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THE EQUATIONAL THEORY OF THE WEAK ORDER ON

FINITE SYMMETRIC GROUPS

LUIGI SANTOCANALE AND FRIEDRICH WEHRUNG

Abstract. It is well-known that the weak Bruhat order on the symmetric
group on a finite number n of letters is a lattice, denoted by P(n) and often
called the permutohedron on n letters, of which the Tamari lattice A(n) is a
lattice retract. The equational theory of a class of lattices is the set of all
lattice identities satisfied by all members of that class. We know from earlier
work that the equational theory of all P(n) is properly contained in the one of
all A(n). We prove the following results.

Theorem A. The equational theory of all P(n) and the one of all A(n) are
both decidable.

Theorem B. There exists a lattice identity that holds in all P(n), but that
fails in a certain 3,338-element lattice.

Theorem C. The equational theory of all extended permutohedra, on arbi-

trary (possibly infinite) posets, is trivial.

In order to prove Theorems A and B, we reduce the satisfaction of a given
lattice identity in a Cambrian lattice of type A to a certain tiling problem on
a finite chain. Theorem A then follows from Büchi’s decidability theorem for
the monadic second-order theory MSO of the successor function on the natural
numbers. It can be extended to any class of Cambrian lattices of type A with
MSO-definable set of orientations.
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1. Introduction

1.1. Origin of the problems and statement of the results. It was proved in
Iwasawa [23], using a result from Magnus [34], that every free group embeds into a
product of finite symmetric groups. Consequently, a nontrivial group word cannot
vanish identically on all finite symmetric groups.

Yet the set Sn of all permutations on the finite set [n] = {1, 2, . . . , n} carries
another fundamental algebraic structure, arising from the well known weak Bruhat

ordering on Sn (cf. Björner [3]). This ordering turns out to be a lattice (see
Section 3 for more detail), meaning that any two permutations x,y ∈ Sn have a
least upper bound x ∨ y and a greatest lower bound x ∧ y. The structure P(n) =
(Sn,∨,∧), often called the permutohedron on n letters, was first investigated in
Guilbaud and Rosenstiehl [19].

Lattice terms are formed like group words, starting with a set of “variables” and
closing under the binary operations ∨ and ∧. A lattice identity is a formula of the
form p = q, for lattice terms p and q. The equational theory of a class K of lattices
is the set of all lattice identities that hold in every member of K. A lattice variety

is the class of all lattices satisfying a given set of identities (cf. Grätzer [13], Jipsen
and Rose [24]).

In our paper [47] (first posted in 2011) we stated the following problem, calling
for a lattice-theoretical analogue of the above-cited Magnus-Iwasawa result.

Problem. Is the equational theory of all permutohedra decidable? Is there a non-

trivial lattice identity holding in all permutohedra?

By “nontrivial” we mean not satisfied in all lattices (or, equivalently, in all free
lattices). It is known since Skolem [53] (reprinted in [54]) that the equational
theory of all lattices, equivalently the word problem in free lattices, is decidable
(cf. Freese, Ježek, and Nation [11, Chapter I]). In our paper [47] we could settle
the analogue, for Tamari lattices (known since Björner and Wachs [4] to be lattice
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retracts of permutohedra), of the second part of the problem above, by constructing
an infinite sequence of lattice identities, the Gazpacho identities, holding in all
Tamari lattices. Furthermore, we proved there that the permutohedron P(4) fails
at least one Gazpacho identity, thus proving that the equational theory of all Tamari
lattices contains properly the one of all permutohedra. Nevertheless we could, at
that time, neither achieve decidability of the equational theory of all Tamari lattices
(or permutohedra), nor find a nontrivial identity holding in all permutohedra (that
last part proved the trickiest of all).

In this paper we solve the Problem above, thus settling all those questions, by
proving Theorems A and B stated in the Abstract. An attempt to generalize those
results to “extended permutohedra” on arbitrary posets (i.e., partially ordered sets)
led us to Theorem C.

1.2. Hidden identities in classes of structures. Let us present a small sample
of situations where a class of algebraic structures satisfies new unexpected identities,
leading to important subsequent developments in the study of those structures.

Starting with lattice structures, the most well-known example is probably given
by the Arguesian identity, originating in Schützenberger [51]. A statement of that
identity can be found in any textbook of lattice theory, see for example Grätzer [13,
page 368]. This identity is stronger than the modular identity, and it is a lattice-
theoretical form of a statement of classical geometry, namely Desargues’ Theorem.
It gave rise to huge developments in lattice theory, establishing connections with
other topics such as combinatorics, representation theory, logic. In all the situa-
tions encountered, the satisfaction of an identity was shown to be equivalent to
a combinatorial, or geometrical, statement. Lattices of submodules of modules,
or, more generally, lattices of commuting equivalence relations, often called linear

lattices, were proved by Jónsson [25] to satisfy the Arguesian identity. Jónsson
proved in [26] a partial converse of that result, namely that Every complemented

Arguesian lattice is linear. The case of non-complemented lattices got settled with
the construction of non-linear Arguesian lattices, see Haiman [21, 22]. Haiman also
proved in [20] that The class of all linear lattices is not finitely axiomatizable. For
an overview of related results and problems, see Kung and Yan [33].

Moving to a completely different class of lattices, let us denote by Co(P ) the
lattice of all order-convex subsets of a poset P . The sublattices of all lattices of the
form Co(P ) are characterized, in Semenova and Wehrung [52], by the satisfaction
of three particular identities. Furthermore, it is proved in that paper that the
equational theory of all Co(P ) is decidable.

Adding a unary operation symbol ′ for orthocomplementation, it was realized
long ago that the lattice SubH of all closed subspaces of an infinite-dimensional
Hilbert space H, although failing modularity, satisfies the orthomodular identity

x ∨ y = x ∨ ((x ∨ y) ∧ x′) (cf. Kalmbach [28]). The question whether SubH
satisfies any further identity not following from orthomodularity got settled by
Alan Day in 1975 with his orthoarguesian identity, see Greechie [18] and Godowski
and Greechie [12]. Since then many other identities have been found for SubH,
see, in particular, Megill and Pavičić [39] and their subsequent papers.

Changing the language and moving from lattices to rings, we enter the huge
subject of rings with polynomial identities, of which a fundamental prototype is
the Amitsur-Levitzki Theorem [1], stating an identity holding in all matrix rings of
given order over any field.
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If we decree (somewhat arbitrarily) that properties like modularity stand on the
bright side of the moon, then the lattices dealt with in the present paper, mainly
permutohedra, would rather fit on the dark side. (A collection of results concern-
ing identities in non-modular varieties appears in Jipsen and Rose [24, Chapter 4].)
An important highlight in that direction was Caspard’s result [7] that permuto-
hedra are all bounded homomorphic images of free lattices, so they belong to the
class Bfin of Section 2.4, whose modular (or orthomodular) members are all dis-
tributive. Caspard’s result got later extended to all finite Coxeter lattices (i.e.,
finite Coxeter groups with the weak order) in Caspard, Le Conte de Poly-Barbut,
and Morvan [8]; then to further lattices of regions arising from hyperplane arrange-
ments in Reading [43]; and also to “extended permutohedra” arising from posets,
graphs, semilattices, and various classes of closure spaces in our works [48, 49, 50].
Caspard’s result was later refined in Santocanale [46], making it possible to test
on permutohedra Nation’s identities β′

n, introduced in [40], measuring the maximal
length of sequences for the join-dependency relation. It was also shown in [46],
using combinatorial methods, that the identity β′

n and its dual imply together the
identity SD∧

n for semidistributivity (cf. Jipsen and Rose [24, § 4.2]).
To our knowledge, the present paper is the first extensive (and complete) scrutiny

of hidden identities in a combinatorially defined class of lattices on the dark side.
For a fascinating, though a bit outdated, survey on equational logic, see Tay-

lor [55].

1.3. Organization of the paper. Let us recall one by one the statements of our
main theorems.

Theorem A. The equational theory of all permutohedra P(n) and the one of all

Tamari lattices A(n) are both decidable.

A far more general version of Theorem A is stated in Theorem 7.8. This state-
ment involves Reading’s Cambrian lattices of type A (cf. Reading [44]), which turn
out to be the quotients of the permutohedra by their minimal meet-irreducible con-
gruences (cf. Santocanale and Wehrung [47, Corollary 6.10]) and thus they generate
the same lattice variety as the permutohedra (cf. Lemma 3.1). The statement of
Theorem 7.8 is sufficiently general to imply Theorem A trivially.

The first key ingredient of the proof of Theorem 7.8 originates in Reading’s
result [44, Theorem 3.5], implying that the dual of a Cambrian lattice is Cam-
brian, and stated for Cambrian lattices of type A in Santocanale and Wehrung
[47, Corollary 6.11]. In Section 4 we describe that duality via an “orthogonality
relation” ⊥U between intervals of the original chain. In Section 5 (culminating in
Lemma 5.5) we relate the evaluation of lattice polynomials in Cambrian lattices to
new combinatorial objects that we call half-scores, which encode certain tilings of
finite chains. By combining that result with the duality from Section 4, we are thus
able to relate, in Lemmas 6.3 and 6.4, the failure of a lattice identity in a Cam-
brian lattice to new combinatorial objects called scores. Finally, in Section 7, we
translate the previously obtained statements about scores to monadic second-order
logic of one successor MSO. By using a famous decidability theorem due to Büchi (cf.
Theorem 7.1), we are able to reach the desired conclusion, namely Theorem 7.8.

However, the algorithm given by Büchi’s Theorem, although theoretically sound,
is at least one exponential away from any even remote hope for implementation,
even for uncomplicated lattices such as the B(m,n) (cf. Section 2.5). In particular,
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this algorithm is of no help for deciding even simple lattice identities. We show, in
Appendix A, a combinatorial statement, involving objects called (m,n)-scores, de-
scribing the membership problem of the lattice B(m,n) to the variety generated by
a Cambrian lattice AU (E) (where E is a finite chain and U ⊆ E). This description
involves certain tiling properties of the chain E.

Somehow paradoxically, it turns out that Theorem B requires far more ingenuity
than Theorem A.

Theorem B. There exists a lattice identity that holds in all P(n), but that fails in

a certain 3,338-element lattice.

The 3,338-element lattice L involved in Theorem B is constructed via a variant
of Fraser’s semilattice tensor product from [10] called complete tensor product in
Wille [58], box product in Grätzer and Wehrung [15]. (The two concepts, although
not equivalent in general, are equivalent for finite lattices.) The lattice L, repre-
sented in Figure B.1, is given as the box product of the lattices N5 (cf. Figure 2.1)
and B(3, 2) (cf. Section 2.5). Box products, and, more generally, sub-tensor prod-
ucts of lattices, are presented in Section 8.

The identity in question in Theorem B is the so-called splitting identity θL of L,
which turns out to be the weakest identity failing for L (cf. Section 2.4). The
identity θL can be constructed explicitly (cf. McKenzie [38, § 6], Freese, Ježek, and
Nation [11, Corollary 2.76]). In the present case, such a task would probably take
up the space of a whole book. Fortunately, we do not need to undergo such an
ordeal, and we resort instead to an “identity-free” description of lattice varieties
in Section 9. The main objects of study in that section are called EA-duets; they
consist of a join-homomorphism and a meet-homomorphism subject to a few simple
conditions. The proof of the expanded version of Theorem B, namely Theorem 10.1,
relies mostly on the description of the box product L = N5 �B(3, 2) as a sub-tensor

product (cf. Definition 8.2). The only specificity of the box product, compared
to other sub-tensor products, that we use in the proof of Theorem 10.1, is that it
enables us to state that L is a splitting lattice (cf. Section 2.4). It is plausible that
the method used in Section 10 could be extended to arbitrary sub-tensor products
of N5 and B(3, 2), however we would then lose the simplification brought by EA-
duets, which would bring considerable unwieldiness to the argument.

Then the question of the extension of Theorem B to more general “permutohe-
dra” arises naturally. There are many such constructions. We shall focus on the
one from our paper [48], which yields the “extended permutohedron” R(E) on a
poset E (cf. Section 11), which turns out to be the Dedekind-MacNeille completion
of a “generalized permutohedron” introduced in Pouzet et al. [42].

Theorem C. The equational theory of all extended permutohedra, on arbitrary

(possibly infinite) posets, is trivial.

In fact we prove, in Theorem 11.6, a much stronger result, namely: Every finite

meet-semidistributive lattice embeds into R(E), for some countable poset E. Fur-
thermore, the poset E can be taken a directed union of finite dismantlable lattices.
Theorem C is then a simple consequence of that result (cf. Corollary 11.8).
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2. Notation and terminology

We shall mainly follow the notation and terminology from standard references
on lattice theory such as Grätzer [13], Freese, Ježek, and Nation [11], Jipsen and
Rose [24].

2.1. Basic concepts. We shall denote by [n] the set {1, 2, . . . , n}, endowed with
its standard ordering. The dual poset P op of a poset P has the same universe as P ,
and opposite ordering (i.e., x ≤op y if y ≤ x). We say that P is bounded if it has
both a least and a largest element, then denoted by 0P and 1P , respectively, or 0
and 1 if P is understood. For a ≤ b in P and X ⊆ P , we set

P ↓X = {p ∈ P | p ≤ x for some x ∈ X} and P ↓ a = P ↓ {a} ,

P ↑X = {p ∈ P | p ≥ x for some x ∈ X} and P ↑ a = P ↑ {a} ,

[a, b] = {p ∈ P | a ≤ p ≤ b} ,

]a, b] = {p ∈ P | a < p ≤ b} ,

[a, b[ = {p ∈ P | a ≤ p < b} ,

]a, b[ = {p ∈ P | a < p < b} .

An element a is a lower cover of an element b if a < b and ]a, b[ = ∅. A map
f : P → Q between posets is isotone (resp., antitone) if x ≤ y implies f(x) ≤ f(y)
(resp., f(y) ≤ f(x)), for all x, y ∈ P .

We denote by ConL the lattice of all congruences of a lattice L, and by Conc L
the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of L.
Whenever a, b ∈ L, we denote by con(a, b), or conL(a, b) if L needs to be speci-
fied, the least congruence θ of L such that (a, b) ∈ θ.

A lattice L is subdirectly irreducible if it has a least nonzero congruence, which
is then called the monolith of L.

An element p in a lattice L is

• completely join-irreducible if p =
∨

X implies that p ∈ X, for all X ⊆ L;
• join-irreducible if p =

∨

X implies that p ∈ X, for all finite X ⊆ L;
• completely join-prime if p ≤

∨

X implies that p ∈ L ↓X, for all X ⊆ L;
• join-prime if p ≤

∨

X implies that p ∈ L ↓X, for all finite X ⊆ L.

If p is completely join-irreducible, then it has a unique lower cover, that will be
denoted by p∗. In finite lattices, join-irreducibility and join-primeness are equivalent
to their complete versions. Meet-irreducibility and meet-primeness are the duals of
join-irreducibility and join-primeness, respectively. We denote by JiL (resp., MiL)
the set of all join-irreducible (resp., meet-irreducible) elements of L.

We shall often write lattice identities as lattice inclusions p ≤ q (which is in-
deed equivalent to the identity p ∨ q = q), for lattice terms p and q. We denote
by Var(K) the variety generated by a class K of lattices, and we write Var(K)
instead of Var({K}).

