The equational theory of the weak order on finite symmetric groups Luigi Santocanale, Friedrich Wehrung #### ▶ To cite this version: Luigi Santocanale, Friedrich Wehrung. The equational theory of the weak order on finite symmetric groups. 2014. hal-00986148v1 ### HAL Id: hal-00986148 https://hal.science/hal-00986148v1 Preprint submitted on 5 May 2014 (v1), last revised 24 Sep 2014 (v2) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # THE EQUATIONAL THEORY OF THE WEAK ORDER ON FINITE SYMMETRIC GROUPS #### LUIGI SANTOCANALE AND FRIEDRICH WEHRUNG ABSTRACT. It is well-known that the weak Bruhat order on the symmetric group on a finite number n of letters is a lattice, denoted by $\mathsf{P}(n)$ and often called the *permutohedron on n letters*, of which the *Tamari lattice* $\mathsf{A}(n)$ is a lattice retract. The *equational theory* of a class of lattices is the set of all lattice identities satisfied by all members of that class. We know from earlier work that the equational theory of all $\mathsf{P}(n)$ is properly contained in the one of all $\mathsf{A}(n)$. We prove the following results. **Theorem A.** The equational theory of all P(n) and the one of all A(n) are both decidable. **Theorem B.** There exists a lattice identity that holds in all P(n), but that fails in a certain 3,338-element lattice. **Theorem C.** The equational theory of all extended permutohedra, on arbitrary (possibly infinite) posets, is trivial. In order to prove Theorems A and B, we reduce the satisfaction of a given lattice identity in a Cambrian lattice of type A to a certain tiling problem on a finite chain. Theorem A then follows from Büchi's decidability theorem for the monadic second-order theory MSO of the successor function on the natural numbers. It can be extended to any class of Cambrian lattices of type A with MSO-definable set of orientations. #### Contents | 1. Introduction | 2 | |--|---| | 1.1. Origin of the problems and statement of the results | 2 | | 1.2. Hidden identities in classes of structures | 3 | | 1.3. Organization of the paper | 4 | | 2. Notation and terminology | 6 | | 2.1. Basic concepts | 6 | | 2.2. Semidistributivity | 6 | | 2.3. Join-dependency and congruences | 7 | | 2.4. Bounded homomorphic images of free lattices | 7 | | 2.5. The lattices $B(m, n)$ | 8 | | 3. Permutohedra and Cambrian lattices of type A | 8 | | 4. Dualities among Cambrian lattices of type A | 9 | Date: May 1, 2014. 2010 Mathematics Subject Classification. 06B20, 06B25, 06A07, 06B10, 06A15, 03C85, 20F55. Key words and phrases. Lattice; identity; weak order; permutohedron; Cambrian lattice; Tamari lattice; monadic second-order logic; decidability; score; bounded homomorphic image; subdirectly irreducible; splitting lattice; splitting identity; polarized measure; sub-tensor product; box product; dismantlable lattice. | 5. | Half-scores and alternating words | 11 | |------|---|----| | 6. | Scores and lattice inclusions | 13 | | 7. | Expressing scores within monadic second-order logic: proving | | | | Theorem A | 15 | | 8. | Tensor products and box products | 19 | | 9. | Tight EA-duets of maps | 21 | | 10. | An identity for all permutohedra: proving Theorem B | 24 | | 11. | Permutohedra on locally dismantlable lattices: proving Theorem C | 29 | | 12. | Discussion | 33 | | 12.1 | 1. How far can we go? | 33 | | 12.2 | 2. Finitely based subvarieties of the variety generated by all | | | | permutohedra | 34 | | 12.3 | 3. Varieties and quasivarieties of ortholattices | 34 | | 12.4 | 4. Tractability of the algorithm | 34 | | App | pendix A. An example: (m, n) -scores on a finite chain | 35 | | App | pendix B. Choir in the cathedral: a portrait view of $N_5 \square B(3,2)$ | 37 | | | erences | 38 | #### 1. Introduction 1.1. Origin of the problems and statement of the results. It was proved in Iwasawa [23], using a result from Magnus [34], that every free group embeds into a product of finite symmetric groups. Consequently, a nontrivial group word cannot vanish identically on all finite symmetric groups. Yet the set \mathfrak{S}_n of all permutations on the finite set $[n] = \{1, 2, \dots, n\}$ carries another fundamental algebraic structure, arising from the well known weak Bruhat ordering on \mathfrak{S}_n (cf. Björner [3]). This ordering turns out to be a lattice (see Section 3 for more detail), meaning that any two permutations $x, y \in \mathfrak{S}_n$ have a least upper bound $x \vee y$ and a greatest lower bound $x \wedge y$. The structure $P(n) = (\mathfrak{S}_n, \vee, \wedge)$, often called the permutohedron on n letters, was first investigated in Guilbaud and Rosenstiehl [19]. Lattice terms are formed like group words, starting with a set of "variables" and closing under the binary operations \vee and \wedge . A lattice identity is a formula of the form p=q, for lattice terms p and q. The equational theory of a class $\mathcal K$ of lattices is the set of all lattice identities that hold in every member of $\mathcal K$. A lattice variety is the class of all lattices satisfying a given set of identities (cf. Grätzer [13], Jipsen and Rose [24]). In our paper [47] (first posted in 2011) we stated the following problem, calling for a lattice-theoretical analogue of the above-cited Magnus-Iwasawa result. **Problem.** Is the equational theory of all permutohedra decidable? Is there a non-trivial lattice identity holding in all permutohedra? By "nontrivial" we mean not satisfied in all lattices (or, equivalently, in all free lattices). It is known since Skolem [53] (reprinted in [54]) that the equational theory of all lattices, equivalently the word problem in free lattices, is decidable (cf. Freese, Ježek, and Nation [11, Chapter I]). In our paper [47] we could settle the analogue, for *Tamari lattices* (known since Björner and Wachs [4] to be *lattice* retracts of permutohedra), of the second part of the problem above, by constructing an infinite sequence of lattice identities, the *Gazpacho identities*, holding in all Tamari lattices. Furthermore, we proved there that the permutohedron P(4) fails at least one Gazpacho identity, thus proving that the equational theory of all Tamari lattices contains *properly* the one of all permutohedra. Nevertheless we could, at that time, neither achieve decidability of the equational theory of all Tamari lattices (or permutohedra), nor find a nontrivial identity holding in all permutohedra (that last part proved the trickiest of all). In this paper we solve the Problem above, thus settling all those questions, by proving Theorems A and B stated in the Abstract. An attempt to generalize those results to "extended permutohedra" on arbitrary posets (i.e., partially ordered sets) led us to Theorem C. 1.2. Hidden identities in classes of structures. Let us present a small sample of situations where a class of algebraic structures satisfies new unexpected identities, leading to important subsequent developments in the study of those structures. Starting with lattice structures, the most well-known example is probably given by the Arquesian identity, originating in Schützenberger [51]. A statement of that identity can be found in any textbook of lattice theory, see for example Grätzer [13, page 368. This identity is stronger than the modular identity, and it is a latticetheoretical form of a statement of classical geometry, namely Desargues' Theorem. It gave rise to huge developments in lattice theory, establishing connections with other topics such as combinatorics, representation theory, logic. In all the situations encountered, the satisfaction of an identity was shown to be equivalent to a combinatorial, or geometrical, statement. Lattices of submodules of modules, or, more generally, lattices of commuting equivalence relations, often called linear lattices, were proved by Jónsson [25] to satisfy the Arguesian identity. Jónsson proved in [26] a partial converse of that result, namely that Every complemented Arguesian lattice is linear. The case of non-complemented lattices got settled with the construction of non-linear Arguesian lattices, see Haiman [21, 22]. Haiman also proved in [20] that The class of all linear lattices is not finitely axiomatizable. For an overview of related results and problems, see Kung and Yan [33]. Moving to a completely different class of lattices, let us denote by Co(P) the lattice of all order-convex subsets of a poset P. The sublattices of all lattices of the form Co(P) are characterized, in Semenova and Wehrung [52], by the satisfaction of three particular identities. Furthermore, it is proved in that paper that the equational theory of all Co(P) is decidable. Adding a unary operation symbol ' for orthocomplementation, it was realized long ago that the lattice Sub H of all closed subspaces of an infinite-dimensional Hilbert space H, although failing modularity, satisfies the orthomodular identity $x\vee y=x\vee ((x\vee y)\wedge x')$ (cf. Kalmbach [28]). The question whether Sub H satisfies any further identity not following from orthomodularity got settled by Alan Day in 1975 with his orthoarguesian identity, see Greechie [18] and Godowski and Greechie [12]. Since then many other identities have been found for Sub H, see, in particular, Megill and Pavičić [39] and their subsequent papers. Changing the language and moving from lattices to
rings, we enter the huge subject of *rings with polynomial identities*, of which a fundamental prototype is the Amitsur-Levitzki Theorem [1], stating an identity holding in all matrix rings of given order over any field. If we decree (somewhat arbitrarily) that properties like modularity stand on the bright side of the moon, then the lattices dealt with in the present paper, mainly permutohedra, would rather fit on the dark side. (A collection of results concerning identities in non-modular varieties appears in Jipsen and Rose [24, Chapter 4].) An important highlight in that direction was Caspard's result [7] that permutohedra are all bounded homomorphic images of free lattices, so they belong to the class \mathbf{B}_{fin} of Section 2.4, whose modular (or orthomodular) members are all distributive. Caspard's result got later extended to all finite Coxeter lattices (i.e., finite Coxeter groups with the weak order) in Caspard, Le Conte de Poly-Barbut, and Morvan [8]; then to further lattices of regions arising from hyperplane arrangements in Reading [43]; and also to "extended permutohedra" arising from posets, graphs, semilattices, and various classes of closure spaces in our works [48, 49, 50]. Caspard's result was later refined in Santocanale [46], making it possible to test on permutohedra Nation's identities β'_n , introduced in [40], measuring the maximal length of sequences for the join-dependency relation. It was also shown in [46], using combinatorial methods, that the identity β'_n and its dual imply together the identity SD_n^{\wedge} for semidistributivity (cf. Jipsen and Rose [24, § 4.2]). To our knowledge, the present paper is the first extensive (and complete) scrutiny of hidden identities in a combinatorially defined class of lattices on the dark side. For a fascinating, though a bit outdated, survey on equational logic, see Taylor [55]. 1.3. **Organization of the paper.** Let us recall one by one the statements of our main theorems. **Theorem A.** The equational theory of all permutohedra P(n) and the one of all Tamari lattices A(n) are both decidable. A far more general version of Theorem A is stated in Theorem 7.8. This statement involves Reading's Cambrian lattices of type A (cf. Reading [44]), which turn out to be the quotients of the permutohedra by their minimal meet-irreducible congruences (cf. Santocanale and Wehrung [47, Corollary 6.10]) and thus they generate the same lattice variety as the permutohedra (cf. Lemma 3.1). The statement of Theorem 7.8 is sufficiently general to imply Theorem A trivially. The first key ingredient of the proof of Theorem 7.8 originates in Reading's result [44, Theorem 3.5], implying that the dual of a Cambrian lattice is Cambrian, and stated for Cambrian lattices of type A in Santocanale and Wehrung [47, Corollary 6.11]. In Section 4 we describe that duality via an "orthogonality relation" \perp_U between intervals of the original chain. In Section 5 (culminating in Lemma 5.5) we relate the evaluation of lattice polynomials in Cambrian lattices to new combinatorial objects that we call half-scores, which encode certain tilings of finite chains. By combining that result with the duality from Section 4, we are thus able to relate, in Lemmas 6.3 and 6.4, the failure of a lattice identity in a Cambrian lattice to new combinatorial objects called scores. Finally, in Section 7, we translate the previously obtained statements about scores to monadic second-order logic of one successor MSO. By using a famous decidability theorem due to Büchi (cf. Theorem 7.1), we are able to reach the desired conclusion, namely Theorem 7.8. However, the algorithm given by Büchi's Theorem, although theoretically sound, is at least one exponential away from any even remote hope for implementation, even for uncomplicated lattices such as the $\mathsf{B}(m,n)$ (cf. Section 2.5). In particular, this algorithm is of no help for deciding even simple lattice identities. We show, in Appendix A, a combinatorial statement, involving objects called (m, n)-scores, describing the membership problem of the lattice $\mathsf{B}(m,n)$ to the variety generated by a Cambrian lattice $\mathsf{A}_U(E)$ (where E is a finite chain and $U \subseteq E$). This description involves certain tiling properties of the chain E. Somehow paradoxically, it turns out that Theorem B requires far more ingenuity than Theorem A. **Theorem B.** There exists a lattice identity that holds in all P(n), but that fails in a certain 3,338-element lattice. The 3,338-element lattice L involved in Theorem B is constructed via a variant of Fraser's semilattice tensor product from [10] called *complete tensor product* in Wille [58], box product in Grätzer and Wehrung [15]. (The two concepts, although not equivalent in general, are equivalent for finite lattices.) The lattice L, represented in Figure B.1, is given as the box product of the lattices N_5 (cf. Figure 2.1) and B(3,2) (cf. Section 2.5). Box products, and, more generally, sub-tensor products of lattices, are presented in Section 8. The identity in question in Theorem B is the so-called splitting identity θ_L of L, which turns out to be the weakest identity failing for L (cf. Section 2.4). The identity θ_L can be constructed explicitly (cf. McKenzie [38, § 6], Freese, Ježek, and Nation [11, Corollary 2.76]). In the present case, such a task would probably take up the space of a whole book. Fortunately, we do not need to undergo such an ordeal, and we resort instead to an "identity-free" description of lattice varieties in Section 9. The main objects of study in that section are called EA-duets; they consist of a join-homomorphism and a meet-homomorphism subject to a few simple conditions. The proof of the expanded version of Theorem B, namely Theorem 10.1, relies mostly on the description of the box product $L = N_5 \square B(3,2)$ as a sub-tensor product (cf. Definition 8.2). The only specificity of the box product, compared to other sub-tensor products, that we use in the proof of Theorem 10.1, is that it enables us to state that L is a splitting lattice (cf. Section 2.4). It is plausible that the method used in Section 10 could be extended to arbitrary sub-tensor products of N₅ and B(3,2), however we would then lose the simplification brought by EAduets, which would bring considerable unwieldiness to the argument. Then the question of the extension of Theorem B to more general "permutohedra" arises naturally. There are many such constructions. We shall focus on the one from our paper [48], which yields the "extended permutohedron" R(E) on a poset E (cf. Section 11), which turns out to be the Dedekind-MacNeille completion of a "generalized permutohedron" introduced in Pouzet $et\ al.\ [42]$. **Theorem C.