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Abstract

We propose an approach for goal-oriented error estimation in finite element
approximations of second-order elliptic problems that combines the dual-
weighted residual method and equilibrated-flux reconstruction methods for
the primal and dual problems. The objective is to be able to consider dis-
cretization schemes for the dual solution that may be different from those
used for the primal solution. It is only assumed here that the discretization
methods come with a priori error estimates and an equilibrated-flux recon-
struction algorithm. A high-order discontinuous Galerkin (dG) method is ac-
tually the preferred choice for the approximation of the dual solution thanks
to its flexibility and straightforward construction of equilibrated fluxes. One
contribution of the paper is to show how the order of the dG method for
asymptotic exactness of the proposed estimator can be chosen in the cases
where a conforming finite element method, a dG method, or a mixed Raviart-
Thomas method are used for the solution of the primal problem. Numerical
experiments are also presented to illustrate the performance and convergence
of the error estimates in quantities of interest with respect to the mesh size.
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1. Introduction

A variety of finite element discretization schemes, such as the mixed fi-
nite element methods, the non-conforming finite element methods, or discon-
tinuous Galerkin (dG) finite element methods, have been developed during
the past decades in order to provide better approximation properties than
those offered by the classical finite element method depending on the type
of partial differential equations at hand. These methods have become in-
creasingly popular and are now widely used for solving problems of var-
ious interest in engineering and sciences. At the same time, the neces-
sity to obtain accurate finite element approximations to given boundary-
value problems has stimulated the development of a posteriori error esti-
mators that provide fully computable, reliable, and efficient error bounds
in terms of the problem data and the finite element approximation. In
the case of standard conforming finite element schemes, a posteriori error
estimates with respect to global energy norms are indeed well-established,
see e.g. [52, 4, 7, 8, 43, 31, 50, 53]. A posteriori error estimation for non-
conforming finite element methods with application to second-order elliptic
problems has recently seen significant progress and is still the subject of sus-
tained research efforts, see e.g. [9, 34, 51, 55, 33, 1, 18, 42, 41, 27, 24] for dG
methods and [16, 35, 2, 17, 37] for mixed finite element methods. We also re-
fer the reader to [36, 18, 3, 28, 22] and references therein for the presentation
of unifying frameworks on the topic.

In practical applications, end users are however interested in error esti-
mates in some specific features of the true solution. These so-called quantities
of interest, either local or global, are represented as functionals defined on
the vector space of trial solutions of the boundary-value problem. Error esti-
mation with respect to such functionals is usually referred to as goal-oriented
error estimation. The key ingredient for goal-oriented error estimation is the
formulation of an auxiliary problem, the dual problem to the primal prob-
lem, whose solution provides necessary information for reliable estimates of
the error in the goal functional. Several strategies for goal-oriented error
estimation have been proposed in the case of elliptic problems: goal-oriented
error estimates based on energy norm of the errors in the primal and dual
solutions were introduced in [48, 45, 46, 49] and further developed by various
authors, see for example [4, 5], and references therein, error estimates using
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the dual-weighted residual method were proposed in [25, 10, 8]; functional
a posteriori error estimates were developed in [43, 50]; estimates based on
the gradient-recovery method were considered in [39, 38, 47, 44, 40]; finally,
goal-oriented estimates for discontinuous Galerkin methods in the case of
second-order elliptic problems were derived in [32].

The general approach to obtain goal-oriented error estimates consists, on
one hand, in deriving an error representation involving the residual functional
and the exact dual (adjoint) solution, and, on the other hand, in constructing
a sufficiently accurate approximation of the adjoint solution in order to obtain
a fully computable and reliable error estimate along with local refinement
indicators. In the case of the classical conforming finite element method, such
approximation to the adjoint solution is usually calculated on a refinement
of the mesh used for the primal solution, with the same polynomial degree,
or, preferably, on the same mesh, but with a higher polynomial degree.

