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ON THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR THE
HOMOGENEOUS LANDAU EQUATION WITH SOFT POTENTIALS

KLEBER CARRAPATOSO

Ecole Normale Supérieure de Cachan, CMLA (UMR CNRS 8536), 61 av. du Président Wilson,
94235 Cachan, France. E-mail address: carrapatoso@cmla.ens-cachan.fr

ABsTRACT. We investigate in this work the rate of convergence to equilibrium of solutions
to the spatially homogeneous Landau equation with soft potentials. Firstly, we prove a
polynomial in time convergence using an entropy method with some new a priori estimates.
Finally, we prove an exponential in time convergence towards the equilibrium with the optimal
rate, given by the spectral gap of the associated linearised operator, combining new decay
estimates for the semigroup generated by the linearised Landau operator in weighted LP-
spaces together with the polynomial decay described above.

1. INTRODUCTION

The Landau equation is a fundamental model in kinetic theory that describes the evolution
of the density of particles in a plasma in the phase space of all positions and velocities. We
consider in this work the case of spatially homogeneous density functions, which verifies the
spatially homogeneous Landau equation given by

atf = Q(fvf)
(1'1) {ft—O = fo,

where f = f(t,v) > 0 is the density of particles with velocity v € R? at time ¢ > 0. The Landau
collision operator @ is a bilinear operator acting only on the variable v and given by

(12) Qo f) =0 [ a0 =0 190, = foy0.) do,

where here and below we shall use the convention of implicit summation over repeated indices
and the usual shorthand g. = g(v«), 9j9« = 0u,,9(v«), f = f(v) and 0; f = Oy, f(v).

The matrix-valued function a is nonnegative, symmetric and depends on the interaction
between particles. One usually assumes that particles interact by binary relation through a
potential proportional to 1/r®, where r denotes their distance. In this case a is given by (see for
instance [23])

(1.3) aij(z) = |22 15(2),  Ty(2) = (6@- - %) )

with v = (s — 4)/s. One usually calls hard potentials if v € (0, 1], Maxwellian molecules if
~v = 0, soft potentials if v = (—3,0) and Coulombian potential if y = —3. One also separates
the soft potentials into two categories: moderately soft potentials when v € (—2,0) and very
soft potentials if v € (—3,—2]. In this paper we are interested in the case of moderately soft
potentials.
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2 KLEBER CARRAPATOSO

We also define the following quantities
(1.4) bi(z) = 0jaij(2) = =2|2[" zi, c(z) = Oyjai;(2) = —2(v + 3) |2[7,
from which we are able to rewrite the Landau operator in the following way
Qg [) =V -{laxg)Vf—(bxg)f}
= (ai; * 9)0i; f — (cxg)[.

Let us present some important properties of the Landau equation. First of all, it conserves
mass, momentum and energy. Indeed, at least formally, for any test function ¢ we have (see e.g.

21])

(1.5)

71 a;;\V — U %—81'](‘* i@ — 05 v av
[eunewa=; [ ae-us (2 - 22) @ - o0 v,

from which we deduce, for any ¢ > 0,

(1.6) %/f(pdv = /Q(f, Hedv=0 for o(v) =1,v,|v|*

Another important property of this equation is the Landau version of the celebrated H-Theorem
of Boltzmann: The entropy H(f) := [ flog f is nonincreasing and any equilibrium is a Maxwellian
distribution (Gaussian distribution). Indeed, at least formally, the entropy-dissipation functional
defined as

(L.7) D(f) = - / QUf. f)log f.

verifies the following inequality

(1.8)
7_1 :l aiilv — v 8zf_8z*f* %_8j*f*
DU =g =g [ sl *)(f 7. ><f 7.

and we also have

> ffedvdv, >0,

t
(19) H()+ [ D) dr = H(Go).
0
From this, it also follows that any equilibrium is a Maxwellian distribution
Pl

Np,u,T(U) = We )

for some p > 0, u € R3 and T > 0.

It is then expected that any solution f(¢,-) converges towards the Maxwellian equilibrium
Ppsup, 1y When t — 400, where py is the density of the gas, uy the mean velocity and Ty the
temperature, defined by

o= [ 10 =3 o, 1= 5 [o=ul s

and these quantities are defined by the initial datum fy thanks to the conservation properties
of the Landau operator (1.6).

We shall always assume that fj is a nonnegative function with finite mass, energy and entropy,
more precisely

/fo:Mo<OO, /|U|2f0:E0<OO, /fologf0:H0<OO,

and it is classical that this implies

(1.10) fo€e LinLlogL, Llog L := {feLl |/|f|log(|f|) <oo}.
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Furthermore, we may only consider the case of initial datum fy satisfying
(1.11) fo€Lig,={feL'[pr=1up=0, Ty =1},

the general case being reduced to (1.11) by a simple change of coordinates. We shall then

denote p(v) = (27r)_3/2e_‘”|2/2 the standard Gaussian distribution in R®, which corresponds to
the Maxwellian with same mass, momentum and energy of fo.

We can linearise the Landau equation around the equilibrium g, with the perturbation
f(t,v) = u(v) + h(t,v), which satisfies at the first order the linearised Landau equation

{ oh = Lh

h\t:O = hOu

where the initial datum is defined by hg = fo — p, and where the linearised Landau operator £
is given by

(1.13) £h = Q(u,h) + Q(h, p).

Furthermore, from the conservation properties (1.6), we observe that the null space of £ has
dimension 5 and is given by (see e.g. [5, 12, 2, 16, 18])

(114) N(‘C) = Span{:uv UL, V24, U3 [, |’U|2,U}

Consider the weighted Hilbert space L? (/fl/ 2) associated with the following scalar product and
norm

(1.12)

<hag>L2(u*1/2) ::/hg,ufl and HhHiz(u*IQ) 2:/|h|2,u71.
A simple computation gives
<‘Chvh>L2(u*1/2)

= —% // aij (v — ) {0 (W h) = Dui(p ) YO () — By (T ha) } pie o dv do
S 07

which implies that £ is self-adjoint on L?(x~'/?) and, moreover, that the spectrum of £ in
L?(u~1) is included in R_.

1.1. Existing results. Let us mention known results concerning the long-time behaviour of
solutions to the Landau equation (and for a more detailed presentation we refer to [4]).

In the Maxwellian molecules case v = 0, Villani [22] proves an exponential in time convergence
to equilibrium. For hard potentials v € (0, 1], Desvillettes and Villani [§] obtain a polynomial
in time convergence to equilibrium, and more recently we prove in [4] an optimal exponential
decay to equilibrium. Moreover, Toscani and Villani [19] also prove a decay to equilibrium
polynomially in time, in the case of mollified soft potentials v € (—3,0), which corresponds to
replace |z[772 in (1.3) by a mollified function ¥(z) truncating the singularity at the origin (see
Section 4.1 for more details). It is worth mentioning that all the results from [22, 8, 19] above
are purely nonlinear and based on an entropy method.

Another approach for studying the long-time behaviour consists in considering the linearised
equation around the equilibrium (1.12), which has been investigated by several authors. Sum-
marising results of Degond and Lemou [5], Guo [12], Baranger and Mouhot [2], Mouhot [16],
Mouhot and Strain [18], we have the following proposition:

Proposition 1.1. Let v € [—2,1]. There exists a constructive constant Ao > 0 (spectral gap)
such that, for any h € L?>(u=/2) with h € N(L)*,

(Lhyh) =12y < =Xollhll72 172y
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As a consequence we obtain an exponential decay for the linearised Landau equation (1.12): for
any t >0 and h € L?>(u='/?), there holds

Hetﬁh — HOhHLQ(H*U?) < €7A0t|‘h - HOhHLQ(#*l)y
where Iy is the projection onto N'(L).

1.2. Main results and strategy. Let us define the notion of weak solution we consider in this
paper.

Definition 1.2 (Weak solutions [21]). Let v € [~2,1] and consider a nonnegative fo € L3 N
Llog L. We say that f is a weak solution of the Cauchy problem (1.1) if the following conditions
are fulfilled:

(i) £20, feC(0,00);D)NLX([0,00); Lz N Llog L) N Lj,.([0,00): L3, );
(i) f(0) = fo;

(141) for any t >0

/f(t) /fogo for @(v)=1,v,|v|*; and H(f /D )) < H(fo);

(iw) f verifies (1.1) in the distributional sense: for any ¢ € C([0,00); CS°), for any t > 0,

[ 100~ [ o0 //f orp(r //Q o (7).

where the last integral in the right-hand side is defined by

Jaune=5 [[asw-v)@ue+ 000 1.8+ [[ 0o - v)@ie - 00 1.1

It is observed in [21] that these formulae make sense as soon as f satisfies (i) and p € W2 >°(R3).

