does not occur. More than 61 % of the neurons

are mapped to by multiple sites. Overall, this indicates that

the relative differences between SCIAMACHY and the lidar

ozone profiles appear to be (indirectly) location dependent to

a limited extent. No input data get mapped onto 81 neurons

(∼ 2 %), which indicates that some difference values in the

SOM space do not occur.

One large advantage of the method used here is that num-

ber of collocating profiles per station is not required to be the

same. In fact, this method actually minimises the impact of

having an uneven distribution of number of collocations per

site. If, for instance, a very large number of observations for

a particular site result in very similar differences, these will

map to a small set of contiguous neurons whereas in tradi-

www.atmos-meas-tech.net/8/1951/2015/ Atmos. Meas. Tech., 8, 1951–1963, 2015
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Figure 6. De-normalised codebook vectors for the 28 altitudes ascending from left to right row wise. Note that the range of colours is

optimised for each panel; the associated relative differences (%) are indicated by the colour legend on top of each panel. The component

planes are interpolated to avoid empty (non-used) neurons and bridge the gap in the input space. The maps are stretched in the vertical

direction for a better visualisation.

tional analyses they would heavily influence the outcome of

the correlation.

3.2.1 Component planes

Figure 6 presents the component planes for the 28 altitudes

(18 km in the upper left corner, 45 km in the lower right cor-

ner). The codebook vectors have been de-normalised, so that

the units correspond to the original relative differences. We

can observe that at the lowest altitudes (18 and 19 km) most

neurons have values for the relative differences that are close

to zero, but some spots with higher deviations stand out like

the upper right corner with the most extreme outliers and

multiple regions (cyan-coloured) with a similar positive de-

viation. With ascending altitude, we can see that although at

low altitudes these differences were similar, higher up they

are clearly distinct. For instance, the blob with positive dif-

ferences at the bottom of the 18 km panel is associated with

negative deviations around 20–21 km and higher up with rel-

atively small deviations from zero whereas the blob at the

upper right corner remains a positive bias for many kilome-

tres.

The organisation of the differences has also led to a small

increase of the correlation between near altitudes as less rep-

resentative samples get to play a smaller role. Overall pat-

terns (as visible in Fig. 5 and its discussion) are nevertheless

preserved.

3.3 Mapping the explanatory variable (EV) planes

Using the mapping indices and the IDs of each data sample,

we can link the explanatory variables to the neuron where

the corresponding set of relative differences for the 28 al-

titudes mapped. In this way, the information is summarised

and organised following the spatial structure defined during

the training of the SOM using the relative differences. This

allows us to visually identify patterns and the relative im-

portance of the selected EVs. Here we have considered 11

variables which are also often used in traditional validation

studies (see Table 2).

When more than one input data sample maps onto the

same neuron, a representative EV value was calculated con-

sidering the data type of the EV. For the scan direction, the

location and the day of the year, we used the mode func-

tion. For the rest of the EVs, the mean function was used.
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Figure 7. Explanatory variables mapped on the SOM. From left to right: top row: SCIAMACHY scan direction, SCIAMACHY latitude,

SCIAMACHY longitude; second row: difference in time between collocations, difference in distance between collocations, difference in

equivalent latitude between collocations; third row: solar zenith angle during SCIAMACHY observation, solar azimuth angle during SCIA-

MACHY observation, lidar station name; lower row: days since launch of ENVISAT, day of the year. White pixels indicate neurons that are

not used.

Table 2. Used explanatory variables with corresponding range of values.

Variable name Minimum value Maximum value

SCIAMACHY scan direction (4 profiles retrieved E-W) West East

Latitude of the SCIAMACHY observation 74◦ S 76◦ N

Longitude of the SCIAMACHY observation 163◦W 180◦ E

Difference in time between collocations −17.8 h +18.5 h

Difference in horizontal direction between collocations 4 km 800 km

Difference in equivalent latitude between collocations 0◦ 15◦

Solar zenith angle during the SCIAMACHY observation 21.9◦ 89.8◦

Solar azimuth angle during the SCIAMACHY observation 17.3◦ 164.3◦

Station’s name of the collocated lidar ozone profile − −

Number of days since the launch of ENVISAT 154 d 3583 d

Day of the year 0 364

The difference in time between the lidar and SCIAMACHY

observation was taken as an absolute difference, disregarding

whether the lidar or SCIAMACHY observation was acquired

first. Using other statistics such as the median instead of the

mean, did not affect the patterns much, indicating that the

organisation is consistent. Various of the EVs are correlated

to some extent, which can be expected because of the nature

of these variables and the limited number of lidar sites avail-

able here. Nevertheless, most of the ranges of variation in the

EVs is observed at more than one site and we deem the cov-

ered variation sufficient to study the dependencies between

the ozone profile differences and the EVs.