In this paper, we propose an alternative approach to goal-oriented es-
timation by considering an error representation that does not uses the or-
thogonality property and is amenable to different types of discretization of
the primal and dual problems. We only suppose here that the method used
to discretize the primal problem produces piecewise polynomial solutions
from which equilibrated fluxes can be reconstructed (this is not a restric-
tive property) and satisfies standard a priori error estimates in the L2 and
energy norms. Using an error representation similar to the one used in the
dual-weighted residual method, we use the flux-equilibration technique to
decompose the error into a computable error estimator and a higher-order
remainder. It is well known, see e.g. [5], that in order to obtain an efficient
error estimator (effectivity indices remain close to unity), the dual problem
must be approximated using a higher-order approximation than the one used
in the finite element approximation of the primary problem. We propose in
this paper, in order to approximate the dual solution, that a high-order
discontinuous Galerkin method be used and applied on the same mesh as
that used for the discretization of the primal problem. The choice of the dG
method seems natural owing to its flexibility in using non-uniform high-order
polynomials. Furthermore, the dG method benefits from the fact that it is
locally conservative; it implies that the construction of equilibrated fluxes,
needed for the evaluation of the proposed error estimator, is rather straight-
forward, see e.g. [36, 26, 19, 12]. Finally, we show that, depending on the
approximation properties of the primal method and problem data, the order
of the dG method, used to solve the dual problem, can be chosen in such a
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way that the respective error estimator is asymptotically exact.
The paper is organized as follows. Section 2 introduces the model (pri-

mal) problem, the corresponding dual problem, and preliminary notation for
goal-oriented error estimation. Section 3 presents a suitable error representa-
tion for the goal functional based on the use of equilibrated fluxes in terms of
the finite element solutions to the primal and dual problems. We also show
how the error representation can be decomposed into a fully computable error
estimator and a higher-order term, which can be evaluated using 1) a priori
estimates with respect to the primal and dual discretization schemes and 2)
methods for reconstruction of equilibrated fluxes. We briefly introduce in
Section 4 the symmetric version of the dG method. We then show how the
order of the dG method, used for the discretization of the dual problem, can
be chosen to guarantee asymptotical exactness of the error estimator when
discretizing the primal problem by high-order dG methods, conforming fi-
nite element methods, and mixed finite element methods, as described in
Sections 5, 6, and 7, respectively. Finally, we present some numerical exam-
ples to demonstrate the performance of the estimators in Section 8 before
concluding in Section 9.

2. Model problem

In this work, we are primarily interested in general linear boundary-value
problems defined in terms of elliptic second-order partial differential equa-
tions, but the results could be extended to more general situations. For the
sake of clarity in the presentation, we shall restrict ourselves to a simple
model problem. Let Ω ∈ R

2 be a polygonal domain with boundary ∂Ω. We
consider the homogeneous Dirichlet boundary-value problem whose solution
u satisfies

−∇ · (D∇u) = f in Ω,

u = 0 on ∂Ω.
(1)

where coefficient D = D(x), x ∈ Ω, is a piecewise constant strictly positive
scalar function and f ∈ L2(Ω). The weak formulation of the problem reads:

Find u ∈ H1
0 (Ω) such that B(u, v) = F (v), ∀v ∈ H1

0 (Ω) (2)
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where B and F are the bilinear and linear forms on H1
0 (Ω), respectively,

defined as:

B(u, v) =

∫

Ω

D∇u · ∇v, (3)

F (v) =

∫

Ω

fv. (4)

We shall suppose here that the elliptic regularity property holds true for
the model problem; i.e. there exist a unique weak solution u ∈ H2(Ω) to (2)
and a constant C > 0 that only depends on Ω, such that

‖u‖H2(Ω) ≤ C‖f‖L2(Ω). (5)

Note that the conditions for elliptic regularity are ensured if the polygonal
domain Ω is assumed convex; in more general cases, the regularity of the
solution usually depends on the internal angles between the boundary edges
of Ω, see [30]. In the remainder of the paper, we will denote by C a generic
constant that may depend on the problem data and other model parameters.
This dependence will be made explicit in the text when necessary.