In the case of moderately soft potentials v € (—2,0), it is proven in [21] that if fo € LINLlog L
there exists a global weak solution. If moreover we assume fy € L}, with k > v2/(2 + 7), then
the weak solution is unique [10, Corollary 4].

We can now state our main results on the rate of convergence to equilibrium: a polynomial
convergence in Theorem 1.3 and then an exponential convergence in Theorem 1.4.

Theorem 1.3 (Polynomial convergence). Let v € (=2,0) and fo € L o 3,4 (1 Llog L with
kE > T|y|/2. Then there exists a weak solution f to the Landau equation associated to fo such
that
— k4T
Vit >0, H(f)|p) <CA+t) ™72,

for some constructive constant C > 0 and where H(f|p) := [ flog( f/u) is the relative entropy
of [ with respect to pu.

The proof of Theorem 1.3 follows the strategy introduced by Toscani and Villani [19] (see
Section 4.1 for more details), in which, as already explained, a polynomial in time convergence to
equilibrium for mollified soft potentials is proven. This strategy was developed in order to treat
the trend to equilibrium issue for kinetic equations with relatively bad control of the distribution
tails (as for Boltzmann and Landau-type equations with soft potentials) and they compensate
the lack of uniform in time estimates by some precise logarithmic Sobolev inequalities. In order
to use this strategy, we prove some new a priori estimates for the evolution of weighted L* and
Sobolev norms in Section 3. Then we prove Theorem 1.3 in Section 4.1 using these a priori

estimates together with a functional inequality relying entropy and entropy-dissipation from
[19].
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Theorem 1.4 (Exponential convergence). Let v € (—=1,0) and fo € Llog L N L' (")) with
k>0 and —y < s < 2+. Then the unique weak solution f to the Landau equation associated
to fo satisfies

Vit >0, ”f(t) - MHL1 < CeiAOtv

for some constructive constant C > 0 and where A\g > 0 is the spectral gap of the associated
linearised operator.

Remark 1.5. The restriction v € (—1,0) comes from the fact that we need s+~ > 0 in order
to prove the ”spectral gap/semigroup decay” extension theorem for the linearised equation (see
Theorem 2.1) and s < v + 2 to prove the propagation of stretched exponential moments (see
Lemma 3.6).

The strategy to prove this theorem is based on:

(1) New exponential decay estimates (with sharp rate) for the semigroup generated by the
linearised Landau operator £ in various LP-spaces with stretched exponential weight, using
a method developed in [11]. This question is addressed in Section 2.

(2) New a priori estimates for the nonlinear equation proved in Section 3 and the convergence
to equilibrium from Theorem 1.3 proven in Section 4.1.

(3) A “coupling method” in order to connect the linearised theory with the nonlinear one: for
small times we use the polynomial convergence from Theorem 1.3; then for large times we
use (2) to prove that the solution enters in a suitable neighbourhood of the equilibrium, in
which the linear part is dominant, and we have an optimal exponential decay from (1). This
is proven in Section 4.2.

It is worth mentioning that this strategy has been used by several authors and for different
equations in order to prove an exponential in time convergence to equilibrium. It was first
introduced by Mouhot [17] for the homogeneous Boltzmann equation for hard potentials with
Grad’s cut-off. This same approach was later used by Gualdani, Mischler and Mouhot [11] for
the inhomogeneous Boltzmann equation for hard spheres on the torus and for the Fokker-Planck
equation, and also by Mischler and Mouhot [14] for Fokker-Planck equations. More recently, the
author [4] used it for the homogeneous Landau equation with hard potentials, and Tristani [20]
for the homogeneous Boltzmann equation for hard potentials without cut-off.

1.3. Notations. Let m : R — Rt be a weight function. For any 1 < p < oo we define the
weighted space LP(m) associated with the norm

£l ze(m) := lmfl e

We also define higher-order weighted Sobolev spaces W*P(m) associated with the norm

LB ey = 32 1012 s L <P < o0,
laf <€
with the usual modification for p = oo and for homogeneous spaces W7 (m). When m = (v)¥ :=

(1 + [v][*)*/? is a polynomial weight, we denote W? := WEHP((v)F).

Let X,Y be Banach spaces and consider a linear operator A : X — Y. We shall denote
by Sa(t) = e the semigroup generated by A. Moreover we denote by %(X,Y) the space of
bounded linear operators from X to Y and by || - Hgg( X,y) its norm operator, with the usual
simplification B(X) = (X, X).
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2. THE LINEARISED OPERATOR
In this section we shall denote
(2.1) ai;(v) = aij * p,  bi(v) =b;i*xp, e(v) =cxp.
Let us now make our assumptions on the weight function m = m(v):
(W) Stretched exponential weight. We consider a weight function m = exp(x(v)®) with
k>0,0<s<2and s+~vy>0.

We are now able to state the main result of this section, which extends to various weighted
LP spaces the decay of the semigroup S, (t) generated by the operator £, known to hold in
L?(u~1/?) by Proposition 1.1.

Theorem 2.1. Let v € (—2,0), 1 < p <2 and a weight function m satisfying (W). Then there
exists a constant C' > 0 such that, for all t > 0 and any h € LP(m), there holds

S (t)h — Toh|| Lo(my < Ce | — Hoh|| Lo (m).
where Ty is the projection onto N'(L) and Xo > 0 is the spectral gap of L on L*(u=1/?).

In order to prove this theorem we shall use the method of enlargement of the functional space
of semigroup decay developed by Gualdani, Mischler and Mouhot [11]. Roughly speaking, if one
knows some quantitative information on the semigroup decay associated with an operator £ in
some small space E, this method enables one to deduce this quantitative estimate on a larger
space £ D FE, when the operator L satisfies some properties. In order to do that, we need to
factorise £ = A+ B and to prove some properties for these operators, namely that B has a well
localised spectrum (see Section 2.2) and A is regularising in some sense (see Section 2.3).

2.1. Factorisation of the operator. Using the form (1.5) of the operator @), we decompose
the linearised Landau operator £ defined in (1.13) as £ = A + By, where we define

Aoh := Q(h, 1) = (ai; * h)Oijp — (¢ x h)p,

Boh := Q(p, h) = (asj * p1)0i5h — (¢ * p)h.

Consider a smooth nonnegative function y € C2°(R3) such that 0 < x(v) < 1, x(v) = 1 for
|v] < 1 and x(v) = 0 for |v] > 2. For any R > 1 we define xg(v) := x(R 'v) and in the
sequel we shall consider the function My g, for some constant M > 0. Then, we make the final
decomposition of the operator £ as L = A + B with

(2.3) A:=Ag+ Mxr, B:= By — Mxr,

where M and R will be chosen later.

(2.2)

2.2. Dissipativity properties. We investigate in this section dissipativity properties of the
operator .

First of all, we state the following results concerning a;;(v) (see [5, Propositions 2.3 and 2.4,
Corollary 2.5] and [12, Lemma 3]) that will be useful.
Lemma 2.2. The following properties hold:

(a) The matriz a(v) has a simple eigenvalue ¢1(v) > 0 associated with the eigenvector v and a
double eigenvalue l3(v) > 0 associated with the eigenspace v-. Moreover,

aw - | (1 (& %)) (o — ) du
ﬂg(v):/R3 <1—%

v w

JRE— >< RS
ol |wl

2
) lw|" T p(v — w) dw.
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When |v| — 400 we have
i (v) ~ 2{v)7
la(v) ~ (0)7F2.

If v € (0,1] there exists £y > 0 such that, for all v € R?, min{¢;(v),l2(v)} > .
(b) The function a;; is smooth, for any multi-index 3 € N

10°a;(v)| < Cg(v)r+2=1Fl

and
ai5(0)&&5 = () |Po&? + Lo(v)|(I — Py)EI?,
agj(v)vw; = L1 (v)[of?,

where P, is the projection on v, i.e.
v\ v
Pv§ = (6 : _) T
vl /) ]

a;i(v) =2 /]RS |v — v 72 () dus and bi(v) = —£1(v) v;.

(¢c) We have

Let us we define

(r-1

1 2 _
(2.4) Om,p(v) = - a:vVim+ avVm - Vm + — b-Vm+ (1/p—1)c.

Before proving the desired result in Lemma 2.5, we give the following elementary lemma to
be used in the sequel.

Lemma 2.3. Let Jo(v) := [gs [0 — va]*p(vy) dvs for =3 < o < 2. Then it holds:

(i) If 0 < a < 2 then Jo(v) < |v|* 4+ Cy for some constant Co > 0.
(i1) If =3 < a <0 then J,(v) < C{v)* for some constant C > 0.