Figure 7 shows the 11 EVs mapped onto the SOM. The

white dots represent empty neurons (no data mapped onto
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Figure 8. Pearson linear correlation between the codebook vectors

at a given altitude and the mapped explanatory variables (EVs). EVs

from left to right: scan direction, latitude of the SCIAMACHY ob-

servation, longitude of the SCIAMACHY observation, difference

in time between collocations, difference in distance between collo-

cations, difference in equivalent latitude between collocations, solar

zenith angle during SCIAMACHY observation, solar azimuth angle

during SCIAMACHY observation, days since the launch of EN-

VISAT and the day of the year. See also scatter plots of various EVs

versus the codebook vectors at selected altitudes in the Supplement.

them). Some variables like the scan direction and difference

in time or distance between the observations appear to lack

any organisation. In other words, they exhibit a random dis-

tribution in the SOM space. Other EVs, like the latitude of the

SCIAMACHY observation, show a clear organisation and

thus are significant to explain the organisation of the rela-

tive differences. We can also see that some of the EV pat-

terns are similar (for example location and longitude). This

evidences a relationship between the different EVs. A third

group of EVs is composed of those variables that appear to be

quite randomly distributed except for some spots where they

get grouped consistently. Days since launch and difference

in equivalent latitude belong to this third EV group, which

points at secondary dependences or perhaps indicates a be-

haviour that is local rather than global.

The downward pointing triangular area that can be seen in

the solar azimuth angle (low angles; dark blue) and in the co-

ordinates of the SCIAMACHY observation (latitude of about

50◦, red; mean longitude of around 0◦, green) mapped onto

the SOM appears to be linked with a similarly shaped area

in the component planes of altitudes of 30± 5 km showing a

small to negligible underestimation of the ozone profiles by

SCIAMACHY.

3.4 Correlation hunting

The patterns in the codebook vectors and the mapped EVs

can be directly compared by calculating the Pearson corre-

lation coefficient between each EV and the codebook vec-

tor for a given altitude. This provides a convenient way to

visualise the linear dependence of the differences data set

on a given variable at a specific altitude. However, it is not

the same as using the original input data to calculate such

correlations, as the data have been summarised and approx-

imated by the codebook vectors when they were organised.

The mapped EVs represent a synopsis of the original data in

a similar manner.

Figure 8 presents the correlations between the component

planes and the EVs for the global data set. We can see that

at the lowest altitudes studied here, the relative differences

seem to be most dependent on the longitude of the SCIA-

MACHY observations. Continuing upwards, the most dom-

inant, but relatively weak, factor becomes the solar zenith

angle, followed by the latitude of the SCIAMACHY obser-

vation at the ozone maximum. We can see that the solar az-

imuth angle is strongly coupled to the latitude of the obser-

vation and the solar zenith angle to a lesser extent as well.

Then above 36 km, the differences are in some part organ-

ised according to the age of the sensor (days since launch).

At the highest altitudes, we see again the solar zenith an-

gle having the largest correlation with the organised differ-

ences, but also some seasonal effect through the day of the

year. Scatter plots of selected EVs versus the codebook vec-

tors of the relevant altitudes are provided in the Supplement.

The data selection procedure is also shown to be quite ade-

quate, as no dependence is observed on the difference in time

or space between the lidar and SCIAMACHY observations.

There is however a small contribution to the distribution of

differences by the difference in equivalent latitude, mostly

around the ozone maximum and around 20 km. The effect

of the scan angle on the distribution of the differences on a

global basis seems to be marginal and is only somewhat in-

fluencing around 22 km.