2.2. Semidistributivity. A lattice L is meet-semidistributive if the implication

x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z

holds for all x, y, z ∈ L. Join-semidistributivity is defined dually. A lattice is
semidistributive if it is both join-semidistributive and meet-semidistributive.

For a completely join-irreducible element p in a lattice L, we denote by κ(p),
or κL(p) if L needs to be specified, the largest u ∈ L, if it exists, such that p∗ ≤ u



EQUATIONAL THEORY 7

and p � u. We shall occasionally use the following easy fact (cf. Freese, Ježek, and
Nation [11, Lemma 2.57]):

x ≤ κL(p) iff p � p∗ ∨ x , for all p, x in a lattice L

such that p is completely join-irreducible and κL(p) exists. (2.1)

If p is completely join-prime, then κ(p) is defined, and it is also the largest u ∈ L
such that p � u.

A finite lattice L is meet-semidistributive iff κ(p) exists for every p ∈ JiL (cf.
Freese, Ježek, and Nation [11, Theorem 2.56]). If, in addition, L is semidistributive,
then the assignment p 7→ κL(p) defines a bijection from JiL onto MiL (cf. Freese,
Ježek, and Nation [11, Corollary 2.55]).

2.3. Join-dependency and congruences. For more detail about Section 2.3, see
Freese, Ježek, and Nation [11]. The join-dependency relation, among join-irreduci-
ble elements in a finite lattice L, denoted by D (or DL if L needs to be specified),
is defined by

p D q if
(

p 6= q and (∃x)(p ≤ q ∨ x and p � q∗ ∨ x)
)

, for all p, q ∈ JiL .

Denote by EL the reflexive, transitive closure of the join-dependency relation DL

and set conL(p) = conL(p∗, p), for all p ∈ JiL. The following is contained in Freese,
Ježek, and Nation [11, Lemma 2.36]:

p EL q iff conL(p) ⊆ conL(q) , for all p, q ∈ JiL . (2.2)

2.4. Bounded homomorphic images of free lattices. For more detail about
Section 2.4, see Freese, Ježek, and Nation [11]. A surjective homomorphism
h : K ։ L between lattices is lower bounded (resp., bounded) if h−1{y} has a
least element (resp., both a least and a largest element), for all y ∈ L. Denote
by LBfin the class of all finite lower bounded homomorphic images of free lattices,
and by Bfin the class of all finite bounded homomorphic images of free lattices1.
A lattice L belongs to Bfin iff L and Lop both belong to LBfin. It follows from
[11, Corollary 2.39] that a finite lattice L belongs to LBfin iff its join-dependency
relation DL has no cycle. Every member of Bfin is semidistributive. Among the
lattices M3 and N5 represented in Figure 2.1, the first one does not belong to LBfin

while the second one belongs to Bfin. The labeling of N5 introduced in Figure 2.1
will be used in Section 10.

p

p∗
c

1

0
M3 N5

Figure 2.1. The lattices M3 and N5

1To the great puzzlement of many people, bounded homomorphic images of free lattices are
often called bounded lattices. In the present paper, we revert to the original usage, by just defining
bounded lattices as those with both a least and a largest element.
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A lattice K is splitting if there is a largest lattice variety CK such that K /∈ CK .
Necessarily, CK = {L | K /∈ Var(L)} and CK is defined by a single identity θK ,
called the splitting identity of K (depending not only on K, but on a given gen-
erating subset of K). Since a lattice L fails θK iff K ∈ Var(L), it follows from
Jónsson’s Lemma that K has the smallest size among all lattices not satisfying θK .
The splitting lattices are exactly the finite subdirectly irreducible members of Bfin,
see McKenzie [38, § 5] or Freese, Ježek, and Nation [11, § II.6]. The lattice N5 is
splitting, with monolith con(p). An algorithm to compute the splitting identity of
a finite splitting lattice is given in [11, § II.6].

2.5. The lattices B(m,n). Following the notation introduced in Santocanale and
Wehrung [47], for all positive integers m and n, we denote by B(m,n) the lattice
obtained, from the Boolean lattice with m + n atoms a1, . . . , am, b1, . . . , bn, by
adding a new element q above a =

∨m

i=1 ai, such that q < a∨bj whenever 1 ≤ j ≤ n.
In particular, q is join-irreducible with lower cover q∗ = a. The lattice B(m,n) is
splitting, with monolith con(q). We set a = {a1, . . . , am} and b = {b1, . . . , bn}.

The join-prime elements, in the lattices N5 and B(3, 2), are exactly the atoms,
that is, p∗, c for N5 and a1, a2, a3, b1, b2 for B(3, 2). The join-irreducible elements
in those lattices, represented in Figure 2.2, are the atoms together with p (for N5)
and q (for B(3, 2)).

p

p∗ c a1 a2 a3 b1 b2

q

Figure 2.2. The join-irreducible elements of N5 (left) and B(3, 2) (right)

We will later need the following easily verified equations, valid in the lattice B(3, 2),
whenever {i, j} = {1, 2} and k, l ∈ {1, 2, 3}:

bj = (q∗ ∨ bj) ∧ (b1 ∨ b2) ; (2.3)

ak = (ak ∨ bi) ∧ (q∗ ∨ bj) ; (2.4)

ak ∨ al = (ak ∨ al ∨ bi) ∧ (q∗ ∨ bj) ; (2.5)

3. Permutohedra and Cambrian lattices of type A

We shall set δE = {(p, q) ∈ E × E | p < q}, for any poset E. That is, δE is the
strict ordering associated to E. As in our papers [47, 48], we denote by cl(a) the
transitive closure of any subset a of δE , and we set int(a) = δE \ cl(δE \ a). Set

P(E) = {a ⊆ δE | a = cl(a) = int(a)} , the permutohedron on E ,

R(E) = {a ⊆ δE | a = cl int(a)} , the extended permutohedron on E ,

both endowed with set containment. Although P(E) may not be a lattice for an
arbitrary poset E, it is always a lattice if E is a so-called square-free poset (cf.
Pouzet et al. [42], Santocanale and Wehrung [48]). By definition, E is square-free
if it does not contain any copy of the four-element Boolean poset. For example,
every chain is square-free.
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On the other hand, R(E) is always a lattice, which turns out to be the Dedekind-
MacNeille completion of P(E). The join, in R(E), of a family (ai | i ∈ I), is always
the transitive closure of the union of the ai (cf. [48]).

For a positive integer n, the lattice R([n]) = P([n]), simply denoted by P(n), was
first considered in Guilbaud and Rosenstiehl [19]; it turns out to be isomorphic to
the symmetric group on n letters endowed with its weak Bruhat ordering, see for
example Bennett and Birkhoff [2, § 5].

For an arbitrary poset E, we prove in Santocanale and Wehrung [48] that the
completely join-irreducible elements of R(E) all belong to P(E), and they are ex-
actly the sets of the form

〈a, b〉U =
{

(x, y) ∈ ({a} ∪ U c)× ({b} ∪ U) | a ≤ x < y ≤ b
}

, (3.1)

where (a, b) ∈ δE , U ⊆ E, and where we set U c = E\U . For notational convenience,
we shall also set 〈a, a〉U = ∅. Notice that 〈a, b〉U = 〈a, b〉V iff U ∩ ]a, b[ = V ∩ ]a, b[.
Any subset U of E defines the set DU (E) of all a ⊆ δE such that both conditions

(

x < y < z and (x, z) ∈ a and y ∈ U
)

⇒ (x, y) ∈ a
(

x < y < z and (x, z) ∈ a and y /∈ U
)

⇒ (y, z) ∈ a

are satisfied for all x, y, z ∈ E. The set AU (E) of all transitive members of DU (E) is
contained in P(E). We shall also write A(E) = AE(E). We prove in [48] that AU (E)
is a sublattice of P(E) = R(E) whenever E is square-free (this turns out to char-
acterise the square-freeness of E). Furthermore, the meet in AU (E) is always the
set-theoretical intersection. Whenever (a, b) ∈ δE , the set 〈a, b〉U defined in (3.1)
is the least element x of AU (E), with respect to containment, such that (a, b) ∈ x.
It is completely join-irreducible in R(E), with lower cover

(〈a, b〉U )∗ = 〈a, b〉U \ {(a, b)} , (3.2)

and both 〈a, b〉U and (〈a, b〉U )∗ also belong to AU (E). In case n is a positive integer
and E = [n], we shall write AU (n) instead of AU ([n]).

As discussed in Santocanale and Wehrung [47, § 6], it turns out that the lat-
tices AU (n) are exactly the Cambrian lattices of type A, with index n, introduced
in Reading [44]. As established in Proposition 6.7 and Corollary 6.10 of [47],
the AU (n) are exactly the quotients of P(n) by its minimal meet-irreducible congru-
ences, and P(n) is a subdirect product of all the AU (n) for U ⊆ [n]. In particular,
we record the following lemma.

Lemma 3.1. The class of all permutohedra P(n), for n a positive integer, and the

class of all Cambrian lattices of type A, generate the same lattice variety.

4. Dualities among Cambrian lattices of type A

Throughout this section we fix a finite chain E and a subset U of E. As usual,
we set U c = E \ U . We proved in Santocanale and Wehrung [47, Corollary 6.11]
that the lattices AU (E) and AU c(E) are dually isomorphic. In the present section
we shall give a more precise version of that result.

For each join-irreducible p ∈ AU (E), we set κU (p) = κAU (E)(p), the largest
u ∈ AU (E), necessarily meet-irreducible, such that p∗ ⊆ u and p 6⊆ u.

For (a, b), (c, d) ∈ δE , let (a, b) ∼U (c, d) hold if 〈a, b〉U ∩ 〈c, d〉U c 6= ∅, and let
(a, b) ⊥U (c, d) hold if (a, b) ∼U (c, d) does not hold, that is, 〈a, b〉U ∩ 〈c, d〉U c = ∅.

Say that a closed interval [u, v] is nontrivial if u < v.
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Lemma 4.1. (a, b) ∼U (c, d) iff [a, b] ∩ [c, d] is a nontrivial interval [u, v] and

(u, v) ∈ 〈a, b〉U ∩ 〈c, d〉U c . Furthermore, if (a, b) ∼U (c, d), then 〈a, b〉U ∩ 〈c, d〉U c is

exactly the singleton {(u, v)}.

Proof. If [a, b]∩ [c, d] = [u, v] with (u, v) ∈ 〈a, b〉U ∩ 〈c, d〉U c , then, by the definition
of ∼U , we get (a, b) ∼U (c, d). Conversely, suppose that (a, b) ∼U (c, d) and let
(x, y) ∈ 〈a, b〉U ∩ 〈c, d〉U c . Setting u = max{a, c} and v = min{b, d}, it follows that

u ≤ x < y ≤ v

while

x ∈ ({a} ∪ U c) ∩ ({c} ∪ U)

= ({a} ∩ {c}) ∪ ({a} ∩ U) ∪ ({c} ∩ U c) ,

y ∈ ({b} ∪ U) ∩ ({d} ∪ U c)

= ({b} ∩ {d}) ∪ ({b} ∩ U c) ∪ ({d} ∩ U) .

We obtain nine cases to consider, for example x = a = c and y = b ∈ U c with b < d;
in each of those cases, (x, y) = (u, v). �

Lemma 4.2. (x, y) ∈ κU

(

〈a, b〉U
)

iff (x, y) ⊥U (a, b), for all (x, y), (a, b) ∈ δE.

Proof. We prove the contrapositive statement. Suppose first that (x, y) /∈ κU

(

〈a, b〉U
)

,
that is, 〈a, b〉U ⊆ (〈a, b〉U )∗ ∨ 〈x, y〉U , in other words (a, b) ∈ (〈a, b〉U )∗ ∨ 〈x, y〉U .
There exists a subdivision a = c0 < c1 < · · · < cn = b such that each (ck, ck+1)
belongs to (〈a, b〉U )∗ ∪ 〈x, y〉U . We may assume that n is least possible. Since
(a, b) /∈ (〈a, b〉U )∗, we deduce that (ck, ck+1) ∈ 〈x, y〉U for some k ∈ [0, n − 1]. By
the minimality of n, either ck = a, or k > 0 and (ck−1, ck) ∈ (〈a, b〉U )∗. In the
latter case, ck ∈ U . In any case, ck ∈ U ∪ {a}. Symmetrically, ck+1 ∈ U

c ∪ {b},
whence (ck, ck+1) ∈ 〈a, b〉U c . Therefore, (ck, ck+1) belongs to 〈x, y〉U ∩ 〈a, b〉U c , so
(x, y) ∼U (a, b).

Suppose, conversely, that (x, y) ∼U (a, b) and let (u, v) ∈ 〈x, y〉U ∩〈a, b〉U c . Since
(u, v) ∈ 〈a, b〉U c , both (a, u) and (v, b) belong to the union of (〈a, b〉U )∗ with the
diagonal. Since (u, v) ∈ 〈x, y〉U , it follows that 〈a, b〉U ⊆ (〈a, b〉U )∗ ∨ 〈x, y〉U , thus
(x, y) /∈ κU

(

〈a, b〉U
)

. �

Set ϕ(x) = {(i, j) ∈ δE | x ∩ 〈i, j〉U c = ∅}, for every x ∈ AU (E). Notice that
ϕ(x) = {(i, j) ∈ δE | (u, v) ⊥U (i, j) for all (u, v) ∈ x}. It is trivial that ϕ(x)
belongs to DU c(E). Furthermore, xc is transitive, and (i, j) ∈ ϕ(x) iff 〈i, j〉U c ⊆ xc,
hence, if (i, j) and (j, k) both belong to ϕ(x), then

〈i, k〉U c ⊆ 〈i, j〉U c ∨ 〈j, k〉U c ⊆ xc ,

that is, (i, k) ∈ ϕ(x), and so ϕ(x) is transitive. Therefore, ϕ(x) ∈ AU c(E), and
ϕ(x) is the largest y ∈ AU c(E) such that x ∩ y = ∅.

Symmetrically, for every y ∈ AU c(E), ψ(y) = {(i, j) ∈ δE | 〈i, j〉U ∩ y = ∅} is
the largest x ∈ AU (E) such that x ∩ y = ∅.

Proposition 4.3. The maps ϕ and ψ are mutually inverse dual isomorphisms

between AU (E) and AU c(E).

Proof. The maps ϕ and ψ are both antitone, thus, by symmetry, it suffices to prove
that ψ ◦ϕ = idAU (E). It is obvious that (ψ ◦ϕ)(c) contains c, for every c ∈ AU (E),
so it suffices to prove that (ψ ◦ ϕ)(c) is contained in c. Furthermore, it suffices to
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establish this fact in case c is meet-irreducible, that is, c = κU (〈a, b〉U ) for some
(a, b) ∈ δE .