Proof. Point (i) can be found in [4, Lemma 2.5]. For point (ii) we observe that the result easily
follows if |v| < 1. On the other hand if |v| > 1 we write

Ja)= [ el edot [ oo - v de
v |<1

o] >1

< sup ,u(v—v*)/ |v*|0‘dv*+0/ (V) *u(v — vy) dvy.
|va <1

PAES! o] >1

Using that supj,, <3 p(v —vi) < Ce 1"*/4 < C and that (v,)* < CW)*(v — v,)1% by Peetre’s
inequality we conclude to

Jao(v) < C +C)® /(v — v = v,) do, < C)*.
0

Lemma 2.4. Let m satisfy assumption (W). Then for all X > 0 we can choose M and R large
enough such that, for all v € R3,

Pm.p(v) = MxR(v) < =X
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Proof. Let m = exp(k(v)®). We easily compute

Vm s—2
o= ksv{v)
and
2 -
% = ks(v)* 728, + ks(s — 2)vv; () T + K2s%v0; (V)2

It follows then

Vim 2 4 2.2/, \25—4
= (8ijaij )rs(v)* ™" 4 (@izvivs)rs(s — 2)(0)° 7" + (agviv; )K7s™(0) ™~

= 2k8J12(0) (V)52 + Ks(s — 2)€1(v)|v]* (V)57 + K221 (v) [v]* () 2574,

where we have used Lemma 2.2. Moreover, using again Lemma 2.2, we obtain

Vm Vm 9

_ _ - 20,\25—4 _ 22 2/, \25—4
4~ — = QUUK"s (v) k=520 (v)|v]“(v)
and
- Vm 9/ \s5—9
b = ksl (v)|v]*{v)*~=.

Putting together the above estimates, we obtain
Pmp(V) = 28T512(0)(0)° 7% + Ks(s = 2)01(0)[v]* ()* ™" + pr®s* 1 () o] (v)**

(2.5) — 2k801(0) |02 (V) "2 + 2(y + 3)(1 — 1/p)Jy(v).

From the asymptotic behaviour of ¢y, J,12 and J,, the dominant terms of ¢y, ;, in (2.5) when
|[v| = oo are the first and the fourth one, both of order (v)7**. Using Lemma 2.3 to bound

Jyy2(v) < Jyq2(v) o (V)72 and /4 (v) o 2(v)7 from Lemma 2.2, we obtain that
v|—> 00 V|00

Omp(V) < Gmp(v) with

(2.6) Omp(v)  ~ —2k5(V)* T ——— —0o0,

[v|—o00 |[v]—o0

because s + v > 0 from assumption (W).
Let us fix A > 0. Then, thanks to (2.6), we can choose R large enough such that

Vo] > R, omp(v) — Mxgr(v) < —A
Finally, we choose M > sup, < ¢m.p(v) + A so that
VIv[ < R, omp(v) = MXR(V) = @mp(v) = M < =),

from which we conclude. O

With the help of the result above, we are able to state a result on the dissipativity of B.
Recall that

B=By—Mxgr, Bof=V-{aVf-bf}.
Lemma 2.5. Let v € (—2,0), p € [1,+00) and m be a weight function satisfying assumption

(W). Then for any X > 0, we can choose M and R large enough such that the operator (B + )
is dissipative in LP(m).

Lemma 2.6. Let v € (—=2,0). Then for any A > 0, we can choose M and R large enough such
that the operator (B + \) is dissipative in L?(u~'/?).
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Proof of Lemma 2.5. We denote ®(z) = |x[P~!sign(x) and consider the equation
6th = Bh = Boh — MXRh.

For all p € [1,00), we compute

1d

il = [@o)@ e — [ rwlbime.
For the first term, we perform integration by parts to obtain

/ (Boh)®' (h)m? = / V- {aVh — Bh} ' (h)m?
= —/thV(fb’(h))mp —/th(I)’(h)V(mp)

+ / bhN (@ (h))mP + / bh®' (h)V (mP).
Using that V(®'(h)) = (p—1)|h|P~2Vh, ®'(h)Vh = p~tV(|h|P) and AV (®'(h)) = (1-1/p)V(|h|P),
and integrating by parts, we finally get

/(Boh)fb’(h)mp =—(p— 1)/&Vth|h|p’2mp
+%/{a: %—1—25- % —(p— 1)0} |h[PmP.

We can rewrite
V(mP) = pmP~'Vm

and
V2(mP) = (0i;mP)1<i <3 = p(p — 1)mP~*0;md;m + pm?~ ' d;;m
to obtain
1d _ _
(2.7) Eallhllip(m) =—(p— 1)/thVh|h|” *mP + /(wm,p — Mxgr)[h|Pm?,

where ¢, , is defined in (2.4).

From Lemma 2.4, for all A > 0, we can choose M and R large enough such that ¢y, ,(v) —
Mxr(v) < —=\. Hence, it follows that the operator (B84 \) is dissipative in LP(m). Indeed, from
(2.7) we have

1d _ _
My =~ = 1) [aVAVRIAP 20 4 [ (o = M)
< =MLy
since the matrix a is positive, and it follows that
(2.8) [SB(EVR] Lo m) < € ||| Lo (m)-
O

Proof of Lemma 2.6. Arguing as in the proof above and denoting ¢, := ¢, -1/2 5, that satisfies
from (2.5)

Pu(v) = Jy12(v) = SN + (7 +3)5(0),

we obtain L d

5B == [aVhTha 4 [~ Mt
Remark that here we can not conclude as in the proof of Lemma 2.5 because the coefficient of
order (v)?*2 in ¢, vanishes in the asymptotic [v| — oo.
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From Lemma 2.2, there exists K > 0 such that @;;&;&; > K (v)7]£|?. We obtain then

1d _ B
3 v < K [@71VRE 0+ [ = Ml

and, by integration by parts, we also have

[ v

7 1
= [y TR L) o (o)
+2 [ IaVho() 20t + 2nvhotey 5t + Lo (o) 2h2ut

5 W ShVho) T+ ol (0) 1

= [+ [ {3 - G+ 2) wr - T

Finally, it follows that

1d _ - _
@9) g < <K [V w20 + [ - M

where

2

(4= eyt bz

Pulw) = pulv) = () + O

= 2 4 Tyav) — SH@NI + (4 3)T50) + )

Thanks to the asymptotic behaviour of /1, J,42 and J,, and arguing as in Lemma 2.4, we easily

get that

~ —l<v>7+2 — —00.
lv]—oo 4 |[v]—o0

Pu(v)

Then, for any A > 0, we can choose M, R large enough such that ¢(v) — Mygr(v) < =\ for any
v € R3. We conclude the proof as in the previous lemma. g

2.3. Regularisation properties. We are now interested in regularisation properties of the
operator A and the iterated convolutions of ASp. Let us recall the operator A defined in (2.3),
Ag = Aog + Mxrg = (ai; * 9)0ijpn — (¢ g)p+ MxRrg,
for M and R large enough chosen before. Thanks to the smooth cut-off function g, for any

q € [1,+00), p > g and any weight function m satisfying (W), we easily observe that
(2.10) IMx RGN agu-1r2) < Cllxrr™*m™ | poaso-o 9]l Lo my < CligllLom),
from which we deduce that Mygr € ZB(LP(m), L (u~/?)).
Let us now focus on the operator Ay.
Lemma 2.7. Let v € (—2,0) and q € [1,2].
(i) If 1 < q < 3/|y| then
I Aogll Lau-1/2) S Nlgllnryvr2y + gl + llglize.
(i1) If v € (=2,-3/2] and 3/|y| < ¢ < 2 then
I Aogll Lagu-1/2) S llgllzr(oyr+2) + ||9HL$-
As a consequence, for any 1 < p <2 and m satisfying (W1) there hold:
o A€ B (u12);
e Ac B(LP(m)) and moreover A € B(LP(m), LP(u~'/?)).
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Proof. For any 1 < g < 2 we write

Aol paqu-1r2) < (@i * 9)0ijpull pagu-1r2) + (e % @pill pagu-172),

and we estimate each term separately. For the first term, since |a;;(v — v.)| < C(v)7T2(v,)7 T2
and |9;;p(v)| < C{v)?u, we easily obtain

[ (aij *g)aiju”%q(#fl/Z) S H9||%1((v>v+2) /<U>(V+4)q NQ/2 < Hgl|%l((v>v+2)'
For the second term we separate into two cases.