To study whether the observed correlations can be partially

explained by a correlation of the EV with latitude or latitude

and longitude, we performed a partial correlation analysis for

the other EVs where the correlation between the EV and the

codebook vector with latitude (and longitude) is taken into

account following

ρEC,L =
ρEC− ρELρCL√(

1− ρ2
EL

)(
1− ρ2

CL

) , (1)

with E equal to the EV of interest, C the matrix of codebook

vectors, L the latitude (+longitude) and ρ the Pearson linear

correlation coefficient.

Figure 9 shows the results of the partial correlation analy-

sis taking the correlation with both latitude and longitude into

account. At the lowest altitude, the most important remaining
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Figure 9. Partial Pearson correlations between the codebook vec-

tors and EVs (from left to right: SCIAMACHY scan direction, dif-

ference between collocations in time, distance and equivalent lati-

tude, solar zenith and azimuth angles, days since the launch of EN-

VISAT and day of the year) as a function of altitude after removing

correlations with latitude and longitude. The colour bar is scaled to

the same range as Fig. 8.

factor is the solar azimuth angle, followed by the solar zenith

angle when going upwards. Between 26 and 36 km, most of

the variation seems to be captured by the combination of lati-

tude and longitude as the residual partial correlations are low.

However, (partial) correlations cannot point out the mecha-

nisms that are actually driving the observed differences in

ozone profiles (i.e. the causal factors). Above 36 km, some

residual variation can be attributed to the time since launch

and then again to the solar zenith angle. To a lesser extent,

also the day of the year and the solar azimuth angle remain

influential. When considering correlation with latitude alone

(not shown), we observe that only the correlation for solar

azimuth angle is greatly linked to latitude. For longitude, we

observe that the partial correlation has reduced the Pearson

correlation values below 25 km (except at 22 km) and above

43 km, but correlation has become stronger at all altitudes

in between. Overall, the partial correlation shows a stronger

link with longitude. For solar zenith angles, we see almost no

changes.

Naturally, there will be more factors involved in the dis-

tribution of differences between the lidar and SCIAMACHY

ozone profiles, for instance influences from the level 1 pro-

cessing (calibration errors) or the sensor’s sensitivity. Our in-

tention here is to demonstrate the possibilities of the pro-

posed approach and we have thus limited the explanatory

variables to those commonly selected in validation studies.

We note that when additional information becomes available

during the course of a study, the approach allows us to very

simply and quickly extend the analysis with those new vari-

ables. Studying the physical basis of the retrieval of SCIA-
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Figure 10. Internal validity indices for k-means clustering of the

codebook vectors into 2 to 80 clusters. Left to right and top down-

ward: weighted inter-intra index, silhouette index, Davies–Bouldin

index and the Caliński–Harabasz index. The optimum number of

classes specified by a given index is indicated with a black square

and data point.

MACHY limb ozone profiles is beyond the scope of this pa-

per.

3.5 Clustering

We have clustered the codebook vectors using simple k-

means. Different numbers of clusters were tested for consis-

tency and the experiment was repeated 100 times to see the

stability of the obtained solutions as the clustering may be

sensitive to the initialisation/seeding values and get trapped

in a local optimum (Tzortzis and Likas, 2014). Various al-

gorithms exist that try to optimise the number of clusters,

based on the principle that similarity is indicated by the

inter- and/or intra-cluster distances in the data space (e.g.

Davies and Bouldin, 1979; Tibshirani et al., 2001; Caliński

and Harabasz, 1974). However, no clear optimum might be

found if the clusters present gradual transitions. A further

limitation is that patterns visible to the eye at a single alti-

tude may not be identified by the clustering algorithm run

on the entire set of codebook vectors as one altitude has a

relatively low weight on the total data set.

Four indices were chosen to examine the clustering ef-

ficiency: the Davies–Bouldin index (considers the ratio of

the intra-cluster scatter to the inter-cluster separation), the

weighted inter-intra index (the ratio of weighted average

inter-cluster to weighted average intra-cluster similarity), the

silhouette index (measure of how close each point in one

cluster is to points in the neighbouring clusters) and the

Caliński–Harabasz index (considers the ratio of the inter-

cluster variance to the intra-cluster variance). The Davies–
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Figure 11. k-means classification of the codebook vectors into three

classes.

Bouldin index has to be minimised whereas the other three

indices have to be maximised. Figure 10 shows the values

for the four indices when running a k-means classification of

the codebook vectors for two to 80 clusters. All four indices

indicate that the optimal number of clusters is equal to three.