** The equational theory of all extended permutohedra, on arbitrary (possibly infinite) posets, is trivial. In fact we prove, in Theorem 11.6, a much stronger result, namely: Every finite meet-semidistributive lattice embeds into R(E), for some countable poset E. Furthermore, the poset E can be taken a directed union of finite dismantlable lattices. Theorem C is then a simple consequence of that result (cf. Corollary 11.8). #### 2. Notation and terminology We shall mainly follow the notation and terminology from standard references on lattice theory such as Grätzer [13], Freese, Ježek, and Nation [11], Jipsen and Rose [24]. 2.1. **Basic concepts.** We shall denote by [n] the set $\{1, 2, ..., n\}$, endowed with its standard ordering. The *dual poset* P^{op} of a poset P has the same universe as P, and opposite ordering (i.e., $x \leq^{\text{op}} y$ if $y \leq x$). We say that P is *bounded* if it has both a least and a largest element, then denoted by 0_P and 1_P , respectively, or 0 and 1 if P is understood. For $a \leq b$ in P and $X \subseteq P$, we set ``` P \downarrow X = \{ p \in P \mid p \leq x \text{ for some } x \in X \} \qquad \text{and} \qquad P \downarrow a = P \downarrow \{a\} \,, P \uparrow X = \{ p \in P \mid p \geq x \text{ for some } x \in X \} \qquad \text{and} \qquad P \uparrow a = P \uparrow \{a\} \,, [a,b] = \{ p \in P \mid a \leq p \leq b \} \,, [a,b] = \{ p \in P \mid a \leq p \leq b \} \,, [a,b[= \{ p \in P \mid a \leq p < b \} \,, [a,b[= \{ p \in P \mid a ``` An element a is a lower cover of an element b if a < b and $]a,b[=\varnothing]$. A map $f: P \to Q$ between posets is isotone (resp., antitone) if $x \le y$ implies $f(x) \le f(y)$ (resp., $f(y) \le f(x)$), for all $x, y \in P$. We denote by $\operatorname{Con} L$ the lattice of all congruences of a lattice L, and by $\operatorname{Con}_{\mathbf{c}} L$ the $(\vee,0)$ -semilattice of all compact (i.e., finitely generated) congruences of L. Whenever $a,b\in L$, we denote by $\operatorname{con}(a,b)$, or $\operatorname{con}_L(a,b)$ if L needs to be specified, the least congruence $\boldsymbol{\theta}$ of L such that $(a,b)\in \boldsymbol{\theta}$. A lattice L is *subdirectly irreducible* if it has a least nonzero congruence, which is then called the *monolith* of L. An element p in a lattice L is - completely join-irreducible if $p = \bigvee X$ implies that $p \in X$, for all $X \subseteq L$; - join-irreducible if $p = \bigvee X$ implies that $p \in X$, for all finite $X \subseteq L$; - completely join-prime if $p \leq \bigvee X$ implies that $p \in L \downarrow X$, for all $X \subseteq L$; - join-prime if $p \leq \bigvee X$ implies that $p \in L \downarrow X$, for all finite $X \subseteq L$. If p is completely join-irreducible, then it has a unique lower cover, that will be denoted by p_* . In finite lattices, join-irreducibility and join-primeness are equivalent to their complete versions. Meet-irreducibility and meet-primeness are the duals of join-irreducibility and join-primeness, respectively. We denote by Ji L (resp., Mi L) the set of all join-irreducible (resp., meet-irreducible) elements of L. We shall often
write lattice identities as lattice inclusions $p \leq q$ (which is indeed equivalent to the identity $p \vee q = q$), for lattice terms p and q. We denote by $\mathbf{Var}(\mathcal{K})$ the variety generated by a class \mathcal{K} of lattices, and we write $\mathbf{Var}(K)$ instead of $\mathbf{Var}(\{K\})$. 2.2. **Semidistributivity.** A lattice L is meet-semidistributive if the implication $$x \wedge z = y \wedge z \Rightarrow x \wedge z = (x \vee y) \wedge z$$ holds for all $x, y, z \in L$. Join-semidistributivity is defined dually. A lattice is semidistributive if it is both join-semidistributive and meet-semidistributive. For a completely join-irreducible element p in a lattice L, we denote by $\kappa(p)$, or $\kappa_L(p)$ if L needs to be specified, the largest $u \in L$, if it exists, such that $p_* \leq u$ and $p \nleq u$. We shall occasionally use the following easy fact (cf. Freese, Ježek, and Nation [11, Lemma 2.57]): $$x \leq \kappa_L(p)$$ iff $p \nleq p_* \vee x$, for all p, x in a lattice L such that p is completely join-irreducible and $\kappa_L(p)$ exists. (2.1) If p is completely join-prime, then $\kappa(p)$ is defined, and it is also the largest $u \in L$ such that $p \nleq u$. A finite lattice L is meet-semidistributive iff $\kappa(p)$ exists for every $p \in \text{Ji } L$ (cf. Freese, Ježek, and Nation [11, Theorem 2.56]). If, in addition, L is semidistributive, then the assignment $p \mapsto \kappa_L(p)$ defines a bijection from Ji L onto Mi L (cf. Freese, Ježek, and Nation [11, Corollary 2.55]). 2.3. **Join-dependency and congruences.** For more detail about Section 2.3, see Freese, Ježek, and Nation [11]. The *join-dependency relation*, among join-irreducible elements in a finite lattice L, denoted by D (or D_L if L needs to be specified), is defined by $$p \ D \ q$$ if $(p \neq q \text{ and } (\exists x)(p \leq q \lor x \text{ and } p \nleq q_* \lor x))$, for all $p, q \in \text{Ji } L$. Denote by \leq_L the reflexive, transitive closure of the join-dependency relation D_L and set $\operatorname{con}_L(p) = \operatorname{con}_L(p_*, p)$, for all $p \in \operatorname{Ji} L$. The following is contained in Freese, Ježek, and Nation [11, Lemma 2.36]: $$p \leq_L q \text{ iff } \operatorname{con}_L(p) \subseteq \operatorname{con}_L(q), \quad \text{for all } p, q \in \operatorname{Ji} L.$$ (2.2) 2.4. Bounded homomorphic images of free lattices. For more detail about Section 2.4, see Freese, Ježek, and Nation [11]. A surjective homomorphism $h: K \to L$ between lattices is lower bounded (resp., bounded) if $h^{-1}\{y\}$ has a least element (resp., both a least and a largest element), for all $y \in L$. Denote by $\mathbf{LB}_{\mathrm{fin}}$ the class of all finite lower bounded homomorphic images of free lattices, and by $\mathbf{B}_{\mathrm{fin}}$ the class of all finite bounded homomorphic images of free lattices, and by $\mathbf{B}_{\mathrm{fin}}$ the class of all finite bounded homomorphic images of free lattices. A lattice L belongs to $\mathbf{B}_{\mathrm{fin}}$ iff L and L^{op} both belong to $\mathbf{LB}_{\mathrm{fin}}$. It follows from [11, Corollary 2.39] that a finite lattice L belongs to $\mathbf{LB}_{\mathrm{fin}}$ iff its join-dependency relation D_L has no cycle. Every member of $\mathbf{B}_{\mathrm{fin}}$ is semidistributive. Among the lattices \mathbf{M}_3 and \mathbf{N}_5 represented in Figure 2.1, the first one does not belong to $\mathbf{LB}_{\mathrm{fin}}$ while the second one belongs to $\mathbf{B}_{\mathrm{fin}}$. The labeling of \mathbf{N}_5 introduced in Figure 2.1 will be used in Section 10. FIGURE 2.1. The lattices M_3 and N_5 ¹To the great puzzlement of many people, bounded homomorphic images of free lattices are often called *bounded lattices*. In the present paper, we revert to the original usage, by just defining bounded lattices as those with both a least and a largest element. A lattice K is splitting if there is a largest lattice variety \mathcal{C}_K such that $K \notin \mathcal{C}_K$. Necessarily, $\mathcal{C}_K = \{L \mid K \notin \mathbf{Var}(L)\}$ and \mathcal{C}_K is defined by a single identity θ_K , called the splitting identity of K (depending not only on K, but on a given generating subset of K). Since a lattice L fails θ_K iff $K \in \mathbf{Var}(L)$, it follows from Jónsson's Lemma that K has the smallest size among all lattices not satisfying θ_K . The splitting lattices are exactly the finite subdirectly irreducible members of $\mathbf{B}_{\mathrm{fin}}$, see McKenzie [38, § 5] or Freese, Ježek, and Nation [11, § II.6]. The lattice N_5 is splitting, with monolith $\mathrm{con}(p)$. An algorithm to compute the splitting identity of a finite splitting lattice is given in [11, § II.6]. 2.5. The lattices B(m,n). Following the notation introduced in Santocanale and Wehrung [47], for all positive integers m and n, we denote by B(m,n) the lattice obtained, from the Boolean lattice with m+n atoms $a_1, \ldots, a_m, b_1, \ldots, b_n$, by adding a new element q above $a = \bigvee_{i=1}^m a_i$, such that $q < a \lor b_j$ whenever $1 \le j \le n$. In particular, q is join-irreducible with lower cover $q_* = a$. The lattice B(m,n) is splitting, with monolith $\operatorname{con}(q)$. We set $\mathbf{a} = \{a_1, \ldots, a_m\}$ and $\mathbf{b} = \{b_1, \ldots, b_n\}$. The join-prime elements, in the lattices N_5 and B(3,2), are exactly the atoms, that is, p_* , c for N_5 and a_1 , a_2 , a_3 , b_1 , b_2 for B(3,2). The join-irreducible elements in those lattices, represented in Figure 2.2, are the atoms together with p (for N_5) and q (for B(3,2)). Figure 2.2. The join-irreducible elements of N_5 (left) and B(3,2) (right) We will later need the following easily verified equations, valid in the lattice $\mathsf{B}(3,2)$, whenever $\{i,j\}=\{1,2\}$ and $k,l\in\{1,2,3\}$: $$b_j = (q_* \vee b_j) \wedge (b_1 \vee b_2);$$ (2.3) $$a_k = (a_k \vee b_i) \wedge (q_* \vee b_i); \tag{2.4}$$ $$a_k \vee a_l = (a_k \vee a_l \vee b_i) \wedge (q_* \vee b_i); \tag{2.5}$$ #### 3. Permutohedra and Cambrian lattices of type A We shall set $\delta_E = \{(p,q) \in E \times E \mid p < q\}$, for any poset E. That is, δ_E is the strict ordering associated to E. As in our papers [47, 48], we denote by cl(a) the transitive closure of any subset a of δ_E , and we set $int(a) = \delta_E \setminus cl(\delta_E \setminus a)$. Set $$P(E) = \{ \boldsymbol{a} \subseteq \boldsymbol{\delta}_E \mid \boldsymbol{a} = \operatorname{cl}(\boldsymbol{a}) = \operatorname{int}(\boldsymbol{a}) \}, \quad \text{the permutohedron on } E,$$ $$R(E) = \{ \boldsymbol{a} \subseteq \boldsymbol{\delta}_E \mid \boldsymbol{a} = \operatorname{clint}(\boldsymbol{a}) \}, \quad \text{the extended permutohedron on } E,$$ both endowed with set containment. Although P(E) may not be a lattice for an arbitrary poset E, it is always a lattice if E is a so-called *square-free poset* (cf. Pouzet *et al.* [42], Santocanale and Wehrung [48]). By definition, E is square-free if it does not contain any copy of the four-element Boolean poset. For example, every chain is square-free. On the other hand, R(E) is always a lattice, which turns out to be the Dedekind-MacNeille completion of P(E). The join, in R(E), of a family $(a_i \mid i \in I)$, is always the transitive closure of the union of the a_i (cf. [48]). For a positive integer n, the lattice R([n]) = P([n]), simply denoted by P(n), was first considered in Guilbaud and Rosenstiehl [19]; it turns out to be isomorphic to the symmetric group on n letters endowed with its weak Bruhat ordering, see for example Bennett and Birkhoff [2, § 5]. For an arbitrary poset E, we prove in Santocanale and Wehrung [48] that the completely join-irreducible elements of R(E) all belong to P(E), and they are exactly the sets of the form $$\langle a, b \rangle_U = \left\{ (x, y) \in (\{a\} \cup U^{\mathsf{c}}) \times (\{b\} \cup U) \mid a \le x < y \le b \right\},\tag{3.1}$$ where $(a,b) \in \delta_E$, $U \subseteq E$, and where we set $U^c = E \setminus U$. For notational convenience, we shall also set $\langle a,a \rangle_U = \varnothing$. Notice that $\langle a,b \rangle_U = \langle a,b \rangle_V$ iff $U \cap]a,b[=V \cap]a,b[$. Any subset U of E defines the set $D_U(E)$ of all $\mathbf{a} \subseteq \delta_E$ such that both conditions $$(x < y < z \text{ and } (x, z) \in \boldsymbol{a} \text{ and } y \in U) \Rightarrow (x, y) \in \boldsymbol{a}$$ $(x < y < z \text{ and } (x, z) \in \boldsymbol{a} \text{ and } y \notin U) \Rightarrow (y, z) \in \boldsymbol{a}$ are satisfied for all $x, y, z \in E$. The set $A_U(E)$ of all transitive members of $D_U(E)$ is contained in P(E). We shall also write $A(E) = A_E(E)$. We prove in [48] that $A_U(E)$ is a sublattice of P(E) = R(E) whenever E is square-free (this turns out to characterise the square-freeness of E). Furthermore, the meet in $A_U(E)$ is always the set-theoretical intersection. Whenever $(a,b) \in \delta_E$, the set $\langle a,b \rangle_U$ defined in (3.1) is the least element x of $A_U(E)$, with respect to containment, such that $(a,b) \in x$. It is completely join-irreducible in R(E), with lower cover $$(\langle a, b \rangle_U)_* = \langle a, b \rangle_U \setminus \{(a, b)\}, \tag{3.2}$$ and both $\langle a, b \rangle_U$ and $(\langle a, b \rangle_U)_*$ also belong to $\mathsf{A}_U(E)$. In case n is a positive integer and E = [n], we shall write $\mathsf{A}_U(n)$ instead of $\mathsf{A}_U([n])$. As discussed in Santocanale and Wehrung [47, § 6], it turns out that the lattices $A_U(n)$ are exactly the Cambrian lattices of type A, with index n, introduced in Reading [44]. As established in Proposition 6.7 and Corollary 6.10 of [47], the $A_U(n)$ are exactly the quotients of P(n) by its minimal meet-irreducible congruences, and P(n) is a subdirect product of all the $A_U(n)$ for $U \subseteq [n]$. In
particular, we record the following lemma. **Lemma 3.1.** The class of all permutohedra P(n), for n a positive integer, and the class of all Cambrian lattices of type A, generate the same lattice variety. #### 4. Dualities among Cambrian lattices of type A Throughout this section we fix a finite chain E and a subset U of E. As usual, we set $U^{c} = E \setminus U$. We proved in Santocanale and Wehrung [47, Corollary 6.11] that the lattices $A_{U}(E)$ and $A_{U^{c}}(E)$ are dually isomorphic. In the present section we shall give a more precise version of that result. For each join-irreducible $\mathbf{p} \in \mathsf{A}_U(E)$, we set $\kappa_U(\mathbf{p}) = \kappa_{\mathsf{A}_U(E)}(\mathbf{p})$, the largest $\mathbf{u} \in \mathsf{A}_U(E)$, necessarily meet-irreducible, such that $\mathbf{p}_* \subseteq \mathbf{u}$ and $\mathbf{p} \not\subseteq \mathbf{u}$. For $(a,b), (c,d) \in \delta_E$, let $(a,b) \sim_U (c,d)$ hold if $\langle a,b \rangle_U \cap \langle c,d \rangle_{U^c} \neq \varnothing$, and let $(a,b) \perp_U (c,d)$ hold if $(a,b) \sim_U (c,d)$ does not hold, that is, $\langle a,b \rangle_U \cap \langle c,d \rangle_{U^c} = \varnothing$. Say that a closed interval [u,v] is nontrivial if u < v. **Lemma 4.1.** $(a,b) \sim_U (c,d)$ iff $[a,b] \cap [c,d]$ is a nontrivial interval [u,v] and $(u,v) \in \langle a,b\rangle_U \cap \langle c,d\rangle_{U^c}$. Furthermore, if $(a,b) \sim_U (c,d)$, then $\langle a,b\rangle_U \cap \langle c,d\rangle_{U^c}$ is exactly the singleton $\{(u,v)\}$. *Proof.* If $[a,b] \cap [c,d] = [u,v]$ with $(u,v) \in \langle a,b \rangle_U \cap \langle c,d \rangle_{U^c}$, then, by the definition of \sim_U , we get $(a,b) \sim_U (c,d)$. Conversely, suppose that $(a,b) \sim_U (c,d)$ and let $(x,y) \in \langle a,b \rangle_U \cap \langle c,d \rangle_{U^c}$. Setting $u = \max\{a,c\}$ and $v = \min\{b,d\}$, it follows that $$u \le x < y \le v$$ while $$x \in (\{a\} \cup U^{c}) \cap (\{c\} \cup U)$$ $$= (\{a\} \cap \{c\}) \cup (\{a\} \cap U) \cup (\{c\} \cap U^{c}),$$ $$y \in (\{b\} \cup U) \cap (\{d\} \cup U^{c})$$ $$= (\{b\} \cap \{d\}) \cup (\{b\} \cap U^{c}) \cup (\{d\} \cap U).$$ We obtain nine cases to consider, for example x = a = c and $y = b \in U^{c}$ with b < d; in each of those cases, (x, y) = (u, v). **Lemma 4.2.