Let (x, y) ∈ (ψ ◦ ϕ)(c); it is easily argued that this condition is equivalent to
(

∀(i, j) ∈ 〈x, y〉U
)(

c ∩
(

〈i, j〉U c

)

6= ∅
)

. (4.1)

Suppose that (x, y) /∈ c = κU (〈a, b〉U ). By Lemma 4.2, (x, y) ∼U (a, b), that is,
there exists (i, j) ∈ 〈x, y〉U ∩ 〈a, b〉U c . By (4.1), there exists (u, v) ∈ c ∩ 〈i, j〉U c .
Since (i, j) ∈ 〈a, b〉U c , we get (u, v) ∈ 〈a, b〉U c . Thus, both (a, u) and (v, b) belong
to the union of (〈a, b〉U )∗ with the diagonal, and thus, since (u, v) ∈ c, it follows
that (a, b) belongs to (〈a, b〉U )∗ ∨ c = (〈a, b〉U )∗ ∨ κU (〈a, b〉U ) = κU (〈a, b〉U ), a
contradiction. �

Notation 4.4. Denote2 by ψU : AU c(E) → AU (E)op the map denoted by ψ in the
text above.

It follows from the definition of ϕ that ϕ = ψU c . Hence, by Proposition 4.3,
ψU is a dual isomorphism from AU c(E) onto AU (E), with inverse ψU c . Whenever
y ∈ AU c(E), ψU (y) is the largest x ∈ AU (E) such that x ∩ y = ∅.

As an immediate consequence of Lemma 4.2, we obtain that

ψU

(

〈a, b〉U c

)

= κU

(

〈a, b〉U
)

, for all (a, b) ∈ δE . (4.2)

5. Half-scores and alternating words

Throughout this section we shall fix a finite set Ω = {z1, . . . , zℓ} (the “variables”)
of cardinality a positive integer ℓ, and we shall denote by FL(Ω) the free lattice
on Ω. We shall use the terminology and results from Freese, Ježek, and Nation
[11] for free lattices. In particular, the rank of a lattice term is defined in [11,
§ I.2]. Every element p of FL(Ω) \ {0, 1} is either meet- or join-irreducible (cf.
[11, Corollary 1.9]), and p is both meet- and join-irreducible iff p ∈ Ω (cf. [11,
Corollary 1.5]). Moreover, every p ∈ FL(Ω) is represented by a unique (up to
commutativity and associativity of ∨ and ∧) lattice term of minimal rank, called the
canonical form of p, that we shall thus identify with p (cf. [11, Theorem 1.17]). A
simple syntactical characterization of canonical forms is given in [11, Theorem 1.18].
It follows from that characterization that any element p of FL(Ω) has exactly one
of the following forms:

(i) p = zi, for i ∈ [ℓ], is a variable; then either we are in the degenerate case, that
is, ℓ = 1 so p = 0 = 1, or p is both meet- and join-irreducible;

(ii) p = p1 ∨ · · · ∨ pn canonically, where n ≥ 2 and the pi, of smaller rank than p,
are pairwise incomparable join-irreducible elements; we shall say that p is a
pure join term; in particular, p is meet-irreducible;

(iii) p = p1 ∧ · · · ∧ pn canonically, where n ≥ 2 and the pi, of smaller rank than p,
are pairwise incomparable meet-irreducible elements; we shall say that p is a
pure meet term; in particular, p is join-irreducible.

The set Cov(p) of all canonical join-covers of p is defined inductively as follows:

• In Case (i) above (i.e., p = zi), we set Cov(zi) = {{zi}}.
• In Case (ii) above, p is a pure join term and we set Cov(p) = {{p1, . . . , pn}}.

2Strictly speaking, we should write something like ψE,U instead of just ψU ; however, E will

always be clear from the context.
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• In Case (iii) above, every pi is meet-irreducible, thus, by the two cases
above, Cov(pi) = {Ci} for some Ci, and we set Cov(p) = {C1, . . . , Cn}.

A number of induction proofs will be based on the simple observation that for
every p ∈ FL(Ω) \ Ω, Cov(p) is a nonempty finite set of nonempty finite subsets
of FL(Ω) all of whose elements have smaller rank than p. This observation will be
used implicitly, throughout the text.

In particular, a straightforward induction argument yields the following lemma.

Lemma 5.1. The equation p =
∧

C∈Cov(p)

∨

C holds, for every p ∈ FL(Ω).

In particular, p ≤
∨

C is a valid lattice inclusion, whenever C ∈ Cov(p).

Definition 5.2. An alternating word on an element p of FL(Ω) is a finite sequence
α = (C0, p1, C1, . . . , pn, Cn), where n is a nonnegative integer and the following
conditions hold:

(i) C0 is the one-element sequence ({p}).
(ii) pj /∈ Ω and Cj ∈ Cov(pj) whenever 1 ≤ j ≤ n.
(iii) pj+1 ∈ Cj whenever 0 ≤ j < n.

We denote by Alt(p) the set of all alternating words on p, and denote Cα = Cn.
For α, β ∈ Alt(p), let α ⊏ β hold if α is a proper prefix of β.

Observe that the definition above implies that if n > 0, then p1 = p. Further-
more, Alt(p) is finite.

Definition 5.3. A subdivision of an interval [x, y], for integers x < y, is a subset
of [x, y] containing the pair {x, y}. We set

cvs(P ) = {(u, v) ∈ P×P | u < v and ]u, v[∩P = ∅} , for every set P of integers.

We shall denote by α a β the concatenation of words α and β.

Definition 5.4. Let E be a finite chain and let p ∈ FL(Ω). Denote by ⊥ any
object outside FL(Ω) (thought of as “bottom”). A half p-score on E is a family
~P = ((Pα, τα) | α ∈ Alt(p)) satisfying the following conditions:

(i) Pα ⊆ E and τα : cvs(Pα) → Cα ∪ {⊥} (the valuation of index α), for every
α ∈ Alt(p).

(ii) P({p}) = {0E , 1E} and τ({p})(0E , 1E) = p (note that this implies that E has at

least two elements).
(iii) For all α ∈ Alt(p), all (x, y) ∈ cvs(Pα), all q = τα(x, y) /∈ Ω ∪ {⊥}, and all

C ∈ Cov(q), the pair {x, y} is contained in Pαa(q,C) and ταa(q,C)(u, v) belongs

to C, for every (u, v) ∈ cvs(Pαa(q,C) ∩ [x, y]).

For a half p-score ~P as above, we shall set

Pα[q] = {(x, y) ∈ cvs(Pα) | τα(x, y) = q} , whenever α ∈ Alt(p) and q ∈ Cα .
(5.1)

The main lemma of this section, relating half p-scores and evaluations of lattice
terms in Cambrian lattices AU (E), is the following.

Lemma 5.5. Let p be a lattice term on Ω, let E be a finite chain, let U ⊆ E, and

let a1, . . . ,aℓ ∈ AU (E). The following are equivalent:

(i) (0E , 1E) ∈ p(a1, . . . ,aℓ), where p(a1, . . . ,aℓ) is evaluated within AU (E).
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(ii) There exists a half p-score ~P on E such that

Pα[zi] ⊆ ai , whenever α ∈ Alt(p) and i ∈ [ℓ] .

From now on we shall use the abbreviation ~a = (a1, . . . ,aℓ).

Proof. (i)⇒(ii). We construct the finite subsets Pα of E and the valuations
τα : cvs(Pα) → Cα ∪ {⊥}, with P({p}) = {0E , 1E} and τ({p})(0E , 1E) = p, subject
to the following induction hypothesis (relatively to the strict ordering ⊏ of Alt(p)):

Pα[q] ⊆ q(~a) , for every q ∈ Cα . (5.2)

The statement (5.2) holds at α = ({p}) by Assumption (i). Suppose that Pα

and τα are constructed in such a way that (5.2) holds at α. The finite sequence
β = αa (q, C) belongs to Alt(p), whenever q ∈ Cα \Ω and C ∈ Cov(q). Let (x, y) ∈
Pα[q]. By our induction hypothesis, (x, y) belongs to q(~a), thus to

∨

r∈C r(~a), and
therefore there exists a subdivision P x,y

β of [x, y] such that

cvs(P x,y
β ) ⊆

⋃

r∈C

r(~a) . (5.3)

Set

Pβ =
⋃

(P x,y
β | (x, y) ∈ Pα[q]) . (5.4)

Observe that Pβ ∩ [x, y] = P x,y
β , for every (x, y) ∈ cvs(Pα). Now let (u, v) ∈

cvs(Pβ). If (u, v) ∈ cvs(P x,y
β ) for some (necessarily unique) (x, y) ∈ Pα[q], it follows

from (5.3) that there exists r ∈ C such that (u, v) ∈ r(~a); define τβ(u, v) as any
such r. In all other cases, that is, when there is no (x, y) ∈ Pα[q] such that (u, v) ∈
cvs(P x,y

β ), we set τβ(u, v) = ⊥. By construction, the induction hypothesis (5.2)

still holds at β, and the family of all pairs (Pα, τα) is a half p-score on E. By
applying (5.2) to the case where q = zi, we get the condition (ii).

(ii)⇒(i). We prove again the statement (5.2), this time by downward ⊏-induction
on α ∈ Alt(p). Let α ∈ Alt(p) and suppose that (5.2) holds at every β ∈ Alt(p)
with α ⊏ β. Let q ∈ Cα and let (x, y) ∈ Pα[q], we must prove that (x, y) ∈ q(~a). If
q ∈ Ω, then this follows from Assumption (ii). Suppose from now on that q /∈ Ω. Let

C ∈ Cov(q). The finite sequence β = αa(q, C) belongs to Alt(p). Since ~P is a half p-
score, {x, y} is contained in Pβ and τβ(u, v) ∈ C whenever (u, v) ∈ cvs(Pβ ∩ [x, y]).
Setting r = τβ(u, v), it follows from our induction hypothesis that (u, v) ∈ r(~a).
This holds for all (u, v) ∈ cvs(Pβ ∩ [x, y]), whence (x, y) ∈

∨

r∈C r(~a). This holds
for every C ∈ Cov(q), thus, since the meet in AU (E) is the intersection, we get

(x, y) ∈
∧

C∈Cov(q)

∨

r∈C

r(~a) .

By Lemma 5.1, this means that (x, y) ∈ q(~a), thus completing the proof of the
induction step of (5.2). By applying (5.2) to α = ({p}), we get the desired conclu-
sion. �

6. Scores and lattice inclusions

In this section we fix a set Ω = {zi | i ∈ [ℓ]} of cardinality a positive integer ℓ.
We leave to the reader the straightforward proof of the following lemma.
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Lemma 6.1. Let F be an order-convex subset of a chain E. Then AU∩F (F ) is a

lattice retract of AU (E), with retraction defined by

π : AU (E)→ AU∩F (F ) , x 7→ x ∩ δF .

In the context of Lemma 6.1, we shall call π the projection map from AU (E)
onto AU∩F (F ).

From now on we shall denote by qop the dual of an element q ∈ FL(Ω), that is,
q with meets and joins interchanged.

Definition 6.2. Let p, q ∈ FL(Ω), let E be a finite chain, and let U ⊆ E. A

(p, q, U)-score on E is a pair (~P , ~Q), where

~P = ((Pα, µα) | α ∈ Alt(p)) is a half p-score on E ,

~Q = ((Qβ , νβ) | β ∈ Alt(qop)) is a half qop-score on E ,

and the following condition holds:

Whenever i ∈ [ℓ] , α ∈ Alt(p) , β ∈ Alt(qop) , (x, y) ∈ Pα[zi] , (u, v) ∈ Qβ [zi] ,

the condition (x, y) ⊥U (u, v) holds. (6.1)

We refer to Section 4 for the definition of the binary relation ⊥U and the iso-
morphism ψ = ψU : AU c(E)→ AU (E)op. The notation Pα[q] is defined in (5.1).

The following lemma gives an equivalent “positive” formulation, involving the
isomorphisms ψV , for a given lattice inclusion not holding in a Cambrian lat-
tice AU (E).

Lemma 6.3. Let p, q ∈ FL(Ω), let E be a finite chain, and let U be a subset of E.

The following are equivalent:

(i) There are a1, . . . ,aℓ ∈ AU (E) such that p(~a) 6⊆ q(~a).
(ii) There are an interval F of E and a1, . . . ,aℓ ∈ AU∩F (F ) such that, setting

V = U ∩ F , V c = F \ V , and denoting by

ψ = ψV : AV c(F )→ AV (F )op

the canonical dual isomorphism, (0F , 1F ) belongs to p(~a) ∩ ψ−1(q(~a)).

Proof. (ii)⇒(i). By Lemma 6.1, it suffices to prove that the lattice inclusion p(~a) ≤
q(~a) does not hold in AV (F ). Suppose otherwise, that is, p(~a) ⊆ q(~a), and set
b = q(~a). Then 〈0F , 1F 〉V ⊆ b and 〈0F , 1F 〉V c ⊆ ψ−1(b). The second containment
can be written b ⊆ ψ(〈0F , 1F 〉V c). It follows that 〈0F , 1F 〉V ⊆ ψ(〈0F , 1F 〉V c), that
is, 〈0F , 1F 〉V ⊆ κV (〈0F , 1F 〉V ) (use (4.2)), a contradiction.

(i)⇒(ii). Pick a minimal interval F = [u, v] of E such that (u, v) ∈ p(~a) \ q(~a)
and, using the projection homomorphism π : AU (E) ։ AU∩F (F ) (cf. Lemma 6.1),
set a′

i = π(ai) for all i ∈ [ℓ]. Set V = U ∩ F and V c = F \ V . Observe that
(u, v) ∈ p(~a′) \ q(~a′) (within AU∩F (F )); thus F has at least two elements.

Suppose that 〈u, v〉V c 6⊆ ψ−1(q(~a′)). Then q(~a′) is not contained in ψ(〈u, v〉V c).
By (4.2), it follows, using (2.1), that

〈u, v〉V ⊆ (〈u, v〉V )∗ ∨ q(~a
′) . (6.2)

Since 〈u, v〉V ⊆ p(~a′), every (x, y) ∈ (〈u, v〉V )∗ belongs to p(~a′); moreover, since
(x, y) 6= (u, v) for every such (x, y), we obtain, by projecting onto [x, y] as in the
paragraph above and by the minimality assumption on [u, v], the relation (x, y) ∈
q(~a′); hence we get (〈u, v〉V )∗ ⊆ q(~a

′). Therefore, by (6.2), we obtain that 〈u, v〉V ⊆
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q(~a′), hence (u, v) ∈ q(~a′), a contradiction; thus proving that 〈u, v〉V c ⊆ ψ−1(q(~a′)).
�

Let us call the relation (0F , 1F ) ∈ p(~a) ∩ ψ−1(q(~a)), stated in Lemma 6.3(ii), a
positive form of the negated lattice inclusion p � q.

The main lemma of this section relates scores with positive forms of negated
lattice inclusions.

Lemma 6.4. The following statements are equivalent, for all p, q ∈ FL(Ω), every fi-

nite chain E, every U ⊆ E, and the canonical isomorphism ψ : AU c(E)→ AU (E)op:

(i) There are a1, . . . ,aℓ ∈ AU (E) such that (0E , 1E) ∈ p(~a) ∩ ψ−1(q(~a)).
(ii) There exists a (p, q, U)-score on E.