Figure 11 shows the resulting clustering obtained in 80 %

of the runs. Two small “islands” of other clusters can be seen

inside the second cluster. This could be due to the cluster-

ing not being totally successful (for instance, due to gradual

transitions of the data) or an imperfect organisation by the

SOM.

Alternatively, one could argue that visually more than

three clusters can be identified given the patterns in the com-

ponent planes where clearly small groups can be seen at cer-

tain altitudes. The choice is therefore depending on the level

of detail required by the user. For the purpose of illustration

and comparison between clusters, visualisation of three clus-

ters is assumed to be sufficiently adequate besides this choice

being supported by the cluster validity indices.

Additionally, clustering could also be done based on an

EV when the differences have been shown to be dependent

on this variable. Such a sub-selection is then to be defined by

the user.

3.5.1 Cluster-wise correlation hunting

Section 3.4 has presented the correlations for the full set of

explanatory variables and the SOM’s component planes, pro-

viding a global overview. More complex relations might be

obtained when examining the relations inside clusters. It is

possible that some parts of the data set respond to different

variables (local relations) or behave in an opposite manner,

which then do not show up as a significant correlation in the

global analysis.

We have repeated the correlation analysis for the three

clusters created from the codebook vectors in the previous

section.

Figure 12 shows the linear correlations between the code-

book vectors and the mapped EVs for the three clusters. We
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Figure 12. Pearson linear correlation between the codebook vec-

tors at a given altitude and the mapped explanatory variables (EVs)

for the three clusters shown in Fig. 9 (first cluster on top, etc.) as

indicated in the lower right corner of each subplot. EVs from left

to right: scan direction, latitude of the SCIAMACHY observation,

longitude of the SCIAMACHY observation, difference in time be-

tween collocations, difference in distance between collocations, dif-

ference in equivalent latitude between collocations, solar zenith an-

gle during SCIAMACHY observation, solar azimuth angle during

SCIAMACHY observation, days since the launch of ENVISAT and

the day of the year.

can see that some details are very distinct for the different

clusters. For instance, the dependence on latitude at higher

altitudes appears to be much lower for the first cluster in com-

parison to the other two clusters. This cluster mostly contains

data originating from the northern mid-latitudes, yet this lim-

ited latitudinal coverage does not affect the correlation for

altitudes between 24–34 km substantially and another pro-

cess must be responsible for this. In contrast, a substantial

correlation (−0.37) with the days since launch between 36

and 42 km has appeared in cluster 1 besides the previously

detected correlation with the solar zenith angle. Also the de-

pendence on the scan direction is stronger for the different

clusters than for the global data set. For the third cluster some

correlation with the distance between the SCIAMACHY and

lidar observations has appeared for the middle part of the se-

lected altitude range, coincident with a stronger correlation

with longitude and with the scan angle for those altitudes.

This should be studied in more detail. Another observation is

that for the full altitude range, the strongest dependence on

latitude (highest negative correlation) and solar zenith angle

(highest positive correlation) is found for the third cluster,

which also contains the largest variation (standard deviation)

in latitudes covered by the input data. The solar zenith angle

has a greater negative correlation for the first cluster. Obser-

vations such as these made here should be of interest for the

teams working on the retrieval algorithms, as they can focus
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on studying why these parameters/variables have such an im-

pact on the observed differences between SCIAMACHY and

the lidar ozone profiles and reveal whether there is a physical

basis for the results found in this exploratory study.

4 Summary and conclusions

In this paper we have presented an alternative and novel ap-

proach to intercompare data sets and explore (dis)similarity

patterns and their possible causes. The approach is based

on the use of self-organising maps (SOMs) and was applied

to atmospheric ozone profiles (satellite and ground-based).

More precisely, the proposed approach was illustrated using

SCIAMACHY limb ozone profile data (level 2 version 5.02

of the operational product) and ground-based lidar ozone

profiles around seven observation sites.

Following profile collocation and data quality filtering, rel-

ative differences between the two instruments were calcu-

lated for altitudes between 18 to 45 km, and subsequently

normalised using the variance (preserving the distribution).

A SOM was batch-trained in two phases using these nor-

malised relative differences.