** $(x,y) \in \kappa_U(\langle a,b\rangle_U)$ iff $(x,y) \perp_U (a,b)$, for all $(x,y), (a,b) \in \delta_E$. Proof. We prove the contrapositive statement. Suppose first that $(x,y) \notin \kappa_U(\langle a,b\rangle_U)$, that is, $\langle a,b\rangle_U \subseteq (\langle a,b\rangle_U)_* \vee \langle x,y\rangle_U$, in other words $(a,b) \in (\langle a,b\rangle_U)_* \vee \langle x,y\rangle_U$. There exists a subdivision $a=c_0 < c_1 < \cdots < c_n = b$ such that each (c_k,c_{k+1}) belongs to $(\langle a,b\rangle_U)_* \cup \langle x,y\rangle_U$. We may assume that n is least possible. Since $(a,b) \notin (\langle a,b\rangle_U)_*$, we deduce that $(c_k,c_{k+1}) \in \langle x,y\rangle_U$ for some $k \in [0,n-1]$. By the minimality of n, either $c_k = a$, or k > 0 and $(c_{k-1},c_k) \in (\langle a,b\rangle_U)_*$. In the latter case, $c_k \in U$. In any case, $c_k \in U \cup \{a\}$. Symmetrically, $c_{k+1} \in U^c \cup \{b\}$, whence $(c_k,c_{k+1}) \in \langle a,b\rangle_{U^c}$. Therefore, (c_k,c_{k+1}) belongs to $\langle x,y\rangle_U \cap \langle a,b\rangle_{U^c}$, so $(x,y) \sim_U (a,b)$. Suppose, conversely, that $(x,y) \sim_U (a,b)$ and let $(u,v) \in \langle x,y \rangle_U \cap \langle a,b \rangle_{U^c}$. Since $(u,v) \in \langle a,b \rangle_{U^c}$, both (a,u) and (v,b) belong to the union of $(\langle a,b \rangle_U)_*$ with the diagonal. Since $(u,v) \in \langle x,y \rangle_U$, it follows that $\langle a,b \rangle_U \subseteq (\langle a,b \rangle_U)_* \vee \langle x,y \rangle_U$, thus $(x,y) \notin \kappa_U(\langle a,b \rangle_U)$. Set $\varphi(\boldsymbol{x}) = \{(i,j) \in \boldsymbol{\delta}_E \mid \boldsymbol{x} \cap \langle i,j \rangle_{U^c} = \varnothing\}$, for every $\boldsymbol{x} \in \mathsf{A}_U(E)$. Notice that $\varphi(\boldsymbol{x}) = \{(i,j) \in \boldsymbol{\delta}_E \mid (u,v) \perp_U (i,j) \text{ for all } (u,v) \in \boldsymbol{x}\}$. It is trivial that $\varphi(\boldsymbol{x})$ belongs to $\mathsf{D}_{U^c}(E)$. Furthermore, \boldsymbol{x}^c is transitive, and $(i,j) \in \varphi(\boldsymbol{x})$ iff $\langle i,j \rangle_{U^c} \subseteq \boldsymbol{x}^c$, hence, if (i,j) and (j,k) both belong to $\varphi(\boldsymbol{x})$, then $$\langle i, k \rangle_{U^{\mathsf{c}}} \subseteq \langle i, j \rangle_{U^{\mathsf{c}}} \vee \langle j, k \rangle_{U^{\mathsf{c}}} \subseteq \boldsymbol{x}^{\mathsf{c}}$$, that is, $(i, k) \in \varphi(\mathbf{x})$, and so $\varphi(\mathbf{x})$ is transitive. Therefore, $\varphi(\mathbf{x}) \in \mathsf{A}_{U^{\mathsf{c}}}(E)$, and $\varphi(\mathbf{x})$ is the largest $\mathbf{y} \in \mathsf{A}_{U^{\mathsf{c}}}(E)$ such that $\mathbf{x} \cap \mathbf{y} = \emptyset$. Symmetrically, for every $\mathbf{y} \in \mathsf{A}_{U^c}(E)$, $\psi(\mathbf{y}) = \{(i,j) \in \boldsymbol{\delta}_E \mid \langle i,j \rangle_U \cap \mathbf{y} = \varnothing\}$ is the largest $\mathbf{x} \in \mathsf{A}_U(E)$ such that $\mathbf{x} \cap \mathbf{y} = \varnothing$. **Proposition 4.3.** The maps φ and ψ are mutually inverse dual isomorphisms between $A_U(E)$ and $A_{U^c}(E)$. *Proof.* The maps φ and ψ are both antitone, thus, by symmetry, it suffices to prove that $\psi \circ \varphi = \mathrm{id}_{\mathsf{A}_U(E)}$. It is obvious that $(\psi \circ \varphi)(\mathbf{c})$ contains \mathbf{c} , for every $\mathbf{c} \in \mathsf{A}_U(E)$, so it suffices to prove that $(\psi \circ \varphi)(\mathbf{c})$ is contained in \mathbf{c} . Furthermore, it suffices to establish this fact in case c is meet-irreducible, that is, $c = \kappa_U(\langle a, b \rangle_U)$ for some $(a, b) \in \delta_E$. Let $(x,y) \in (\psi \circ \varphi)(c)$; it is easily argued that this condition is equivalent to $$(\forall (i,j) \in \langle x,y \rangle_U) (\mathbf{c} \cap (\langle i,j \rangle_{U^c}) \neq \varnothing). \tag{4.1}$$ Suppose that $(x,y) \notin \mathbf{c} = \kappa_U(\langle a,b\rangle_U)$. By Lemma 4.2, $(x,y) \sim_U (a,b)$, that is, there exists $(i,j) \in \langle x,y\rangle_U \cap \langle a,b\rangle_{U^c}$. By (4.1), there exists $(u,v) \in \mathbf{c} \cap \langle i,j\rangle_{U^c}$. Since $(i,j) \in \langle a,b\rangle_{U^c}$, we get $(u,v) \in \langle a,b\rangle_{U^c}$. Thus, both (a,u) and (v,b) belong to the union of $(\langle a,b\rangle_U)_*$ with the diagonal, and thus, since $(u,v) \in \mathbf{c}$, it follows that (a,b) belongs to $(\langle a,b\rangle_U)_* \vee \mathbf{c} = (\langle a,b\rangle_U)_* \vee \kappa_U(\langle a,b\rangle_U) = \kappa_U(\langle a,b\rangle_U)_*$, a contradiction. Notation 4.4. Denote² by $\psi_U : \mathsf{A}_{U^c}(E) \to \mathsf{A}_U(E)^{\mathrm{op}}$ the map denoted by ψ in the text above. It follows from the definition of φ that $\varphi = \psi_{U^c}$. Hence, by Proposition 4.3, ψ_U is a dual isomorphism from $\mathsf{A}_{U^c}(E)$ onto $\mathsf{A}_U(E)$, with inverse ψ_{U^c} . Whenever $\mathbf{y} \in \mathsf{A}_{U^c}(E)$, $\psi_U(\mathbf{y})$ is the largest $\mathbf{x} \in \mathsf{A}_U(E)$ such that $\mathbf{x} \cap \mathbf{y} = \varnothing$. As an immediate consequence of Lemma 4.2, we obtain that $$\psi_U(\langle a, b \rangle_{U^c}) = \kappa_U(\langle a, b \rangle_U), \quad \text{for all } (a, b) \in \delta_E.$$ (4.2) #### 5. Half-scores and alternating words Throughout this section we shall fix a finite set $\Omega=\{\mathsf{z}_1,\ldots,\mathsf{z}_\ell\}$ (the "variables") of cardinality a positive integer ℓ , and we shall denote by $\mathsf{F}_{\mathbf{L}}(\Omega)$ the free lattice on Ω . We shall use the terminology and results from Freese, Ježek, and Nation [11] for free lattices. In particular, the rank of a lattice term is defined in [11, § I.2]. Every element p of $\mathsf{F}_{\mathbf{L}}(\Omega)\setminus\{0,1\}$ is either meet- or join-irreducible (cf. [11, Corollary 1.9]), and p is both meet- and join-irreducible iff $p\in\Omega$ (cf. [11, Corollary 1.5]). Moreover, every $p\in\mathsf{F}_{\mathbf{L}}(\Omega)$ is represented by a unique (up to commutativity and associativity of \vee and \wedge) lattice term of minimal rank, called the $\mathit{canonical form}$ of p, that we shall thus identify with p (cf. [11, Theorem 1.17]). A simple syntactical characterization of canonical forms is given in [11, Theorem 1.18]. It follows from that characterization that any element p of $\mathsf{F}_{\mathbf{L}}(\Omega)$ has exactly one of the following forms: - (i) $p = \mathbf{z}_i$, for $i \in [\ell]$, is a variable; then either we are in the degenerate case, that is, $\ell = 1$ so p = 0 = 1, or p is both meet- and join-irreducible; - (ii) $p = p_1 \lor \cdots \lor p_n$ canonically, where $n \ge 2$ and the p_i , of smaller rank than p, are pairwise incomparable join-irreducible elements; we shall say that p is a pure join term; in particular, p is meet-irreducible; - (iii) $p = p_1 \wedge \cdots \wedge p_n$ canonically, where $n \geq 2$ and the p_i , of smaller rank than p, are pairwise incomparable meet-irreducible elements; we shall say that p is a pure meet term; in particular, p is join-irreducible. The set Cov(p) of all *canonical join-covers* of p is defined inductively as follows: - In Case (i) above (i.e., $p = z_i$), we set $Cov(z_i) = \{\{z_i\}\}.$ - In Case (ii) above, p is a pure join term and we set $Cov(p) = \{\{p_1, \dots, p_n\}\}$. ²Strictly speaking, we should write something like $\psi_{E,U}$ instead of just ψ_U ; however, E will always be clear from the context. • In Case (iii) above, every p_i is meet-irreducible, thus, by the two cases above, $Cov(p_i) = \{C_i\}$ for some C_i , and we set $Cov(p) = \{C_1, \dots, C_n\}$. A number of induction proofs will be based on the
simple observation that for every $p \in \mathcal{F}_{\mathbf{L}}(\Omega) \setminus \Omega$, $\mathcal{C}ov(p)$ is a nonempty finite set of nonempty finite subsets of $\mathcal{F}_{\mathbf{L}}(\Omega)$ all of whose elements have smaller rank than p. This observation will be used implicitly, throughout the text. In particular, a straightforward induction argument yields the following lemma. **Lemma 5.1.** The equation $p = \bigwedge_{C \in Cov(p)} \bigvee C$ holds, for every $p \in F_{\mathbf{L}}(\Omega)$. In particular, $p \leq \bigvee C$ is a valid lattice inclusion, whenever $C \in \text{Cov}(p)$. **Definition 5.2.** An alternating word on an element p of $F_{\mathbf{L}}(\Omega)$ is a finite sequence $\alpha = (C_0, p_1, C_1, \dots, p_n, C_n)$, where n is a nonnegative integer and the following conditions hold: - (i) C_0 is the one-element sequence $(\{p\})$. - (ii) $p_j \notin \Omega$ and $C_j \in \text{Cov}(p_j)$ whenever $1 \leq j \leq n$. - (iii) $p_{j+1} \in C_j$ whenever $0 \le j < n$. We denote by Alt(p) the set of all alternating words on p, and denote $C_{\alpha} = C_n$. For $\alpha, \beta \in Alt(p)$, let $\alpha \sqsubset \beta$ hold if α is a proper prefix of β . Observe that the definition above implies that if n > 0, then $p_1 = p$. Furthermore, Alt(p) is finite. **Definition 5.3.** A subdivision of an interval [x, y], for integers x < y, is a subset of [x, y] containing the pair $\{x, y\}$. We set $$\mathrm{cvs}(P) = \left\{ (u,v) \in P \times P \mid u < v \text{ and } \right] u, v[\cap P = \varnothing \} \,, \quad \text{for every set P of integers.}$$ We shall denote by $\alpha \cap \beta$ the concatenation of words α and β . **Definition 5.4.** Let E be a finite chain and let $p \in F_{\mathbf{L}}(\Omega)$. Denote by \bot any object outside $F_{\mathbf{L}}(\Omega)$ (thought of as "bottom"). A half p-score on E is a family $\vec{P} = ((P_{\alpha}, \tau_{\alpha}) \mid \alpha \in \text{Alt}(p))$ satisfying the following conditions: - (i) $P_{\alpha} \subseteq E$ and $\tau_{\alpha} : \operatorname{cvs}(P_{\alpha}) \to C_{\alpha} \cup \{\bot\}$ (the *valuation* of index α), for every $\alpha \in \operatorname{Alt}(p)$. - (ii) $P_{(p)} = \{0_E, 1_E\}$ and $\tau_{(p)}(0_E, 1_E) = p$ (note that this implies that E has at least two elements). - (iii) For all $\alpha \in \text{Alt}(p)$, all $(x,y) \in \text{cvs}(P_{\alpha})$, all $q = \tau_{\alpha}(x,y) \notin \Omega \cup \{\bot\}$, and all $C \in \text{Cov}(q)$, the pair $\{x,y\}$ is contained in $P_{\alpha^{\smallfrown}(q,C)}$ and $\tau_{\alpha^{\smallfrown}(q,C)}(u,v)$ belongs to C, for every $(u,v) \in \text{cvs}(P_{\alpha^{\smallfrown}(q,C)} \cap [x,y])$. For a half p-score \vec{P} as above, we shall set $$P_{\alpha}[q] = \left\{ (x,y) \in \operatorname{cvs}(P_{\alpha}) \mid \tau_{\alpha}(x,y) = q \right\}, \quad \text{whenever } \alpha \in \operatorname{Alt}(p) \text{ and } q \in C_{\alpha} \,. \tag{5.1}$$ The main lemma of this section, relating half p-scores and evaluations of lattice terms in Cambrian lattices $A_U(E)$, is the following. **Lemma 5.5.** Let p be a lattice term on Ω , let E be a finite chain, let $U \subseteq E$, and let $a_1, \ldots, a_\ell \in A_U(E)$. The following are equivalent: (i) $(0_E, 1_E) \in p(\boldsymbol{a}_1, \dots, \boldsymbol{a}_\ell)$, where $p(\boldsymbol{a}_1, \dots, \boldsymbol{a}_\ell)$ is evaluated within $A_U(E)$. (ii) There exists a half p-score \vec{P} on E such that $$P_{\alpha}[\mathsf{z}_i] \subseteq \boldsymbol{a}_i$$, whenever $\alpha \in \mathrm{Alt}(p)$ and $i \in [\ell]$. From now on we shall use the abbreviation $\vec{a} = (a_1, \dots, a_\ell)$. *Proof.* (i) \Rightarrow (ii). We construct the finite subsets P_{α} of E and the valuations τ_{α} : $\operatorname{cvs}(P_{\alpha}) \to C_{\alpha} \cup \{\bot\}$, with $P_{(\{p\})} = \{0_E, 1_E\}$ and $\tau_{(\{p\})}(0_E, 1_E) = p$, subject to the following induction hypothesis (relatively to the strict ordering \sqsubset of $\operatorname{Alt}(p)$): $$P_{\alpha}[q] \subseteq q(\vec{a}), \text{ for every } q \in C_{\alpha}.$$ (5.2) The statement (5.2) holds at $\alpha = (\{p\})$ by Assumption (i). Suppose that P_{α} and τ_{α} are constructed in such a way that (5.2) holds at α . The finite sequence $\beta = \alpha \cap (q, C)$ belongs to $\mathrm{Alt}(p)$, whenever $q \in C_{\alpha} \setminus \Omega$ and $C \in \mathrm{Cov}(q)$. Let $(x, y) \in P_{\alpha}[q]$. By our induction hypothesis, (x, y) belongs to $q(\vec{a})$, thus to $\bigvee_{r \in C} r(\vec{a})$, and therefore there exists a subdivision $P_{\beta}^{x,y}$ of [x, y] such that $$\operatorname{cvs}(P_{\beta}^{x,y}) \subseteq \bigcup_{r \in C} r(\vec{\boldsymbol{a}}). \tag{5.3}$$ Set $$P_{\beta} = \bigcup (P_{\beta}^{x,y} \mid (x,y) \in P_{\alpha}[q]). \tag{5.4}$$ Observe that $P_{\beta} \cap [x,y] = P_{\beta}^{x,y}$, for every $(x,y) \in \text{cvs}(P_{\alpha})$. Now let $(u,v) \in \text{cvs}(P_{\beta})$. If $(u,v) \in \text{cvs}(P_{\beta}^{x,y})$ for some (necessarily unique) $(x,y) \in P_{\alpha}[q]$, it follows from (5.3) that there exists $r \in C$ such that $(u,v) \in r(\vec{a})$; define $\tau_{\beta}(u,v)$ as any such r. In all other cases, that is, when there is no $(x,y) \in P_{\alpha}[q]$ such that $(u,v) \in \text{cvs}(P_{\beta}^{x,y})$, we set $\tau_{\beta}(u,v) = \bot$. By construction, the induction hypothesis (5.2) still holds at β , and the family of all pairs $(P_{\alpha},\tau_{\alpha})$ is a half p-score on E. By applying (5.2) to the case where $q = \mathbf{z}_i$, we get the condition (ii). (ii) \Rightarrow (i). We prove again the statement (5.2), this time by downward \sqsubseteq -induction on $\alpha \in \text{Alt}(p)$. Let $\alpha \in \text{Alt}(p)$ and suppose that (5.2) holds at every $\beta \in \text{Alt}(p)$ with $\alpha \sqsubseteq \beta$. Let $q \in C_{\alpha}$ and let $(x,y) \in P_{\alpha}[q]$, we must prove that $(x,y) \in q(\vec{a})$. If $q \in \Omega$, then this follows from Assumption (ii). Suppose from now on that $q \notin \Omega$. Let $C \in \text{Cov}(q)$. The finite sequence $\beta = \alpha \cap (q,C)$ belongs to Alt(p). Since \vec{P} is a half p-score, $\{x,y\}$ is contained in P_{β} and $\tau_{\beta}(u,v) \in C$ whenever $(u,v) \in \text{cvs}(P_{\beta} \cap [x,y])$. Setting $r = \tau_{\beta}(u,v)$, it follows from our induction hypothesis that $(u,v) \in r(\vec{a})$. This holds for all $(u,v) \in \text{cvs}(P_{\beta} \cap [x,y])$, whence $(x,y) \in \bigvee_{r \in C} r(\vec{a})$. This holds for every $C \in \text{Cov}(q)$, thus, since the meet in $A_U(E)$ is the intersection, we get $$(x,y) \in \bigwedge_{C \in Cov(q)} \bigvee_{r \in C} r(\vec{a}).$$ By Lemma 5.1, this means that $(x,y) \in q(\vec{a})$, thus completing the proof of the induction step of (5.2). By applying (5.2) to $\alpha = (\{p\})$, we get the desired conclusion. #### 6. Scores and lattice inclusions In this section we fix a set $\Omega = \{ z_i \mid i \in [\ell] \}$ of cardinality a positive integer ℓ . We leave to the reader the straightforward proof of the following lemma. **Lemma 6.1.** Let F be an order-convex subset of a chain E. Then $A_{U \cap F}(F)$ is a lattice retract of $A_U(E)$, with retraction defined by $$\pi: A_U(E) \to A_{U \cap F}(F), \ \boldsymbol{x} \mapsto \boldsymbol{x} \cap \boldsymbol{\delta}_F.$$ In the context of Lemma 6.1, we shall call π the projection map from $A_U(E)$ onto $A_{U\cap F}(F)$. From now on we shall denote by q^{op} the dual of an element $q \in F_{\mathbf{L}}(\Omega)$, that is, q with meets and joins interchanged. **Definition 6.2.** Let $p, q \in \mathcal{F}_{\mathbf{L}}(\Omega)$, let E be a finite chain, and let $U \subseteq E$. A (p, q, U)-score on E is a pair (\vec{P}, \vec{Q}) , where $$\begin{split} \vec{P} &= ((P_\alpha, \mu_\alpha) \mid \alpha \in \mathrm{Alt}(p)) & \text{is a half p-score on E} \,, \\ \vec{Q} &= ((Q_\beta, \nu_\beta) \mid \beta \in \mathrm{Alt}(q^\mathrm{op})) & \text{is a half q^op-score on E} \,, \end{split}$$ and the following condition holds: Whenever $$i \in [\ell]$$, $\alpha \in \text{Alt}(p)$, $\beta \in \text{Alt}(q^{\text{op}})$, $(x, y) \in P_{\alpha}[\mathbf{z}_i]$, $(u, v) \in Q_{\beta}[\mathbf{z}_i]$, the condition $(x, y) \perp_U (u, v)$ holds. (6.1) We refer to Section 4 for the definition of the binary relation \perp_U and the isomorphism $\psi = \psi_U : \mathsf{A}_{U^c}(E) \to \mathsf{A}_U(E)^{\mathrm{op}}$. The notation $P_{\alpha}[q]$ is defined in (5.1). The following lemma gives an equivalent "positive" formulation, involving the isomorphisms ψ_V , for a given lattice inclusion not holding in a Cambrian lattice $A_U(E)$. **Lemma 6.3.** Let $p, q \in F_{\mathbf{L}}(\Omega)$, let E be a finite chain, and let U be a subset of E. The following are equivalent: - (i) There are $\mathbf{a}_1, \dots, \mathbf{a}_\ell \in \mathsf{A}_U(E)$ such that $p(\vec{\mathbf{a}}) \not\subseteq q(\vec{\mathbf{a}})$. - (ii) There are an interval F of E and $\mathbf{a}_1, \ldots, \mathbf{a}_\ell \in \mathsf{A}_{U \cap F}(F)$ such that, setting $V = U \cap F$, $V^{\mathsf{c}} = F \setminus V$, and denoting by $$\psi = \psi_V \colon \mathsf{A}_{V^{\mathsf{c}}}(F) \to \mathsf{A}_V(F)^{\mathrm{op}}$$ the canonical dual isomorphism, $(0_F, 1_F)$ belongs to $p(\vec{a}) \cap \psi^{-1}(q(\vec{a}))$. Proof. (ii) \Rightarrow (i). By Lemma 6.1, it suffices to prove that the lattice inclusion $p(\vec{a}) \le q(\vec{a})$ does not hold in $A_V(F)$. Suppose otherwise, that is, $p(\vec{a}) \subseteq q(\vec{a})$, and set $b = q(\vec{a})$. Then $\langle 0_F, 1_F \rangle_V \subseteq b$ and $\langle 0_F, 1_F \rangle_{V^c} \subseteq \psi^{-1}(b)$. The second containment can be written $b \subseteq \psi(\langle 0_F, 1_F \rangle_{V^c})$. It follows that $\langle 0_F, 1_F \rangle_V \subseteq \psi(\langle 0_F,