Proof. (i)⇒(ii). Since (0E , 1E) ∈ p(~a), it follows from Lemma 5.5[(i)⇒(ii)] that
there exists a half p-score

~P = ((Pα, µα) | α ∈ Alt(p))

such that
Pα[zi] ⊆ ai , whenever α ∈ Alt(p) and i ∈ [ℓ] . (6.3)

Similarly, since (0E , 1E) belongs to ψ−1(q(~a)) = qop(ψ−1~a), there exists a half
qop-score

~Q = ((Qβ , νβ) | β ∈ Alt(qop))

such that

Qβ [zi] ⊆ ψ
−1(ai) , whenever β ∈ Alt(qop) and i ∈ [ℓ] . (6.4)

Let i ∈ [ℓ], α ∈ Alt(p), β ∈ Alt(qop), (x, y) ∈ Pα[zi], and (u, v) ∈ Qβ [zi]. By (6.3)
and (6.4), it follows that (x, y) ∈ ai and (u, v) ∈ ψ−1(ai), that is, 〈x, y〉U ⊆ ai and
〈u, v〉U c ⊆ ψ−1(ai). By the definition of the map ψ (cf. Section 4), it follows that

〈x, y〉U ∩〈u, v〉U c = ∅, that is, (x, y) ⊥U (u, v). Therefore, (~P , ~Q) is a (p, q, U)-score
on E.

(ii)⇒(i). We set ai =
∨

(〈x, y〉U | α ∈ Alt(p) and (x, y) ∈ Pα[zi]), whenever
i ∈ [ℓ]. It follows from Lemma 5.5[(ii)⇒(i)] that (0E , 1E) ∈ p(~a).

We must prove that (0E , 1E) ∈ qop(ψ−1~a). By Lemma 5.5[(ii)⇒(i)], it suffices to
prove that Qβ [zi] ⊆ ψ

−1(ai), whenever i ∈ [ℓ] and β ∈ Alt(qop). Let (u, v) ∈ Qβ [zi].
We must prove that ai ⊆ ψ(〈u, v〉U c), that is, (x, y) ⊥U (u, v) whenever α ∈ Alt(p)
and (x, y) ∈ Pα[zi]. However, this follows from the definition of a score. �

7. Expressing scores within monadic second-order logic: proving

Theorem A

We consider the monadic second-order language MSO of one successor (cf. Bü-
chi [6]). We denote by u, v, w, x, y, . . . the variables of the first-order language (s)
consisting of one unary function symbol s. In addition to that language, MSO has
a binary relation symbol ∈, second-order variables U , V , W , X, Y , . . . , and new
atomic formulas t ∈ X, where t is a term of the first-order language (s) and X is a
second-order variable. The formulas of MSO are obtained by closing the atomic for-
mulas under propositional connectives and quantification both on first- and second-
order variables. The standard model of MSO is (ω, s), where s is the successor func-
tion on the set ω of all nonnegative integers. The satisfaction by (ω, s) of a formula
of MSO is defined inductively on the complexity of the formula, in a standard fashion.
The following fundamental result is due to Büchi [6].
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Theorem 7.1 (Büchi’s Theorem). The theory S1S consisting of all statements

of MSO valid in (ω, s) is decidable (i.e., recursive).

By Büchi’s Theorem, in order to decide the validity of a statement θ (in any

mathematical field), it suffices to find a statement θ̃ of MSO which is equivalent

to θ (i.e., θ holds iff the structure (ω, s) satisfies θ̃), and then apply Büchi’s de-

cision procedure to θ̃. A standard fact, that we shall use repeatedly, is that the
binary relations x < y and x ≤ y on ω are both MSO-definable, respectively by the
statements

(∃X)
(

(∀z)(z ∈ X ⇒ s(z) ∈ X) ∧ y ∈ X ∧ ¬(x ∈ X)
)

,

x < y ∨ x = y .

Let Ω = {zi | i ∈ [ℓ]} be a set of cardinality a positive integer ℓ, and let p ∈ FL(Ω).
In order to be able to code half p-scores (cf. Definition 5.4) in MSO, a necessary
preliminary step is to describe such objets by finite collections of subsets of ω.

For the Pα nothing needs to be done (they are already sets of integers).
For a subset P of ω, the set cvs(P ) of all covers in P (cf. Definition 5.3) is in

one-to-one correspondence with the set P ∗ defined as P if P has no largest element,
P \ {maxP} otherwise. Hence, for a finite set C, a map τ : cvs(P ) → C can be
described by the collection of all subsets Pc = {x ∈ P ∗ | (∃y)(τ(x, y) = c)}, where
c ∈ C. Accordingly, we set the following definition.

Definition 7.2. The code of a half p-score ~P as above is the family

(Pα, Pα,q | α ∈ Alt(p) , q ∈ Cα ∪ {⊥}) ,

where we set

Pα,q =
{

x ∈ Pα | (∃y)
(

(x, y) ∈ cvs(Pα) and τα(x, y) = q
)}

.

Since the code of a half p-score is a finite family of sets of integers (viz. the Pα

and the Pα,q), its entries can be used as parameters for MSO formulas.

Lemma 7.3. The statement, saying that a given family

~P = (Pα, Pα,q | α ∈ Alt(p) and q ∈ Cα ∪ {⊥})

is the code of a half p-score on an interval [u, v] of ω, is equivalent to an MSO

statement.

Proof. Axiom (i) of Definition 5.4, with 0E replaced by u and 1E by v, can be
expressed by the conjunction of u < v and the following statements:

Pα ⊆ [u, v] , for α ∈ Alt(p) , (7.1)

P ∗
α =

⋃

q∈Cα∪{⊥}

Pα,q , for α ∈ Alt(p) , (7.2)

Pα,q ∩ Pα,r = ∅ , for α ∈ Alt(p) and distinct q, r ∈ Cα . (7.3)

The statement (7.1) is equivalent to the MSO formula
∧

α∈Alt(p)

(∀x)
(

x ∈ Pα ⇒ (u ≤ x ∧ x ≤ v)
)

.

Now the statement “(x, y) ∈ cvs(Pα)” is equivalent to the following MSO formula:

x ∈ Pα ∧ y ∈ Pα ∧ x < y ∧ (∀z)¬(x < z ∧ z < y ∧ z ∈ Pα) ;
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(The symbols ∧ and ¬ stand for conjunction and negation, respectively. The quotes
in what follows will mean that we are replacing the statement (x, y) ∈ cvs(P ) by
its MSO equivalent found previously, so we are reminded that the work is already
done for that statement.)

This yields immediately that (7.2) is equivalent to the conjunction of the two
following MSO statements:

∧

α∈Alt(p) , q∈Cα∪{⊥}

(

x ∈ Pα,q ⇒ (∃y)“(x, y) ∈ cvs(Pα)”
)

,

∧

α∈Alt(p)

(∀x)(∀y)
(

“(x, y) ∈ cvs(Pα)”⇒
∨

q∈Cα∪{⊥}

x ∈ Pα,q

)

(following the usual convention,
∧

and
∨

stand for conjunction and disjunction
over a given index set, respectively). The translation of (7.3) to an MSO statement
is even more straightforward.

Axiom (ii) of Definition 5.4 can be expressed by the statement

u ∈ P({p}),p ∧ (∀x)
(

x ∈ P({p}) ⇔ (x = u ∨ x = v)
)

.

Finally, Axiom (iii) of Definition 5.4 is equivalent to the conjunction, over all
(α, q, C) with α ∈ Alt(p), q ∈ Cα \ Ω, and C ∈ Cov(q), of the statements

(∀x)(∀y)
(

(

“(x, y) ∈ cvs(Pα)” ∧ x ∈ Pα,q

)

⇒

(

x ∈ Pαa(q,C) ∧ y ∈ Pαa(q,C) ∧ ϑα,q,C(x, y)
)

)

,

where ϑα,q,C(x, y) is the statement

(∀u)(∀v)
(

(

“(u, v) ∈ cvs(Pαa(q,C))” ∧ x ≤ u ∧ v ≤ y
)

⇒
∨

r∈C

u ∈ Pαa(q,C),r

)

.

This concludes the proof. �

Now we formulate the following analogue of Definition 7.2 for scores.

Definition 7.4. Let p, q ∈ FL(Ω). Consider families

Ṗ = (Pα, Pα,r | α ∈ Alt(p) and q ∈ Cα ∪ {⊥}) , (7.4)

Q̇ = (Qβ , Qβ,s | β ∈ Alt(qop) and s ∈ Cβ ∪ {⊥}) . (7.5)

The triple (Ṗ , Q̇, U) is the code for a (p, q, U)-score if Ṗ is the code of a half p-

score ~P , Q̇ is the code of a half qop-score ~Q, and (~P , ~Q,U) is a (p, q, U)-score.

The analogue of Lemma 7.3 for scores is the following.

Lemma 7.5. The statement, saying that a triple (Ṗ , Q̇, U) is the code of a (p, q, U)-
score on an interval [u, v] of ω, is equivalent to an MSO statement.

Proof. Let Ṗ and Q̇ be given by (7.4) and (7.5). By Lemma 7.3, the statements

that Ṗ and Q̇ are codes of a half p-score and a half qop-score on [u, v], respectively,
are equivalent to MSO formulas.

Next, the relations (x, y) ∈ 〈x′, y′〉U and (x, y) ∈ 〈x′, y′〉U c are, respectively,
equivalent to the following MSO formulas:

x′ ≤ x ∧ x < y ∧ y ≤ y′ ∧ (x = x′ ∨ ¬(x ∈ U)) ∧ (y = y′ ∨ y ∈ U) ,

x′ ≤ x ∧ x < y ∧ y ≤ y′ ∧ (x = x′ ∨ x ∈ U) ∧ (y = y′ ∨ ¬(y ∈ U)) .
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From this we can thus deduce the following MSO equivalent of (x0, y0) ⊥U (x1, y1):

¬(∃x, y)
(

x < y ∧ “(x, y) ∈ 〈x0, y0〉U” ∧ “(x, y) ∈ 〈x1, y1〉U c”
)

.

Therefore, an MSO equivalent of the statement (6.1) is the conjunction, over all
i ∈ [ℓ], α ∈ Alt(p), and β ∈ Alt(qop), of the following formulas:

(∀x0)(∀y0)(∀x1)(∀y1)
(

(

“(x0, y0) ∈ cvs(Pα)” ∧ “(x1, y1) ∈ cvs(Qβ)”

∧ x0 ∈ Pα,zi
∧ x1 ∈ Qβ,zi

)

⇒ “(x0, y0) ⊥U (x1, y1)”
)

. �

Lemma 7.6. Let p, q ∈ FL(Ω). The statement, depending on two first-order vari-

ables x and y and a second-order predicate U , saying that AU ([x, y]) satisfies the

lattice inclusion p ≤ q, is equivalent to an MSO statement.

Proof. By Lemmas 6.3 and 6.4, AU ([x, y]) does not satisfy the lattice inclusion p ≤ q
iff there are integers u, v such that x ≤ u < v ≤ y and there is a (p, q, U∩[u, v])-score
on [u, v]. Now the existence of a score can be expressed via existential quantification,
over all second-order predicates Pα, Pα,r, Qβ , Qβ,s, of the MSO formula, obtained
from Lemma 7.5, that expresses being a (p, q, U)-score. Now the statement V =
U ∩ [u, v] has the following MSO equivalent:

(∀x)
(

x ∈ V ⇔ (x ∈ U ∧ u ≤ x ∧ x ≤ v)
)

.

Therefore, the following formula is equivalent to AU ([x, y]) not satisfying p ≤ q:

(∃u)(∃v)(∃V )(∃Ṗ )(∃Q̇)
(

x ≤ u ∧ u < v ∧ v ≤ y ∧ “V = U ∩ [u, v]”

∧ “(Ṗ , Q̇, V ) is the code of a score on [u, v]”
)

,

where, in an obvious sense, ∃Ṗ stands for a string of quantifiers of the form ∃Pα or
∃Pα,r, for α ∈ Alt(p) and r ∈ Cα ∪ {⊥} (and similarly for ∃Q̇). �

Definition 7.7. An orientation is a triple (u, v, U), where u, v ∈ ω, u < v, and
U ⊆ [u, v].

We can now state a detailed form of Theorem A.

Theorem 7.8. Let U be an MSO-definable set of orientations. Then the equational

theory of all lattices AU ([x, y]), where (x, y, U) ∈ U, is decidable.

Proof. The computation of the canonical forms p and q of lattice terms ṗ and q̇ is
recursive. Now AU ([x, y]) satisfies the lattice inclusion ṗ ≤ q̇ for all (x, y, U) ∈ U iff
the following MSO formula θp,q (obtained from the proof of Lemma 7.6) is in S1S:

(∀x)(∀y)(∀U)
(

“(x, y, U) ∈ U”⇒ “AU ([x, y]) satisfies the inclusion p ≤ q”
)

.

Further, the assignment (p, q) 7→ θp,q is given by an effectively computable proce-
dure, that is, it is recursive. The desired conclusion follows from Theorem 7.1. �

Defining U as the set of all (x, y, U) with x < y and U ⊆ [x, y], we obtain the
equational theory of all Cambrian lattices of type A, which, by Lemma 3.1, is the
same as the equational theory of all permutohedra.

Corollary 7.9. The equational theory of all permutohedra lattices is decidable.
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By defining U as the set of all triples (x, y, U) with U = [x, y], we obtain the
following.

Corollary 7.10. The equational theory of all Tamari lattices is decidable.

8. Tensor products and box products

Sections 8–10 will be mainly devoted to a proof of Theorem B, more precisely
Theorem 10.1, showing that the equational theory of all permutohedra is non-trivial.
We shall show that every Cambrian lattice of type A satisfies the splitting identity
of the lattice N5 � B(3, 2); we give in this section the background and the tools for
constructing and handling that lattice.

Our presentation originates from the tensor product of (∨, 0)-semilattices con-
sidered in Grätzer, Lakser, and Quackenbush [14], which is a variant of Fraser’s
tensor product of join-semilattices considered in [10].

Definition 8.1. Let A and B be (∨, 0)-semilattices. A bi-ideal of A × B is a
lower subset I of A × B (endowed with the componentwise ordering), containing
the subset

0A,B = (A× {0B}) ∪ ({0A} ×B) ,

such that whenever (a, b0) ∈ I and (a, b1) ∈ I, then (a, b0 ∨ b1) ∈ I, and similarly
with the roles of A and B reversed. The (∨, 0)-semilattice A ⊗ B of all compact
elements of A⊗B is called the tensor product of the (∨, 0)-semilattices A and B.

The following elements of A⊗B deserve a special attention:

— The pure tensors a ⊗ b = 0A,B ∪ {(x, y) ∈ A × B | x ≤ a and y ≤ b},
whenever (a, b) ∈ A×B. In particular, 0A,B = 0A ⊗ 0B .

— The mixed tensors (a⊗b′)∪ (a′⊗b), whenever a ≤ a′ in A and b ≤ b′ in B.
— The boxes, a� b = {(x, y) ∈ A×B | x ≤ a or y ≤ b}.