We assume that we shall be interested in the linear goal functional Q
defined on L2(Ω) such that:

Q(v) =

∫

Ω

qv, (6)

where q ∈ L2(Ω) denotes the Riesz representer of Q. We introduce the
corresponding dual problem, in strong form as:

−∇ · (D∇p) = q in Ω,

p = 0 on ∂Ω,
(7)

and in weak form as:

Find p ∈ H1
0 (Ω) such that B(v, p) = Q(v), ∀v ∈ H1

0 (Ω). (8)

We again emphasize that, owing to the elliptic regularity and the fact that
q ∈ L2(Ω), we have that p ∈ H2(Ω). It is also straightforward to show
from (2) and (8) that

F (p) = B(u, p) = Q(u). (9)
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Let Th, h > 0, be a family of shape-regular triangular meshes on Ω,
see e.g. [14], where h = maxT∈Th

h(T ) denotes the mesh size and h(T ) is
the diameter of mesh element T . We assume here that the edges of two
neighboring elements will perfectly match with each other, in the sense that
the meshes will be free of so-called hanging nodes. For a triangular mesh Th,
we denote by Eh the set of all edges in the mesh; Eh can be further decomposed
into the set of interior edges E i

h and the set of boundary edges E∂
h , that is

Eh = E i
h ∪ E∂

h . By definition, an edge E ∈ Eh is said to be an interior edge

if there exist two triangles T−, T+ ∈ Th such that E = T
−
∩ T

+
and is said

to be a boundary edge if there exists one and only one triangle T ∈ Th such
that E = T ∩ ∂Ω. For a polygonal domain Ω, we have ∂Ω = ∪E∈E∂

h

E. For

any function v ∈ L2(Ω), assumed sufficiently smooth to admit a trace on all
E ∈ Eh (possibly different on either side of an edge E ∈ E i

h), let us denote
the jump of v along E by

[[v]] := vT−|E − vT+ |E, E ∈ E i
h,

[[v]] := v|E, E ∈ E∂
h ,

(10)

where v±|E denotes the trace on the respective side of E. For E ∈ E i
h, we

denote by nE the unit normal vector to E pointing from T− toward T+,
whereas for E ∈ E∂

h , we set nE equal to the unit external normal n to ∂Ω.
The orientation of nE for interior faces is chosen in accordance with the
definition of the jump; in such a case, the arbitrariness in the choice of T−

and T+ in the definition of the interior edge is irrelevant. We also introduce
the standard arithmetic average of v along E as

{{v}} =
1

2

(

vT− |E + vT+ |E
)

, E ∈ E i
h,

{{v}} = [[v]] = v|E, E ∈ E∂
h .

(11)

Finally, let Pk(T ) denote the vector space of polynomials on T of degree k
or less. We then introduce the finite element space Vk

h as:

Vk
h := {vh ∈ L2(Ω) : vh|T ∈ Pk(T ), ∀T ∈ Th}. (12)

For a given mesh Th, let us denote by uh ∈ Vk
h an arbitrary approximation of

the exact solution u to the primal problem (2). The objective in this paper
is to study the approximation error in the goal functional

E = Q(u)−Q(uh). (13)
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At this stage, it is not necessary to specify the numerical scheme with which
the approximate solution is obtained. Since the goal functional considered
here is assumed linear and continuous on L2(Ω), it is sufficient to suppose
that uh converges to the exact solution u in L2(Ω) in order for Q(uh) to be
a reasonable approximation of Q(u).

We will make use of the following definition in the remainder of the paper:

Definition 1. The error E = Q(u)−Q(uh) in the goal functional is said to
be properly of order l > 0 with respect to the discrete solution uh if there exist
constants C > 0 and C > 0, that depend on u and Q only, such that

Chl ≤ |Q(u)−Q(uh)| ≤ Chl (14)

for sufficiently small h > 0.

We propose below an asymptotically exact estimator of the error in the goal
functional (13) based on the condition that the error be properly of order
l > 0 with respect to a discrete solution family {uh}h>0.