(i) Suppose 1 < ¢ < 3/|y|. We decompose ¢ = c_ + ¢y with ¢ = cl|.|<; and ¢y = cl}.]5;. We
easily bound

(e * g)(v)] 5/ Lo—v>1 v = vu] " |g4] S llgllLr,

Vs

hence
I(ex % g)ptll pagu-rr2y = ll(es * @' ?llza S llgllor-
For the other term, we get

e * Dl vy S [

v

5// l\v—v*\gl|v—v*|7‘1|g*|quq/2
v Ju,

</ ( [ tomuaizalo = v dv) 0.7
Vs v
<Gy gl

where we have used Jensen’s inequality at the first line and, in the last line, the integral in v is
bounded since ¢ < 3/]y|. This concludes the proof of point (7).

q
MQ/2

/ 1jy—u, <1 |V — a7 g du

v

(1) Now suppose v € (—2,—3/2] and 3/|y| < ¢ < 2. We write then
(e * g)ptll agu1r2) = (e x @)t 2llza < (e g)llza 1t/

< 1/2

< Il I,

where we have used Holder’s inequality in first line and Hardy-Littlewood-Sobolev inequality in
the second one. This gives point (7).

(IS
L3-4

sl

3
LT =

3—gq

The conclusion of the lemma is a easy consequence of the above estimates and (2.10), observ-
ing that in the case (i) we have
g1l Lr(wyr+2) + gl + llgllize < lgllzogm)
and in the case (i7)
g1l wyrezy + gl zon S Mlgllzagmys
for any weight function m satisfying (W). O

We prove now a regularisation estimate for the convolution of ASp(t). Let mg := exp(ko(v)®)
and my := exp(k1(v)*®) be weight functions satisfying (W) with k1 > ko, so that mo < Cmj.

Lemma 2.8. Let v € (—=2,0). Consider 1 < p < 2, then there exists C > 0 such that

1 1
2

_3(i1_1 _
(2.11) Vit >0, HSB(t)||58(LP(m1),L2(m0)) <Ct 5(573) g= A,
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As a consequence, for all 1 < p < 2 and m satisfying assumption (W), for any N < A (A > 0
fized in Lemma 2.5) we have

(2.12) VE>0,  [I(ASE)2 (0l siem).L2(ui1r2)) < Ce ™.
Proof of Lemma 2.8. We split the proof into two steps.

Step 1. We first prove (2.11) for p = 1. Consider the equation 0;f = Bf. Then from (2.7) we

have
1d _
3 ey = = [ V192 4 [ (g = Dxmpmi

From Lemma 2.2, there exists K > 0 such that a;;&¢; > K (v)7|¢]?, which yields
1d

5 I By < —K [t 15PmE + [ (omoa = My s

and, from
[V ({0) T mof)I? < C{(v)md|VfI* + Cu)" > "2mi 2},

it follows that

1d -
213) GGy < <K [ 19C mah)P + [ = Mxnymd s
where

Prmo,2(V) = Pmo,2(v) + C)7 272,
From Lemma 2.4 we easily see that @y, 2 o ~  mg,2, then for all A > 0 we can chose M and
v|—+00

R large enough such that @,,, 2(v) — Mxg(v) < =\, and moreover estimate (2.8) holds.

Applying the following inequality (which can be obtained by Holder’s inequality followed by
Sobolev embedding in dimension d = 3):

1)l 12 < e1||VgllP8 | )5/ 2g] |,
with g = <v>7/2mof and o = —y/2 to (2.13), it follows

2/5

1d 10/3 —4/3
5 ey < ~ KA NI = A1y

10/3 4/3
< =K IS = A3 2 0me)-

Recall that the weight functions mg and m; satisfy assumption (W), then Lemma 2.5 holds,
more precisely, for all ¢ > 0,

(2.15) IS5 fllrime) < € N flLoeney  and (IS5 f | Lonyy < €I flLogmy)-

Let us denote now

(2.14)

X(t) = 1f Ol 2(me)  and Y (&) = [IF )l L2(ma)-
For all ¢ > 0 we have Y (y) <Y} from (2.15), which together with (2.14) gives
(2.16) X(t) < —2KX ()" 2BY 4% —aaX (1),
Arguing as [11, Lemma 3.9] we obtain that
V>0  X(t) <Ot ey 2

which concludes the proof of (2.11) when p = 1. Then for any 1 < p < 2 we use Riesz-Thorin
interpolation theorem, with Sp : L?(mg) — L?(mg) and Sg : L*(m1) — L?(myg), to conclude to
(2.11).
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Step 2. Let us prove now (2.12). From Lemma 2.7 we have the following estimates, for any
pe(l2],

(2.17) [ Agl 2(u-172) S N9llL20me)s MGl Lo (me) S 191l Le(m)-

Hence, by (2.17) and (2.11), for 1 < p < 2, it follows

1

_3(1_1 _
(2.18) IASB () fll L2(u-172y S ISBE) Fll2ime) St 2% 2™ || fll Lo(my)-

Computing the convolution of AS;(t) we have
t
CASS 2O sz S | IASB(E =~ 5 ASa(5)f 1200172 d

t
< / 1S5 (t — $)ASs5(5) f| 2 ds
0

1 1

t
< / (t— 8)" 3G =D M) | AS(5) fll Lo ds
0

1 1

t
S [ (=5 BT DA [ Sa(o) o s
0

1 1

t

< / (£ — 8)"HG =DM oA |
0

S tETE) N £l oy

S e M fll Loy,

where we have used successively (2.17), (2.11), (2.17) and Lemma 2.5 with 1 < p < 2, which
concludes the proof. O

2.4. Proof of Theorem 2.1. We are know able to prove Theorem 2.1 that extends to various
weighted LP-spaces the semigroup decay estimate known to hold on L?(~'/?) as presented
Proposition 1.1.

Let E = L2(u_1/2), in which space we already know that there is a spectral gap A\g > 0
from Proposition 1.1, and &€ = LP(m), for any p € [1,2] and m satisfying assumption (W).
We consider the decomposition £ = A + B as in (2.3). For any A > 0, the operator B + X is
hypo-dissipative in £ from Lemma 2.5, moreover A € A(€) and A € A(F) from Lemma 2.7.
Finally, from Lemma 2.8 we have that (ASg)*(t) € %(€, E) with an exponential decay rate
1 (ASB)*2 ()| #e,5) < Cn e Nt for any X < A. Then the result of Theorem 2.1 follows from
[11, Theorem 2.13].

3. A PRIORI ESTIMATES

The purpose of this section is to establish a priori estimates for the (nonlinear) Landau
equation that will be of crucial importance in the proof of the main results in Section 4.

Let us recall the Landau equation that is given by
atf = Q(f7 f)
with
Qg, ) =V {laxg)Vf = (bxg)f} = (aij x9)0i; f — (cxg)f.
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3.1. Preliminaries. Denoting a, = ax g, by = b* g, ¢, = c * g and considering some weight
function m, we easily compute

[t st = [ 4@, 95~y e
_ —/dgiV(fp’l)mp—/dgiVmpfp’l
+/Bng(fP*1)mP+/Bgva fP.

It follows that

[ n i = =2 =1/p) [ a9 v
(3.1) + L /U Omp(v, V) g fF mP
+<1/p—1>/J/U*c<v—v*>g*fpmp

where
D?m Vm, Vm
Om,p(v,0x) = a(v — i) : W)+ -1aw—uv) —(v) —(v)
m
2b(v — vy) - —(v).
200 —v.) (o)
In the particular case of a polynomial weight m = (v)*, we have

Omp(v,v:) = Kl — 0] (v) 72 (=2(v)? + 2(v.)?)

3.3
&) 4 (k= 2)lo — o[ (o) [P lonf? — (007

We recall the following elementary interpolation inequalities.
Lemma 3.1. Let k,{ € Ry. For all € > 0 there is C; such that
g7 < ellglnse + Cellgllz
gl < ellglifpnse + Celgllz-
Moreover, we have an interpolation inequality for weighted Sobolev spaces from [9]:
Lemma 3.2. For any 0, > 0 and k € R, there holds

17 < Collfllges 1l s

Now we state a technical lemma that will be useful in the estimates of weighted L2-type
norims.

Lemma 3.3. Let 0 < a < d. Consider smooth nonnegative functions f,g,h : R — R and
define

Ko(f.9.h) :=/ v — 0.~ f. g hdus dv.

Let by < a and €1 4+ {5 = —{y, then the following estimates hold:
(1) For any o > 0 such that 20 < d and 2(a — o) < d we have

Eo(f,9,0) S 1) flle 1) gllz2 10} Al 22 + [0} fllzr 1(0) gll gra—o ()2l g0 -
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(2) For any 0 < 0 < o we have
Ka(f,9:0) S )" fllea () gllzz [(w) 2Rl 22 + [[(w)* ] [(w) gllzz= || (0)* | L.