Clearly, the inequalities a⊗ b ≤ a� b′ and a⊗ b ≤ a′ � b hold whenever a, a′ ∈ A
and b, b′ ∈ B. In fact, a⊗ b = (a� 0B) ∩ (0A � b). Notice also that if a and b are
both nonzero, then a ⊗ b ≤ a′ ⊗ b′ iff a ≤ a′ and b ≤ b′. While pure tensors and
mixed tensors always belong to A⊗B (in particular, (a⊗ b′)∪ (a′⊗ b) is really the
join of a ⊗ b′ and a′ ⊗ b), the box a � b may not belong to A ⊗ B. However, if A
and B both have a unit element, then a� b = (a⊗ 1B)∪ (1A⊗ b) is a mixed tensor,
thus it belongs to A⊗B.

If A and B are finite lattices, then A ⊗ B = A ⊗ B is a finite lattice as well.
In the infinite case, A ⊗ B may not be a lattice. For example, if F(3) denotes the
free lattice on three generators, then M3 ⊗ F(3) is not a lattice (cf. Grätzer and
Wehrung [16]). The following is stated in Grätzer and Wehrung [17, Definition 4.1].

Definition 8.2. For (∨, 0)-semilattices A and B, a subset C of A ⊗ B is a sub-

tensor product if it contains all mixed tensors, C is closed under nonempty finite
intersection, and C is a lattice under set inclusion. We say that C is capped if every
member of C is a finite union of pure tensors.

If A and B are both finite, then every sub-tensor product is, trivially, capped.
Grätzer and Wehrung posed in [17] the problem whether A ⊗ B a lattice implies
that A ⊗ B is a capped tensor product, for any lattices A and B with zero. This
problem appeared to be difficult, and was finally solved, with a sophisticated coun-
terexample, in a recent preprint by Chornomaz [9].

A key property of sub-tensor products, with trivial proof, is the following.



20 L. SANTOCANALE AND F. WEHRUNG

Lemma 8.3. Let A and B be lattices with zero, let C be a sub-tensor product of A
and B, and let a ∈ A. Then the map (B → C, x 7→ a ⊗ x) is a zero-preserving

lattice homomorphism.

While even in the finite case, the ordinary tensor product A ⊗ B will not be
satisfactory for our current purposes, a variant called box product will do the trick.
The box product is an analogue, for lattices that are not necessarily complete, of
Wille’s tensor product of concept lattices [58]. Although the two concepts are,
for finite lattices, equivalent, we found the box product presentation and results
from Grätzer and Wehrung [15] more suited to our approach, heavily relying on
join-coverings, in our lattices.

The box product of A and B behaves well only in case both lattices A and B
are bounded 3. The following result is contained in Proposition 2.9 and Lemma 3.8
of Grätzer and Wehrung [15].

Proposition 8.4. Let A and B be bounded lattices. The set A�B of all intersec-

tions of the form
⋂n

i=1(ai � bi), for n a non-negative integer, a1, . . . , an ∈ A, and

b1, . . . , bn ∈ B, is a lattice under set-theoretical inclusion, called the box product
of A and B. Furthermore, A�B is a capped sub-tensor product of A and B.

Let A = N5 and B = B(3, 2). By combining Lemma 8.3, Proposition 8.4, and
the equations (2.3)–(2.5), we obtain immediately the following equations, valid in
the lattice N5 � B(3, 2):

c⊗ bj =
(

c⊗ (q∗ ∨ bj)
)

∧
(

c⊗ (b1 ∨ b2)
)

; (8.1)

c⊗ ak =
(

c⊗ (ak ∨ bi)
)

∧
(

c⊗ (q∗ ∨ bj)
)

; (8.2)

c⊗ (ak ∨ al) =
(

c⊗ (ak ∨ al ∨ bi)
)

∧
(

c⊗ (q∗ ∨ bj)
)

; (8.3)

The behavior of capped tensor products with respect to congruences will be espe-
cially important to us. The following is a consequence of Lemma 5.3 and Theorem 2
in Grätzer and Wehrung [17].

Proposition 8.5. Let A and B be lattices with zero and let C be a capped sub-

tensor product of A and B. Then there exists a unique lattice isomorphism ε from

(ConcA)⊗ (ConcB) onto Conc C such that

ε
(

conA(a, a′)⊗ conB(b, b′)
)

= conC

(

(a⊗ b′) ∪ (a′ ⊗ b), a′ ⊗ b′
)

whenever a ≤ a′ in A and b ≤ b′ in B . (8.4)

From now on we shall abuse notation and write α⊗β instead of ε(α⊗β), when-
ever (α,β) ∈ (ConcA)× (ConcB). With this abuse of notation, the formula (8.4)
becomes

conA(a, a′)⊗ conB(b, b′) = conC

(

(a⊗ b′) ∪ (a′ ⊗ b), a′ ⊗ b′
)

whenever a ≤ a′ in A and b ≤ b′ in B . (8.5)

Lemma 8.6. The following statements hold, for any sub-tensor product C of finite

lattices A and B:

(i) The join-irreducible elements of C are exactly the p ⊗ q, where p ∈ JiA and

q ∈ JiB. Furthermore, (p⊗ q)∗ = (p∗ ⊗ q) ∪ (p⊗ q∗).

3The box product A � B is a precursor of the further “lattice tensor product” construction
A⊠B, that may be defined even in some unbounded cases. This will be here of no concern to us.



EQUATIONAL THEORY 21

(ii) The join-prime elements of C are exactly the p ⊗ q, where p and q are join-

prime in A and B, respectively.

Proof. (i) is contained in Wehrung [57, Lemma 7.2].
(ii). It is an easy exercise to verify that if p⊗q is join-prime, then so are p and q.

Conversely, suppose that p and q are both join-prime. The box H = κA(p)�κB(q)
belongs to C, and p⊗q 6⊆ H. Let I ∈ C such that p⊗q 6⊆ I, and suppose that I 6⊆ H.
There exists (x, y) ∈ I \H. By the definition of H, x � κA(p) and y � κB(q), that
is, p ≤ x and q ≤ y, so (p, q) ∈ x ⊗ y ⊆ I, a contradiction. Therefore, H is the
largest element of C not containing p⊗ q. �

A simple application of Proposition 8.5 and Lemma 8.6 yields, with the nota-
tional convention introduced in (8.5), the formula

conC(p⊗ q) = conA(p)⊗ conB(q) , for all p ∈ JiA and all q ∈ JiB , (8.6)

whenever C is a sub-tensor product of finite lattices A and B.

Lemma 8.7. The following statements hold, for any capped sub-tensor product C
of lattices A and B with zero:

(i) If A and B are both subdirectly irreducible, then so is C.

(ii) If A and B both belong to LBfin, then so does C.

(iii) If A and B both belong to Bfin, then so does A�B.

(iv) If A and B are both splitting, then so is A�B.

Proof. (i) (see also Wille [58, Corollary 15]). It follows from Proposition 8.5 that
if α is the monolith of A and β is the monolith of B, then α ⊗ β is the monolith
of C.

(ii). Since the relations EA and EB are both antisymmetric, it follows from (8.6)
and (2.2) that EC is also antisymmetric.

(iii). Since A and B are both bounded lattices, it follows from the definition
of the lattice tensor product ⊠ in Grätzer and Wehrung [15, Definition 3.1] that
A⊠ B = A� B. By [15, Proposition 4.1], it follows that (A� B)op ∼= Aop � Bop.
Since Aop and Bop both belong to LBfin, so does Aop � Bop by (ii) above. Since
(by (ii) above) A�B also belongs to LBfin, it thus belongs to Bfin.

(iv) follows trivially from (i) and (iii) above. �

Denote by λ(L) (resp., µ(L)) the cardinality of JiL (resp., MiL), for any finite
lattice L. It follows from Freese, Ježek, and Nation [11, Theorem 2.40] that L
belongs to LBfin iff λ(L) = λ(ConL), and it follows from [11, Theorem 2.67]
that L belongs to Bfin iff λ(L) = µ(L) = λ(ConL). While Lemma 8.7(ii) trivially
implies that (A ∈ LBfin and B ∈ LBfin) implies that A⊗B ∈ LBfin, the analogue
result for Bfin does not hold in general. For example, N5⊗N5 has 9 join-irreducible
elements and 10 meet-irreducible elements (for the union (p⊗p∗)∪(p∗⊗p)∪(c⊗c) is
meet-irreducible, but it is not a pure box), thus it does not belong to Bfin. Hence,
neither (iii) nor (iv) in Lemma 8.7, stated for the box product A � B, can be
extended to arbitrary capped sub-tensor products, even in the finite case.

9. Tight EA-duets of maps

In the present section we shall introduce an “equation-free” view of lattice va-
rieties, in a great extent inspired by McKenzie [38]. This will enable us to prove
Theorem B without needing to write huge equations.
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Following Keimel and Lawson [30], a Galois adjunction between posets K and L
is a pair (f, h) of maps, where f : K → L and h : L→ K, such that

f(x) ≤ y ⇐⇒ x ≤ h(y) , for all (x, y) ∈ K × L .

In such a case, each of the maps f and h is uniquely determined by the other. We
say that f is the lower adjoint of h and h is the upper adjoint of f .

Definition 9.1. Let K and L be lattices. A pair (f, g) of maps from K to L is an
EA-duet 4 if there are a sublattice H of L and a surjective lattice homomorphism
h : H ։ K such that f is the lower adjoint of h and g is the upper adjoint of h.

Lemma 9.2. Let K and L be lattices and let f, g : K → L. Then (f, g) is an

EA-duet iff f is a join-homomorphism, g is a meet-homomorphism, and

f(x) ≤ g(y) ⇔ x ≤ y , for all x, y ∈ K . (9.1)

Proof. If (f, g) is an EA-duet with respect to h : H ։ K, then it is straightforward
to verify that f is a join-homomorphism and g is a meet-homomorphism. Fur-
thermore, f ≤ g, so x ≤ y implies f(x) ≤ g(y) and, conversely, for all x, y ∈ K,
f(x) ≤ g(y) implies that x = hf(x) ≤ hg(y) = y.

Conversely, suppose that f is a join-homomorphism, g is a meet-homomorphism,
and (9.1) holds. We set

H =
⋃

x∈K

[f(x), g(x)] . (9.2)

For y ∈ H, let x0, x1 ∈ K such that y ∈ [f(x0), g(x0)] ∩ [f(x1), g(x1)]. From
f(x0) ≤ y ≤ g(x1) and our assumptions it follows that x0 ≤ x1. Likewise, x1 ≤ x0,
whence x0 = x1. This entitles us to define a map h : H → K by the rule

h(y) = unique x ∈ K such that f(x) ≤ y ≤ g(x) , for each y ∈ H . (9.3)

Observe, in particular, that h ◦ f = h ◦ g = idK (so h is surjective). Furthermore,
f ◦ h ≤ idH ≤ g ◦ h. It is also easily seen that h is isotone. Therefore the previous
relations determine h as the upper adjoint of f and as the lower adjoint of g; it
follows that h preserves all the meets and joins that exist in H. We are therefore
left to argue that H is a sublattice of L. If xi ∈ H and xi = h(yi), for i ∈ {0, 1},
then

f(x0 ∧ x1) ≤ f(x0) ∧ f(x1) ≤ y0 ∧ y1 ≤ g(x0) ∧ g(x1)

= g(x0 ∧ x1) (because g is a meet-homomorphism),

whence y0 ∧ y1 ∈ H. The proof that y0 ∨ y1 ∈ H is similar. �

Remark 9.3. It is an easy exercise to verify that in the context of Lemma 9.2 above,
the sublattice H of L and the homomorphism h : H ։ K are uniquely determined,
by the formulas (9.2) and (9.3), respectively.

From now on until the end of this section we fix lattices K and L of finite length.

Lemma 9.4. The following are equivalent:

(i) K is a homomorphic image of a sublattice of L.

4After the Soprano singer Aloysia Weber (1760–1839) and the Bass singer Édouard de Reske
(1853–1917), moreover following the categorical logic notation ∃h and ∀h for the left and right
adjoint of h, respectively. Following musical terminology, some of our main objets will be called
scores, see Section 6 and Appendix A.
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(ii) There exists an EA-duet (f, g) of maps from K to L.

Proof. (i)⇒(ii). By assumption, there are a sublattice H of L and a surjective
homomorphism h : H ։ K. Since L has finite length, the lower adjoint (resp.,
upper adjoint) f (resp., g) of h are both well-defined. By definition, they form an
EA-duet.

(ii)⇒(i) follows trivially from Lemma 9.2. �

For every map f : K → L, the pointwise supremum f∨ of all join-homomor-
phisms below f (for the componentwise ordering) is itself a join-homomorphism, and
thus it is the largest join-homomorphism below f . We denote it by f∨. Likewise,
we denote by f∧ the least meet-homomorphism above f for the componentwise
ordering. In particular, f∨ ≤ f ≤ f∧.

Definition 9.5. A pair (f, g) of maps from K to L is tight if f = g∨ and g = f∧.

In particular, if (f, g) is tight, then f is a join-homomorphism, g is a meet-ho-
momorphism, and f ≤ g.

Lemma 9.6. For every pair (f, g) of maps from K to L such that f is a join-ho-

momorphism, g is a meet-homomorphism, and f ≤ g, there exists a tight pair (f, g)
such that f ≤ f ≤ g ≤ g. If (f, g) is an EA-duet, then so is (f, g).

Proof. Since f ≤ g and g is a meet-homomorphism, we get f ≤ f∧ ≤ g. Now,
since f is a join-homomorphism, we get f = f∨ ≤ f∧∨ ≤ f∧ ≤ g, so it suffices to
prove that the pair (f∧∨, f∧) is tight, for which we shall argue that f∧ = f∧∨∧.
Here it goes:

f∧∨∧ ≤ f∧∧ = f∧ ,

f∧∨∧ ≥ f∨∧ = f∧ ,

the last equation following from the assumption that f∨ = f .
Finally, if (f, g) satisfies (9.1), then, since f ≤ f ≤ g ≤ g, (f, g) also satis-

fies (9.1). �

By applying Lemma 9.2 and Lemma 9.6, we obtain immediately the following
corollary.

Corollary 9.7. The following are equivalent:

(i) L is a homomorphic image of a sublattice of K.

(ii) There is an EA-duet of maps from K to L.

(iii) There exists a tight EA-duet of maps from K to L.

Although the two components of a tight pair may not be identical, we shall see
that they agree on join-prime or meet-prime elements (cf. Corollary 9.9). In order
to see this, the key lemma is the following.

Lemma 9.8. Let g : K → L be an isotone map. Then g(0) = g∨(0). Furthermore,

g(p) = g∨(p), for any join-prime element p of K.

Proof. Whenever p is join-prime, the map f : K → L defined by

f(x) =

{

g(p) , if p ≤ x

g(0K) , otherwise
, for all x ∈ K ,
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is a join-homomorphism. (If there is no join-prime, define f(x) = g(0K) every-
where.) From the assumption that g is isotone it follows that f ≤ g, thus f ≤ g∨.
Hence, g(0K) = f(0K) ≤ g∨(0K) ≤ g(0K) and g(p) = f(p) ≤ g∨(p) ≤ g(p). �

Corollary 9.9. Let (f, g) be a tight EA-duet of maps from K to L. Then f and g
agree on all elements of K that are either 0K , 1K , join-prime, or meet-prime.