3. Goal-oriented error representation

In this section, we briefly review the notion of equilibrated fluxes and
present a goal-oriented error representation in terms of reconstructed equili-
bration fluxes. We first recall the space H(div,Ω) of vector-valued functions

H(div,Ω) = {t ∈ [L2(Ω)]2 : ∇ · t ∈ L2(Ω)}, (15)

and the Raviart-Thomas finite element space of order m ∈ N0:

RTm(Th) = {th ∈ H(div,Ω) : th|T ∈ [Pm(T )]
2 + x Pm(T ), ∀T ∈ Th}. (16)

Definition 2. Let uh ∈ Vk
h , k ∈ N0, and let l = max{0, k − 1}. Let πl

h :
L2(Ω) → V l

h denote the L2-orthogonal projection operator. A vector th(uh) ∈
RTl(Th), reconstructed from the approximation uh, is said to be an equi-
librated flux with respect to Problem (1) if

∇ · th(uh) = πl
h(f). (17)

Note that we will use the notation tlh(uh) = th(uh) when the order of the
Raviart-Thomas space in which the flux is reconstructed needs to be mentioned
explicitly.
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The concept of equilibrated fluxes has been widely used to construct accu-
rate a posteriori error estimates for conforming finite element approximations
since such estimates are exempt of unknown constants, see for example [4, 11].
In fact, various flux reconstruction techniques have been developed over the
years in the case of elliptic problems and some of the techniques have been
extended to non-conforming conservative methods [36, 26, 12], to first-order
conforming finite element method [13], or to the finite volume and finite
difference methods [54].

We propose here to investigate how reconstructed equilibrated fluxes
could be used in goal-oriented error estimation. We start by deriving the
following error representation with respect to the goal functional, using (9),
the dual solution p to problem (7), and integration by parts,

E = Q(u)−Q(uh) = F (p)−Q(uh)

=

∫

Ω

fp+

∫

Ω

(

∇ ·D∇p
)

uh

=
∑

T∈Th

[
∫

T

(

fp−D∇uh · ∇p
)

+

∫

∂T

(

n ·D∇p
)

uh

]

.

(18)

Introducing the jump (10) in uh across edge E, the sum of the edge integrals
can be recast as:

E =
∑

T∈Th

∫

T

(

fp−D∇uh · ∇p
)

+
∑

E∈Eh

∫

E

(

nE ·D∇p
)

[[uh]]. (19)

Note that for an arbitrary th ∈ RTl(Th), above relation can be rewritten, by
simple addition and subtraction of the term th · ∇p, as:

E =
∑

T∈Th

∫

T

(

fp+ th · ∇p
)

+
∑

T∈Th

∫

T

(

− th −D∇uh

)

· ∇p

+
∑

E∈Eh

∫

E

(

nE ·D∇p
)

[[uh]]

=
∑

T∈Th

[

∫

T

(

f −∇ · th
)

p+
∑

E∈∂T

∫

E

(

th · n
)

p

]

+
∑

T∈Th

∫

T

(

− th −D∇uh

)

· ∇p+
∑

E∈Eh

∫

E

(

nE ·D∇p
)

[[uh]].
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Since, owing to the homogeneous Dirichlet boundary condition on the dual
solution and the continuity of the normal component of th,

∑

T∈Th

[

∑

E∈∂T

∫

E

(th · n)p

]

=
∑

E∈Eh

[[th · n]] p = 0

we then obtain:

E =
∑

T∈Th

∫

T

(

f −∇ · th
)

p−
∑

T∈Th

∫

T

(

th +D∇uh) · ∇p

+
∑

E∈Eh

∫

E

(

nE ·D∇p
)

[[uh]].

We are now ready to establish the following error representation in terms of
the goal functional.

Theorem 1. Let uh ∈ Vk
h , k ∈ N0, be an approximation of the solution

u ∈ H1
0 (Ω) to the primal problem (1) and let ph ∈ Vm

h , m > k, be an approx-
imation of the solution p ∈ H1

0(Ω)∩H2(Ω) to the dual problem (7). Suppose
that uh and ph admit reconstructed equilibrated fluxes th(uh) ∈ RTl(Th),
l = max{0, k − 1} and th(ph) ∈ RTm−1, respectively. Then the error in the
goal functional Q can be represented as

E = Q(u)−Q(uh) = η(uh, ph; th(uh), th(ph)) +R(u, p; uh, ph), (20)

where the error estimator η is defined as:

η = η(uh, ph; th(uh), th(ph))

=
∑

T∈Th

∫

T

(f − πl
h(f)) ph +

∑

T∈Th

∫

T

(

th(uh) +D∇uh

)

·D−1th(ph)

−
∑

E∈Eh

∫

E

(nE · th(ph))[[uh]],

(21)

and the remainder term is:

R(u, p, f ; uh, ph) =
∑

T∈Th

∫

T

(f − πl
h(f))(p− ph)

−
∑

T∈Th

∫

T

(

th(uh) +D∇uh

)

·D−1
(

D∇p+ th(ph)
)

+
∑

E∈Eh

∫

E

(

nE · (D∇p+ th(ph))
)

[[uh]].