After that, the role of 11 selected explanatory variables

(EVs, related to location, data collocation criteria and obser-

vational characteristics) was studied by mapping these onto

the trained SOM. For this, we relied on the ID that links

each set of ozone profile differences to the explanatory vari-

ables. Through visual inspection of the patterns formed on

the two-dimensional SOM and through correlation analysis,

relations between the self-organised differences and the var-

ious of explanatory variables became apparent, directly link-

ing the differences between the SCIAMACHY and lidar pro-

files with these EVs without having to a priori specify cer-

tain conditions or ranges of values for the explanatory vari-

ables (current common practice in data intercomparison ex-

ercises). Some of the EVs are to a certain extent correlated

because of the nature of these observations (e.g. latitude and

solar azimuth angle) or through introduction by the data se-

lection procedure, but the variation covered was considered

sufficient to attempt to identify dependencies between the ob-

served ozone profile differences and the different EVs.

At the lowest altitudes studied here, the largest influencing

factor determining the patterns of relative differences seem to

be the longitude of the SCIAMACHY observations. Higher

up, the most dominant, but relatively weak, factor become

the solar zenith angle, followed by the latitude of the SCIA-

MACHY observation at the ozone maximum. The solar az-

imuth angle is strongly coupled to the latitude of the observa-

tion (as confirmed by partial correlation analysis accounting

for latitude) and the solar zenith angle to a lesser extent as

well. Above 36 km, the differences are in some part organised

according to the age of the sensor (days since launch). At the

highest altitudes, the solar zenith angle again has the largest

correlation with the organised differences, but also some sea-

sonal effect appears to play a role visualised by the day of

the year. The data selection procedure is also shown to be

quite adequate, as no dependence is observed on the differ-

ence in time or space between the lidar and SCIAMACHY

observations. There is however a small contribution to the

distribution of differences in the ozone profiles by the dif-

ference in equivalent latitude between the two observations,

mostly around the ozone maximum and around 20 km. The

effect of the scan angle on the distribution of the differences

on a global basis seems to be marginal and is only some-

what influencing around 22 km. A partial correlation analy-

sis adjusting for latitude and longitude yielded residual cor-

relations for solar azimuth and zenith angles, the day of the

year and the SCIAMACHY’s sensor age. At the lowest al-

titude, the most influencing factor is then the solar azimuth

angle, followed by the solar zenith angle. No dominant factor

is found between 26 and 36 km, and as with the standard cor-

relation analysis, above 36 km the sensor age and then solar

zenith angle have the highest correlation. However, the corre-

lation analysis cannot point out which factor, or combination

of factors, drives the observed differences between the ozone

profiles as most of the factors are inter-related and identifica-

tion of the underlying mechanisms should be studied in the

retrieval algorithms.

Further details were obtained by clustering the SOM com-

ponent planes (i.e. the values of the self-organised differ-

ences at multiple heights) into three clusters and investigat-

ing the differences between the clusters in terms of the ex-

planatory variables. Although the general patterns are sim-

ilar, some of the details are very distinct for the different

clusters. For example, in the first cluster the dependence on

latitude at higher altitudes appears to be much lower in com-

parison to the other clusters. The first cluster mostly contains

data originating from the northern mid-latitudes, yet this lim-

ited latitudinal coverage does not substantially affect the cor-

relation for altitudes between 24–34 km and it is postulated

that another process must be responsible for this. In contrast,

a substantial negative correlation with the days since launch

between 36 and 42 km appears for this cluster in addition to

the already detected positive correlation with solar zenith an-

gle. Also the dependence on the scan direction is stronger for

the different clusters than for the global data set. For the third

cluster some correlation with the distance between the SCIA-

MACHY and lidar observations shows up for the middle part

of the selected altitude range, coincident with a stronger cor-

relation with longitude and with the scan angle for those al-

titudes, which should be further studied.

Summarising, the SOM-based approach has shown the po-

tential to study relations between observed differences be-

tween two data sets and possible underlying factors without

making prior assumptions on which factors are of interest

whilst reducing the introduction of biases due to an uneven

distribution of collocations per site. It is simple to add EVs

to the analysis and no a priori division into ranges of values

for the variables is required. The level of detail can be opti-
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mised by adjusting the SOM size and, by looking at clusters

inside the SOM, local relations may be studied. The proposed

approach is thus offering a fresh and unbiased look at differ-

ences between data sets and is very useful to point out where

further focus should be laid to investigate the origins of the

differences and to enhance the underlying algorithms and/or

models.