1_F \rangle_{V^c})$, that is, $\langle 0_F, 1_F \rangle_V \subseteq \kappa_V(\langle 0_F, 1_F \rangle_V)$ (use (4.2)), a contradiction. (i) \Rightarrow (ii). Pick a minimal interval F = [u, v] of E such that $(u, v) \in p(\vec{a}) \setminus q(\vec{a})$ and, using the projection homomorphism $\pi \colon \mathsf{A}_U(E) \twoheadrightarrow \mathsf{A}_{U \cap F}(F)$ (cf. Lemma 6.1), set $\mathbf{a}_i' = \pi(\mathbf{a}_i)$ for all $i \in [\ell]$. Set $V = U \cap F$ and $V^c = F \setminus V$. Observe that $(u, v) \in p(\vec{a}') \setminus q(\vec{a}')$ (within $\mathsf{A}_{U \cap F}(F)$); thus F has at least two elements. Suppose that $\langle u, v \rangle_{V^c} \not\subseteq \psi^{-1}(q(\vec{a}'))$. Then $q(\vec{a}')$ is not contained in $\psi(\langle u, v \rangle_{V^c})$. By (4.2), it follows, using (2.1), that $$\langle u, v \rangle_V \subseteq (\langle u, v \rangle_V)_* \vee q(\vec{a}').$$ (6.2) Since $\langle u, v \rangle_V \subseteq p(\vec{\boldsymbol{a}}')$, every $(x, y) \in (\langle u, v \rangle_V)_*$ belongs to $p(\vec{\boldsymbol{a}}')$; moreover, since $(x, y) \neq (u, v)$ for every such (x, y), we obtain, by projecting onto [x, y] as in the paragraph above and by the minimality assumption on [u, v], the relation $(x, y) \in q(\vec{\boldsymbol{a}}')$; hence we get $(\langle u, v \rangle_V)_* \subseteq q(\vec{\boldsymbol{a}}')$. Therefore, by (6.2), we obtain that $\langle u, v \rangle_V \subseteq$ $q(\vec{a}')$, hence $(u, v) \in q(\vec{a}')$, a contradiction; thus proving that $\langle u, v \rangle_{V^c} \subseteq \psi^{-1}(q(\vec{a}'))$. Let us call the relation $(0_F, 1_F) \in p(\vec{a}) \cap \psi^{-1}(q(\vec{a}))$, stated in Lemma 6.3(ii), a positive form of the negated lattice inclusion $p \nleq q$. The main lemma of this section relates scores with positive forms of negated lattice inclusions. **Lemma 6.4.** The following statements are equivalent, for all $p, q \in F_{\mathbf{L}}(\Omega)$, every finite chain E, every $U \subseteq E$, and the canonical isomorphism $\psi \colon A_{U^c}(E) \to A_U(E)^{\mathrm{op}}$: - (i) There are $\mathbf{a}_1, \dots, \mathbf{a}_\ell \in \mathsf{A}_U(E)$ such that $(0_E, 1_E) \in p(\vec{\mathbf{a}}) \cap \psi^{-1}(q(\vec{\mathbf{a}}))$. - (ii) There exists a (p, q, U)-score on E. *Proof.* (i) \Rightarrow (ii). Since $(0_E, 1_E) \in p(\vec{a})$, it follows from Lemma 5.5[(i) \Rightarrow (ii)] that there exists a half *p*-score $$\vec{P} = ((P_{\alpha}, \mu_{\alpha}) \mid \alpha \in Alt(p))$$ such that $$P_{\alpha}[\mathsf{z}_i] \subseteq \boldsymbol{a}_i$$, whenever $\alpha \in \mathrm{Alt}(p)$ and $i \in [\ell]$. (6.3) Similarly, since $(0_E, 1_E)$ belongs to $\psi^{-1}(q(\vec{a})) = q^{op}(\psi^{-1}\vec{a})$, there exists a half q^{op} -score $$\vec{Q} = ((Q_{\beta}, \nu_{\beta}) \mid \beta \in Alt(q^{op}))$$ such that $$Q_{\beta}[\mathsf{z}_i] \subseteq \psi^{-1}(\boldsymbol{a}_i)$$, whenever $\beta \in \mathrm{Alt}(q^{\mathrm{op}})$ and $i \in [\ell]$. (6.4) Let $i \in [\ell]$, $\alpha \in \text{Alt}(p)$, $\beta \in \text{Alt}(q^{\text{op}})$, $(x,y) \in P_{\alpha}[\mathsf{z}_i]$, and $(u,v) \in Q_{\beta}[\mathsf{z}_i]$. By (6.3) and (6.4), it follows that $(x,y) \in \mathbf{a}_i$ and $(u,v) \in \psi^{-1}(\mathbf{a}_i)$, that is, $\langle x,y \rangle_U \subseteq \mathbf{a}_i$ and $\langle u,v \rangle_{U^c} \subseteq \psi^{-1}(\mathbf{a}_i)$. By the definition of the map ψ (cf. Section 4), it follows that $\langle x,y \rangle_U \cap \langle u,v \rangle_{U^c} = \varnothing$, that is, $(x,y) \perp_U (u,v)$. Therefore, (\vec{P},\vec{Q}) is a (p,q,U)-score on E. (ii) \Rightarrow (i). We set $\mathbf{a}_i = \bigvee (\langle x, y \rangle_U \mid \alpha \in \text{Alt}(p) \text{ and } (x, y) \in P_{\alpha}[\mathsf{z}_i])$, whenever $i \in [\ell]$. It follows from Lemma 5.5[(ii) \Rightarrow (i)] that $(0_E, 1_E) \in p(\vec{\mathbf{a}})$. We must prove that $(0_E, 1_E) \in q^{\text{op}}(\psi^{-1}\vec{a})$. By Lemma 5.5[(ii) \Rightarrow (i)], it suffices to prove that $Q_{\beta}[\mathbf{z}_i] \subseteq \psi^{-1}(\mathbf{a}_i)$, whenever $i \in [\ell]$ and $\beta \in \text{Alt}(q^{\text{op}})$. Let $(u, v) \in Q_{\beta}[\mathbf{z}_i]$. We must prove that $\mathbf{a}_i \subseteq \psi(\langle u, v \rangle_{U^c})$, that is, $(x, y) \perp_U (u, v)$ whenever $\alpha \in \text{Alt}(p)$ and $(x, y) \in P_{\alpha}[\mathbf{z}_i]$. However, this follows from the definition of a score. # 7. Expressing scores within monadic second-order logic: proving Theorem A We consider the monadic second-order language MSO of one successor (cf. Bü-chi [6]). We denote by u, v, w, x, y, \ldots the variables of the first-order language (s) consisting of one unary function symbol s. In addition to that language, MSO has a binary relation symbol \in , second-order variables U, V, W, X, Y, \ldots , and new atomic formulas $t \in X$, where t is a term of the first-order language (s) and X is a second-order variable. The formulas of MSO are obtained by closing the atomic formulas under propositional connectives and quantification both on first- and second-order variables. The standard model of MSO is (ω, s) , where s is the successor function on the set ω of all nonnegative integers. The satisfaction by (ω, s) of a formula of MSO is defined inductively on the complexity of the formula, in a standard fashion. The following fundamental result is due to Büchi [6]. **Theorem 7.1** (Büchi's Theorem). The theory S1S consisting of all statements of MSO valid in (ω, s) is decidable (i.e., recursive). By Büchi's Theorem, in order to decide the validity of a statement θ (in any mathematical field), it suffices to find a statement $\tilde{\theta}$ of MSO which is equivalent to θ (i.e., θ holds iff the structure (ω,s) satisfies $\tilde{\theta}$), and then apply Büchi's decision procedure to $\tilde{\theta}$. A standard fact, that we shall use repeatedly, is that the binary relations x < y and $x \le y$ on ω are both MSO-definable, respectively by the statements $$(\exists X) \big((\forall z) (z \in X \Rightarrow \mathsf{s}(z) \in X) \ \land \ y \in X \ \land \ \neg (x \in X) \big) \,,$$ $$x < y \ \lor \ x = y \,.$$ Let $\Omega = \{ \mathsf{z}_i \mid i \in [\ell] \}$ be a set of cardinality a positive integer ℓ , and let $p \in \mathsf{F}_{\mathbf{L}}(\Omega)$. In order to be able to code half p-scores (cf. Definition 5.4) in MSO, a necessary preliminary step is to describe such objets by finite collections of subsets of ω . For the P_{α} nothing needs to be done (they are already sets of integers). For a subset P of ω , the set $\operatorname{cvs}(P)$ of all covers in P (cf. Definition 5.3) is in one-to-one correspondence with the set P^* defined as P if P has no largest element, $P \setminus \{\max P\}$ otherwise. Hence, for a finite set C, a map $\tau \colon \operatorname{cvs}(P) \to C$ can be described by the collection of all subsets $P_c = \{x \in P^* \mid (\exists y)(\tau(x,y) = c)\}$, where $c \in C$. Accordingly, we set the following definition. **Definition 7.2.** The *code* of a half *p*-score \vec{P} as above is the family $$(P_{\alpha}, P_{\alpha,q} \mid \alpha \in Alt(p), \ q \in C_{\alpha} \cup \{\bot\}),$$ where we set $$P_{\alpha,q} = \{x \in P_{\alpha} \mid (\exists y)((x,y) \in \operatorname{cvs}(P_{\alpha}) \text{ and } \tau_{\alpha}(x,y) = q)\}$$. Since the code of a half p-score is a finite family of sets of integers (viz. the P_{α} and the $P_{\alpha,q}$), its entries can be used as parameters for MSO formulas. **Lemma 7.3.** The statement, saying that a given family $$\vec{P} = (P_{\alpha}, P_{\alpha, q} \mid \alpha \in \text{Alt}(p) \text{ and } q \in C_{\alpha} \cup \{\bot\})$$ is the code of a half p-score on an interval [u,v] of ω , is equivalent to an MSO statement. *Proof.* Axiom (i) of Definition 5.4, with 0_E replaced by u and 1_E by v, can be expressed by the conjunction of u < v and the following statements: $$P_{\alpha} \subseteq [u, v], \qquad \text{for } \alpha \in \text{Alt}(p),$$ (7.1) $$P_{\alpha}^* = \bigcup_{q \in C_{\alpha} \cup \{\bot\}} P_{\alpha,q}, \quad \text{for } \alpha \in \text{Alt}(p),$$ $$(7.2)$$ $$P_{\alpha,q} \cap P_{\alpha,r} = \emptyset$$, for $\alpha \in \text{Alt}(p)$ and distinct $q, r \in C_{\alpha}$. (7.3) The statement (7.1) is equivalent to the MSO formula $$\bigwedge_{\alpha \in \mathrm{Alt}(p)} (\forall x) \big(x \in P_{\alpha} \Rightarrow (u \le x \land x \le v) \big) .$$ Now the statement " $(x,y) \in \text{cvs}(P_{\alpha})$ " is equivalent to the following MSO formula: $$x \in P_{\alpha} \land y \in P_{\alpha} \land x < y \land (\forall z) \neg (x < z \land z < y \land z \in P_{\alpha});$$ (The symbols \wedge and \neg stand for conjunction and negation, respectively. The quotes in what follows will mean that we are replacing the statement $(x,y) \in \text{cvs}(P)$ by its MSO equivalent found previously, so we are reminded that the work is already done for that statement.) This yields immediately that (7.2) is equivalent to the conjunction of the two following MSO statements: $$\bigwedge_{\alpha \in \text{Alt}(p), \ q \in C_{\alpha} \cup \{\bot\}} \left(x \in P_{\alpha,q} \Rightarrow (\exists y) \text{``}(x,y) \in \text{cvs}(P_{\alpha}) \text{''} \right),$$ $$\bigwedge_{\alpha \in \text{Alt}(p)} (\forall x) (\forall y) \Big(\text{``}(x,y) \in \text{cvs}(P_{\alpha}) \text{''} \Rightarrow \bigvee_{q \in C_{\alpha} \cup \{\bot\}} x \in P_{\alpha,q} \Big)$$ (following the usual convention, \bigwedge and \bigvee stand for conjunction and disjunction over a given index set, respectively). The translation of (7.3) to an MSO statement is even more straightforward. Axiom (ii) of Definition 5.4 can be expressed by the statement $$u \in P_{(\{p\}),p} \land (\forall x) (x \in P_{(\{p\})} \Leftrightarrow (x = u \lor x = v)).$$ Finally, Axiom (iii) of Definition 5.4
is equivalent to the conjunction, over all (α, q, C) with $\alpha \in \text{Alt}(p)$, $q \in C_{\alpha} \setminus \Omega$, and $C \in \text{Cov}(q)$, of the statements $$(\forall x)(\forall y)\Big(\big(``(x,y)\in \operatorname{cvs}(P_{\alpha})" \land x\in P_{\alpha,q}\big)\Rightarrow$$ $$\Big(x\in P_{\alpha^{\smallfrown}(q,C)} \land y\in P_{\alpha^{\smallfrown}(q,C)} \land \vartheta_{\alpha,q,C}(x,y)\Big)\Big),$$ where $\vartheta_{\alpha,q,C}(x,y)$ is the statement $$(\forall u)(\forall v) \Big(\big(``(u,v) \in \operatorname{cvs}(P_{\alpha^{\smallfrown}(q,C)})" \ \land \ x \leq u \ \land \ v \leq y \, \big) \Rightarrow \bigvee_{r \in C} u \in P_{\alpha^{\smallfrown}(q,C),r} \Big) \, .$$ This concludes the proof. Now we formulate the following analogue of Definition 7.2 for scores. **Definition 7.4.** Let $p, q \in \mathcal{F}_{\mathbf{L}}(\Omega)$. Consider families $$\dot{P} = (P_{\alpha}, P_{\alpha,r} \mid \alpha \in Alt(p) \text{ and } q \in C_{\alpha} \cup \{\bot\}),$$ (7.4) $$\dot{Q} = (Q_{\beta}, Q_{\beta,s} \mid \beta \in \text{Alt}(q^{\text{op}}) \text{ and } s \in C_{\beta} \cup \{\bot\}).$$ (7.5) The triple (\dot{P},\dot{Q},U) is the code for a (p,q,U)-score if \dot{P} is the code of a half p-score \vec{P},\dot{Q} is the code of a half $q^{\rm op}$ -score \vec{Q} , and (\vec{P},\vec{Q},U) is a (p,q,U)-score. The analogue of Lemma 7.3 for scores is the following. **Lemma 7.5.** The statement, saying that a triple (\dot{P}, \dot{Q}, U) is the code of a (p, q, U)-score on an interval [u, v] of ω , is equivalent to an MSO statement. *Proof.* Let \dot{P} and \dot{Q} be given by (7.4) and (7.5). By Lemma 7.3, the statements that \dot{P} and \dot{Q} are codes of a half p-score and a half $q^{\rm op}$ -score on [u,v], respectively, are equivalent to MSO formulas. Next, the relations $(x,y) \in \langle x',y' \rangle_U$ and $(x,y) \in \langle x',y' \rangle_{U^c}$ are, respectively, equivalent to the following MSO formulas: $$x' \le x \land x < y \land y \le y' \land (x = x' \lor \neg(x \in U)) \land (y = y' \lor y \in U),$$ $$x' \le x \land x < y \land y \le y' \land (x = x' \lor x \in U) \land (y = y' \lor \neg(y \in U)).$$ From this we can thus deduce the following MSO equivalent of $(x_0, y_0) \perp_U (x_1, y_1)$: $$\neg (\exists x, y) (x < y \land ``(x, y) \in \langle x_0, y_0 \rangle_U" \land ``(x, y) \in \langle x_1, y_1 \rangle_{U^c"}).$$ Therefore, an MSO equivalent of the statement (6.1) is the conjunction, over all $i \in [\ell]$, $\alpha \in \text{Alt}(p)$, and $\beta \in \text{Alt}(q^{\text{op}})$, of the following formulas: $$(\forall x_0)(\forall y_0)(\forall x_1)(\forall y_1)\Big(\big("(x_0, y_0) \in \operatorname{cvs}(P_\alpha)" \land "(x_1, y_1) \in \operatorname{cvs}(Q_\beta)"$$ $$\land x_0 \in P_{\alpha, \mathbf{z}_i} \land x_1 \in Q_{\beta, \mathbf{z}_i}\big) \Rightarrow "(x_0, y_0) \perp_U (x_1, y_1)"\Big). \qquad \Box$$ **Lemma 7.6.** Let $p, q \in F_{\mathbf{L}}(\Omega)$. The statement, depending on two first-order variables x and y and a second-order predicate U, saying that $A_U([x,y])$ satisfies the lattice inclusion $p \leq q$, is equivalent to an MSO statement. *Proof.* By Lemmas 6.3 and 6.4, $A_U([x,y])$ does not satisfy the lattice inclusion $p \leq q$ iff there are integers u,v such that $x \leq u < v \leq y$ and there is a $(p,q,U \cap [u,v])$ -score on [u,v]. Now the existence of a score can be expressed via existential quantification, over all second-order predicates P_α , $P_{\alpha,r}$, Q_β , $Q_{\beta,s}$, of the MSO formula, obtained from Lemma 7.5, that expresses being a (p,q,U)-score. Now the statement $V = U \cap [u,v]$ has the following MSO equivalent: $$(\forall x) (x \in V \Leftrightarrow (x \in U \land u \le x \land x \le v)).$$ Therefore, the following formula is equivalent to $A_U([x,y])$ not satisfying $p \leq q$: $$(\exists u)(\exists v)(\exists V)(\exists \dot{P})(\exists \dot{Q})$$ $$(x \le u \land u < v \land v \le y \land "V = U \cap [u, v]"$$ $$\land "(\dot{P}, \dot{Q}, V) \text{ is the code of a score on } [u, v]"),$$ where, in an obvious sense, $\exists \dot{P}$ stands for a string of quantifiers of the form $\exists P_{\alpha}$ or $\exists P_{\alpha,r}$, for $\alpha \in \text{Alt}(p)$ and $r \in C_{\alpha} \cup \{\bot\}$ (and similarly for $\exists \dot{Q}$). **Definition 7.7.** An orientation is a triple (u, v, U), where $u, v \in \omega$, u < v, and $U \subseteq [u, v]$. We can now state a detailed form of Theorem A. **Theorem 7.8.** Let \mathcal{U} be an MSO-definable set of orientations. Then the equational theory of all lattices $A_U([x,y])$, where $(x,y,U) \in \mathcal{U}$, is decidable. *Proof.* The computation of the canonical forms p and q of lattice terms \dot{p} and \dot{q} is recursive. Now $A_U([x,y])$ satisfies the lattice inclusion $\dot{p} \leq \dot{q}$ for all $(x,y,U) \in \mathcal{U}$ iff the following MSO formula $\theta_{p,q}$ (obtained from the proof of Lemma 7.6) is in S1S: $$(\forall x)(\forall y)(\forall U)\big(\text{``}(x,y,U)\in\mathcal{U}\text{''}\Rightarrow\text{``}\mathsf{A}_U([x,y])\text{ satisfies the inclusion }p\leq q\text{''}\big)$$. Further, the assignment $(p,q) \mapsto \theta_{p,q}$ is given by an effectively computable procedure, that is, it is recursive. The desired conclusion follows from Theorem 7.1. \square Defining \mathcal{U} as the set of all (x, y, U) with x < y and $U \subseteq [x, y]$, we obtain the equational theory of all Cambrian lattices of type A, which, by Lemma 3.1, is the same as the equational theory of all permutohedra. Corollary 7.9. The equational theory of all permutohedra lattices is decidable. By defining \mathcal{U} as the set of all triples (x, y, U) with U = [x, y], we obtain the following. Corollary 7.10. The equational theory of all Tamari lattices is decidable. #### 8. Tensor products and box products Sections 8–10 will be mainly devoted to a proof of Theorem B, more precisely Theorem 10.1, showing that the equational theory of all permutohedra is non-trivial. We shall show that every Cambrian lattice of type A satisfies the splitting identity of the lattice $N_5 \square B(3,2)$; we give in this section the background and the tools for constructing and handling that lattice. Our presentation originates from the tensor product of $(\vee, 0)$ -semilattices considered in Grätzer, Lakser, and Quackenbush [14], which is a variant of Fraser's tensor product of join-semilattices considered in [10]. **Definition 8.1.** Let A and B be $(\vee,0)$ -semilattices. A bi-ideal of $A\times B$ is a lower subset I of $A\times B$ (endowed with the componentwise ordering), containing the subset $$0_{A,B} = (A \times \{0_B\}) \cup (\{0_A\} \times B)$$, such that whenever $(a, b_0) \in I$ and $(a, b_1) \in I$, then $(a, b_0 \vee b_1) \in I$, and similarly with the roles of A and B reversed. The $(\vee, 0)$ -semilattice $A \otimes B$ of all compact elements of $A \otimes B$ is called the *tensor product* of the $(\vee, 0)$ -semilattices A and B. The following elements of $A \overline{\otimes} B$ deserve a special attention: - The pure tensors $a \otimes b = 0_{A,B} \cup \{(x,y) \in A \times B \mid x \leq a \text{ and } y \leq b\}$, whenever $(a,b) \in A \times B$. In particular, $0_{A,B} = 0_A \otimes 0_B$. - The mixed tensors $(a \otimes b') \cup (a' \otimes b)$, whenever $a \leq a'$ in A and $b \leq b'$ in B. - The boxes, $a \square b = \{(x, y) \in A \times B \mid x \le a \text{ or } y \le b\}.