(22)
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Remark 1. The error estimator η can be easily decomposed into a sum of
local element error contributions. Indeed, let us note that

∑

E∈Eh

∫

E

th(ph) · n[[uh]] =
∑

T∈Th

∑

E∈∂T

∫

E

χ
Eh
(E)(n · th(ph))[[uh]], (23)

where χ
Eh

denotes the edge indicator function on Eh, that is χEh
(E) = 1/2, if

E ∈ E i
h, and χ

Eh
= 1, if E ∈ E∂

h . Therefore, in that case, the decomposition
would take the form:

η =
∑

T∈Th

ηT (T ) =
∑

T∈Th

ηO(T ) + η∇(T ) + ηH(T ) (24)

with

ηO(T ) =

∫

T

(f − πl
h(f)) ph

η∇(T ) =

∫

T

(

th(uh) +D∇uh

)

·D−1th(ph)

ηH(T ) =
∑

E∈∂T

∫

E

χ
Eh
(E)[[uh]](nE · th(ph))

Here ηO(T ) represents the data oscillation in element T with respect to the
primal problem, weighted by the dual approximate solution; the flux estimator
η∇(T ) measures the deviation of the discrete gradient −D∇uh from the re-
constructed flux th(uh) ∈ H(div, Th); and ηH(T ) measures the deviation of uh

from H1
0 (Ω), both weighted by the reconstructed equilibrated flux of the dual

approximate solution. Note that the error estimator η is fully computable
once the flux reconstructions for th(uh) and th(ph) are established.

Remark 2. Depending on the properties of the data in the primal problem,
the error estimator (21) may take a simpler form; e.g. the oscillation term
disappears for f ∈ V l

h.

Remark 3. Depending on the discretization method used, the finite element
approximation uh may weakly (or strongly) satisfy additional continuity prop-
erties along the interior edges and specific boundary conditions on the bound-
ary edges of the mesh. Values of the different components of the error esti-
mator will thus strongly depend on the choice of the numerical method used in
the approximation of the primal problem. For example, if conforming finite
element methods are used, ηH = 0.
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In the remainder of the paper, we show how the error representation (21)
can provide an asymptotically exact goal-oriented estimator of the error in
approximations of the primal problem. One crucial ingredient of the estima-
tor is the choice of the finite element method for the approximation of the
dual solution. If one prefers to keep the same mesh to solve the dual problem
as that used for the primal finite element solution, while retaining an effi-
cient error estimator, higher-order methods should be employed, see e.g. [5].
Furthermore, it is desirable that the discretization method for the dual prob-
lem allows for computationally inexpensive equilibrated-flux reconstruction.
Based on these facts, we propose here to use a high-order discontinuous
Galerkin discretization method to approximate the dual solution. Advan-
tages of the dG method are that high-order elements in any space dimension
can be easily implemented and that it is locally conservative, which yields in
a straightforward manner equilibrated fluxes. In fact, it has been shown to
provide cheap and local reconstruction algorithms [35, 26, 19, 12].

4. The dG method

We briefly introduce in this section the symmetric interior penalty dG
method and present some basic results on the stability and approximation
properties of the method. We first introduce the bilinear form Bh : Vk

h×Vk
h →

R as

Bh(uh, vh) =
∑

T∈Th

∫

T

D∇uh · ∇vh −
∑

E∈Eh

∫

E

{{n ·D∇uh}}[[vh]]

+
∑

E∈Eh

∫

E

(−{{n ·D∇vh}}+ γE[[vh]]) [[uh]],

(25)

where γE > 0 denotes the interior penalty parameter to be specified later.
For the primal boundary value problem (1), the symmetric interior penalty
dG method is defined as follows (see e.g. [20]):

Find uh ∈ Vk
h such that Bh(uh, vh) = F (vh), ∀vh ∈ Vk

h . (26)