The Supplement related to this article is available online

at doi:10.5194/amt-8-1951-2015-supplement.
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Caliński, T. and Harabasz, J.: A dendrite method for cluster analy-

sis, Commun. Stat., 3, 1–27, doi:10.1080/03610927408827101,

1974.

Davies, D. L. and Bouldin, D. W.: A cluster separation

measure, IEEE T. Pattern Anal., PAMI-1, 224–227,

doi:10.1109/TPAMI.1979.4766909, 1979.

Demartines, P. and Herault, J.: Curvilinear component anal-

ysis: a self-organizing neural network for nonlinear map-

ping of data sets, IEEE T. Neural Networ., 8, 148–154,

doi:10.1109/72.554199, 1997.

European Space Agency: Disclaimer for SCIAMACHY Level

2 data version SCIAMACHY/OL5.02 (ENVI-GSOP-EOGD-

QD-11-0110), available at: https://earth.esa.int/documents/

10174/24074/SCI_OL__2P_README.pdf (last access: 12 Jan-

uary 2014), 2011.

European Space Agency: Readme file for SCIAMACHY Level 2

version 5.02 products – Issue 1.2 (ENVI-GSOP-EOGD-QD-13-

0118), available at: https://earth.esa.int/handbooks/availability/

disclaimers/SCI_OL__2P_README.pdf (last access: 12 Jan-

uary 2014), 2013.

van Gijsel, J. A. E., Swart, D. P. J., Baray, J.-L., Bencherif, H.,

Claude, H., Fehr, T., Godin-Beekmann, S., Hansen, G. H., Keck-

hut, P., Leblanc, T., McDermid, I. S., Meijer, Y. J., Nakane,

H., Quel, E. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B.,

Tatarov, B. I., and Wolfram, E. A.: GOMOS ozone profile vali-

dation using ground-based and balloon sonde measurements, At-

mos. Chem. Phys., 10, 10473-10488, doi:10.5194/acp-10-10473-

2010, 2010.

Gevrey, M., Worner, S., Kasabov, N., Pitt, J., and Giraudel, J.-

L.: Estimating risk of events using SOM models: a case study

on invasive species establishment, Ecol. Model., 197, 361–372,

doi:10.1016/j.ecolmodel.2006.03.032, 2006.

Godin, S., Carswell, A. I., Donovan, D. P., Claude, H., Stein-

brecht, W., McDermid, I. S., McGee, T. J., Gross, M. R.,

Nakane, H., Swart, D. P. J., Bergwerff, H. B., Uchino, O., von

der Gathen, P., and Neuber, R.: Ozone differential absorption

lidar algorithm intercomparison, Appl. Optics, 38, 6225–6236,

doi:10.1364/AO.38.006225, 1999.

Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M.,

and Abuhassan, N.: NO2 column amounts from ground-

based Pandora and MFDOAS spectrometers using the

direct-sun DOAS technique: intercomparisons and appli-

cation to OMI validation, J. Geophys. Res., 114, D13307,

doi:10.1029/2009JD011848, 2009.

Hsieh, W. W.: Nonlinear multivariate and time series analy-

sis by neural network methods, Rev. Geophys., 42, RG1003,

doi:10.1029/2002RG000112, 2004.

Jensen, A. A., Thompson, A. M., and Schmidlin, F. J.: Clas-

sification of Ascension Island and Natal ozonesondes us-

ing self-organizing maps, J. Geophys. Res., 117, D04302,

doi:10.1029/2011JD016573, 2012.

Keckhut, P., McDermid, I. S., Swart, D. P. J., McGee, T. J.,

Godin-Beekmann, S., Adriani, A., Barnes, J., Baray, J.-

L., Bencherif, H., Claude, H., Fiocco, G., Hansen, G. H.,

Hauchecorne, A., Leblanc, T., Lee, C. H., Pal, S., Mégie, G.,

Nakane, H., Neuber, R., Steinbrecht, W., and Thayer, J.: Re-

view of ozone and temperature lidar validations performed

within the framework of the Network for the Detection

of Stratospheric Change, J. Environ. Monitor., 6, 721–733,

doi:10.1039/B404256E, 2004.

Kohonen, T.: Self-Organizing Maps, 3rd Edn., Springer-Verlag,

New York, USA, 502 pp., 2001.