Proof. Apply Lemma 9.8 to g : K → L and f : Kop → Lop. �

10. An identity for all permutohedra: proving Theorem B

Throughout this section we shall set B = B(3, 2) and L = N5 � B. Since N5

and B(3, 2) are both splitting lattices, it follows from Lemma 8.7 that L is also
splitting. This section will be devoted to a proof of the following more precise form
of Theorem B.

Theorem 10.1. Every permutohedron P(n) satisfies the splitting identity θL of L.

Brute force calculation, based on the Mace4 component of McCune’s wonderful
Prover9-Mace4 software [36], shows that L has 3,338 elements, so θL, although
failing in L, holds in all lattices with at most 3,337 elements (cf. Section 2.4).

We argue by contradiction, assuming that not every permutohedron satisfies the
splitting identity of L. By Lemma 3.1, it follows that there are a finite chain E
and a subset U of E such that AU (E) does not satisfy the splitting identity of L,
that is, L belongs to the lattice variety generated by AU (E). Since L is subdirectly
irreducible and AU (E) is finite, it follows from Jónsson’s Lemma (cf. Jónsson [27],
Jipsen and Rose [24, Chapter 1, Corollary 1.7]) that L is a homomorphic image of
a sublattice of AU (E). By Corollary 9.7, it follows that there is a tight EA-duet
(f, g) of maps from L to AU (E). Since p⊗ q � p∗ � q∗ and (f, g) is an EA-duet, we
get f(p⊗ q) 6⊆ g(p∗ � q∗). Take E of least possible cardinality and pick a pair

(u, v) ∈ f(p⊗ q) \ g(p∗ � q∗) .

It is easy to verify that the canonical projection π : AU (E) → AU∩[u,v]([u, v]),
a 7→ a ∩ δ[u,v] is a lattice homomorphism. Furthermore, the maps f ′ = π ◦ f
and g′ = π ◦ g are, respectively, a join-homomorphism and a meet-homomorphism
from L to AU∩[u,v]([u, v]) with (u, v) ∈ f ′(p ⊗ q) \ g′(p∗ � q∗). By the minimality
assumption on E, it follows that u and v are the least and the largest element of E,
respectively. Hence, we may assume that E = [N ], for some positive integer N
with (1, N) ∈ f(p⊗ q) \ g(p∗ � q∗), and that N is least possible.

Lemma 10.2. Let (x, y) ∈ 〈1, N〉U . If (x, y) ∈ f(c⊗ q), then (x, y) ∈ g(0).

Proof. From (x, y) ∈ 〈1, N〉U and 〈1, N〉U ⊆ f(p⊗q) it follows that (x, y) ∈ f(p⊗q),
thus, since f ≤ g, also (x, y) ∈ g(p⊗q). From (x, y) ∈ f(c⊗q) it follows that (x, y) ∈
g(c⊗q). Since g is a meet-homomorphism and (p⊗q)∧(c⊗q) = (p∧c)⊗q = 0⊗q = 0,
(x, y) belongs to g(p⊗ q) ∧ g(c⊗ q) = g

(

(p⊗ q) ∧ (c⊗ q)
)

= g(0). �

Let (x, y) ∈ f(c ⊗ q). Whenever j ∈ {1, 2}, the inequality q ≤ a1 ∨ a2 ∨ a3 ∨ bj
(within B) entails c⊗ q ≤ (c⊗ a1) ∨ (c⊗ a2) ∨ (c⊗ a3) ∨ (c⊗ bj) (within L), thus

there exists a subdivision x = zj
0 < zj

1 < · · · < zj
nj

= y such that

whenever 0 ≤ i < nj , there exists d ∈ a ∪ {bj} such that (zj
i , z

j
i+1) ∈ f(c⊗ d) .

(10.1)
Denote by νj(x, y) the least possible value of nj . Our main lemma is the following.
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Lemma 10.3. f(c⊗ q) is contained in g(c⊗ q∗).

Proof. Let (x, y) ∈ f(c⊗ q), we argue by induction on y− x that (x, y) ∈ g(c⊗ q∗).

Consider subdivisions (zj
i | 0 ≤ i ≤ nj) of [x, y] satisfying (10.1), with nj = νj(x, y).

Set Sj = {(zj
i , z

j
i+1) | 0 ≤ i < nj} and Zj = {zj

i | 0 ≤ i ≤ nj}, for each j ∈ {1, 2}.
Suppose first that nj = 1 for some j ∈ {1, 2}, say n1 = 1. It follows from (10.1)

that (x, y) ∈ f(c ⊗ d) for some d ∈ a ∪ {b1}. Hence (x, y) ∈ g(c ⊗ d). Since
(x, y) ∈ f(c⊗ q) ⊆ g(c⊗ q), g is a meet-homomorphism, and d ∧ q ≤ q∗, it follows
that (x, y) belongs to g

(

(c⊗ d) ∧ (c⊗ q)
)

= g
(

c⊗ (d ∧ q)
)

⊆ g(c⊗ q∗), and we are
done. Therefore we can suppose that nj > 1 for every j ∈ {1, 2}.

Claim 1. There is no i such that 0 ≤ i < nj, z
j
i /∈ U , and zj

i+1 ∈ U .

Proof of Claim. Suppose that 0 ≤ i < nj with zj
i /∈ U and zj

i+1 ∈ U . It follows that

(zj
i , z

j
i+1) ∈ 〈1, N〉U . Without loss of generality, we can suppose that i > 0; let then

d ∈ a ∪ {bj} be such that (zj
i−1, z

j
i ) ∈ f(c ⊗ d). Recall that (x, y) ∈ f(c ⊗ q), thus

(zj
i , z

j
i+1) ∈ f(c ⊗ q) as well; by using Lemma 10.2, we get (zj

i , z
j
i+1) ∈ g(0), thus,

a fortiori, (zj
i , z

j
i+1) ∈ g(c ⊗ d). Since (f, g) is a tight pair and c ⊗ d is join-prime

in L (cf. Lemma 9.8), we get f(c ⊗ d) = g(c ⊗ d), thus (zj
i , z

j
i+1) ∈ f(c ⊗ d), and

thus (zj
i−1, z

j
i+1) ∈ f(c⊗ d), and the subdivision

x = zj
0 < · · · < zj

i−1 < zj
i+1 < · · · < zj

nj
= y

fills the same purpose as Zj while it has length nj − 1, in contradiction with the
minimality assumption on nj . � Claim 1.

It follows from Claim 1 that, for each j ∈ {1, 2}, there exists a unique integer
mj ∈ [0, nj − 1] such that

zj
i ∈ U whenever 0 < i ≤ mj and zj

i /∈ U whenever mj + 1 ≤ i < nj .

To ease the notation, we shall from now on set xj = zj
mj

and yj = zj
mj+1 whenever

j ∈ {1, 2}. We shall also set

∆ = {(t, t) | t ∈ [N ]} .

Claim 2. Suppose that (xj , yj) belongs to f(c⊗ ak) for some j ∈ {1, 2} and some

k ∈ {1, 2, 3}. Then (x, y) ∈ g(c⊗ q∗).

Proof of Claim. From (x, y) ∈ f(c ⊗ q), x ≤ xj ≤ y, and xj ∈ {x} ∪ U it follows
that (x, xj) ∈ f(c ⊗ q) ∪ ∆. Likewise, (yj , y) ∈ f(c ⊗ q) ∪ ∆. By our induction
hypothesis (on y−x), it follows that (x, xj) and (yj , y) both belong to g(c⊗q∗)∪∆.
Furthermore, from ak ≤ q∗ it follows that c⊗ ak ≤ c⊗ q∗, thus

(xj , yj) ∈ f(c⊗ ak) ⊆ f(c⊗ q∗) ⊆ g(c⊗ q∗) .

Since (x, y) is contained in 〈x, xj〉U ∨〈xj , yj〉U ∨〈yj , y〉U , we are done. � Claim 2.

From now on, until the end of the proof of Lemma 10.3, we shall thus assume
that (xj , yj) /∈ f(c⊗ ak) whenever j ∈ {1, 2} and k ∈ {1, 2, 3}. By (10.1), the only
remaining possibility is that (xj , yj) ∈ f(c⊗ bj) for each j ∈ {1, 2}.

If {i, j} = {1, 2} and xi ≤ xj , define the left fin of Sj as (xj , xj), if xi = xj , and
the unique (u, v) ∈ Sj such that u ≤ xi < v, if xi < xj . Necessarily, {u, v} ⊆ U .
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Symmetrically, the right fin of Sj , defined in case yj ≤ yi, is (yj , yj), if yi = yj ,
and the unique (u, v) ∈ Sj such that u < yi ≤ v, if yj < yi. Necessarily, {u, v} ⊆ U c.

Observe that any (left or right) fin of Sj belongs to Sj ∪∆.

Claim 3. The following statements hold whenever {i, j} = {1, 2}.

(i) If xi ≤ xj, then the left fin (u, v) of Sj belongs to f(c ⊗ ak) ∪ ∆ for some

k ∈ {1, 2, 3}; furthermore, v = xj.

(ii) If yj ≤ yi, then the right fin (u, v) of Sj belongs to f(c ⊗ ak) ∪ ∆ for some

k ∈ {1, 2, 3}; furthermore, u = yj.

Proof of Claim. We prove (i); the proof of (ii) is symmetric. The case where xi = xj

is trivial, so we shall suppose that xi < xj ; hence u ≤ xi < v ≤ xj .
Suppose first that (u, v) /∈ f(c⊗ ak) for any k ∈ {1, 2, 3}. It follows from (10.1)

that (u, v) ∈ f(c⊗ bj). Since u ≤ xi < v and xi ∈ U , it follows that

(u, xi) ∈ f(c⊗ bj) ∪∆ . (10.2)

Moreover, from {u, xj , yj} ⊆ Zj and u < xj < yj it follows that

(u, xj) ∈ f
(

c⊗ (q∗ ∨ bj)
)

and (u, yj) ∈ f
(

c⊗ (q∗ ∨ bj)
)

. (10.3)

Now we argue by separating cases. In all cases, the key point is here to prove that
(u, yj) ∈ f(c⊗ (b1 ∨ b2)).

Case 1. yi ≤ yj . This case is illustrated on the two top diagrams in Figure 10.1.
In this figure and all the following ones, the notation −→z reminds us that
z ∈ {x} ∪ U c, while the notation ←−z reminds us that z ∈ {y} ∪ U .
(a) If xj ≤ yi, then, since yi ≤ yj ≤ y, yi ∈ {y} ∪ U

c, and (xj , yj) ∈
f(c⊗ bj), we get

(yi, yj) ∈ f(c⊗ bj) ∪∆ . (10.4)

(b) If yi < xj , then, since yi /∈ U and xj ∈ U , we get (yi, xj) ∈ 〈1, N〉U ,
thus, since (yi, xj) ∈ 〈x, y〉U ⊆ f(c⊗q) and by Lemma 10.2, (yi, xj) ∈
g(0), and thus, a fortiori, (yi, xj) ∈ g(c ⊗ bj). Since c ⊗ bj is join-
prime, it follows from Lemma 9.8 that (yi, xj) ∈ f(c ⊗ bj). Since
(xj , yj) ∈ f(c⊗ bj), (10.4) follows again.

Hence, (10.4) is valid in any case. Now it follows from (xi, yi) ∈ f(c⊗bi),
together with (10.2) and (10.4), that (u, yj) ∈ f(c⊗(b1∨b2)), thus (u, yj) ∈
g(c ⊗ (b1 ∨ b2)). By applying the meet-homomorphism g to (8.1) and by
using (10.3), we obtain that (u, yj) belongs to

g
(

c⊗ (q∗ ∨ bj)
)

∧ g
(

c⊗ (b1 ∨ b2)
)

= g
(

(

c⊗ (q∗ ∨ bj)
)

∧
(

c⊗ (b1 ∨ b2)
)

)

= g(c⊗ bj)

= f(c⊗ bj) (use again Lemma 9.8) .

It follows that the subdivision, obtained from Zj by removing all the el-
ements of Zj ∩ ]u, yj [ (in particular, xj), fills the same purpose as Zj ; a
contradiction by the minimality assumption on nj .

Case 2. yj < yi. From xi < xj < yi, xj ∈ U , and (xi, yi) ∈ f(c ⊗ bi) it follows
that (xi, xj) ∈ f(c ⊗ bi). By (10.2) together with (xj , yj) ∈ f(c ⊗ bj), it
follows that (u, yj) ∈ f(c ⊗ (b1 ∨ b2)), thus (u, yj) ∈ g(c ⊗ (b1 ∨ b2)). By
applying the meet-homomorphism g to (8.1) and by using (10.3), it follows
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u ←−
xi

c⊗bj −→
yi

c⊗bi yj
c⊗bj

u v
c⊗bj

yjxj
c⊗bj

u ←−
xi

c⊗bj −→
yi

c⊗bi ←−−
xj0

yj
c⊗bj

u v
c⊗bj

u ←−
xi

c⊗bj ←−
xj

c⊗bi yj
c⊗bj

u v
c⊗bj

xi yi
c⊗bi

Figure 10.1. Cases 1.a (up-left), 1.b (up-right), and 2 (down) in
the proof of (u, v) ∈ f(c⊗ ak) ∪∆ in Claim 3

u ←−
xi

c⊗ak ←−
xj

c⊗bi

xi yi
c⊗bi

u v
c⊗ak

u ←−
xi

c⊗ak −→
yi

c⊗bi ←−
xj0

u v
c⊗ak

Figure 10.2. Cases 1 (left) and 2 (right) in the proof of v = xj in Claim 3

again, as in Case 1 above, that (u, yj) ∈ f(c⊗ bj), which leads to the same
contradiction as at the end of the proof of Case 1.

This completes the proof that (u, v) ∈ f(c ⊗ ak) for some k ∈ {1, 2, 3}. Since
x ≤ u ≤ xi < v and xi ∈ {x} ∪ U , it follows that

(u, xi) ∈ f(c⊗ ak) ∪∆ . (10.5)

Now we must prove that v = xj . We argue by separating cases. In all cases, the
key point is to show that (u, xj) ∈ f(c⊗ (ak ∨ bi)); see Figure 10.2.

Case 1. xj ≤ yi. From (xi, yi) ∈ f(c ⊗ bi), xi < xj ≤ yi, and xj ∈ U it fol-
lows that (xi, xj) ∈ f(c ⊗ bi). Hence, by (10.5), it follows that (u, xj) ∈
f
(

c⊗ (ak ∨ bi)
)

, thus (u, xj) ∈ g
(

c⊗ (ak ∨ bi)
)

. By using (10.3) and by
applying the meet-homomorphism g to (8.2), it follows that (u, xj) ∈
g(c ⊗ ak), thus, by Lemma 9.8, (u, xj) ∈ f(c ⊗ ak). It follows that the
subdivision, obtained by removing from Zj all the elements of Zj ∩ ]u, xj [,
fills the same purpose as Zj ; whence, by the minimality assumption on Zj ,
we get v = xj .
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u ←−
x2

c⊗ai −→
y2

c⊗b2
v

c⊗aj

u x1
c⊗ai y1 v

c⊗aj

u ←−
x1

c⊗ai y1
c⊗b1

v
c⊗aj

u x2
c⊗ai −→

y2
c⊗b2

v
c⊗aj

Figure 10.3. Final cases in the proof of Lemma 10.3: Case 1
(left) and Case 2 (right)

Case 2. yi < xj . Then (yi, xj) ∈ 〈1, N〉U , thus, since (yi, xj) ∈ 〈x, y〉U ⊆ f(c ⊗ q)
and by Lemma 10.2, (yi, xj) ∈ g(0), and thus, a fortiori, (yi, xj) ∈ g(c⊗bi),
and hence, by Lemma 9.8, (yi, xj) ∈ f(c ⊗ bi). Since (xi, yi) ∈ f(c ⊗ bi)
and by (10.5), it follows that (u, xj) ∈ f(c ⊗ (ak ∨ bi)). The conclusion
v = xj is then obtained in the same way as in Case 1 above.