$ Clearly, the inequalities $a \otimes b \leq a \square b'$ and $a \otimes b \leq a' \square b$ hold whenever $a, a' \in A$ and $b, b' \in B$. In fact, $a \otimes b = (a \square 0_B) \cap (0_A \square b)$. Notice also that if a and b are both nonzero, then $a \otimes b \leq a' \otimes b'$ iff $a \leq a'$ and $b \leq b'$. While pure tensors and mixed tensors always belong to $A \otimes B$ (in particular, $(a \otimes b') \cup (a' \otimes b)$ is really the join of $a \otimes b'$ and $a' \otimes b$), the box $a \square b$ may not belong to $A \otimes B$. However, if A and B both have a unit element, then $a \square b = (a \otimes 1_B) \cup (1_A \otimes b)$ is a mixed tensor, thus it belongs to $A \otimes B$. If A and B are finite lattices, then $A \otimes B = A \overline{\otimes} B$ is a finite lattice as well. In the infinite case, $A \otimes B$ may not be a lattice. For example, if F(3) denotes the free lattice on three generators, then $M_3 \otimes F(3)$ is not a lattice (cf. Grätzer and Wehrung [16]). The following is stated in Grätzer and Wehrung [17, Definition 4.1]. **Definition 8.2.** For $(\vee, 0)$ -semilattices A and B, a subset C of $A \otimes B$ is a *subtensor product* if it contains all mixed tensors, C is closed under nonempty finite intersection, and C is a lattice under set inclusion. We say that C is *capped* if every member of C is a finite union of pure tensors. If A and B are both finite, then every sub-tensor product is, trivially, capped. Grätzer and Wehrung posed in [17] the problem whether $A \otimes B$ a lattice implies that $A \otimes B$ is a capped tensor product, for any lattices A and B with zero. This problem appeared to be difficult, and was finally solved, with a sophisticated counterexample, in a recent preprint by Chornomaz [9]. A key property of sub-tensor products, with trivial proof, is the following. **Lemma 8.3.** Let A and B be lattices with zero, let C be a sub-tensor product of A and B, and let $a \in A$. Then the map $(B \to C, x \mapsto a \otimes x)$ is a zero-preserving lattice homomorphism. While even in the finite case, the ordinary tensor product $A \otimes B$ will not be satisfactory for our current purposes, a variant called box product will do the trick. The box product is an analogue, for lattices that are not necessarily complete, of Wille's tensor product of concept lattices [58]. Although the two concepts are, for finite lattices, equivalent, we found the box product
presentation and results from Grätzer and Wehrung [15] more suited to our approach, heavily relying on join-coverings, in our lattices. The box product of A and B behaves well only in case both lattices A and B are bounded ³. The following result is contained in Proposition 2.9 and Lemma 3.8 of Grätzer and Wehrung [15]. **Proposition 8.4.** Let A and B be bounded lattices. The set $A \square B$ of all intersections of the form $\bigcap_{i=1}^{n} (a_i \square b_i)$, for n a non-negative integer, $a_1, \ldots, a_n \in A$, and $b_1, \ldots, b_n \in B$, is a lattice under set-theoretical inclusion, called the box product of A and B. Furthermore, $A \square B$ is a capped sub-tensor product of A and B. Let $A = N_5$ and B = B(3,2). By combining Lemma 8.3, Proposition 8.4, and the equations (2.3)–(2.5), we obtain immediately the following equations, valid in the lattice $N_5 \square B(3,2)$: $$c \otimes b_i = (c \otimes (q_* \vee b_i)) \wedge (c \otimes (b_1 \vee b_2)); \tag{8.1}$$ $$c \otimes a_k = (c \otimes (a_k \vee b_i)) \wedge (c \otimes (q_* \vee b_j));$$ (8.2) $$c \otimes (a_k \vee a_l) = (c \otimes (a_k \vee a_l \vee b_i)) \wedge (c \otimes (q_* \vee b_i)); \tag{8.3}$$ The behavior of capped tensor products with respect to congruences will be especially important to us. The following is a consequence of Lemma 5.3 and Theorem 2 in Grätzer and Wehrung [17]. **Proposition 8.5.** Let A and B be lattices with zero and let C be a capped subtensor product of A and B. Then there exists a unique lattice isomorphism ε from $(\operatorname{Con}_{\mathsf{c}} A) \otimes (\operatorname{Con}_{\mathsf{c}} B)$ onto $\operatorname{Con}_{\mathsf{c}} C$ such that $$\varepsilon(\operatorname{con}_{A}(a, a') \otimes \operatorname{con}_{B}(b, b')) = \operatorname{con}_{C}((a \otimes b') \cup (a' \otimes b), a' \otimes b')$$ $$whenever \ a \leq a' \ in \ A \ and \ b \leq b' \ in \ B. \quad (8.4)$$ From now on we shall abuse notation and write $\alpha \otimes \beta$ instead of $\varepsilon(\alpha \otimes \beta)$, whenever $(\alpha, \beta) \in (\operatorname{Con}_{c} A) \times (\operatorname{Con}_{c} B)$. With this abuse of notation, the formula (8.4) becomes $$\operatorname{con}_A(a,a') \otimes \operatorname{con}_B(b,b') = \operatorname{con}_C((a \otimes b') \cup (a' \otimes b), a' \otimes b')$$ whenever $a \leq a'$ in A and $b \leq b'$ in B . (8.5) **Lemma 8.6.** The following statements hold, for any sub-tensor product C of finite lattices A and B: (i) The join-irreducible elements of C are exactly the $p \otimes q$, where $p \in \text{Ji } A$ and $q \in \text{Ji } B$. Furthermore, $(p \otimes q)_* = (p_* \otimes q) \cup (p \otimes q_*)$. ³The box product $A \square B$ is a precursor of the further "lattice tensor product" construction $A \boxtimes B$, that may be defined even in some unbounded cases. This will be here of no concern to us. - (ii) The join-prime elements of C are exactly the $p \otimes q$, where p and q are join-prime in A and B, respectively. - *Proof.* (i) is contained in Wehrung [57, Lemma 7.2]. - (ii). It is an easy exercise to verify that if $p \otimes q$ is join-prime, then so are p and q. Conversely, suppose that p and q are both join-prime. The box $H = \kappa_A(p) \square \kappa_B(q)$ belongs to C, and $p \otimes q \not\subseteq H$. Let $I \in C$ such that $p \otimes q \not\subseteq I$, and suppose that $I \not\subseteq H$. There exists $(x,y) \in I \setminus H$. By the definition of H, $x \not\leq \kappa_A(p)$ and $y \not\leq \kappa_B(q)$, that is, $p \leq x$ and $q \leq y$, so $(p,q) \in x \otimes y \subseteq I$, a contradiction. Therefore, H is the largest element of C not containing $p \otimes q$. A simple application of Proposition 8.5 and Lemma 8.6 yields, with the notational convention introduced in (8.5), the formula $\operatorname{con}_C(p \otimes q) = \operatorname{con}_A(p) \otimes \operatorname{con}_B(q)$, for all $p \in \operatorname{Ji} A$ and all $q \in \operatorname{Ji} B$, (8.6) whenever C is a sub-tensor product of finite lattices A and B. **Lemma 8.7.** The following statements hold, for any capped sub-tensor product C of lattices A and B with zero: - (i) If A and B are both subdirectly irreducible, then so is C. - (ii) If A and B both belong to LB_{fin} , then so does C. - (iii) If A and B both belong to \mathbf{B}_{fin} , then so does $A \square B$. - (iv) If A and B are both splitting, then so is $A \square B$. - *Proof.* (i) (see also Wille [58, Corollary 15]). It follows from Proposition 8.5 that if α is the monolith of A and β is the monolith of B, then $\alpha \otimes \beta$ is the monolith of C. - (ii). Since the relations \unlhd_A and \unlhd_B are both antisymmetric, it follows from (8.6) and (2.2) that \unlhd_C is also antisymmetric. - (iii). Since A and B are both bounded lattices, it follows from the definition of the lattice tensor product \boxtimes in Grätzer and Wehrung [15, Definition 3.1] that $A \boxtimes B = A \square B$. By [15, Proposition 4.1], it follows that $(A \square B)^{\operatorname{op}} \cong A^{\operatorname{op}} \square B^{\operatorname{op}}$. Since A^{op} and B^{op} both belong to $\mathbf{LB}_{\operatorname{fin}}$, so does $A^{\operatorname{op}} \square B^{\operatorname{op}}$ by (ii) above. Since (by (ii) above) $A \square B$ also belongs to $\mathbf{LB}_{\operatorname{fin}}$, it thus belongs to $\mathbf{B}_{\operatorname{fin}}$. - (iv) follows trivially from (i) and (iii) above. \Box Denote by $\lambda(L)$ (resp., $\mu(L)$) the cardinality of Ji L (resp., Mi L), for any finite lattice L. It follows from Freese, Ježek, and Nation [11, Theorem 2.40] that L belongs to $\mathbf{LB}_{\mathrm{fin}}$ iff $\lambda(L) = \lambda(\mathrm{Con}\,L)$, and it follows from [11, Theorem 2.67] that L belongs to $\mathbf{B}_{\mathrm{fin}}$ iff $\lambda(L) = \mu(L) = \lambda(\mathrm{Con}\,L)$. While Lemma 8.7(ii) trivially implies that $(A \in \mathbf{LB}_{\mathrm{fin}})$ and $B \in \mathbf{LB}_{\mathrm{fin}}$ implies that $A \otimes B \in \mathbf{LB}_{\mathrm{fin}}$, the analogue result for $\mathbf{B}_{\mathrm{fin}}$ does not hold in general. For example, $N_5 \otimes N_5$ has 9 join-irreducible elements and 10 meet-irreducible elements (for the union $(p \otimes p_*) \cup (p_* \otimes p) \cup (c \otimes c)$ is meet-irreducible, but it is not a pure box), thus it does not belong to $\mathbf{B}_{\mathrm{fin}}$. Hence, neither (iii) nor (iv) in Lemma 8.7, stated for the box product $A \square B$, can be extended to arbitrary capped sub-tensor products, even in the finite case. #### 9. Tight EA-duets of maps In the present section we shall introduce an "equation-free" view of lattice varieties, in a great extent inspired by McKenzie [38]. This will enable us to prove Theorem B without needing to write huge equations. Following Keimel and Lawson [30], a *Galois adjunction* between posets K and L is a pair (f, h) of maps, where $f: K \to L$ and $h: L \to K$, such that $$f(x) \le y \iff x \le h(y)$$, for all $(x, y) \in K \times L$. In such a case, each of the maps f and h is uniquely determined by the other. We say that f is the *lower adjoint of* h and h is the *upper adjoint of* f. **Definition 9.1.** Let K and L be lattices. A pair (f,g) of maps from K to L is an EA-duet 4 if there are a sublattice H of L and a surjective lattice homomorphism $h: H \to K$ such that f is the lower adjoint of h and g is the upper adjoint of h. **Lemma 9.2.** Let K and L be lattices and let $f, g: K \to L$. Then (f, g) is an EA-duet iff f is a join-homomorphism, g is a meet-homomorphism, and $$f(x) \le g(y) \iff x \le y$$, for all $x, y \in K$. (9.1) *Proof.* If (f,g) is an EA-duet with respect to $h: H \to K$, then it is straightforward to verify that f is a join-homomorphism and g is a meet-homomorphism. Furthermore, $f \leq g$, so $x \leq y$ implies $f(x) \leq g(y)$ and, conversely, for all $x, y \in K$, $f(x) \leq g(y)$ implies that $x = hf(x) \leq hg(y) = y$. Conversely, suppose that f is a join-homomorphism, g is a meet-homomorphism, and (9.1) holds. We set $$H = \bigcup_{x \in K} [f(x), g(x)]. \tag{9.2}$$ For $y \in H$, let $x_0, x_1 \in K$ such that $y \in [f(x_0), g(x_0)] \cap [f(x_1), g(x_1)]$. From $f(x_0) \le y \le g(x_1)$ and our assumptions it follows that $x_0 \le x_1$. Likewise, $x_1 \le x_0$, whence $x_0 = x_1$. This entitles us to define a map $h: H \to K$ by the rule $$h(y) = \text{unique } x \in K \text{ such that } f(x) < y < g(x), \text{ for each } y \in H.$$ (9.3) Observe, in particular, that $h \circ f = h \circ g = \mathrm{id}_K$ (so h is surjective). Furthermore, $f \circ h \leq \mathrm{id}_H \leq g \circ h$. It is also easily seen that h is isotone. Therefore the previous relations determine h as the upper adjoint of f and as the lower adjoint of g; it follows that h preserves all the meets and joins that exist in H. We are therefore left to argue that H is a sublattice of L. If $x_i \in H$ and $x_i = h(y_i)$, for $i \in \{0,1\}$, then $$f(x_0 \wedge x_1) \leq f(x_0) \wedge f(x_1) \leq y_0 \wedge y_1 \leq g(x_0) \wedge g(x_1)$$ = $g(x_0 \wedge x_1)$ (because g is a meet-homomorphism), whence $y_0 \wedge y_1 \in H$. The proof that $y_0 \vee y_1 \in H$ is similar. Remark 9.3. It is an easy exercise to verify that in the context of Lemma 9.2 above, the sublattice H of L and the homomorphism $h: H \to K$ are uniquely determined, by the formulas (9.2) and (9.3), respectively. From now on until the end of this section we fix lattices K and L of finite length. **Lemma 9.4.** The following are equivalent: (i) K is a homomorphic image of a sublattice of L. ⁴After the Soprano singer Aloysia Weber (1760–1839) and the Bass singer Édouard de Reske (1853–1917), moreover following the categorical logic notation \exists_h and \forall_h for the left and right adjoint of h, respectively. Following musical terminology, some of our main objets will
be called *scores*, see Section 6 and Appendix A. (ii) There exists an EA-duet (f,g) of maps from K to L. *Proof.* (i) \Rightarrow (ii). By assumption, there are a sublattice H of L and a surjective homomorphism $h\colon H \twoheadrightarrow K$. Since L has finite length, the lower adjoint (resp., upper adjoint) f (resp., g) of h are both well-defined. By definition, they form an EA-duet. For every map $f \colon K \to L$, the pointwise supremum f^{\vee} of all join-homomorphisms below f (for the componentwise ordering) is itself a join-homomorphism, and thus it is the largest join-homomorphism below f. We denote it by f^{\vee} . Likewise, we denote by f^{\wedge} the least meet-homomorphism above f for the componentwise ordering. In particular, $f^{\vee} \leq f \leq f^{\wedge}$. **Definition 9.5.** A pair (f,g) of maps from K to L is tight if $f=g^{\vee}$ and $g=f^{\wedge}$. In particular, if (f,g) is tight, then f is a join-homomorphism, g is a meet-homomorphism, and $f \leq g$. **Lemma 9.6.** For every pair (f,g) of maps from K to L such that f is a join-homomorphism, g is a meet-homomorphism, and $f \leq g$, there exists a tight pair $(\overline{f}, \overline{g})$ such that $f \leq \overline{f} \leq \overline{g} \leq g$. If (f,g) is an EA-duet, then so is $(\overline{f}, \overline{g})$. *Proof.* Since $f \leq g$ and g is a meet-homomorphism, we get $f \leq f^{\wedge} \leq g$. Now, since f is a join-homomorphism, we get $f = f^{\vee} \leq f^{\wedge \vee} \leq f^{\wedge} \leq g$, so it suffices to prove that the pair $(f^{\wedge \vee}, f^{\wedge})$ is tight, for which we shall argue that $f^{\wedge} = f^{\wedge \vee \wedge}$. Here it goes: $$f^{\wedge\vee\wedge} \le f^{\wedge\wedge} = f^{\wedge},$$ $f^{\wedge\vee\wedge} \ge f^{\vee\wedge} = f^{\wedge}.$ the last equation following from the assumption that $f^{\vee} = f$. Finally, if (f,g) satisfies (9.1), then, since $f \leq \overline{f} \leq \overline{g} \leq g$, $(\overline{f},\overline{g})$ also satisfies (9.1). By applying Lemma 9.2 and Lemma 9.6, we obtain immediately the following corollary. Corollary 9.7. The following are equivalent: - (i) L is a homomorphic image of a sublattice of K. - (ii) There is an EA-duet of maps from K to L. - (iii) There exists a tight EA-duet of maps from K to L. Although the two components of a tight pair may not be identical, we shall see that they agree on join-prime or meet-prime elements (cf. Corollary 9.9). In order to see this, the key lemma is the following. **Lemma 9.8.** Let $g: K \to L$ be an isotone map. Then $g(0) = g^{\vee}(0)$. Furthermore, $g(p) = g^{\vee}(p)$, for any join-prime element p of K. *Proof.* Whenever p is join-prime, the map $f: K \to L$ defined by $$f(x) = \begin{cases} g(p), & \text{if } p \le x \\ g(0_K), & \text{otherwise} \end{cases}, \text{ for all } x \in K,$$ is a join-homomorphism. (If there is no join-prime, define $f(x) = g(0_K)$ everywhere.) From the assumption that g is isotone it follows that $f \leq g$, thus $f \leq g^{\vee}$. Hence, $g(0_K) = f(0_K) \leq g^{\vee}(0_K) \leq g(0_K)$ and $g(p) = f(p) \leq g^{\vee}(p) \leq g(p)$. **Corollary 9.9.** Let (f,g) be a tight EA-duet of maps from K to L. Then f and g agree on all elements of K that are either 0_K , 1_K , join-prime, or meet-prime. *Proof.* Apply Lemma 9.8 to $g: K \to L$ and $f: K^{op} \to L^{op}$. #### 10. An identity for all permutohedra: proving Theorem B Throughout this section we shall set B = B(3,2) and $L = N_5 \square B$. Since N_5 and B(3,2) are both splitting lattices, it follows from Lemma 8.7 that L is also splitting. This section will be devoted to a proof of the following more precise form of Theorem B. **Theorem 10.1.