Proof. Denote F, = (v,)%|f.|, G = (v)“|g| and H = (v)*2|h| such that £; + f5 = —{p, and split
the integral into two parts, K1 := [[ 1fjy—y.|<1} and Kz := [[1{j,—y,|>13- Then

I d— o¢+(r

Ky = // Lijo—v,|>1}V — v, |7 (w,) " (V)P F, G H dv, dv

< / / .G H = [[(0)% fll oo [ 0) gLz | 0) =Rl 2.

where we have used, since £y < a,

(v — v

[V — 0| T Ly sy (V) @) <2220y sy E <C.

— |

This gives the first term in the estimates above, both for points (1) and (2). For the term K
we split into two cases.

(1) Using that (v.) = (v)*01y},_,, <1} < C we obtain

Klg//|v—v*|7o‘F*GH:/ F*{/|v—v*|°‘GH}

and we need to estimate the integral in v. Using Pitt’s inequality [3], for any o > 0 such that
20 < d and 2(a— o) < d, we get

1/2 1/2
/|v —’U*|7QGH < (/|1} _v*|*2(afd) G2> (/|1}—1}*|20 H2)
1/2 . 1/2
< (fieo)” (f)

S ) gl gras 10) 2 o

(2) Using Hardy-Littlewood-Sobolev inequality, for any 0 < o < «, we get

K1§//|v—v*7

Using Hoélder’s inequality and the Sobolev embedding H7 (R?) < LT% (R?), it follows that

IGH o <IIGI 2g IHI2 S 10) gle 10} 2Rl 2,

o

which completes the proof. g

We state next a result from [7, Proposition 4] (see also [1]) concerning ellipticity properties
of the matrix a * f.

Lemma 3.4. Let v € [-2,1] and f € Ly N Llog L(R?). Then there exists K > 0 depending on
”f”L%ﬂLlogL such that

(ax D)) 2 K(v) L.

The proof of this result is stated in [7] in the case v € (0, 1], however we easily observe that
the result is also valid for v > —2 by following the proof.
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3.2. Moments estimates. The moments of solutions to the Landau equation in the case of
soft potentials is known to be propagated linearly in time, as is stated in [23, Section 2.4, p. 73].
We give however a proof of this fact for the sake of completeness and because we shall need a
precise estimate in order to use it later for the stretched exponential moments in Lemma 3.6.

Lemma 3.5. Lety € (=2,0), fo € LANLlog L and consider a weak solution f € L>([0,00); LN
Llog L) to the Landau equation associated to fo. Suppose further that fo € L} for some | > 2.
Then, at least formally, there exists a constant C > 0 depending on || f|| L= (j0,00);:21) and || foll L}
(but not on 1) such that

Vi=0  lf@)lry <Call) (1+1)

with
12, 1 <4,
a(l) == 12—5% _ s
L Pt 7 >4
-4 \I+~v-2

Proof. The equation for the moments is
d _ _
il = / [0 = vu " { =20+ 20(0) "> v.)? + 11 = 2) ) o foa]? = (v v.)?]} fe f (o)

Because of the singularity of |[v — v.|7, we split it into two parts |[v — v.|71fjy—p,|>1} and
|0 =0, [Y1{jy—0,|<1} » denoting respectively Ty and Tj each associated term. Using that |v|?|v.|* —
(v-v,)? < (v)*(v.)?, we obtain for T} that

T < —21/ [0 = v "Ly, >1) fo f (v)!

8 [[ o= 0P Lemon (02002
from which we get

(3.4) Ty < K| fll,+CP)fl

_9’
for constants K, C > 0, using the conservation of mass and energy.
For the term T3, we write

T2 = l// |U — ’U*|’Yl{‘v,v*|§1} <U>l72 {—2<U>2 + 2<U*>2} f* f
#10=2) [[ o= 0 Lomngen (0 (oo = @002} £ £ = T+ T

Using Hélder’s inequality
J £810 = 0P 1oy 0202

(1-2)/1
< (/ F v =0 " Lgpmu, <1y <v>l) (/ el = v "Ljo—n, <1y <U*>l>

- / Fiulv = v Lo ey ()

and this implies Tp; < 0. Moreover, using the inequality |[v|?|v.|? — (v - v.)? < |v||vs]]v — vs
we obtain

2/1

%,

Ty < 012/ FIelo =021y, j<ay (0)' 73 (0s)
<CPfllefllz, < CPIfl

-3 —2’
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where we have used v — v,|7 1),y 1<1} < 1 and [ fllzr uniformly bounded. Gathering T3
and Tb, it follows that

d
EH]BHL} < =Kl fllzy, + CP\ fllps_,-
If I < 4 then [|f|[z:_, is uniformly bounded and we easily conclude.
Consider then [ > 4. Since v > —2, denoting r = (I+~v—-2)/(l—4) >l and ' =r/(r—1) =
(I+~v—2)/(v+2), it follows by Holder and Young’s inequality that

1/r 1/r I Ui
(= A T =S [V PP 1

-2

for all n > 0. We obtain

1—4

iz

d 21 > _ia oot 1T F2
aHfHL} < =Kl fllzy, +Cl ;||f||L}+7+Op77 w2 fllpy SO = = 11y

choosing n = Kr/(Cl), from which we conclude to

[y < Cal) (1 +1).
O

As a consequence of the above result, we deduce a similar linearly growing estimate for some
stretched exponential moments.

Lemma 3.6. Lety € (—2,0), fo € LiNLlog L and consider a weak solution f € L°(]0,00); L3N
LlogL) to the Landau equation associated to fo. Suppose further that fo € L'(e™")") with
k>0and 0 < s <2+4-~. Then, at least formally, there exists a constant C > 0 depending on
[ £l (0,00);28)s 1 follLr(ensys K and s such that

VtZ 0, Hf(t)HLl(eMv)S) < C(1+t)
Proof. Write

er{v)® — Z,ij

and then, using Lemma 3.5, we have

1)L emny = g - / £(t)(v)
<> {caer [pr) =ty a6+ o,
= ! j!

Jj=0

and we only need to prove that the sum is finite. Let jo € N such that sjo < 4 < s(jo + 1).
Then we have

i . Sj ﬁ sj—4 svj% sj j(%sﬂ)j
Z —a (s7) Z K/ ,+ 5 5742 —,
Jj=jo+1 Jt Jj=jo+1 §J 81T ’

which is finite if s < v+ 2. O
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3.3. Regularity estimates. We shall establish coercivity estimates for the Landau operator
@, which are inspired by some similar estimates obtained by Wu [24] and Alexandre, Lao and
Lin [1].

Lemma 3.7. Let vy € (—2,0). Then for smooth functions [ and g, there are constants K,C > 0
depending on || fl|Linr10g . Such that:

(i) If 0 < k < (v +3)/2 then

2k < — 2 2 .
<Q(f7 g)vg<v> > — KHg“H;+,¥/2 + C”gHLi+w/2

(11) If k> (v +3)/2 then

2k 2 2 2
(QU.9)900)*) < Kllgly = K'lgliZs, +Clols |

+v/2

Proof. From (3.1) and (3.3) for m = (v)¥, we obtain

(Q(f,9),g(v)*") = /(a*f)Vng v)?*

F(y+3- 2k// o= 0.7 fu g ()%

(3.5) 4 2%k // v — vV ()2 (w,)? fu g? (0)?F

+2k(k — 1)/ o = v (W) TH o0 * = (0 v.)?] fi g2 ()%
=L+ I+ 15+ 14

For the first term I;, we use the coercivity property of a, since f € L} N Llog L, we have
from Lemma 3.4 that

a(v) = (ax* f)(v) > K{v)7Is.
Then we get
I < —K|[@)** VglFe = ~Kllgl, |

v/2

which can also be written as

Lo< =Kl < =Kl g3 + Clal;

ket /2-1

For the second term I, we split into two cases. If & < (v + 3)/2 we have, from Lemma 3.3
and the interpolation inequality from Lemma 3.1, that

L) < //|v—v*|7f* g2 (02"

STl {Cell(o) > gl1Z2 + el (0)/*+ g )13}

for any € > 0. However, if k > (v + 3)/2, we get
B<-K [ [ o-ulf.g @ < K@ gl
Finally, using that [v|?|v.]? — (v - v4)? < (v)%(v,)? we easily get

L+1 < / / v = 0 (0) 2 (02)? fu g (0)
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Then, arguing as in the proof of Lemma 3.3 (term K in that lemma) and using again Lemma 3.1,
it follows that 5 1 12
Is + I S I0) fllze [{0)" gl

< Cell () 1 gll72 + ell(w)* gl 3
S Cllw)* " gllZa + ellw) g%

for any € > 0. We then conclude gathering all previous estimates and taking € > 0 small
enough. g

We also prove an upper bound for ) in the following lemma. It is worth mentioning that
He [13] obtain similar estimates by a different method.