This completes the proof of Claim 3. � Claim 3.

In order to finish the proof of Lemma 10.3, we argue by separating cases, ac-
cording to the relative positions of the intervals [x1, y1] and [x2, y2]. By symmetry,
there are two cases to consider (see Figure 10.3).

Case 1. [x1, y1] ⊆ [x2, y2]. Denote by (u, x1) and (y1, v) the left fin and the right fin
of S1, respectively (cf. Claim 3). In particular, u ≤ x2 ≤ x1 < y1 ≤ y2 ≤ v.
Furthermore, by Claim 3, there are i, j ∈ {1, 2, 3} such that (u, x1) ∈
f(c⊗ai)∪∆ and (y1, v) ∈ f(c⊗aj)∪∆. From x ≤ u ≤ x2 ≤ x1, (u, x1) ∈
f(c ⊗ ai) ∪ ∆, and x2 ∈ {x} ∪ U it follows that (u, x2) ∈ f(c ⊗ ai) ∪ ∆.
Symmetrically, (y2, v) ∈ f(c ⊗ aj) ∪ ∆. Since (x2, y2) ∈ f(c ⊗ b2) ∪ ∆,
it follows that (u, v) ∈ f

(

c⊗ (ai ∨ aj ∨ b2)
)

. On the other hand, from

{u, v} ⊆ Z1 and u < v it follows that (u, v) ∈ f
(

c⊗ (q∗ ∨ b1)
)

. Since
f ≤ g and by applying the meet-homomorphism g to (8.3), it follows
that (u, v) ∈ g

(

c⊗ (ai ∨ aj)
)

; whence (u, v) ∈ g(c ⊗ q∗). Now, from the
induction hypothesis it follows that (x, u) and (v, y) both belong to the set
g(c⊗ q∗) ∪∆; whence (x, y) ∈ g(c⊗ q∗).

Case 2. x1 < x2 and y1 < y2. Denote by (u, x2) the left fin of S2 and by (y1, v)
the right fin of S1 (cf. Claim 3). It follows from Claim 3 that there are
i, j ∈ {1, 2, 3} such that (u, x2) ∈ f(c⊗ai)∪∆ and (y1, v) ∈ f(c⊗aj)∪∆.
From u ≤ x1 < x2, (u, x2) ∈ f(c ⊗ ai) ∪ ∆, and x1 ∈ U it follows that
(u, x1) ∈ f(c ⊗ ai) ∪∆. Since (x1, y1) ∈ f(c ⊗ b1) and (y1, v) ∈ f(c ⊗ aj)
it thus follows that (u, v) ∈ f

(

c⊗ (ai ∨ aj ∨ b1)
)

. A similar proof, using
this time the subdivision u < x2 < y2 ≤ v, yields the relation (u, v) ∈
f
(

c⊗ (ai ∨ aj ∨ b2)
)

. Since f ≤ g and by applying the meet-homomor-

phism g to (8.3), it follows that (u, v) ∈ g
(

c⊗ (ai ∨ aj)
)

. We conclude
that (x, y) ∈ g(c⊗ q∗) as in the last part of the proof of Case 1 above.

This concludes the proof of Lemma 10.3. �

End of the proof of Theorem 10.1. From p ≤ p∗ ∨ c (within N5) it follows that
p⊗ q ≤ (p∗ ⊗ q)∨ (c⊗ q) (within L), thus f(p⊗ q) ⊆ f(p∗ ⊗ q)∨ f(c⊗ q), and thus
there exists a subdivision 1 = z0 < z1 < · · · < zn = N such that each (zi, zi+1)
belongs to f(p∗ ⊗ q) ∪ f(c⊗ q). By Lemma 10.3, (zi, zi+1) ∈ f(c⊗ q) implies that
(zi, zi+1) ∈ g(c ⊗ q∗), thus, a fortiori, (zi, zi+1) ∈ g(p∗ � q∗). The latter relation
also holds in case (zi, zi+1) ∈ f(p∗ ⊗ q) (because f ≤ g and p∗ ⊗ q ≤ p∗ � q∗).
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Therefore, each (zi, zi+1) belongs to g(p∗ � q∗), and therefore so does (1, N); a
contradiction. �

11. Permutohedra on locally dismantlable lattices: proving

Theorem C

The present section will deal with the extended permutohedron R(E) on a poset E,
as introduced in Santocanale and Wehrung [48] (cf. Section 3), and prove that
those R(E) satisfy no nontrivial lattice identity. The posets in question will actu-
ally be lattices of a very special kind.

Definition 11.1. A lattice L is

— dismantlable (cf. Rival [45], Kelly and Rival [32]) if it is finite and every
sublattice of L with at least three elements has an element which is doubly

irreducible, that is, both meet- and join-irreducible;
— locally dismantlable if every finite subset of L is contained in a dismantlable

sublattice of L.

A poset S is a sub-poset of a poset T if S is contained in T and the inclusion
mapping of S into T is an order-embedding.

Definition 11.2. A poset T is a segment extension of a sub-poset S if there is a
nonempty finite chain C of T , with extremities x = minC and y = maxC, such
that

(i) C ∩ S = {x, y} and C ∪ S = T ;
(ii) (s ≤ z ⇔ s ≤ x) and (s ≥ z ⇔ s ≥ y), whenever s ∈ S and z ∈ C.

The proof of the following lemma is straightforward.

Lemma 11.3. The following statements hold, for any segment extension T of a

poset S.

(i) If S is a lattice, then so is T . Furthermore, S is a sublattice of T .

(ii) If S is a dismantlable lattice, then so is T .

The following definition is mainly taken from Santocanale and Wehrung [47,
§ 10].

Definition 11.4. Let S be a poset and let L be a lattice.

• A map µ : δS → L is an L-valued polarized measure on S if µ(x, y) ≤
µ(x, z) ≤ µ(x, y) ∨ µ(y, z) whenever x < y < z in S.

• A refinement problem for a polarized measure µ is a quadruple (x, y, a0, a1),
where (x, y) ∈ δS and a0, a1 ∈ L, such that µ(x, y) ≤ a0 ∨ a1.

• A solution of the refinement problem above is a subdivision x = z0 < z1 <
· · · < zn = y in S such that each µ(zi, zi+1) is contained in some aj .

The main lemma of this section is the following.

Lemma 11.5. Let S be a finite poset, let u < v in S, let L be a finite meet-sem-

idistributive lattice, let µ : δS → L be a polarized measure, and let a0, a1 ∈ L such

that µ(u, v) ≤ a0 ∨ a1. Then there are a finite segment extension T of S and a

polarized measure ν : δT → L extending µ such that:

(i) The refinement problem ν(u, v) ≤ a0 ∨ a1 can be solved in T .

(ii) If the range of µ does not contain zero, then neither does the range of ν.
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Proof. As the conclusion is trivial in case µ(u, v) ≤ aj for some j < 2 (take T = S
and ν = µ), we shall assume that µ(u, v) � aj for all j < 2. In particular,
both a0 and a1 are nonzero; furthermore, it is ruled out that µ(u, v) ∧ aj = 0
for each j < 2, for then we would infer, by the meet-semidistributivity of L, that
µ(u, v) = µ(u, v) ∧ (a0 ∨ a1) = 0, a contradiction. Hence we may assume that
µ(u, v) ∧ a0 is nonzero.

An intuitive description of what follows is that we first attach an infinite copy
of the chain ω of all nonnegative integers to S between u and v; then we show that
all large enough members of that ω are redundant, so we get rid of them.

We shall also use the convention µ(x, x) = 0 for each x ∈ S. We shall set ε(n) = n
mod 2 for each integer n, and we shall endow the cartesian product (S ↓u)×ω with
the partial ordering ≤∗ defined by

(x, k) ≤∗ (y, l) ⇐⇒ (y ≤ x and k ≤ l) , for all (x, k), (y, l) ∈ (S ↓ u)× ω .

We define, by ≤∗-induction, a map f : (S ↓ u)× ω → L by the rule

f(x, 0) = µ(x, u) , (11.1)

f(x, k + 1) =
∧

(

µ(x, t) ∨ f(t, k + 1) | t ∈ ]x, u]
)

∧
(

f(x, k) ∨ aε(k)

)

∧ µ(x, v) ,

(11.2)

for each (x, k) ∈ (S ↓ u) × ω. As usual, empty meets are identified with the top
element of L.

Claim 1. The inequality f(x, k) ≤ µ(x, y) ∨ f(y, k) holds, for all x < y in S ↓ u
and all k < ω.

Proof of Claim. We argue by induction on k. The conclusion holds for k = 0
because µ is a polarized measure. If the statement holds at k, then, setting t = y
in the meet in the defining equation (11.2), we obtain the inequality f(x, k + 1) ≤
µ(x, y) ∨ f(y, k + 1). � Claim 1.

Claim 2. µ(x, u) ≤ f(x, k) ≤ µ(x, v), for each (x, k) ∈ (S ↓ u)× ω.

Proof of Claim. The inequality f(x, k) ≤ µ(x, v) is trivial. For the inequality
µ(x, u) ≤ f(x, k), we argue by ≤∗-induction on (x, k). The result is trivial for
k = 0. Suppose that it holds at every pair ≤∗-smaller than (x, k + 1). For each
t ∈ ]x, u], it follows from the induction hypothesis that µ(t, u) ≤ f(t, k + 1), thus
µ(x, u) ≤ µ(x, t) ∨ µ(t, u) ≤ µ(x, t) ∨ f(t, k + 1). Furthermore, from the induction
hypothesis it follows that µ(x, u) ≤ f(x, k), whence µ(x, u) ≤ f(x, k)∨aε(k). Recall-
ing also that µ(x, u) ≤ µ(x, v), the result follows immediately from equation (11.2)
defining f(x, k + 1). � Claim 2.

Claim 3. The inequality f(x, k) ≤ f(x, k + 1) holds, for each (x, k) ∈ (S ↓ u)× ω.

Proof of Claim. We argue by downward induction on x. For each t ∈ ]x, u], it
follows from the induction hypothesis that f(t, k) ≤ f(t, k+1), thus, using Claim 1,
f(x, k) ≤ µ(x, t)∨ f(t, k) ≤ µ(x, t)∨ f(t, k+ 1). Since f(x, k) ≤ f(x, k)∨ aε(k), the
result follows immediately from (11.2). � Claim 3.

By Claim 3 and as L and S ↓u are both finite, there exists m ∈ ω \{0} such that

(∀x ∈ S ↓ u)(∀k ≥ m in ω)
(

f(x, k) = f(x,m)
)

.

For the rest of the proof of Lemma 11.5 we shall fix that integer m. Set g(x) =
f(x,m), for each x ∈ S ↓ u.
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Claim 4. The equality g(x) = µ(x, v) holds, for each x ∈ S ↓ u.

Proof of Claim. We argue by (downward) induction on x. For each t ∈ ]x, u], it
follows from the induction hypothesis that g(t) = µ(t, v), thus µ(x, t) ∨ g(t) ≥
µ(x, v). Therefore, by applying (11.2) to k ∈ {m+ 1,m+ 2}, we obtain that

g(x) =
∧

(

µ(x, t) ∨ g(t) | t ∈ ]x, u]
)

∧
(

g(x) ∨ aε(k)

)

∧ µ(x, v)

=
(

g(x) ∨ aε(k)

)

∧ µ(x, v) .

Therefore, by using the meet-semidistributivity of L, we obtain

g(x) = (g(x) ∨ a0 ∨ a1) ∧ µ(x, v) . (11.3)

Now, by using Claim 2, g(x)∨a0∨a1 ≥ µ(x, u)∨µ(u, v) ≥ µ(x, v), thus, using (11.3),
g(x) = µ(x, v). � Claim 4.

Now we fix new symbols t1, . . . , tm−1 and we set T = S ∪ {t1, . . . , tm−1}, with
u < t1 < · · · < tm−1 < v. Furthermore, we extend the ordering of S to T by letting
(s ≤ ti ⇔ s ≤ u) and (ti ≤ s⇔ v ≤ s), whenever s ∈ S.

We extend the map µ to a map ν : δT → L by setting

ν(x, tk) = f(x, k) , for each (x, k) ∈ (S ↓ u)× [1,m[ , (11.4)

ν(tk, tl) =
∨

(aε(i) | k ≤ i < l) , whenever 1 ≤ k < l < m , (11.5)

ν(tk, y) =
∨

(aε(i) | k ≤ i < m) ∨ µ(v, y) , for each (k, y) ∈ [1,m[× (S ↑ v) .

(11.6)

Verifying that ν is a polarized measure amounts to verifying the following state-
ments.

• µ(x, y) ≤ f(x, k) ≤ µ(x, y)∨f(y, k), for all x < y in S↓u and all k ∈ [1,m[.
This follows trivially from Claims 1 and 2.
• f(x, k) ≤ f(x, l) ≤ f(x, k) ∨ ν(tk, tl), for all x ∈ S ↓ u and all k < l in

[1,m[. The first inequality follows from Claim 3. For l = k+1, the second
inequality follows trivially from (11.2) and (11.5), while for l ≥ k + 2, it
follows from (11.5) together with the case where l = k + 1.
• f(x, k) ≤ µ(x, y) ≤ f(x, k) ∨ ν(tk, y), for all (x, y) ∈ (S ↓ u)× (S ↑ v) and

all k ∈ [1,m[. The first inequality follows from Claim 2 together with
µ(x, v) ≤ µ(x, y). In order to prove the second inequality, we separate
cases. If k ≤ m− 2, then, as µ(u, v) ≤ a0 ∨ a1,

f(x, k) ∨ ν(tk, y) = f(x, k) ∨ a0 ∨ a1 ∨ µ(v, y)

≥ µ(x, u) ∨ µ(u, v) ∨ µ(v, y) (by Claim 2)

≥ µ(x, y)

and we are done. If k = m− 1, then

f(x, k) ∨ ν(tk, y) = f(x, k) ∨ aε(k) ∨ µ(v, y)

≥ f(x, k + 1) ∨ µ(v, y) (use (11.2))

= g(x) ∨ µ(v, y)

= µ(x, v) ∨ µ(v, y) (by Claim 4)

≥ µ(x, y)

and we are done again.
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• ν(tk, tl) ≤ ν(tk, y) ≤ ν(tk, tl) ∨ ν(tl, y), for all k < l in [1,m[ and all
y ∈ S ↑ v. This follows immediately from (11.5) and (11.6).

• ν(tk, x) ≤ ν(tk, y) ≤ ν(tk, x) ∨ µ(x, y), for all k ∈ [1,m[ and all x < y
in S ↑ v. This follows immediately from (11.6).