** Every permutohedron P(n) satisfies the splitting identity θ_L of L. Brute force calculation, based on the Mace4 component of McCune's wonderful Prover9-Mace4 software [36], shows that L has 3,338 elements, so θ_L , although failing in L, holds in all lattices with at most 3,337 elements (cf. Section 2.4). We argue by contradiction, assuming that not every permutohedron satisfies the splitting identity of L. By Lemma 3.1, it follows that there are a finite chain E and a subset U of E such that $\mathsf{A}_U(E)$ does not satisfy the splitting identity of L, that is, L belongs to the lattice variety generated by $\mathsf{A}_U(E)$. Since L is subdirectly irreducible and $\mathsf{A}_U(E)$ is finite, it follows from Jónsson's Lemma (cf. Jónsson [27], Jipsen and Rose [24, Chapter 1, Corollary 1.7]) that L is a homomorphic image of a sublattice of $\mathsf{A}_U(E)$. By Corollary 9.7, it follows that there is a tight EA-duet (f,g) of maps from L to $\mathsf{A}_U(E)$. Since $p\otimes q\nleq p_*\Box q_*$ and (f,g) is an EA-duet, we get $f(p\otimes q)\not\subseteq g(p_*\Box q_*)$. Take E of least possible cardinality and pick a pair $$(u,v) \in f(p \otimes q) \setminus g(p_* \square q_*)$$. It is easy to verify that the canonical projection $\pi: A_U(E) \to A_{U\cap[u,v]}([u,v]),$ $a \mapsto a \cap \delta_{[u,v]}$ is a lattice homomorphism. Furthermore, the maps $f' = \pi \circ f$ and $g' = \pi \circ g$ are, respectively, a join-homomorphism and a meet-homomorphism from L to $A_{U\cap[u,v]}([u,v])$ with $(u,v) \in f'(p \otimes q) \setminus g'(p_* \square q_*)$. By the minimality assumption on E, it follows that u and v are the least and the largest element of E, respectively. Hence, we may assume that E = [N], for some positive integer N with $(1,N) \in f(p \otimes q) \setminus g(p_* \square q_*)$, and that N is least possible. **Lemma 10.2.** Let $(x,y) \in \langle 1, N \rangle_U$. If $(x,y) \in f(c \otimes q)$, then $(x,y) \in g(0)$. Proof. From $(x,y) \in \langle 1, N \rangle_U$ and $\langle 1, N \rangle_U \subseteq f(p \otimes q)$ it follows that $(x,y) \in f(p \otimes q)$, thus, since $f \leq g$, also $(x,y) \in g(p \otimes q)$. From $(x,y) \in f(c \otimes q)$ it follows that $(x,y) \in g(c \otimes q)$. Since g is a meet-homomorphism and $(p \otimes q) \land (c \otimes q) = (p \land c) \otimes q = 0 \Leftrightarrow q = 0, (x,y)$ belongs to $g(p \otimes q) \land g(c \otimes q) = g((p \otimes q) \land (c \otimes q)) = g(0)$. Let $(x,y) \in f(c \otimes q)$. Whenever $j \in \{1,2\}$, the inequality $q \leq a_1 \vee a_2 \vee a_3 \vee b_j$ (within B) entails $c \otimes q \leq (c \otimes a_1) \vee (c \otimes a_2) \vee (c \otimes a_3) \vee (c \otimes b_j)$ (within L), thus there exists a subdivision $x = z_0^j < z_1^j < \cdots < z_{n_j}^j = y$ such that whenever $0 \le i < n_j$, there exists $d \in \mathbf{a} \cup \{b_j\}$ such that $(z_i^j, z_{i+1}^j) \in f(c \otimes d)$. (10.1) Denote by $\nu_i(x,y)$ the least possible value of n_i . Our main lemma is the following. **Lemma 10.3.** $f(c \otimes q)$ is contained in $g(c \otimes q_*)$. Proof. Let $(x, y) \in f(c \otimes q)$, we argue by induction on y - x that $(x, y) \in g(c \otimes q_*)$. Consider subdivisions $(z_i^j \mid 0 \le i \le n_j)$ of [x, y] satisfying (10.1), with $n_j = \nu_j(x, y)$. Set $S_j = \{(z_i^j, z_{i+1}^j) \mid 0 \le i < n_j\}$ and $Z_j = \{z_i^j \mid 0 \le i \le n_j\}$, for each $j \in \{1, 2\}$. Suppose first that $n_j = 1$ for some $j \in \{1, 2\}$, say $n_1 = 1$. It follows from (10.1) that $(x, y) \in f(c \otimes d)$ for some $d \in \mathbf{a} \cup \{b_1\}$. Hence $(x, y) \in g(c \otimes d)$. Since $(x, y) \in f(c \otimes q) \subseteq g(c \otimes q)$, g is a meet-homomorphism, and $d \wedge q \leq q_*$, it follows that (x, y) belongs to $g((c \otimes d) \wedge (c \otimes q)) = g(c \otimes (d \wedge q)) \subseteq g(c \otimes q_*)$, and we are done. Therefore we can suppose that $n_j > 1$ for every $j \in \{1, 2\}$. Claim 1. There is no i such that $0 \le i < n_j, z_i^j \notin U$, and $z_{i+1}^j \in U$. Proof of Claim. Suppose that $0 \leq i < n_j$ with $z_i^j \notin U$ and $z_{i+1}^j \in U$. It follows that $(z_i^j, z_{i+1}^j) \in \langle 1, N \rangle_U$. Without loss of generality, we can suppose that i > 0; let then $d \in \mathbf{a} \cup \{b_j\}$ be such that $(z_{i-1}^j, z_i^j) \in f(c \otimes d)$. Recall that $(x, y) \in f(c \otimes q)$, thus $(z_i^j, z_{i+1}^j) \in f(c \otimes q)$ as well; by using Lemma 10.2, we get $(z_i^j, z_{i+1}^j) \in g(0)$, thus, a fortiori, $(z_i^j, z_{i+1}^j) \in g(c \otimes d)$. Since (f, g) is a tight pair and $c \otimes d$ is join-prime in L (cf. Lemma 9.8), we get $f(c \otimes d) = g(c \otimes d)$, thus $(z_i^j, z_{i+1}^j) \in f(c \otimes d)$, and thus $(z_{i-1}^j, z_{i+1}^j) \in f(c \otimes d)$, and the subdivision $$x = z_0^j < \dots < z_{i-1}^j < z_{i+1}^j < \dots < z_{n_j}^j = y$$ fills the same purpose as Z_j while it has length $n_j - 1$, in contradiction with the minimality assumption on n_j . \Box Claim 1. It follows from Claim 1 that, for each $j \in \{1, 2\}$, there exists a unique integer $m_j \in [0, n_j - 1]$ such that $z_i^j \in U$ whenever $0 < i \le m_j$ and $z_i^j \notin U$ whenever $m_j + 1 \le i < n_j$. To ease the notation, we shall from now on set $x_j = z_{m_j}^j$ and $y_j = z_{m_j+1}^j$ whenever $j \in \{1, 2\}$. We shall also set $$\Delta = \{(t, t) \mid t \in [N]\}.$$ **Claim 2.** Suppose that (x_j, y_j) belongs to $f(c \otimes a_k)$ for some $j \in \{1, 2\}$ and some $k \in \{1, 2, 3\}$. Then $(x, y) \in g(c \otimes q_*)$. Proof of Claim. From $(x,y) \in f(c \otimes q)$, $x \leq x_j \leq y$, and $x_j \in \{x\} \cup U$ it follows that $(x,x_j) \in f(c \otimes q) \cup \Delta$. Likewise, $(y_j,y) \in f(c \otimes q) \cup \Delta$. By our induction hypothesis (on y-x), it follows that (x,x_j) and (y_j,y) both belong to $g(c \otimes q_*) \cup \Delta$. Furthermore, from $a_k \leq q_*$ it follows that $c \otimes a_k \leq c \otimes q_*$, thus $$(x_i, y_i) \in f(c \otimes a_k) \subseteq f(c \otimes q_*) \subseteq g(c \otimes q_*)$$. Since (x, y) is contained in $\langle x, x_j \rangle_U \vee \langle x_j, y_j \rangle_U \vee \langle y_j, y \rangle_U$, we are done.
\square Claim 2. From now on, until the end of the proof of Lemma 10.3, we shall thus assume that $(x_j, y_j) \notin f(c \otimes a_k)$ whenever $j \in \{1, 2\}$ and $k \in \{1, 2, 3\}$. By (10.1), the only remaining possibility is that $(x_j, y_j) \in f(c \otimes b_j)$ for each $j \in \{1, 2\}$. If $\{i, j\} = \{1, 2\}$ and $x_i \leq x_j$, define the *left fin of* S_j as (x_j, x_j) , if $x_i = x_j$, and the unique $(u, v) \in S_j$ such that $u \leq x_i < v$, if $x_i < x_j$. Necessarily, $\{u, v\} \subseteq U$. Symmetrically, the right fin of S_j , defined in case $y_j \leq y_i$, is (y_j, y_j) , if $y_i = y_j$, and the unique $(u, v) \in S_j$ such that $u < y_i \leq v$, if $y_j < y_i$. Necessarily, $\{u, v\} \subseteq U^{\mathsf{c}}$. Observe that any (left or right) fin of S_j belongs to $S_j \cup \Delta$. **Claim 3.** The following statements hold whenever $\{i, j\} = \{1, 2\}$. - (i) If $x_i \leq x_j$, then the left fin (u, v) of S_j belongs to $f(c \otimes a_k) \cup \Delta$ for some $k \in \{1, 2, 3\}$; furthermore, $v = x_j$. - (ii) If $y_j \leq y_i$, then the right fin (u, v) of S_j belongs to $f(c \otimes a_k) \cup \Delta$ for some $k \in \{1, 2, 3\}$; furthermore, $u = y_j$. *Proof of Claim.* We prove (i); the proof of (ii) is symmetric. The case where $x_i = x_j$ is trivial, so we shall suppose that $x_i < x_j$; hence $u \le x_i < v \le x_j$. Suppose first that $(u, v) \notin f(c \otimes a_k)$ for any $k \in \{1, 2, 3\}$. It follows from (10.1) that $(u, v) \in f(c \otimes b_i)$. Since $u \leq x_i < v$ and $x_i \in U$, it follows that $$(u, x_i) \in f(c \otimes b_i) \cup \Delta. \tag{10.2}$$ Moreover, from $\{u, x_j, y_j\} \subseteq Z_j$ and $u < x_j < y_j$ it follows that $$(u, x_j) \in f(c \otimes (q_* \vee b_j)) \text{ and } (u, y_j) \in f(c \otimes (q_* \vee b_j)).$$ (10.3) Now we argue by separating cases. In all cases, the key point is here to prove that $(u, y_j) \in f(c \otimes (b_1 \vee b_2))$. - Case 1. $y_i \leq y_j$. This case is illustrated on the two top diagrams in Figure 10.1. In this figure and all the following ones, the notation \overrightarrow{z} reminds us that $z \in \{x\} \cup U^c$, while the notation \overleftarrow{z} reminds us that $z \in \{y\} \cup U$. - (a) If $x_j \leq y_i$, then, since $y_i \leq y_j \leq y$, $y_i \in \{y\} \cup U^c$, and $(x_j, y_j) \in f(c \otimes b_j)$, we get $$(y_i, y_i) \in f(c \otimes b_i) \cup \Delta. \tag{10.4}$$ (b) If $y_i < x_j$, then, since $y_i \notin U$ and $x_j \in U$, we get $(y_i, x_j) \in \langle 1, N \rangle_U$, thus, since $(y_i, x_j) \in \langle x, y \rangle_U \subseteq f(c \otimes q)$ and by Lemma 10.2, $(y_i, x_j) \in g(0)$, and thus, a fortiori, $(y_i, x_j) \in g(c \otimes b_j)$. Since $c \otimes b_j$ is joinprime, it follows from Lemma 9.8 that $(y_i, x_j) \in f(c \otimes b_j)$. Since $(x_j, y_j) \in f(c \otimes b_j)$, (10.4) follows again. Hence, (10.4) is valid in any case. Now it follows from $(x_i, y_i) \in f(c \otimes b_i)$, together with (10.2) and (10.4), that $(u, y_j) \in f(c \otimes (b_1 \vee b_2))$, thus $(u, y_j) \in g(c \otimes (b_1 \vee b_2))$. By applying the meet-homomorphism g to (8.1) and by using (10.3), we obtain that (u, y_j) belongs to $$\begin{split} g\big(c\otimes(q_*\vee b_j)\big)\wedge g\big(c\otimes(b_1\vee b_2)\big)\\ &=g\Big(\big(c\otimes(q_*\vee b_j)\big)\wedge\big(c\otimes(b_1\vee b_2)\big)\Big)\\ &=g(c\otimes b_j)\\ &=f(c\otimes b_j) \qquad \text{(use again Lemma 9.8)}\,. \end{split}$$ It follows that the subdivision, obtained from Z_j by removing all the elements of $Z_j \cap]u, y_j[$ (in particular, x_j), fills the same purpose as Z_j ; a contradiction by the minimality assumption on n_j . Case 2. $y_j < y_i$. From $x_i < x_j < y_i$, $x_j \in U$, and $(x_i, y_i) \in f(c \otimes b_i)$ it follows that $(x_i, x_j) \in f(c \otimes b_i)$. By (10.2) together with $(x_j, y_j) \in f(c \otimes b_j)$, it follows that $(u, y_j) \in f(c \otimes (b_1 \vee b_2))$, thus $(u, y_j) \in g(c \otimes (b_1 \vee b_2))$. By applying the meet-homomorphism g to (8.1) and by using (10.3), it follows $$u \xrightarrow{c\otimes b_{j}} \xleftarrow{c_{i}} \xrightarrow{c\otimes b_{i}} \xrightarrow{y_{i}} \xrightarrow{c\otimes b_{j}} y_{j}$$ $$u \xrightarrow{c\otimes b_{j}} v$$ $$u \xrightarrow{c\otimes b_{j}} v$$ $$x_{j} \xrightarrow{c\otimes b_{j}} y_{j}$$ $$x_{i} \xrightarrow{c\otimes b_{i}} y_{i}$$ $$u \xrightarrow{c\otimes b_{i}} y_{i}$$ $$u \xrightarrow{c\otimes b_{j}} y_{j}$$ $$u \xrightarrow{c\otimes b_{j}} x_{i} \xrightarrow{c\otimes b_{i}} x_{j} \xrightarrow{c\otimes b_{j}} y_{j}$$ $$u \xrightarrow{c\otimes b_{j}} v$$ FIGURE 10.1. Cases 1.a (up-left), 1.b (up-right), and 2 (down) in the proof of $(u, v) \in f(c \otimes a_k) \cup \Delta$ in Claim 3 $$x_{i} \xrightarrow{c \otimes b_{i}} y_{i}$$ $$u \xrightarrow{c \otimes a_{k}} \overleftarrow{x_{i}} \xrightarrow{c \otimes b_{i}} \overleftarrow{x_{j}} \qquad \qquad u \xrightarrow{c \otimes a_{k}} \overleftarrow{x_{i}} \xrightarrow{c \otimes b_{i}} \overrightarrow{y_{i}} \xrightarrow{0} \overleftarrow{x_{j}}$$ $$u \xrightarrow{c \otimes a_{k}} v$$ FIGURE 10.2. Cases 1 (left) and 2 (right) in the proof of $v = x_i$ in Claim 3 again, as in Case 1 above, that $(u, y_j) \in f(c \otimes b_j)$, which leads to the same contradiction as at the end of the proof of Case 1. This completes the proof that $(u,v) \in f(c \otimes a_k)$ for some $k \in \{1,2,3\}$. Since $x \leq u \leq x_i < v$ and $x_i \in \{x\} \cup U$, it follows that $$(u, x_i) \in f(c \otimes a_k) \cup \Delta. \tag{10.5}$$ Now we must prove that $v = x_j$. We argue by separating cases. In all cases, the key point is to show that $(u, x_j) \in f(c \otimes (a_k \vee b_i))$; see Figure 10.2. Case 1. $x_j \leq y_i$. From $(x_i, y_i) \in f(c \otimes b_i)$, $x_i < x_j \leq y_i$, and $x_j \in U$ it follows that $(x_i, x_j) \in f(c \otimes b_i)$. Hence, by (10.5), it follows that $(u, x_j) \in f(c \otimes (a_k \vee b_i))$, thus $(u, x_j) \in g(c \otimes (a_k \vee b_i))$. By using (10.3) and by applying the meet-homomorphism g to (8.2), it follows that $(u, x_j) \in g(c \otimes a_k)$, thus, by Lemma 9.8, $(u, x_j) \in f(c \otimes a_k)$. It follows that the subdivision, obtained by removing from Z_j all the elements of $Z_j \cap]u, x_j[$, fills the same purpose as Z_j ; whence, by the minimality assumption on Z_j , we get $v = x_j$. $$u \xrightarrow{c \otimes a_i} x_1 \qquad y_1 \xrightarrow{c \otimes a_j} v \qquad \qquad u \xrightarrow{c \otimes a_i} x_1 \xrightarrow{c \otimes b_1} y_1 \xrightarrow{c \otimes a_j} v$$ $$u \xrightarrow{c \otimes a_i} x_2 \xrightarrow{c \otimes b_2} \xrightarrow{p_2} \xrightarrow{c \otimes a_j} v \qquad \qquad u \xrightarrow{c \otimes a_i} x_2 \xrightarrow{c \otimes b_2} \xrightarrow{p_2} \xrightarrow{c \otimes a_j} v$$ FIGURE 10.3. Final cases in the proof of Lemma 10.3: Case 1 (left) and Case 2 (right) Case 2. $y_i < x_j$. Then $(y_i, x_j) \in \langle 1, N \rangle_U$, thus, since $(y_i, x_j) \in \langle x, y \rangle_U \subseteq f(c \otimes q)$ and by Lemma 10.2, $(y_i, x_j) \in g(0)$, and thus, a fortiori, $(y_i, x_j) \in g(c \otimes b_i)$, and hence, by Lemma 9.8, $(y_i, x_j) \in f(c \otimes b_i)$. Since $(x_i, y_i) \in f(c \otimes b_i)$ and by (10.5), it follows that $(u, x_j) \in f(c \otimes (a_k \vee b_i))$. The conclusion $v = x_j$ is then obtained in the same way as in Case 1 above. This completes the proof of Claim 3. \square Claim 3. In order to finish the proof of Lemma 10.3, we argue by separating cases, according to the relative positions of the intervals $[x_1, y_1]$ and $[x_2, y_2]$. By symmetry, there are two cases to consider (see Figure 10.3). - Case 1. $[x_1, y_1] \subseteq [x_2, y_2]$. Denote by (u, x_1) and (y_1, v) the left fin and the right fin of S_1 , respectively (cf. Claim 3). In particular, $u \le x_2 \le x_1 < y_1 \le y_2 \le v$. Furthermore, by Claim 3, there are $i, j \in \{1, 2, 3\}$ such that $(u, x_1) \in f(c \otimes a_i) \cup \Delta$ and $(y_1, v) \in f(c \otimes a_j) \cup \Delta$. From $x \le u \le x_2 \le x_1$, $(u, x_1) \in f(c \otimes a_i) \cup \Delta$, and $x_2 \in \{x\} \cup U$ it follows that $(u, x_2) \in f(c \otimes a_i) \cup \Delta$. Symmetrically, $(y_2, v) \in f(c \otimes a_j) \cup \Delta$. Since $(x_2, y_2) \in f(c \otimes b_2) \cup \Delta$, it follows that $(u, v) \in f(c \otimes (a_i \vee a_j \vee b_2))$. On the other hand, from $\{u, v\} \subseteq Z_1$ and u < v it follows that $(u, v) \in f(c \otimes (a_i \vee a_j \vee b_2))$. Since $f \le g$ and by applying the meet-homomorphism g to (8.3), it follows that $(u, v) \in g(c \otimes (a_i \vee a_j))$; whence $(u, v) \in g(c \otimes q_*)$. Now, from the induction hypothesis it follows that (x, u) and (x, v) both belong to the set $g(c \otimes q_*) \cup \Delta$; whence $(x, y) \in g(c \otimes q_*)$. - Case 2. $x_1 < x_2$ and $y_1 < y_2$. Denote by (u, x_2) the left fin of S_2 and by (y_1, v) the right fin of S_1 (cf. Claim 3). It follows from Claim 3 that there are $i, j \in \{1, 2, 3\}$ such that $(u, x_2) \in f(c \otimes a_i) \cup \Delta$ and $(y_1, v) \in f(c \otimes a_j) \cup \Delta$. From $u \leq x_1 < x_2$, $(u, x_2) \in f(c \otimes a_i) \cup \Delta$, and $x_1 \in U$ it follows that $(u, x_1) \in f(c \otimes a_i) \cup \Delta$. Since $(x_1, y_1) \in f(c \otimes b_1)$ and $(y_1, v) \in f(c \otimes a_j)$ it thus follows that $(u, v) \in f(c \otimes (a_i \vee a_j \vee b_1))$. A similar proof, using this time the subdivision $u < x_2 < y_2 \leq v$, yields the relation $(u, v) \in f(c \otimes (a_i \vee a_j \vee b_2))$. Since $f \leq g$ and by applying the meet-homomorphism g to (8.3), it follows that $(u, v) \in g(c \otimes (a_i \vee a_j))$. We conclude that $(x, y) \in g(c \otimes q_*)$ as in the last part of the proof of Case 1 above. This concludes the proof of Lemma 10.3. End of the proof of Theorem 10.1. From $p \leq p_* \vee c$ (within N_5) it