Atmos. Meas. Tech., 8, 1951–1963, 2015 www.atmos-meas-tech.net/8/1951/2015/

http://dx.doi.org/10.5194/amt-8-1951-2015-supplement
http://dx.doi.org/10.5194/amt-5-927-2012
http://dx.doi.org/10.1186/1476-072X-12-60
http://dx.doi.org/10.1029/2007JD008816
http://dx.doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
http://dx.doi.org/10.1016/0094-5765(94)00278-T
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/72.554199
https://earth.esa.int/documents/10174/24074/SCI_OL__2P_README.pdf
https://earth.esa.int/documents/10174/24074/SCI_OL__2P_README.pdf
https://earth.esa.int/handbooks/availability/disclaimers/SCI_OL__2P_README.pdf
https://earth.esa.int/handbooks/availability/disclaimers/SCI_OL__2P_README.pdf
http://dx.doi.org/10.1016/j.ecolmodel.2006.03.032
http://dx.doi.org/10.1364/AO.38.006225
http://dx.doi.org/10.1029/2009JD011848
http://dx.doi.org/10.1029/2002RG000112
http://dx.doi.org/10.1029/2011JD016573
http://dx.doi.org/10.1039/B404256E


J. A. E. van Gijsel et al.: Using SOMs to explore ozone profile validation differences 1963

Kurylo, M. J. and Solomon, S.: Network for the detection of strato-

spheric change: a status and implementation report, Issued by

NASA Upper Atmosphere Research Program and NOAA Cli-

mate and Global Change Program, Washington DC, 1990.

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A.,

Bucsela, E. J., Boersma, K. F., Dirksen, R., Luo, C., and

Wang, Y.: Indirect validation of tropospheric nitrogen dioxide

retrieved from the OMI satellite instrument: insight into the sea-

sonal variation of nitrogen oxides at northern midlatitudes, J.

Geophys. Res., 115, D05302, doi:10.1029/2009JD013351, 2010.

Lee, S. and Feldstein, S. B.: Detecting ozone- and greenhouse gas-

driven wind trends with observational data, Science, 339, 563,

doi:10.1126/science.1225154, 2013.

Nair, P. J., Godin-Beekmann, S., Froidevaux, L., Flynn, L. E., Za-

wodny, J. M., Russell III, J. M., Pazmiño, A., Ancellet, G.,

Steinbrecht, W., Claude, H., Leblanc, T., McDermid, S., van Gi-

jsel, J. A. E., Johnson, B., Thomas, A., Hubert, D., Lambert, J.-

C., Nakane, H., and Swart, D. P. J.: Relative drifts and sta-

bility of satellite and ground-based stratospheric ozone profiles

at NDACC lidar stations, Atmos. Meas. Tech., 5, 1301–1318,

doi:10.5194/amt-5-1301-2012, 2012.

Nazaryan, H., McCormick, M. P., and Russell III, J. M.:

Comparative analysis of SBUV/2 and HALOE ozone

profiles and trends, J. Geophys. Res., 112, D10304,

doi:10.1029/2006JD007367, 2007.

Reusch, D. B., Alley, R. B., and Hewitson, B. C.: North Atlantic cli-

mate variability from a self-organizing map perspective, J. Geo-

phys. Res., 112, D02104, doi:10.1029/2006JD007460, 2007.

Sakai, K., Kawamura, R., and Iseri, Y.: ENSO-induced trop-

ical convection variability over the Indian and western Pa-

cific oceans during the northern winter as revealed by

a self-organizing map, J. Geophys. Res., 115, D19125,

doi:10.1029/2010JD014415, 2010.

Schuenemann, K. C. and Cassan, J. J.: Changes in synoptic

weather patterns and Greenland precipitation in the 20th and

21st centuries: 2. Analysis of 21st century atmospheric changes

using self-organizing maps, J. Geophys. Res., 115, D05108,

doi:10.1029/2009JD011706, 2010.

Skupin, A. and Esperbe, A.: An alternative map of the United States

based on an n-dimensional model of geographic space, J. Visual.

Lang. Comput., 22, 290–304, doi:10.1016/j.jvlc.2011.03.004,

2011.