Lemma 3.8. Let v € (—2,0) and consider smooth functions f, g and h. Then for any {1 +{ls =
v+ 2 we have

(Q(f,9), h()** ) S I f ez, gl

ol Rl

+k

Proof. We write
(Q(f,9),9(0)**) = /V{(a * [)Vgth(v)?* — /V{(b * [gth(v)®* =Ty + To.
For the first term, we easily obtain, since |a(v — vi)| < [v — v [772 < (04)7T2 (V)72 that

T < / v — 072 | £.] [Va] [VA] (0)2* + / v — 072 || [Vg] |B] (0) 25
]z

Sz {I99llez, )
Moreover, for the second term, it follows that
7, 5 [[ 1o = VL1690 4 [ [ 10— 04112 gl 11 (0
Now we investigate two different cases. If y+1 > 0, using [v — v, |7 < (v.)71(v)7 ! we obtain

(O VL PR T PPN 2 2SO [ L1 PP ¥

lotk—1/2
On the other hand, if v+ 1 < 0, i.e. =2 <y < —1, we use Lemma 3.3 to get

VA2

lotk

+ IVgllz:

£1+k—1/2

Ty < 1 flle L, {0 2g g o) = 2R o+ () 2y o) 4 /2T )
+ 1) gl e [[0) = 2 + 1) g e H<v>l2+k*1hHL2}'
We conclude gathering the above estimates. O

We prove now some estimates for weighted L? and Sobolev norms.

Proposition 3.9. Let v € (—2,0), fo € LN Llog L(R®) and consider a weak solution f €
L*([0,00); LN Llog L) of the Landau equation associated to fo. Then, at least formally, there
holds:

(1) Let 0 < k <2+ 3vy/4. Then for any to > 0 there is C = C(ty) > 0 such that

t+1
sup {5013+ [ 150y, arp <c
t v

t>to

(2) Let k > 2+ 3v/4 and suppose fy € Li737/4. Then for any tog > 0 there is C = C(tg) > 0
such that

t
Vizto IO+ [ IFOIE,, < C0 o)

/
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Proof. (1) From Proposition 3.7, for 0 < k < 2 + 3v/4, we have

d
SIFI3: < -KIfI,  +CIIE;

k+v/2

< —K|[()2TEf12, + c||f||§iw .

2

(3.6)

Using the following inequality (obtained by Holder and Sobolev’s inequalities in dimension
d=3),

o 3/5 o 2/5
(3.7) 1) ullz2 < CIVul3E [ w)*/2ull 7,
we obtain that, choosing o = —7/2,
d —4/3 2+44/3
(38) e < =KNAL" Y+ ClAlE,,

Since |[f(t)[ .y

k—3~/4
inequality for the last term,

< [[f(#®)lly is uniformly bounded in time, we finally get, applying Young’s

d 2+4/3
1z < —KIFI5 + 0,

from which we deduce by standard arguments that for any tg > 0 there exists C = C(tg) > 0
such that

sup [|£(1)]2; < C.
t>t

Coming back to (3.6) we also obtain

t+1
sup/ ||f(7')||§11 dr < C.
t

t>t k+v/2
(2) Remark that k > 2+ 3v/4 > (v + 3)/2, hence Proposition 3.7 yields

d 9 ) ) ,
(3.9) ailf iz < —KIfGy |~ KN+ UG,
k
< K@) R - K7, +CIF

Using the interpolation inequality, for any d,¢ > 0,
1£13, <ellfI3a , +CellfI2,

for € > 0 small enough and (3.7), we finally get

d
S < K713, — KIfI2: +CIS 13

(3.10)
—4/3 2+44/3
S N P i w9

Now we fix some to > 0. From point (1) we know that there exists C' > 0 such that sup;>, - || f(t) 3. <
C'. Moreover, since fo € L,1€737/4, Lemma 3.5 implies ||J“(7§)||Li73w/4 < C(1++¢) for any t > 0, so

that supyy, /2 34, /2] Hf(t)HLifsw/zx < oo. Writing (3.10) for ¢ € [to/2, 3to/2], we obtain by standard
arguments that for any ¢1 > to/2 we have supy,, s;,/9) [|f(£)llr2 < oo. Coming back to (3.10)

and neglecting the negative terms, we obtain

d
Vit > to, E”f”%i <C,

from which we have

1£OI; < C [ dr+ 15wl < C+0).
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We also deduce
t
IfO dr <C(1+1)

k+v/2
coming back to (3.9) and using the previous bound. O
Proposition 3.10. Let v € (—2,0), fo € L3N Llog L(R?) and consider a weak solution f €

L>(]0,00); LY N L1og L) of the Landau equation associated to fo. Then, at least formally, there
hold:

(1) Suppose fo € Lllc—sy/zl' Then for any to > 0 there exists C = C(tg) > 0 such that, for all
t> to,

I ||H1+/|\f 2. dr<CO+1)2

kt~/2
(2) Suppose fo € L,lcfh/4 N L217k77~y/4 with 1 := max(y + 4,k +v/2+2). Then for any to >0
there exists C = C(to) > 0 such that, for all t > to,
1)z < CA+)72.

(3) Suppose further that the weak solution satisfies f € L°°(]0,00); Li) for any 1 > 0. Then for
allt; >0, any k >0 and n € N, there is C = C(t1) > 0 such that

sup || f(t)||ap < C.
t>t,

Proof. (1) Let @ € N? be a multi-index such that |o| = 1 and denote g = 9° f, which satisfies
the equation

atg = Q(f?g) +Q(gvf)u

and then we easily compute

S0l = (QU. 9).000)) + (Qlo. ), 9w} = Ti + T

From Lemma 3.7 we observe that
i< —Klgll,; . +Cllgll7-

(3.11)

k4~/2

(3.12)
< —K|(0)#*g|%, + Cllgl -

k+~/2

For the second term, we write To = Tho + T51 with

Ty = / V- {(ax )V ) and To = — / V- {(b*g)f}g(0)

Integrating by parts and using the symmetry of a, it follows that
Ty = — /(%‘ *9)0; f0°(0, ) (v)*" — /(%‘ % 9)0; fO% fO; (v)*"
= 3 [ @000y« posesf)* + 5 [(@%ay « oo 70w — [ (@i * 0)0s 0" fout)*
2

//|v—v*|’Yf*|Vf| 2k 4 //|v—v L |V R0y 2T

Using Lemma 3.3-(1), it follows that

[ 10—l £ 19520 S 1) Al {e) 2V 11 + 12911
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and also

// o = v T V[P o) 2
(o) fllo () 2V £ 2, if y+120;
LIy o (I 259 12+ 25 FI ). i1 <0
Using the uniform in time bound of || f(¢)|[1;, the previous estimates yield
Tor S (o) 2TV fl1 32 + [0) 2 F 113
2 2
SOOI, +elfl, .

k+~/2
for any € > 0, thanks to the interpolation Lemma 3.1. For the term 752 we obtain

Ty < / / o — .o FIV2S] (0)%F + / / o = 07 fo FIV ] (05 =: Toor + Thao.

Thanks to Lemma 3.3-(1) again, we get
(3.14)
Taza 5 110) 7 FlLs {10V 724 £ l0) /25 fll o + 002 £l V729 £l g
S I 2RI T + 1) 2V £ 22 + Ol )2 FIIF o+ ell )2V £
<CEOfIG, +ellily

k+v/2

(3.13)

for any € > 0, where we have used Young’s inequality and the interpolation Lemma 3.1.
For the last term T521, we split into two different cases.

Case (i): v € (—3/2,0). Using again Lemma 3.3-(1) (remark that here we need v > —3/2), it
follows
(3.15)

Toot S 10) ™ Fllua {1 @024 FLall @) 292 Fll g + 10) 4 £ 1) /2492 10}
S CON /> fl13a + COI@ T £, + el o) 2Hv2 2
< 2 2
SC@ISIy, , +ell I,

Now, coming back to (3.11), gathering the above estimates (3.12)-(3.13)-(3.14)-(3.15) and taking
€ > 0 small enough, we obtain

d 2 2 2

- <

SN0 < KA, +CIAI,

. 2 2
Kl +CITI2 .