follows that $p \otimes q \leq (p_* \otimes q) \vee (c \otimes q)$ (within L), thus $f(p \otimes q) \subseteq f(p_* \otimes q) \vee f(c \otimes q)$, and thus there exists a subdivision $1 = z_0 < z_1 < \cdots < z_n = N$ such that each (z_i, z_{i+1}) belongs to $f(p_* \otimes q) \cup f(c \otimes q)$. By Lemma 10.3, $(z_i, z_{i+1}) \in f(c \otimes q)$ implies that $(z_i, z_{i+1}) \in g(c \otimes q_*)$, thus, a fortiori, $(z_i, z_{i+1}) \in g(p_* \square q_*)$. The latter relation also holds in case $(z_i, z_{i+1}) \in f(p_* \otimes q)$ (because $f \leq g$ and $p_* \otimes q \leq p_* \square q_*$). Therefore, each (z_i, z_{i+1}) belongs to $g(p_* \square q_*)$, and therefore so does (1, N); a contradiction. ## 11. Permutohedra on locally dismantlable lattices: proving Theorem C The present section will deal with the extended permutohedron R(E) on a poset E, as introduced in Santocanale and Wehrung [48] (cf. Section 3), and prove that those R(E) satisfy no nontrivial lattice identity. The posets in question will actually be lattices of a very special kind. #### **Definition 11.1.** A lattice L is - dismantlable (cf. Rival [45], Kelly and Rival [32]) if it is finite and every sublattice of L with at least three elements has an element which is doubly irreducible, that is, both meet- and join-irreducible; - locally dismantlable if every finite subset of L is contained in a dismantlable sublattice of L. A poset S is a *sub-poset* of a poset T if S is contained in T and the inclusion mapping of S into T is an order-embedding. **Definition 11.2.** A poset T is a segment extension of a sub-poset S if there is a nonempty finite chain C of T, with extremities $x = \min C$ and $y = \max C$, such that - (i) $C \cap S = \{x, y\} \text{ and } C \cup S = T;$ - (ii) $(s \le z \Leftrightarrow s \le x)$ and $(s \ge z \Leftrightarrow s \ge y)$, whenever $s \in S$ and $z \in C$. The proof of the following lemma is straightforward. **Lemma 11.3.** The following statements hold, for any segment extension T of a poset S. - (i) If S is a lattice, then so is T. Furthermore, S is a sublattice of T. - (ii) If S is a dismantlable lattice, then so is T. The following definition is mainly taken from Santocanale and Wehrung [47, § 10]. **Definition 11.4.** Let S be a poset and let L be a lattice. - A map $\mu : \delta_S \to L$ is an L-valued polarized measure on S if $\mu(x,y) \le \mu(x,z) \le \mu(x,y) \lor \mu(y,z)$ whenever x < y < z in S. - A refinement problem for a polarized measure μ is a quadruple (x, y, a_0, a_1) , where $(x, y) \in \delta_S$ and $a_0, a_1 \in L$, such that $\mu(x, y) \leq a_0 \vee a_1$. - A solution of the refinement problem above is a subdivision $x = z_0 < z_1 < \cdots < z_n = y$ in S such that each $\mu(z_i, z_{i+1})$ is contained in some a_i . The main lemma of this section is the following. **Lemma 11.5.** Let S be a finite poset, let u < v in S, let L be a finite meet-semidistributive lattice, let $\mu \colon \boldsymbol{\delta}_S \to L$ be a polarized measure, and let $a_0, a_1 \in L$ such that $\mu(u, v) \leq a_0 \vee a_1$. Then there are a finite segment extension T of S and a polarized measure $\nu \colon \boldsymbol{\delta}_T \to L$ extending μ such that: - (i) The refinement problem $\nu(u,v) \leq a_0 \vee a_1$ can be solved in T. - (ii) If the range of μ does not contain zero, then neither does the range of ν . Proof. As the conclusion is trivial in case $\mu(u,v) \leq a_j$ for some j < 2 (take T = S and $\nu = \mu$), we shall assume that $\mu(u,v) \nleq a_j$ for all j < 2. In particular, both a_0 and a_1 are nonzero; furthermore, it is ruled out that $\mu(u,v) \wedge a_j = 0$ for each j < 2, for then we would infer, by the meet-semidistributivity of L, that $\mu(u,v) = \mu(u,v) \wedge (a_0 \vee a_1) = 0$, a contradiction. Hence we may assume that $\mu(u,v) \wedge a_0$ is nonzero. An intuitive description of what follows is that we first attach an infinite copy of the chain ω of all nonnegative integers to S between u and v; then we show that all large enough members of that ω are redundant, so we get rid of them. We shall also use the convention $\mu(x,x)=0$ for each $x\in S$. We shall set $\varepsilon(n)=n$ mod 2 for each integer n, and we shall endow the cartesian product $(S\downarrow u)\times \omega$ with the partial ordering \leq^* defined by $$(x,k) \leq^* (y,l) \iff (y \leq x \text{ and } k \leq l), \text{ for all } (x,k), (y,l) \in (S \downarrow u) \times \omega.$$ We define, by \leq^* -induction, a map $f: (S \downarrow u) \times \omega \to L$ by the rule $$f(x,0) = \mu(x,u), \qquad (11.1)$$ $$f(x, k+1) = \bigwedge \left(\mu(x, t) \vee f(t, k+1) \mid t \in]x, u] \right) \wedge \left(f(x, k) \vee a_{\varepsilon(k)} \right) \wedge \mu(x, v),$$ $$(11.2)$$ for each $(x,k) \in (S \downarrow u) \times \omega$. As usual, empty meets are identified with the top element of L. Claim 1. The inequality $f(x,k) \leq \mu(x,y) \vee f(y,k)$ holds, for all x < y in $S \downarrow u$ and all $k < \omega$. Proof of Claim. We argue by induction on k. The conclusion holds for k=0 because μ is a polarized measure. If the statement holds at k, then, setting t=y in the meet in the defining equation (11.2), we obtain the inequality $f(x,k+1) \leq \mu(x,y) \vee f(y,k+1)$. Claim 2. $$\mu(x,u) \leq f(x,k) \leq \mu(x,v)$$, for each $(x,k) \in (S \downarrow u) \times \omega$. Proof of Claim. The inequality $f(x,k) \leq \mu(x,v)$ is trivial. For the inequality $\mu(x,u) \leq f(x,k)$, we argue by \leq^* -induction on (x,k). The result is trivial for k=0. Suppose that it holds at every pair \leq^* -smaller than (x,k+1). For each $t \in]x,u]$, it follows from the induction hypothesis that $\mu(t,u) \leq f(t,k+1)$, thus $\mu(x,u) \leq \mu(x,t) \vee \mu(t,u) \leq \mu(x,t) \vee f(t,k+1)$. Furthermore, from the induction hypothesis it follows that $\mu(x,u) \leq f(x,k)$, whence $\mu(x,u) \leq f(x,k) \vee a_{\varepsilon(k)}$. Recalling also that $\mu(x,u) \leq \mu(x,v)$, the result follows immediately from equation (11.2) defining f(x,k+1). Claim 3. The inequality $f(x,k) \leq f(x,k+1)$ holds, for each $(x,k) \in (S \downarrow u) \times \omega$. Proof of Claim. We argue by downward induction on x. For each $t \in [x,u]$, it follows from the induction hypothesis that $f(t,k) \leq f(t,k+1)$, thus, using Claim 1, $f(x,k) \leq \mu(x,t) \vee f(t,k) \leq \mu(x,t) \vee f(t,k+1)$. Since $f(x,k) \leq f(x,k) \vee a_{\varepsilon(k)}$, the result follows immediately from (11.2). By Claim 3 and as L and $S \downarrow u$ are both finite, there exists $m \in \omega \setminus \{0\}$ such that $(\forall x \in S \downarrow u)(\forall k \geq m \text{ in } \omega)(f(x,k) = f(x,m))$. For the rest of the proof of Lemma 11.5 we shall fix that integer m. Set g(x) = f(x, m), for each $x \in S \downarrow u$. **Claim 4.** The equality $g(x) = \mu(x, v)$ holds, for each $x \in S \downarrow u$. *Proof of Claim.* We argue by (downward) induction on x. For each $t \in [x, u]$, it follows from the induction hypothesis that $g(t) = \mu(t, v)$, thus $\mu(x, t) \vee g(t) \ge \mu(x, v)$. Therefore, by applying (11.2) to $k \in \{m+1, m+2\}$, we obtain that $$g(x) = \bigwedge (\mu(x,t) \vee g(t) \mid t \in]x,u]) \wedge (g(x) \vee a_{\varepsilon(k)}) \wedge \mu(x,v)$$ $$= (g(x) \vee a_{\varepsilon(k)}) \wedge \mu(x,v).$$ Therefore, by using the meet-semidistributivity of L, we obtain $$g(x) = (g(x) \lor a_0 \lor a_1) \land \mu(x, v). \tag{11.3}$$ Now, by using Claim 2, $g(x) \lor a_0 \lor a_1 \ge \mu(x, u) \lor \mu(u, v) \ge \mu(x, v)$, thus, using (11.3), $g(x) = \mu(x, v)$. Now we fix new symbols t_1, \ldots, t_{m-1} and we set $T = S \cup \{t_1, \ldots, t_{m-1}\}$, with $u < t_1 < \cdots < t_{m-1} < v$. Furthermore, we extend the ordering of S to T by letting $(s \le t_i \Leftrightarrow s \le u)$ and $(t_i \le s \Leftrightarrow v \le s)$, whenever $s \in S$. We extend the map μ to a map $\nu \colon \boldsymbol{\delta}_T \to L$ by setting $$\nu(x, t_k) = f(x, k), \quad \text{for each } (x, k) \in (S \downarrow u) \times [1, m], \quad (11.4)$$ $$\nu(t_k, t_l) = \bigvee (a_{\varepsilon(i)} \mid k \le i < l), \quad \text{whenever } 1 \le k < l < m,$$ (11.5) $$\nu(t_k, y) = \bigvee (a_{\varepsilon(i)} \mid k \le i < m) \lor \mu(v, y), \quad \text{for each } (k, y) \in [1, m[\times (S \uparrow v)).$$ (11.6) Verifying that ν is a polarized measure amounts to verifying the following statements. - $\mu(x,y) \le f(x,k) \le \mu(x,y) \lor f(y,k)$, for all x < y in $S \downarrow u$ and all $k \in [1, m[$. This follows trivially from Claims 1 and 2. - $f(x,k) \leq f(x,l) \leq f(x,k) \vee \nu(t_k,t_l)$, for all $x \in S \downarrow u$ and all k < l in [1,m[. The first inequality follows from Claim 3. For l=k+1, the second inequality follows trivially from (11.2) and (11.5), while for $l \geq k+2$, it follows from (11.5) together with the case where l=k+1. - $f(x,k) \leq \mu(x,y) \leq f(x,k) \vee \nu(t_k,y)$, for all $(x,y) \in (S \downarrow u) \times (S \uparrow v)$ and all $k \in [1,m[$. The first inequality follows from Claim 2 together with $\mu(x,v) \leq \mu(x,y)$. In order to prove the second inequality, we separate cases. If $k \leq m-2$, then, as $\mu(u,v) \leq a_0 \vee a_1$, $$f(x,k) \vee \nu(t_k,y) = f(x,k) \vee a_0 \vee a_1 \vee \mu(v,y)$$ $$\geq \mu(x,u) \vee \mu(u,v) \vee \mu(v,y)$$ (by Claim 2) $$\geq \mu(x,y)$$ and we are done. If k = m - 1, then $$f(x,k) \vee \nu(t_k,y) = f(x,k) \vee a_{\varepsilon(k)} \vee \mu(v,y)$$ $$\geq f(x,k+1) \vee \mu(v,y) \qquad \text{(use (11.2))}$$ $$= g(x) \vee \mu(v,y)$$ $$= \mu(x,v) \vee \mu(v,y) \qquad \text{(by Claim 4)}$$ $$\geq \mu(x,y)$$ and we are done again. - $\nu(t_k, t_l) \leq \nu(t_k, y) \leq \nu(t_k, t_l) \vee \nu(t_l, y)$, for all k < l in [1, m[and all $y \in S \uparrow v$. This follows immediately from (11.5) and (11.6). - $\nu(t_k, x) \leq \nu(t_k, y) \leq \nu(t_k, x) \vee \mu(x, y)$, for all $k
\in [1, m[$ and all x < y in $S \uparrow v$. This follows immediately from (11.6). Hence we have proved that ν is a polarized measure. By construction, the refinement problem $\nu(u, v) \leq a_0 \vee a_1$ can be solved in T. Now suppose that the range of μ does not contain the zero of L (provided the latter exists). In order to prove that ν satisfies the same statement and recalling that $a_i \neq 0$ for i < 2, it will be enough to prove that f(x,k) is nonzero for every $x \in S \downarrow u$ and every positive integer k. By Claim 2, if f(x,k) = 0, then $\mu(x,u) = 0$ (remember the convention $\mu(u,u) = 0$), thus x = u, and thus, by Claim 3, f(u,1) = 0, that is, using 11.2, $a_0 \wedge \mu(u,v) = 0$, which we have ruled out from the beginning. This concludes the proof. This brings us to the main result of this section, involving the extended permutohedron R(E) and its meet-subsemilattice A(E) (cf. Section 3). From now on, by "countable" we will always mean "at most countable". **Theorem 11.6.** Let L be a finite meet-semidistributive lattice. There are a countable, locally dismantlable lattice E together with a zero-preserving lattice embedding $\varphi \colon L \hookrightarrow \mathsf{R}(E)$ with range contained into $\mathsf{A}(E)$. In particular, φ is also a zero-preserving lattice embedding from L into $\mathsf{A}(E)$. *Proof.* Endowing the finite set $E_0 = L \setminus \{0\}$ with any strict well-ordering, the map $\mu_0 \colon \delta_{E_0} \to L$, $(x,y) \mapsto x$ is a polarized measure with nonzero values. Having defined a polarized measure $\mu_n \colon \delta_{E_n} \to L$ with nonzero values, and with E_n a dismantlable lattice, a straightforward iteration of Lemma 11.5, invoking Lemma 11.3 for the preservation of dismantlability, yields a dismantlable extension E_{n+1} of E_n and a polarized measure $\mu_{n+1} \colon \delta_{E_{n+1}} \to L$ with nonzero values, extending μ_n , such that every refinement problem for μ_n is solved by μ_{n+1} . The union μ of all μ_n is an L-polarized measure on the countable, locally dismantlable lattice $E = \bigcup_{n \in \omega} E_n$. It has nonzero values, and every refinement problem for μ has a solution. The map φ defined on L by the rule $$\varphi(a) = \{(x, y) \in \delta_E \mid \mu(x, y) \le a\}, \text{ for all } a \in L,$$ takes its values in A(E). As the meet in A(E) is intersection, φ is a meet-homomorphism to A(E); as A(E) is a meet-subsemilattice of R(E), φ is also a meet-homomorphism to R(E). Since μ takes nonzero values, φ is zero-preserving. Moreover, since μ solves all its own refinement problems and since the join in R(E) is the transitive closure of the union, the definition of φ yields immediately that φ is a join-homomorphism to R(E). Finally, let us notice that φ is also a join-homomorphism to A(E); indeed, while the join in A(E) is, in general, not the transitive closure of the union, the fact that $\varphi(a_0 \vee a_1)$ belongs to A(E) forces it to be the join $\varphi(a_0) \vee \varphi(a_1)$ within A(E). Finally, since μ extends μ_0 , its range is $L \setminus \{0\}$; whence φ is one-to-one. **Corollary 11.7.** Every free lattice embeds, as a sublattice, into R(E) for some locally dismantlable lattice E, via a map with range contained in A(E). *Proof.* A well-known result by Day (cf. Freese, Ježek, and Nation [11, Theorem 2.84]) states that every free lattice embeds into a direct product of members of $\mathbf{B}_{\mathrm{fin}}$. Since every member of $\mathbf{B}_{\mathrm{fin}}$ is meet-semidistributive, it follows from Theorem 11.6 that every free lattice embeds into a product $\prod_{i \in I} \mathsf{R}(E_i)$, for a collection $(E_i \mid i \in I)$ of locally dismantlable lattices E_i . Fixing a strict well-ordering \triangleleft on I, the disjoint union $E = \bigcup_{i \in I} (\{i\} \times E_i)$, endowed with the lexicographical ordering (i.e., $(i, x) \leq (j, y)$ if either $i \triangleleft j$ or $(i = j \text{ and } x \leq y)$), is locally dismantlable, and $\prod_{i \in I} \mathsf{R}(E_i)$ embeds into $\mathsf{R}(E)$ via $(\mathbf{x}_i \mid i \in I) \mapsto \bigcup_{i \in I} \mathbf{x}_i$. The latter assignment maps $\prod_{i \in I} \mathsf{A}(E_i)$ into $\mathsf{A}(E)$. In particular, we get the following more precise form of Theorem C. **Corollary 11.8.** There is no nontrivial lattice-theoretical identity satisfied by all R(E) (resp., A(E)), for E a countable, locally dismantlable lattice. Remark 11.9. Every sub-poset E of a poset F induces a $(\land, 1)$ -homomorphism $\pi_E^F \colon \mathsf{A}(F) \to \mathsf{A}(E), \ x \mapsto x \cap \delta_E$. This map preserves all directed joins. Now let $E = \bigcup_{n \in \omega} E_n$ be an increasing union of finite dismantlable lattices E_n . It is obvious that $\mathsf{A}(E)$, together with the maps $\pi_{E_n}^E$, is the inverse limit, in the category of all $(\land, 1)$ -semilattices, of the $\mathsf{A}(E_n)$. Now it can be proved that this implies that $\mathsf{A}(E)$ belongs to the lattice variety generated by all $\mathsf{A}(E_n)$. Hence we can strengthen part of the statement of Corollary 11.8 as follows: The lattices $\mathsf{A}(E)$, for E ranging over all finite dismantlable lattices, do not satisfy any nontrivial lattice identity. However, for a sub-poset E of a poset F, the assignment $\mathbf{x} \mapsto \mathbf{x} \cap \mathbf{\delta}_E$ does not necessarily map $\mathsf{R}(F)$ to $\mathsf{R}(E)$, so the argument above does not extend to $\mathsf{R}(E)$. Remark 11.10. The locally dismantlable lattice E in Theorem 11.6 has been obtained by means of successive segment extensions. Such extensions usually create squares. It can therefore be asked whether a better construction would lead to an embedding of every lattice from \mathbf{B}_{fin} into some $\mathsf{P}(E)$, with E square-free. This is actually not possible, as if E is square-free, then $\mathsf{P}(E)$ is a subdirect product of permutohedra, see Santocanale and Wehrung [50, Exercices 2.4–2.6]. #### 12. Discussion Our results raise a whole array of new questions. - 12.1. How far can we go? It is known since Katrnoška [29] and Mayet [35] that any complete ortholattice can be obtained as the lattice of all clopen (i.e., closed and open) subsets in some closure space; hence those satisfy no nontrivial identity. Nevertheless, adding conditions on the closure space (P, φ) brings restrictions to the corresponding lattice $\operatorname{Reg}(P, \varphi)$ of regular closed subsets (i.e., the closures of open sets). For example, we prove in our paper [49] that if (P, φ) is a finite convex geometry, then $\operatorname{Reg}(P, \varphi)$ is pseudocomplemented. We do not know whether there is a nontrivial lattice identity satisfied by $\operatorname{Reg}(P, \varphi)$ for every finite convex geometry (P, φ) . In view of Theorem C (cf. Corollary 11.8), this certainly sounds unplausible. Then the possibility arises that every class of closure spaces (P, φ) would yield an identity for all the corresponding $\operatorname{Reg}(P, \varphi)$. Particular