Since symmetric dG method is adjoint consistent, the corresponding dual
problem reads:

Find ph ∈ Vm
h such that Bh(vh, ph) = Q(vh), ∀vh ∈ Vm

h . (27)

11



For completeness, we present below some basic analytical results referring
to the symmetric interior penalty dG method; owing to the symmetry of the
method and of the primal and dual problems, we can limit the analysis to the
primal problem only. Firstly, let us note that, for sufficiently large penalty
parameters, problem (26) has a unique solution, see e.g. [20]. We introduce
here a computable lower bound γ(Th) on γE, as presented in [6] for a general
setting, that is sufficient to show existence and uniqueness of the dG method.
Therefore, we suppose from now on that the penalty parameters satisfy

γE ≥ γ(Th) ∀E ∈ Eh. (28)

Convergence properties of high-order dG methods are summarized in the
following theorem, see e.g. [20].

Theorem 2. Let us suppose that Ω is a convex polygonal domain in R
2

and that the solution to Problem (1) belongs to Hk+1(Ω). Let Th, h > 0,
be a family of matching shape regular triangular meshes on Ω and assume
that parameters γE satisfy the stability condition (28). Then, the following
estimates hold for the dG solution to (26) with a positive constant C that
depends only on the shape-regularity of Th:

‖|u− uh‖|h ≤ Chk‖u‖Hk+1(Ω) (29)

‖u− uh‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω), (30)

where the dG energy norm is defined on Vk
h as

‖|vh‖|
2
h =

∑

T∈Th

‖∇vh‖
2
(L2(K))2 +

∑

E∈Eh

γE‖[[vh]]‖
2
L2(E).

In the following sections, we will show that, depending on the approxi-
mation properties of the primal method and on the problem data, the order
of the dG method, used to solve the dual problem, can be chosen in such a
way that the respective error estimator is asymptotically exact. We will con-
sider the following discretizations of the primal problem: high-order discon-
tinuous Galerkin method, the first-order conforming finite element method,
and the lowest order mixed Raviart-Thomas finite element method. Other
non-conforming methods, finite volume and finite difference methods can be
considered in a similar fashion using corresponding flux reconstruction algo-
rithms, see e.g. [54, 29].
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5. Goal-oriented error estimates for dG methods

We consider here the symmetric dG method of order k ∈ N for the
discretization of Problem (1). We construct equilibrated fluxes tk−1

h (uh) ∈
RTk−1 in terms of the dG solution uh ∈ Vk

h , depending on the value of k, as
follows (see e.g. [36, 21]):

k ≥ 1 :

∫

E

nE · tk−1
h (uh) qh =

∫

E

(

− {{n ·D∇uh}}+ γE [[uh]]
)

qh,

∀qh ∈ Pk−1(E), ∀E ∈ Eh; (31)

k ≥ 2 :

∫

T

tk−1
h (uh) · rh = −

∫

T

D∇uh · rh

+
∑

E∈∂T

∫

E

χ
Eh
(E)n ·Drh[[uh]],

∀rh ∈ (Pk−2(T ))
d, ∀T ∈ Th. (32)

Note that the flux reconstruction using (31)-(32) is computationally inex-
pensive and is relatively easy to implement as an element-wise procedure.

Definition 3. A function f ∈ L2(Ω) is said to have oscillations of order
l ∈ N0 on Vk

h if there exists a constant C, that depends on f and on the
shape regularity of Th, such that

‖f − πk
hf‖L2(Ω) ≤ Chl ∀Th, h > 0. (33)

For example, it follows from the optimality of the orthogonal projection that
a function f ∈ Hs(Ω) has oscillations of order l = min{k + 1, s} on Vk

h .