2

(3.16)

IN

where we have used Lemma 3.1 again.
We fix some to > 0. Since fy € L,1€_57/4, we can use Proposition 3.9 to get that there is C' > 0
such that

to
[ U@y dr <0 and fO; | <CO+D, Vet
t0/2 k k—~/2

from which we can choose some t; € [to/2,to] such that || f(t1)
(3.16) from t; to t to obtain

t t
15O + K [ 150l dr<C [ 150l dr+ I,
t1 v t1 v
< C(1+1t)2,

|2, < oco. Now we integrate
k
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which concludes the case v € (—3/2,0).

Case (ii): v € (—2,—3/2]. In this case, Lemma 3.3-(2) implies, for any 0 < o < |y, any £y < —
and {1 + {5 = —/y, that

Toor S ()77 fllon [[0) /25 f | ([ () /22 £ 12
+ [l ()’ £ 1) fllme ([ (0) 22 fl 2 =2 A+ B.
The first term A can be easily bounded by
2 2 2
AS O 12, +ellfls.
SCOIE,,  +elfl .

+v/2

L 3+w+d

(3.17)

for any € > 0, and it remains to estimate the last term B. We choose o verifying —3/2 — vy < o
so that 3/(3 4+~ + o) < 2. Moreover, we choose ¢ = v/2 and £y = 2 + 3~/4, which implies

01 = —2 — 5v/4. We interpolate L37% between L' and L?, which yields

o) —2 o
[{w) 230/ )| < [[(oy2 /A p S OH) | y2asv/a gy 500t

L 3+w+d

Since we have —3/2 — vy < 0 < —y and v € (—2,—3/2], we can choose o = 1/2. Using the fact
that ||(v)*=2757/4 || a2 < £l e and applying Lemma 3.2 twice, it follows
k—2—5~/4

3/4 1/4
1l SIS Tl
k—2—5~/4 —8/3-11~/6 k+ /2
This implies, using the uniform in time bound of || f(¢)]| Lyg and Young’s inequality, the
Y
following estimate
+ + 3/4 5/4
B IAIG A T 1A 115
2+ ~/4 243v/4 —8/3-11~/6 k+ /2
8 (2y+1) (2y+1)
(3.1) G T R T A Ty Y 11
2’y+1
Ce )||f||L2 ||f||Lk e elflZ

We can now come back to (3.11). Gathering the above estimates (3.12)-(3.13)-(3.14)-(3.17)-
(3.18) and taking € > 0 small enough, we obtain

2 (2y+1)
) SNy < —K NS, + U+ OIS N,

2 +1
—K||f||H,3W +CIfIE,, +CIFIE S ’||f||L

k—8/3—11 /6
where we have used Lemma 3.1.

We fix some ty > 0 and argue in a similar way as in the previous case. First of all, thanks
to Proposition 3.9 there holds sup;~,, /o [|f ()] .2 < C, hence we can rewrite (3.19) starting

243~/4
from ty/2 as
d 2 2 2 2
_ L < = =z
sy @Vl <KW+ OGO, o V2 t/2
< - 2 7 7
< K, +ClIfIZ,, ,+CIFIE:

using the fact that —8/3 — 117/6 < —v/2 because v > —2. Since fy € L,lc_t_w/47 we can use
Proposition 3.9 to deduce that there is C' > 0 such that

to
[ W@gar<c md 502 <ca+o, ez

t0/2
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from which we can choose some t; € [to/2,to] such that || f(t1)
(3.20) from t; to t, then we obtain

t t
1O + K [ 100y, ar<C [, dr+ 10l

< C(141)?,

|2, < oco. Now we integrate
k

and the case v € (-2, —3/2] is complete.
(2) Let 8 € N® be a multi-index with |3| = 2 and denote g = 97 f. Then g satisfies

LSl = QU g+ Y CEHQO% £,0% ), 00))
B1+pB2=8

1<[811<2,0<B2(<1

— LY

For the first term, we have from Lemma 3.7 that

I < —K||g|]? +C i
1S ||57||H,§M/2 ||g||Li+w/2
v/2+k 12 2
< —K||<U> gHHl C||g||Li+’Y/2'

For the second one, we use Lemma 3.8 to obtain
B 0% Nl 0% iy, 107 fll

k4~/2+2 k+~/2

<
S o Wl ggzan WAl 0

using Holder’s inequality. Then, denoting | = max(y + 4,k 4+ v/2 + 2) and using Lemma 3.2, it
follows that s
7 SN e 1 Wz 11

k+~v/2
1/2 3/2
S P R N
s OE”f”%%sz—w/z + GHfH%ISM/z’

for any € > 0. Gathering the above estimates and taking ¢ > 0 small enough, we finally obtain
the following differential inequality

d .o 2 2 6
(3.21) aHfHHg < —K||f||HgH/2 + C||f||Li+‘y/2 + C|[ f Iz

20—k—~/2

We fix some ty > 0. Since fy € Lllcf7'y/4 we obtain from point (1) that

to
| Wl dr <,
t0/2

from which we deduce that there is some ¢1 € [to/2,to] such that | f(t1)[/zz < co. Moreover,
since fy € Lél_k_77/4, we also get from point (1) that

VEstof2, IfO S CO+R

Coming back to (3.21) and integrating from ¢, it yields, for any ¢ > ¢,

t t t
15O + K [ 150l dr<C [ 1501 drC [ I, dr+ il
t1 v t1 v t1 v

t t
gc/ (1+T)d7’—|—0/ (1+7)8dr+C

tl tl

<o +1t),
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which concludes the proof.

(3) Suppose now that f € L>([0,00); L}) for any [ > 0. We recall that we obtain in Proposi-
tion 3.9 (see equations (3.6) and (3.8)) the following differential inequality

d
Ellfllii < —K|flz, ., +CIfL:

—4/3 2+44/3
~K|fI; /3 17173 + CIl 113

+v/2

Now since || f(¢)[|: P is bounded uniformly in time, arguing as in Proposition 3.9, we obtain
sy
from last inequality that for any ¢t; > 0, for any k > 0, there exists C' = C(t1) > 0 such that

t+1
(322 sup {170l + [ Il o} < c

t>t

Let us now investigate the H}-norm. Coming back to (3.16) if v € (=3/2,0) or to (3.20) if
€ (—2,-3/2], and using Lemma 3.2, we get

||f|| ~Kfle, ,+CIfL:

_ 4 2
ann%w £ +CUTIZs

We fix some ¢; > 0. Thanks to (3.22) we have sup;,, o [[f(t)l[z2 < C for any [ > 0, then,
arguing as before, there is C' = C(t) such that

t+1
o 170 +/ £ ()32 dr < C.
Zt1 ¢

We conclude the proof by induction. Assume that for some integer n > 2, for any ¢; > 0 and
any k > 0 we have

wp /(D) < C.

Arguing as in point (2) we obtain that

B1,8
||f||HnN ~K e+ Clf Iy, +C > 905,
[B1]+]|B2|=n

1<[B811<n,0<B2|<n—1

where

131>B2 < . ’
SNy W sy, Wl
If ([81],1B2]) = (1,n — 1) or (|B1],|B2]) = (n,0) then, using Lemma 3.2, it follows
P82 S ||f||Hzl ||f||Hln ||f||Hn+1/

1/2 3/2
S W W 071302 S Cetellf s

for any € > 0, using the induction hypothesis. In all the other cases, 2 < |f;| < n — 1 and
1< 82| <n—2, we get

Iﬁht& ,S ||f||§{lnfl ”f”Hl?Iiﬂ 5 Ce + €||f||§-[]?++1/2
5
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Taking ¢ > 0 small enough and iterating Lemma 3.2, we obtain the differential inequality, for
some [, > 0,

HmH ~K|flpn +CIf Ny, +C
memmﬁm+mmmﬂm+a
S K|+

using the induction hypothesis, from which it follows that for any ¢; > 0 and any k£ > 0 there
exists C'= C(t1) > 0 such that

sup || f(t)||ap < C.
t>t,

4. CONVERGENCE TO EQUILIBRIUM

4.1. Polynomial in time convergence. Toscani and Villani [19] have proved a polynomial
rate in the trend to equilibrium for the Landau equation for mollified soft potentials, i.e. replacing

the function a(z) = |2|7T2II(z) by a mollified version truncating the singularity at the origin,
given by
~ ~ v
a(z) = ¥(2)(z) with cp(z)? < | (;) < Cy(z)7,
z

for some constants cy,Cy > 0. Their strategy was based on two ingredients: a functional

inequality relating the entropy and the entropy dissipation functional stated in Lemma 4.1

(which is also valid in our case of true soft potentials), and a priori estimates for the evolution of

moments and weighted Sobolev norms for the Landau equation associated with a(z) (which of

course do not hold in our case and we shall use the new a priori estimates proven in Section 3).
The entropy - entropy dissipation inequality is given in the following result.