Hence we have proved that ν is a polarized measure. By construction, the
refinement problem ν(u, v) ≤ a0 ∨ a1 can be solved in T .

Now suppose that the range of µ does not contain the zero of L (provided the
latter exists). In order to prove that ν satisfies the same statement and recalling that
ai 6= 0 for i < 2, it will be enough to prove that f(x, k) is nonzero for every x ∈ S↓u
and every positive integer k. By Claim 2, if f(x, k) = 0, then µ(x, u) = 0 (remember
the convention µ(u, u) = 0), thus x = u, and thus, by Claim 3, f(u, 1) = 0, that
is, using 11.2, a0 ∧ µ(u, v) = 0, which we have ruled out from the beginning. This
concludes the proof. �

This brings us to the main result of this section, involving the extended permu-
tohedron R(E) and its meet-subsemilattice A(E) (cf. Section 3). From now on, by
“countable” we will always mean “at most countable”.

Theorem 11.6. Let L be a finite meet-semidistributive lattice. There are a count-

able, locally dismantlable lattice E together with a zero-preserving lattice embedding

ϕ : L →֒ R(E) with range contained into A(E). In particular, ϕ is also a zero-pre-

serving lattice embedding from L into A(E).

Proof. Endowing the finite set E0 = L \ {0} with any strict well-ordering, the map
µ0 : δE0

→ L, (x, y) 7→ x is a polarized measure with nonzero values. Having defined
a polarized measure µn : δEn

→ L with nonzero values, and with En a dismantlable
lattice, a straightforward iteration of Lemma 11.5, invoking Lemma 11.3 for the
preservation of dismantlability, yields a dismantlable extension En+1 of En and a
polarized measure µn+1 : δEn+1

→ L with nonzero values, extending µn, such that
every refinement problem for µn is solved by µn+1.

The union µ of all µn is an L-polarized measure on the countable, locally disman-
tlable lattice E =

⋃

n∈ω En. It has nonzero values, and every refinement problem
for µ has a solution. The map ϕ defined on L by the rule

ϕ(a) = {(x, y) ∈ δE | µ(x, y) ≤ a} , for all a ∈ L ,

takes its values in A(E). As the meet in A(E) is intersection, ϕ is a meet-homomor-
phism to A(E); as A(E) is a meet-subsemilattice of R(E), ϕ is also a meet-homo-
morphism to R(E). Since µ takes nonzero values, ϕ is zero-preserving. Moreover,
since µ solves all its own refinement problems and since the join in R(E) is the
transitive closure of the union, the definition of ϕ yields immediately that ϕ is a
join-homomorphism to R(E). Finally, let us notice that ϕ is also a join-homomor-
phism to A(E); indeed, while the join in A(E) is, in general, not the transitive
closure of the union, the fact that ϕ(a0 ∨ a1) belongs to A(E) forces it to be the
join ϕ(a0) ∨ ϕ(a1) within A(E).

Finally, since µ extends µ0, its range is L \ {0}; whence ϕ is one-to-one. �

Corollary 11.7. Every free lattice embeds, as a sublattice, into R(E) for some

locally dismantlable lattice E, via a map with range contained in A(E).

Proof. A well-known result by Day (cf. Freese, Ježek, and Nation [11, Theo-
rem 2.84]) states that every free lattice embeds into a direct product of members
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of Bfin. Since every member of Bfin is meet-semidistributive, it follows from Theo-
rem 11.6 that every free lattice embeds into a product

∏

i∈I R(Ei), for a collection
(Ei | i ∈ I) of locally dismantlable lattices Ei. Fixing a strict well-ordering ⊳ on I,
the disjoint union E =

⋃

i∈I({i} × Ei), endowed with the lexicographical ordering
(i.e., (i, x) ≤ (j, y) if either i ⊳ j or (i = j and x ≤ y)), is locally dismantlable, and
∏

i∈I R(Ei) embeds into R(E) via (xi | i ∈ I) 7→
⋃

∈I xi. The latter assignment
maps

∏

i∈I A(Ei) into A(E). �

In particular, we get the following more precise form of Theorem C.

Corollary 11.8. There is no nontrivial lattice-theoretical identity satisfied by all R(E)
(resp., A(E)), for E a countable, locally dismantlable lattice.

Remark 11.9. Every sub-poset E of a poset F induces a (∧, 1)-homomorphism
πF

E : A(F ) → A(E), x 7→ x ∩ δE . This map preserves all directed joins. Now let
E =

⋃

n∈ω En be an increasing union of finite dismantlable lattices En. It is obvious

that A(E), together with the maps πE
En

, is the inverse limit, in the category of all
(∧, 1)-semilattices, of the A(En). Now it can be proved that this implies that A(E)
belongs to the lattice variety generated by all A(En). Hence we can strengthen part
of the statement of Corollary 11.8 as follows: The lattices A(E), for E ranging over

all finite dismantlable lattices, do not satisfy any nontrivial lattice identity.
However, for a sub-poset E of a poset F , the assignment x 7→ x ∩ δE does not

necessarily map R(F ) to R(E), so the argument above does not extend to R(E).

Remark 11.10. The locally dismantlable lattice E in Theorem 11.6 has been ob-
tained by means of successive segment extensions. Such extensions usually create
squares. It can therefore be asked whether a better construction would lead to an
embedding of every lattice from Bfin into some P(E), with E square-free. This is
actually not possible, as if E is square-free, then P(E) is a subdirect product of
permutohedra, see Santocanale and Wehrung [50, Exercices 2.4–2.6].

12. Discussion

Our results raise a whole array of new questions.

12.1. How far can we go? It is known since Katrnoška [29] and Mayet [35] that
any complete ortholattice can be obtained as the lattice of all clopen (i.e., closed
and open) subsets in some closure space; hence those satisfy no nontrivial identity.
Nevertheless, adding conditions on the closure space (P,ϕ) brings restrictions to
the corresponding lattice Reg(P,ϕ) of regular closed subsets (i.e., the closures of
open sets). For example, we prove in our paper [49] that if (P,ϕ) is a finite convex

geometry, then Reg(P,ϕ) is pseudocomplemented. We do not know whether there is
a nontrivial lattice identity satisfied by Reg(P,ϕ) for every finite convex geometry
(P,ϕ). In view of Theorem C (cf. Corollary 11.8), this certainly sounds unplausible.
Then the possibility arises that every class of closure spaces (P,ϕ) would yield an
identity for all the corresponding Reg(P,ϕ). Particular instances of that question,
along with natural variants, would be the following:

(1) Is it the case that for every positive integer d there exists a nontrivial lattice
identity satisfied by the extended permutohedron R(E) for every finite poset E
of order-dimension at most d? Note that there are finite dismantlable posets
of arbitrarily large order-dimension, see Kelly [31].
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(2) Can every finite Coxeter lattice be embedded into some P(n)? (We know that
this holds for Coxeter lattices of type B.) Does it at least belong to the variety
generated by all P(n)?

(3) Similar questions can be asked for the various classes of “permutohedra” con-
sidered in our papers [48, 49]: most notably, lattices of regular closed subsets
constructed from semilattices, graphs, hyperplane arrangements.

12.2. Finitely based subvarieties of the variety generated by all permu-

tohedra. Denote by P the variety generated by all permutohedra. Is it decidable
whether the class of all lattices satisfying a given lattice identity is contained in P?
Since the variety generated by a given finite lattice can be defined by a single
identity (McKenzie [37]), this would solve the other question whether a given finite
lattice belongs to P. Those questions arise, for instance, for the lattices B(m,n) (cf.
Section 2.5, also Appendix A where we give a combinatorial equivalent of the corre-
sponding question), or for Nation’s identity β′

1 from [40, page 537] (since N5�B(3, 2)
satisfies β′

2 we do not need to try other β′
n). In particular, we know since [47]

that B(3, 3) and all B(n, 2) belong to P, but we do not know whether B(4, 3) be-
longs to P (cf. Appendix A). A related question is the one whether the variety P

can be defined by finitely many lattice identities (equivalently, by a single lattice
identity).

12.3. Varieties and quasivarieties of ortholattices. Recall that a quasi-identity

is a formula of the form

(∀~x)
(

(

p1(~x) = q1(~x) and · · · and pn(~x) = qn(~x)
)

⇒ p(~x) = q(~x)
)

,

where all p, q, pi, qi are terms. It is known since Bruns [5, § (4.2)] that the set
of all quasi-identities satisfied by all ortholattices is decidable. Can Theorem A be
extended to permutohedra viewed as ortholattices, that is, lattices with an addi-
tional unary operation symbol for complementation? Can Theorem A be extended
to quasi-identities?

Of course, the questions asked in Subsections 12.2–12.3 can be extended similarly.

12.4. Tractability of the algorithm. While the equational theory of all permu-
tohedra, respectively Tamari lattices, is decidable (cf. Corollaries 7.9 and 7.10),
the implied algorithms are totally intractable, even for very simple identities. We
do not know whether there is any tractable algorithm for those problems. The
algorithms rely on Büchi’s Theorem [6] for S1S; the complexity of deciding MSO

statements is determined by the automata theoretical constructions corresponding
to logical operations, thus by the logical complexity of formulas, see Thomas [56,
Section 3] or Perrin and Pin [41, Chapter 1].
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Appendix A. An example: (m,n)-scores on a finite chain

It is interesting to see what becomes of the decidability results established in
Section 7 for concrete lattice identities. A blunt application of Theorem 7.1 to the
translation obtained in Section 6, via scores, of negated lattice inclusions, looks
quite hopeless from a practical viewpoint.

However, in some cases it is possible to express a negated lattice inclusion in
a way which, if it falls short of yielding any practical implementation, produces
nonetheless a rather transparent combinatorial description. We choose to illustrate
this here for the splitting identity of the lattice B(m,n) described in Section 2.5.

Definition A.1. Let E be a chain and let U ⊆ E. A pair (x, y) ∈ δE is

— a valley of (E,U) if x ∈ {0E} ∪ U
c and y ∈ {1E} ∪ U ;

— a peak of (E,U) if x ∈ {0E} ∪ U and y ∈ {1E} ∪ U
c;

— a slope of (E,U) if it is neither a peak nor a valley.

Definition A.2. Let E be a finite chain, let U ⊆ E, and let m and n be positive

integers. An (m,n)-score on E with respect to U is a triple τ = ( ~B, ~A, τ) such that:

• ~B = (B1, . . . , Bn), where each Bj is a subdivision of E. We call the Bj

the Basso subdivisions of τ and we set cvs( ~B) =
⋃n

j=1 cvs(Bj).

• ~A = (A1, . . . , Am), where each Ai is a subdivision of E. We call the Ai

the Alto subdivisions of τ and we set cvs( ~A) =
⋃m

i=1 cvs(Ai).

• τ : cvs( ~A) ∪ cvs( ~B)→ a ∪ b, and the following conditions hold:
(ScA) Let i ∈ [m] and let (x, y) ∈ cvs(Ai). Then τ(x, y) ∈ {ai} ∪ b; more-

over, if (x, y) is a valley of (E,U), then τ(x, y) = ai;
(ScB) Let j ∈ [n] and let (x, y) ∈ cvs(Bj). Then τ(x, y) ∈ {bj}∪a; moreover,

if (x, y) is a peak of (E,U), then τ(x, y) = bj ;

(Comp) Let (x, y) ∈ cvs( ~B) and let (x′, y′) ∈ cvs( ~A). Then (x, y) ∼U (x′, y′)
(cf. Section 4) implies that τ(x, y) = τ(x′, y′).

The terminology Basso and Alto follows the commonly used notation (β, α) for
the pair consisting of the lower and upper adjoints of a lattice homomorphism (cf.
Freese, Ježek, and Nation [11]). It also follows the notation bj , ai for the atoms
of B(m,n).

The following result translates the membership problem, of the lattice B(m,n)
to the lattice variety generated by AU (E), in terms of certain tiling properties of
the chain E. This result is not too hard to obtain via a combination of the methods
of Sections 6 and 9. We do not include a proof here.

Theorem A.3. The following statements are equivalent, for all positive integers m
and n and every subset U in a finite chain E:

(i) B(m,n) belongs to the lattice variety generated by AU (E).
(ii) AU (E) does not satisfy the splitting identity of B(m,n).
(iii) There exists an EA-duet of maps from B(m,n) to AU (E).
(iv) There exists an (m,n)-score on E with respect to U .

We proved in Santocanale and Wehrung [47, § 12] that B(3, 3) belongs to the
lattice variety generated by AU (12), where U = {5, 6, 9, 10, 11}. The corresponding
score is represented in Figure A.1. The circled vertices correspond to the elements
of the chain [12], while the labels on the edges are the corresponding values of τ .
The notation −→x means that x /∈ U , while ←−x means that x ∈ U .
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(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

Figure A.1. A (3, 3)-score on [12] with respect to U = {5, 6, 9, 10, 11}

We do not know whether all B(m,n) belong to the lattice variety generated by
all permutohedra, even in the particular case where m = 4 and n = 3. (This
question is also related to Section 12.2.) Equivalently, we do not know whether
there are a positive integer N , a subset U of [N ], and a (4, 3)-score on [N ] with
respect to U . Although the algorithm given by Büchi’s Theorem certainly makes it
possible to settle that question in principle (for fixed m and n), the time and space
requirements of that particular assignment (m = 4 and n = 3) are far too large.
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Appendix B. Choir in the cathedral: a portrait view of N5 � B(3, 2)

Figure B.1. The lattice N5 � B(3, 2) (portrait)
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6. J. Richard Büchi, On a decision method in restricted second order arithmetic, Logic, Method-
ology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford Univ. Press, Stanford,
Calif., 1962, pp. 1–11. MR 0183636 (32 #1116)

7. Nathalie Caspard, The lattice of permutations is bounded, Internat. J. Algebra Comput. 10

(2000), no. 4, 481–489. MR 1776052 (2001d:06008)

8. Nathalie Caspard, Claude Le Conte de Poly-Barbut, and Michel Morvan, Cayley lattices of
finite Coxeter groups are bounded, Adv. in Appl. Math. 33 (2004), no. 1, 71–94. MR 2064358
(2005b:06006)

9. Bogdan Chornomaz, A non-capped tensor product of lattices, available online at http://hal.

archives-ouvertes.fr/hal-00909356/PDF/CappedTP2.pdf, Algebra Universalis, to appear,
November 2013.

10. Grant A. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), no. 1, 1–3.
MR 0450145 (56 #8442)
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Sci. Paris 221 (1945), 218–220. MR 0014058 (7,235d)

http://hal.archives-ouvertes.fr/hal-00750265/PDF/ExtPerm.pdf
http://hal.archives-ouvertes.fr/hal-00750265/PDF/ExtPerm.pdf
http://hal.archives-ouvertes.fr/hal-00836420/PDF/RegClos.pdf
http://hal.archives-ouvertes.fr/hal-00836420/PDF/RegClos.pdf


40 L. SANTOCANALE AND F. WEHRUNG

52. Marina V. Semenova and Friedrich Wehrung, Sublattices of lattices of order-convex sets, I.
The main representation theorem, J. Algebra 277 (2004), no. 2, 825–860.

53. Thoralf Skolem, Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit oder Be-
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