Stiller, G. P., Kiefer, M., Eckert, E., von Clarmann, T., Kell-

mann, S., García-Comas, M., Funke, B., Leblanc, T., Fetzer, E.,

Froidevaux, L., Gomez, M., Hall, E., Hurst, D., Jordan, A.,

Kämpfer, N., Lambert, A., McDermid, I. S., McGee, T., Miloshe-

vich, L., Nedoluha, G., Read, W., Schneider, M., Schwartz, M.,

Straub, C., Toon, G., Twigg, L. W., Walker, K., and White-

man, D. N.: Validation of MIPAS IMK/IAA temperature, water

vapor, and ozone profiles with MOHAVE-2009 campaign mea-

surements, Atmos. Meas. Tech., 5, 289–320, doi:10.5194/amt-5-

289-2012, 2012.

Takele Kenea, S., Mengistu Tsidu, G., Blumenstock, T., Hase, F.,

von Clarmann, T., and Stiller, G. P.: Retrieval and satellite inter-

comparison of O3 measurements from ground-based FTIR Spec-

trometer at Equatorial Station: Addis Ababa, Ethiopia, Atmos.

Meas. Tech., 6, 495–509, doi:10.5194/amt-6-495-2013, 2013.

Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number

of clusters in a dataset via the Gap statistic, J. R. Stat. Soc. B, 63,

411–423, doi:10.1111/1467-9868.00293, 2001.

Tzortzis, G. and Likas, A.: The MinMax k-means clus-

tering algorithm, Pattern Recogn., 47,2505–2516,

doi:10.1016/j.patcog.2014.01.015, 2014.

Wetzel, G., Oelhaf, H., Berthet, G., Bracher, A., Cornacchia, C.,

Feist, D. G., Fischer, H., Fix, A., Iarlori, M., Kleinert, A.,

Lengel, A., Milz, M., Mona, L., Müller, S. C., Ovarlez, J., Pap-

palardo, G., Piccolo, C., Raspollini, P., Renard, J.-B., Rizi, V.,

Rohs, S., Schiller, C., Stiller, G., Weber, M., and Zhang, G.:

Validation of MIPAS-ENVISAT H2O operational data collected

between July 2002 and March 2004, Atmos. Chem. Phys., 13,

5791–5811, doi:10.5194/acp-13-5791-2013, 2013.

Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K., Elder-

ing, A., and Bojkov, B. R.: Intercomparison methods for satellite

measurements of atmospheric composition: application to tro-

pospheric ozone from TES and OMI, Atmos. Chem. Phys., 10,

4725–4739, doi:10.5194/acp-10-4725-2010, 2010.

Zurita-Milla, R., van Gijsel, J. A. E., Hamm, N. A. S.,

Augustijn, P. W. M., and Vrieling, A.: Exploring spa-

tiotemporal phenological patterns and trajectories using self-

organizing maps, IEEE T. Geosci. Remote, 51, 1914–1921,

doi:10.1109/TGRS.2012.2223218, 2013.

www.atmos-meas-tech.net/8/1951/2015/ Atmos. Meas. Tech., 8, 1951–1963, 2015

http://dx.doi.org/10.1029/2009JD013351
http://dx.doi.org/10.1126/science.1225154
http://dx.doi.org/10.5194/amt-5-1301-2012
http://dx.doi.org/10.1029/2006JD007367
http://dx.doi.org/10.1029/2006JD007460
http://dx.doi.org/10.1029/2010JD014415
http://dx.doi.org/10.1029/2009JD011706
http://dx.doi.org/10.1016/j.jvlc.2011.03.004
http://dx.doi.org/10.5194/amt-5-289-2012
http://dx.doi.org/10.5194/amt-5-289-2012
http://dx.doi.org/10.5194/amt-6-495-2013
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1016/j.patcog.2014.01.015
http://dx.doi.org/10.5194/acp-13-5791-2013
http://dx.doi.org/10.5194/acp-10-4725-2010
http://dx.doi.org/10.1109/TGRS.2012.2223218

	Abstract
	Introduction
	Data and methods
	SCIAMACHY version 5.02 ozone profile data
	Ground-based NDACC lidar data
	Methodology

	Practical implementation and discussion of results
	Data selection, collocation and preprocessing
	Training of the SOM
	Component planes

	Mapping the explanatory variable (EV) planes
	Correlation hunting
	Clustering
	Cluster-wise correlation hunting


	Summary and conclusions
	Acknowledgements
	References