Lemma 4.1 ([19, Proposition 4]). Let a'(z) = UT(2)11(z) where ¥t verifies

vi(z)
21?7

cyt(2)” <

for some constant cg+ > 0, and consider the associated entropy-dissipation functional

_ %//le —v.) ‘H@—U*) (VTf - fo> 2

Then, for all k > 0 and all [ satisfying (1.11), there is Ci(f) > 0 depending on k and H(f)
such that

oS dvy du.

Dai(f) = Cr(f) H(f 1) " (U fller,, + Tera ()}
where
Jer2(f) = [[{v k+2V\/_||L2

As a consequence of this functional inequality and the fact that

d
SH(flw) = =D(),

where H(f|p) = [ flog(f/u) is the relative entropy of f with respect to u, we get the following
result.
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Corollary 4.2 ([19, Corollary 4.1]). If for some k > 0 we have

IFOlce,, + Jes2(f) SCA 1), 0< =,

k42

then the following estimate holds true
H(f()ln) < CL+8) T

In order to estimate the evolution of the quantity Ji4+2(f(t)), it is proven in [19] that this
quantity can be reduced to weighted Sobolev norms. More precisely, they first prove that

Tn2(F) ST 2 ) + (1 £l

where I(g) is the Fisher information define by

R

Finally they prove the following inequality in [19, Lemma 1]: for any € > 0 there is C. > 0 such
that

I(g) < Cc||g| 2

3/24¢’

so that at the end we get
£l

k42

+ Jir2(f) S 12

kt7/24¢
Now we are in position to prove the polynomial in time convergence in Theorem 1.3.

Proof of Theorem 1.3. This theorem is a consequence of Proposition 3.10 and Corollary 4.2.
Indeed, remark that Lemma 4.1 also holds in our case of true soft potentials with a(z) =
|2[""?11(z) given by (1.3). Then since fo € Ly g 5,4 N Llog L with k > 7|7[/2, the a priori
estimate in Proposition 3.10-(2) (here one should use approximate solutions of the Landau
equation as in [21] in order to give a completely rigorous proof) implies that for any ¢ty > 0 it

holds
1F @)z, < CO+1)72,

We conclude the proof applying Corollary 4.2. 0

As a consequence of Theorem 1.3 we can improve the slowly increasing a priori bounds for
L' moments in Lemmas 3.5 and 3.6, obtaining uniform in time estimates, as done in [6] for the
Boltzmann equation.

Proposition 4.3. Let v € (—2,0) and fo € Ly N LlogL. Consider a global weak solution
f € L>([0,00); LYN Llog L) to the Landau equation.

(1) Suppose that fo € L, N L]1€+8_37/4 with £ > 2 and k > 11|v|/2. Then

sup || f()l|zr < C.
t>0

(2) Suppose that fo € L*(e*V)") with k >0, 0 < s < 2 with s < v+ 2. Then we have

sup | (&)l 1 (eniwsy < C.
>0
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Proof. (1) We write, using Lemma 3.5 and Theorem 1.3
IF @Oy < W) = pllpy + llullzy
1/2 1/2
<@ = pl 210 = plli +C

<O +t) TS (L +4)2 +C
<c.

(2) Using Lemma 3.6 and Theorem 1.3, for some k > 0 large enough we have
[f @Ol Lr(emey S NFE) = pllpresosy + [[pll L1 ez
< 1/2 1/2
<|Ift) - /LHLI 1 £(t) — /’L||L1(e2n(v)5) +C

<CA+t) AL+ H)V2 + O
<cC.

O

4.2. Exponential in time convergence. We are able now to conclude the proof of Theo-

rem 1.4. Recall that in this setting we suppose v € (—=1,0) and fy € Llog L N L*(e*")") with

k>0and —y < s < 2+7. Let us denote m = ™" with & < /10, which satisfies assumption
We write h(t) = f(t) — p that satisfies

O h = Lh+ Q(h,h)
h\t:O = ho.

Since phg = 0 and HpQ(ho, ho) = 0, for all t > 0, we also have IIph(t) = 0 and g Q(h(t), h(t)) =
0, thanks to the conservation laws. By Duhamel’s principle it follows

(4.1) h(t) = Sc(t)ho + /0 St —7)Q(h(r),h(T))dr.

Before starting the proof of the main theorem, let us state a result that will be useful in the
sequel.

Lemma 4.4. Let vy € (—2,0), p € [1,+00) and m be a weight function. Then, if 1 < q < 3/|v/,
1t holds

1Q(g, )Nl zeemy S Ngllprwyr+2) V2 F 1 Lo meoyr+2y + 19l 1 | Lomy + 191 Lara— 1Lf 1 Lo (m)-

Proof. Since v € (—2,0), using [v — v.|72 < (v,)772(v)772 we easily obtain

/ v —v. |+ g. do,
Vs

5 Hg||Z[)/1((U>’Y+2) ||v2f||zl)/z)(m<y)w+2) .

P
|05 f (v) [P mP dv

I(ais * 9)0:5 oy < /

(4.2)

Now let us denote c_ = cly). <1y and ¢4 = clyj>13. We can also obtain

p
1P m? du

I(ex ) o gny < / ‘/ [0 = 0 L fjo—v. |51} 95| dvs

S g1 112y
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and

(= * ) I oimy S / }/ 0= Lo <1y 19| s

1/q , 1/¢' )P
S [{([lo-vrmgenende) ([lada) " bl ao

S Mgl 1INy

using Holder’s inequality and if 1 < ¢ < 3/|7|. O

1P m? dv

Proof of Theorem 1.4. We split the proof into several steps.
Step 1. Since fo € Ly N Llog L N L'(e"(")") we can apply Theorem 1.3 that implies
(4.3) V=0, [l = F®) - pll <CO+D, ¥ >0.
Moreover we get, using Lemma 3.6,
||h(t)||L1(e%<v>s) <A@ 1RO L1 (enwre)
<CA+6) (IfF Ol prermrsy + el prenimsy)
<SCA+6)7°(1+t)+Cu) <CA+t)7

Step 2. Since fo € L} N Llog L for any ¢ > 0, Proposition 4.3 implies
feL>(0,00);L}) VE>0.
As a consequence, Proposition 3.10-(3) gives that

Vtg >0,Vn,0 >0, feL>([ty,00); H}).

Step 3. Writing (4.1) starting from some time ¢, > 0 to be chosen later and using Theorem 2.1
(since Hph(t) = pQ(h(t), h(t)) = 0 for any ¢ > 0) it follows, for any ¢t > ¢,, that

[P rmy < NSt = t)h(E) L1 m) +/t 15 (t = T)Q(A(T), h(T)) | L1 (m) dT

t
< CMME 1y + € [ QU)o
ta
From Lemma 4.4 we have

QR M) L1 my S Nl L2

v+2

V2RI L1 (oyrt2my + Rl e 1Bl L2 my + IR0 22 1TR] gy

Moreover, we have the following interpolation inequality from [15, Lemma B.1]

1/2 1/2
£ 22y S Nl iy el a2

Gathering the above bounds we get
IVl La(uyrrzmy S Wbl (goyrtamy S Ihll a2 (msr2)

1/2
S BN oy W2

1/4 1/4 1/2
o L 1 e )

where we have used Holder’s inequality in the last line. Moreover, using Nash’s inequality we

have

3/5 2/5 3/5 2/5
[ e A A A T e
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Putting together the previous estimates it yields

t
_ g (t—7T 4 4
IR Lr(m) < Ce Atll’”b(t*)llem)+C/t e || | s IO (ms) I1A(T )Illﬂl,fl)

+c/t =) (1) 21 o

t
wc e R[5 AL dr

Thanks to step 1, for any € > 0 we can choose t, = t.(¢) such that
sup ||h(t)||L1(m) < sup ||h(t)||L1(m5) <e.
t>t, t>t,

Also, from step 2 we get
sup [|h(t)| s> < Ch.
t>t

Hence we obtain, for any ¢ > t,,

t
IR L1 my < Ce™ [t 23 gmy + C (124 + 4 4 /7 0/20) / e IR oy
ta

From this differential inequality, we argue as in [17, Lemma 4.5] and choose ¢ > 0 small enough
to obtain
Vit (A0l Lrm) < Ce MRt Lim) < Ce ™,

from which, together with (4.3) for ¢ < t., we conclude the proof. O
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