instances of that question, along with natural variants, would be the following: - (1) Is it the case that for every positive integer d there exists a nontrivial lattice identity satisfied by the extended permutohedron R(E) for every finite poset E of order-dimension at most d? Note that there are finite dismantlable posets of arbitrarily large order-dimension, see Kelly [31]. - (2) Can every finite Coxeter lattice be embedded into some P(n)? (We know that this holds for Coxeter lattices of type B.) Does it at least belong to the variety generated by all P(n)? - (3) Similar questions can be asked for the various classes of "permutohedra" considered in our papers [48, 49]: most notably, lattices of regular closed subsets constructed from *semilattices*, *graphs*, *hyperplane arrangements*. - 12.2. Finitely based subvarieties of the variety generated by all permutohedra. Denote by \mathcal{P} the variety generated by all permutohedra. Is it decidable whether the class of all lattices satisfying a given lattice identity is contained in \mathcal{P} ? Since the variety generated by a given finite lattice can be defined by a single identity (McKenzie [37]), this would solve the other question whether a given finite lattice belongs to \mathcal{P} . Those questions arise, for instance, for the lattices $\mathsf{B}(m,n)$ (cf. Section 2.5, also Appendix A where we give a combinatorial equivalent of the corresponding question), or for Nation's identity β_1' from [40, page 537] (since $\mathsf{N}_5 \square \mathsf{B}(3,2)$ satisfies β_2' we do not need to try other β_n'). In particular, we know since [47] that $\mathsf{B}(3,3)$ and all $\mathsf{B}(n,2)$ belong to \mathcal{P} , but we do not know whether $\mathsf{B}(4,3)$ belongs to \mathcal{P} (cf. Appendix A). A related question is the one whether the variety \mathcal{P} can be defined by finitely many lattice identities (equivalently, by a single lattice identity). - 12.3. Varieties and quasivarieties of ortholattices. Recall that a *quasi-identity* is a formula of the form $$(\forall \vec{x}) \Big(\big(p_1(\vec{x}) = q_1(\vec{x}) \text{ and } \cdots \text{ and } p_n(\vec{x}) = q_n(\vec{x}) \big) \Rightarrow p(\vec{x}) = q(\vec{x}) \Big),$$ where all p, q, p_i , q_i are terms. It is known since Bruns [5, § (4.2)] that the set of all quasi-identities satisfied by all ortholattices is decidable. Can Theorem A be extended to permutohedra viewed as *ortholattices*, that is, lattices with an additional unary operation symbol for complementation? Can Theorem A be extended to quasi-identities? Of course, the questions asked in Subsections 12.2–12.3 can be extended similarly. 12.4. **Tractability of the algorithm.** While the
equational theory of all permutohedra, respectively Tamari lattices, is decidable (cf. Corollaries 7.9 and 7.10), the implied algorithms are totally intractable, even for very simple identities. We do not know whether there is any tractable algorithm for those problems. The algorithms rely on Büchi's Theorem [6] for S1S; the complexity of deciding MSO statements is determined by the automata theoretical constructions corresponding to logical operations, thus by the logical complexity of formulas, see Thomas [56, Section 3] or Perrin and Pin [41, Chapter 1]. #### Appendix A. An example: (m, n)-scores on a finite chain It is interesting to see what becomes of the decidability results established in Section 7 for concrete lattice identities. A blunt application of Theorem 7.1 to the translation obtained in Section 6, *via* scores, of negated lattice inclusions, looks quite hopeless from a practical viewpoint. However, in some cases it is possible to express a negated lattice inclusion in a way which, if it falls short of yielding any practical implementation, produces nonetheless a rather transparent combinatorial description. We choose to illustrate this here for the splitting identity of the lattice $\mathsf{B}(m,n)$ described in Section 2.5. **Definition A.1.** Let E be a chain and let $U \subseteq E$. A pair $(x,y) \in \delta_E$ is - a valley of (E, U) if $x \in \{0_E\} \cup U^c$ and $y \in \{1_E\} \cup U$; - a peak of (E, U) if $x \in \{0_E\} \cup U$ and $y \in \{1_E\} \cup U^c$; - a slope of (E, U) if it is neither a peak nor a valley. **Definition A.2.** Let E be a finite chain, let $U \subseteq E$, and let m and n be positive integers. An (m, n)-score on E with respect to U is a triple $\tau = (\vec{B}, \vec{A}, \tau)$ such that: - $\vec{B} = (B_1, \dots, B_n)$, where each B_j is a subdivision of E. We call the B_j the Basso subdivisions of τ and we set $\cos(\vec{B}) = \bigcup_{j=1}^n \cos(B_j)$. - $\vec{A} = (A_1, ..., A_m)$, where each A_i is a subdivision of E. We call the A_i the *Alto subdivisions* of τ and we set $\text{cvs}(\vec{A}) = \bigcup_{i=1}^m \text{cvs}(A_i)$. - $\tau : \operatorname{cvs}(\vec{A}) \cup \operatorname{cvs}(\vec{B}) \to \mathbf{a} \cup \mathbf{b}$, and the following conditions hold: - (ScA) Let $i \in [m]$ and let $(x, y) \in \text{cvs}(A_i)$. Then $\tau(x, y) \in \{a_i\} \cup \mathbf{b}$; moreover, if (x, y) is a valley of (E, U), then $\tau(x, y) = a_i$; - (ScB) Let $j \in [n]$ and let $(x, y) \in \text{cvs}(B_j)$. Then $\tau(x, y) \in \{b_j\} \cup \mathbf{a}$; moreover, if (x, y) is a peak of (E, U), then $\tau(x, y) = b_j$; - (Comp) Let $(x, y) \in \text{cvs}(\vec{B})$ and let $(x', y') \in \text{cvs}(\vec{A})$. Then $(x, y) \sim_U (x', y')$ (cf. Section 4) implies that $\tau(x, y) = \tau(x', y')$. The terminology Basso and Alto follows the commonly used notation (β, α) for the pair consisting of the lower and upper adjoints of a lattice homomorphism (cf. Freese, Ježek, and Nation [11]). It also follows the notation b_j , a_i for the atoms of B(m, n). The following result translates the membership problem, of the lattice B(m,n) to the lattice variety generated by $A_U(E)$, in terms of certain tiling properties of the chain E. This result is not too hard to obtain via a combination of the methods of Sections 6 and 9. We do not include a proof here. **Theorem A.3.** The following statements are equivalent, for all positive integers m and n and every subset U in a finite chain E: - (i) B(m,n) belongs to the lattice variety generated by $A_U(E)$. - (ii) $A_U(E)$ does not satisfy the splitting identity of B(m,n). - (iii) There exists an EA-duet of maps from B(m, n) to $A_U(E)$. - (iv) There exists an (m, n)-score on E with respect to U. We proved in Santocanale and Wehrung [47, § 12] that B(3,3) belongs to the lattice variety generated by $A_U(12)$, where $U = \{5, 6, 9, 10, 11\}$. The corresponding score is represented in Figure A.1. The circled vertices correspond to the elements of the chain [12], while the labels on the edges are the corresponding values of τ . The notation \overrightarrow{x} means that $x \notin U$, while \overleftarrow{x} means that $x \in U$. FIGURE A.1. A (3,3)-score on [12] with respect to $U = \{5,6,9,10,11\}$ We do not know whether all B(m,n) belong to the lattice variety generated by all permutohedra, even in the particular case where m=4 and n=3. (This question is also related to Section 12.2.) Equivalently, we do not know whether there are a positive integer N, a subset U of [N], and a (4,3)-score on [N] with respect to U. Although the algorithm given by Büchi's Theorem certainly makes it possible to settle that question in principle (for fixed m and n), the time and space requirements of that particular assignment (m=4 and n=3) are far too large. Appendix B. Choir in the Cathedral: a portrait view of $\mathsf{N}_5 \,\square\, \mathsf{B}(3,2)$ Figure B.1. The lattice $\mathsf{N}_5 \,\square\, \mathsf{B}(3,2)$ (portrait) #### References - A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449–463. MR 0036751 (12,155d) - 2. Mary K. Bennett and Garrett Birkhoff, *Two families of Newman lattices*, Algebra Universalis **32** (1994), no. 1, 115–144. MR 1287019 (95m:06022) - Anders Björner, Orderings of Coxeter groups, Combinatorics and Algebra (Boulder, Colo., 1983), Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 175–195. MR 777701 (86i:05024) - Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945–3975. MR 1401765 (98b:06008) - Günter Bruns, Free ortholattices, Canad. J. Math. 28 (1976), no. 5, 977–985. MR 0419313 (54 #7335) - J. Richard Büchi, On a decision method in restricted second order arithmetic, Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford Univ. Press, Stanford, Calif., 1962, pp. 1–11. MR 0183636 (32 #1116) - Nathalie Caspard, The lattice of permutations is bounded, Internat. J. Algebra Comput. 10 (2000), no. 4, 481–489. MR 1776052 (2001d:06008) - Nathalie Caspard, Claude Le Conte de Poly-Barbut, and Michel Morvan, Cayley lattices of finite Coxeter groups are bounded, Adv. in Appl. Math. 33 (2004), no. 1, 71–94. MR 2064358 (2005b:06006) - Bogdan Chornomaz, A non-capped tensor product of lattices, available online at http://hal.archives-ouvertes.fr/hal-00909356/PDF/CappedTP2.pdf, Algebra Universalis, to appear, November 2013. - Grant A. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), no. 1, 1–3. MR 0450145 (56 #8442) - Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free Lattices, Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI, 1995. MR 1319815 (96c:06013) - 12. Radosław Godowski and Richard Greechie, Some equations related to states on orthomodular lattices, Demonstratio Math. 17 (1984), no. 1, 241–250. MR 760356 (86a:06013) - George Grätzer, Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2768581 - George Grätzer, Harry Lakser, and Robert Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), no. 2, 503–515. MR 626486 (83b:06006) - George Grätzer and Friedrich Wehrung, A new lattice construction: the box product, J. Algebra 221 (1999), no. 1, 315–344. MR 1722915 (2000i:06015) - Tensor products and transferability of semilattices, Canad. J. Math. 51 (1999), no. 4, 792–815. MR 1701342 (2000e:06010) - _______, Tensor products of semilattices with zero, revisited, J. Pure Appl. Algebra 147 (2000), no. 3, 273–301. MR 1747443 (2001b:06008) - Richard J. Greechie, A nonstandard quantum logic with a strong set of states, Current issues in quantum logic (Erice, 1979), Ettore Majorana Internat. Sci. Ser.: Phys. Sci., vol. 8, Plenum, New York-London, 1981, pp. 375–380. MR 723170 (84k:03143) - Georges Th. Guilbaud and Pierre Rosenstiehl, Analyse algébrique d'un scrutin, Math. Sci. Hum. 4 (1963), 9–33. - Mark D. Haiman, Two notes on the Arguesian identity, Algebra Universalis 21 (1985), no. 2-3, 167–171. MR 855736 (87j:06009) - Arguesian lattices which are not linear, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 121–123. MR 866029 (87m:06014) - Arguesian lattices which are not type-1, Algebra Universalis 28 (1991), no. 1, 128–137. MR 1083826 (91m:06016) - Kenkiti Iwasawa, Einige Sätze über freie Gruppen, Proc. Imp. Acad. Tokyo 19 (1943), 272– 274. MR 0014089 (7,239d) - 24. Peter Jipsen and Henry Rose, Varieties of Lattices, Lecture Notes in Mathematics, vol. 1533, Springer-Verlag, Berlin, 1992, Out of print, available online at http://www1.chapman.edu/~jipsen/JipsenRoseVol.html. MR 1223545 (94d:06022) - Bjarni Jónsson, On the representation of lattices, Math. Scand 1 (1953), 193–206. MR 0058567 (15,389d) - Modular lattices and Desargues' theorem, Math. Scand. 2 (1954), 295–314. MR 0067859 (16,787f) - Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 0237402 (38 #5689) - Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496 (85f:06012) - 29. František Katrnoška, On the representation of orthocomplemented posets, Comment. Math. Univ. Carolin. 23 (1982), no. 3, 489–498. MR 677857 (84c:06003) - Klaus Keimel and Jimmie Lawson, Continuous and completely distributive lattices, Lattice Theory: Selected Topics and Applications. Volume 1, Birkhäuser/Springer Basel AG, Basel, 2014, forthcoming, pp. 5–53. - David Kelly, On the dimension of partially ordered sets, Discrete Math. 35 (1981), 135–156. MR 620667 (82j:06005) - David Kelly and Ivan Rival, Crowns, fences, and dismantlable lattices, Canad. J. Math. 26 (1974), 1257–1271. MR 0417003 (54 #5064) - Joseph P. S. Kung and Catherine H. Yan, Six problems
of Gian-Carlo Rota in lattice theory and universal algebra, Algebra Universalis 49 (2003), no. 2, 113–127, Dedicated to the memory of Gian-Carlo Rota. MR 2015348 - 34. Wilhelm Magnus, Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math. 177 (1937), 105–115. - René Mayet, Une dualité pour les ensembles ordonnés orthocomplémentés, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 2, 63–65. MR 651787 (83b:06003) - 36. William McCune, Prover9 and Mace4 [computer software], 2005–2010. - Ralph McKenzie, Equational bases for lattice theories, Math. Scand. 27 (1970), 24–38. MR 0274353 (43 #118) - 38. ______, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 0313141 (47 #1696) - 39. Norman D. Megill and Mladen Pavičić, Equations, states, and lattices of infinite-dimensional Hilbert spaces, Internat. J. Theoret. Phys. **39** (2000), no. 10, 2337–2379. MR 1803694 (2002a:06011) - James B. Nation, An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), no. 4, 521–543. MR 1387900 (96m:06012) - 41. Dominique Perrin and Jean-Éric Pin, Infinite Words. Automata, Semigroups, Logic and Games. Elsevier. 2004. - 42. Maurice Pouzet, Klaus Reuter, Ivan Rival, and Nejib Zaguia, A generalized permutahedron, Algebra Universalis **34** (1995), no. 4, 496–509. MR 1357480 (97a:06009) - 43. Nathan Reading, Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis **50** (2003), no. 2, 179–205. MR 2037526 (2004m:06006) - 44. _____, Cambrian lattices, Adv. Math. **205** (2006), no. 2, 313–353. MR 2258260 (2007g:05195) - Ivan Rival, Lattices with doubly irreducible elements, Canad. Math. Bull. 17 (1974), 91–95. MR 0360387 (50 #12837) - Luigi Santocanale, On the join dependency relation in multinomial lattices, Order 24 (2007), no. 3, 155–179. MR 2358079 (2008m:06008) - 47. Luigi Santocanale and Friedrich Wehrung, Sublattices of associahedra and permutohedra, Adv. in Appl. Math. 51 (2013), no. 3, 419–445. MR 3084507 - 48. ______, The extended permutohedron on a transitive binary relation, available online at http://hal.archives-ouvertes.fr/hal-00750265/PDF/ExtPerm.pdf, preprint. - 49. ______, Lattices of regular closed subsets of closure spaces, available online at http://hal.archives-ouvertes.fr/hal-00836420/PDF/RegClos.pdf, preprint. - Generalizations of the permutohedron: closed-open constructions, Lattice Theory: Selected Topics and Applications. Volume 2, Birkhäuser/Springer Basel AG, Basel, forthcoming. - Maurice-Paul Schützenberger, Sur certains axiomes de la théorie des structures, C. R. Acad. Sci. Paris 221 (1945), 218–220. MR 0014058 (7,235d) - Marina V. Semenova and Friedrich Wehrung, Sublattices of lattices of order-convex sets, I. The main representation theorem, J. Algebra 277 (2004), no. 2, 825–860. - 53. Thoralf Skolem, Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit Mathematischer Sätze nebst einem Theoreme über Dichte mengen, Skrifter. I. Mat.-naturv. klasse, 1920. no. 4. Utgit for Fridtjof Nansens Fond, Kristiania: in Kommission bei Jacob Dybwad, 1920 (Ink stamp: Printed in Norway), 1920. - 54. ______, Selected Works in Logic, Edited by Jens Erik Fenstad, Universitetsforlaget, Oslo, 1970. MR 0285342 (44 #2562) - 55. Walter Taylor, $Equational\ logic,$ Houston J. Math. (1979), no. Survey, iii+83. MR 546853 (80j:03042) - Wolfgang Thomas, Automata on infinite objects, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), Elsevier, Amsterdam, 1990, pp. 133–191. MR 1127189 - Friedrich Wehrung, From join-irreducibles to dimension theory for lattices with chain conditions, J. Algebra Appl. 1 (2002), no. 2, 215–242. MR 1913085 (2003f:06007) - Rudolf Wille, Tensorial decomposition of concept lattices, Order 2 (1985), no. 1, 81–95. MR 794628 (87b:06016) Luigi Santocanale, LIF, UMR 7279, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163, avenue de Luminy, Case 901, F-13288 Marseille cedex 9, France $E{-}mail~address: \verb|luigi.santocanale@lif.univ-mrs.fr| \\ URL: \verb|http://www.lif.univ-mrs.fr/~lsantoca/| \\$ FRIEDRICH WEHRUNG, LMNO, CNRS UMR 6139, DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE CAEN, 14032 CAEN CEDEX, FRANCE $E{-}mail~address{:}~\texttt{friedrich.wehrung01@unicaen.fr}\\ URL{:}~\texttt{http://www.math.unicaen.fr/~wehrung}$