Theorem 3. Let f ∈ L2(Ω) in Problem (1) have oscillations of order k − 1
in Vk−1

h . Let u ∈ Hk+1(Ω) and uh ∈ Vk
h be the solutions to (1) and (26), re-

spectively. Moreover, let th(uh) ∈ RTk−1 be the equilibrated flux with respect
to uh given by (31)-(32). Then there exists a constant C > 0, that depends
on the problem data {D, f} and on the shape-regularity of Th, such that

‖tk−1
h (uh) +D∇huh‖[L2(Ω)]2 ≤ Chk. (34)

Proof: Equality (17) follows from (31)-(32) and (26) by straightforward
calculations. It is also known (see e.g. [36, 21]) that the following estimate
holds for tk−1

h (uh) given by (31)-(32):

‖tk−1
h (uh) +D∇huh‖[L2(Ω)]2 ≤ ‖|u− uh‖|h + h‖f − πk−1

h f‖L2(Ω).
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Therefore, inequality (34) follows from above inequality owing to the a priori
estimate (29) and oscillation estimate (33). �

The next theorem provides the key result to investigate exactness of the
error estimator (24) for the primal dG methods.

Theorem 4. Let f ∈ L2(Ω) in Problem (1) have oscillations of order k − 1
in Vk−1

h and let u ∈ Hk+1(Ω) be the solution to (1). Let p ∈ Hm+1(Ω) be
the solution to the dual problem (7), with m > k, and suppose that the Riesz
representer q of the goal functional has oscillations of order m− 1 in Vm−1

h .
Let uh ∈ Vk

h and ph ∈ Vm
h be the dG finite element solutions to (26) and (27),

respectively. Then, there exists a constant C, depending only on the shape
regularity of Th, the data {D, f, q} in the primal and dual problems, and the
exact solutions {u, p}, such that

∣

∣R(u, p, f ; uh, ph)
∣

∣ ≤ Chk+m. (35)

Proof: Using the Cauchy-Schwarz inequality, the oscillation estimate for f ,
and the a priori estimate for the dual solution, there holds

∣

∣

∣

∑

T∈Th

∫

T

(f − πk−1
h (f))(p− ph)

∣

∣

∣
≤ ‖f − πk−1

h (f)‖L2(Ω)‖p− ph‖L2(Ω)

≤ Chk−1hm+1 = Chk+m.

We infer from Theorem 3 that the reconstructed equilibrated flux tm−1
h (ph)

with respect to the dual dG solution satisfies

‖tm−1
h (ph) +D∇p)‖(L2(Ω))2 ≤ Chm. (36)

It follows that

∣

∣

∣

∑

T∈Th

∫

T

(tk−1
h (uh) +D∇uh) · (∇p+D−1tm−1

h (ph))
∣

∣

∣

≤ ‖tk−1
h (uh) +D∇uh‖[L2(Ω)]2D

−1‖D∇p+ tm−1
h (ph)‖[L2(Ω)]2

≤ Chkhm.

14



Now, owing to the smoothness of the exact solution and using the divergence
theorem, one gets

∑

E∈Eh

∫

E

(

nE · (D∇p+ tm−1
h (ph))

)

[[uh]]

=
∑

E∈Eh

∫

E

(

nE · (−D∇p− tm−1
h (ph))

)

[[u− uh]]

=
∑

T∈Th

∫

T

(−D∇p− tm−1
h (ph)) · ∇(u− uh)

+
∑

T∈Th

∫

T

(q − πm−1
h (q))(u− uh).

Finally, using Theorem 3, the a priori estimates for the dG solutions, and
the data oscillation estimate for the dual problem, one concludes that

∣

∣

∣

∑

E∈Eh

∫

E

(

n · (D∇p+ tm−1
h (ph))

)

[[uh]]
∣

∣

∣
≤ Chk+m (37)

which completes the proof. �

Theorem 5. Let the conditions of Theorem 4 hold and let us suppose that
the goal functional error is properly of order h2k. Then error estimator (21)
is asymptotically exact, that is,

lim
h→0+

η(uh, ph; t
k−1
h (uh), t

m−1
h (ph))

Q(u)−Q(uh)
= 1.

Proof: From Theorem 4, we infer that
∣

∣

∣

∣

R(u, p, f ; uh, ph)

Q(u)−Q(uh)

∣

∣

∣

∣

≤ chm−k

with m > k, so that

lim
h→0+

η(uh, ph; t
k−1
h (uh), t

m−1
h (ph))

Q(u)−Q(uh)
= lim

h→0+

[

1−
R(u, p, f ; uh, ph)

Q(u)−Q(uh)

]

= 1.

�

Remark 4. The order doubling in the rate of convergence for the approxi-
mation of the goal functional is typical in the case of the symmetric version
of the discontinuous Galerkin method, see e.g. [32].
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6. Goal-oriented error estimates for finite element methods

We now consider the case in which Problem (1) is discretized by the
lowest-order conforming finite element method:

Find uh ∈ Vh such that

∫

Ω

D∇uh · ∇vh =

∫

Ω

fvh, ∀vh ∈ Vh, (38)

where Vh = V1
h ∩ H1

0 (Ω). Note that the gradient ∇uh is a piecewise con-
stant vector field that may be discontinuous along the interelement edges.
Following [11, 13], we consider reconstructed equilibrated fluxes in the form
th(uh) = −D∇uh − σ(uh), where σ(uh) represents some correction to the
broken flux D∇uh such that th(uh) belongs to RT0(Th). Such a correction
σ(uh) is actually sought in the space

RT−1(Th) =
{

sh ∈ [L2(Ω)]2 : sh|T ∈ [P0(T )]
2 + x P0(T ), ∀T ∈ Th

}

and should satisfy the conditions

div σ(uh) = −Π0(f),

[[σ(uh) · nE]] = −[[D∇uh · nE ]] ∀E ∈ E i
h,

in order to guarantee that th(uh) be a zero-order reconstructed flux. The
existence of such σ(uh) is proven in [13] in a more general situation and
a constructive proof in the two-dimensional case is presented in [11]. The
proof uses the hypercircle method for flux equilibration in the star patches
ωi associated with all vertices i in Th. An estimate for this correction is
provided in the following theorem (see [11], p. 184):

Theorem 6. There exists a constant C > 0 that depends only on the shape
regularity of Th such that

‖σ(uh)‖(L2(Ω))2 ≤ C
(

‖∇u−∇uh‖(L2(Ω))2 + h‖f − π0
h(f)‖L2(Ω)

)

. (39)

Theorem 7. Let u ∈ H2(Ω) be the solution to (1) and let p ∈ H3(Ω) be
the solution to the dual problem (7). Suppose that the Riesz representer q
of the goal functional has first-order oscillations in V1

h. Let uh ∈ Vh be the
finite element solution to (38) and ph ∈ V2

h be the second-order dual dG finite
element solution to (27). Then, there exists a constant C, depending only on
the shape regularity of Th, the data {D, f, q} in the primal and dual problems,
and the exact solutions {u, p}, such that

|R(u, p, f ; uh, ph)| ≤ Ch3. (40)
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Proof: The first term in (22) is estimated as
∣

∣

∣

∑

T∈Th

∫

T

(f − π0
h(f))(p− ph)

∣

∣

∣
≤ Ch3,

since, owing to the elliptic regularity, one has

‖p− ph‖L2(Ω) ≤ Ch3.

From (36), (39), and an energy norm a priori error estimate for the finite
element solution, we obtain by applying Cauchy-Schwarz:

∣

∣

∣

∑

T∈Th

∫

T

(th(uh) +D∇uh) · (∇p+D−1t1h(ph))
∣

∣

∣

=
∣

∣

∣

∑

T∈Th

∫

T

σ(uh) · (∇p +D−1t1h(ph))
∣

∣

∣
≤ Ch3.

This completes the proof since the third term in the remainder vanishes owing
to the consistency of the method. �

Theorem 8. Let uh ∈ Vh be the finite element solution to (38) and sup-
pose that the goal functional error is properly of order h2. Then, under the
conditions of Theorem 7, the error estimator

η(uh, ph; th(uh), t
1
h(ph)) =

∑

T∈Th

∫

T

(f − π0
h(f)) ph

−
∑

T∈Th

∫

T

σ(uh) ·D
−1t1h(ph)

(41)

is asymptotically exact.

7. Goal-oriented error estimates for the mixed RT0 finite element

In this section, we consider the mixed form of the primal problem (1).
The weak formulation then reads:

Find (u, r) ∈ L2(Ω)×H(div,Ω) such that
∫

Ω

D−1r · q−

∫

Ω

u∇ · q = 0 ∀q ∈ H(div,Ω)
∫

Ω

v∇ · r =

∫

Ω

fv ∀v ∈ L2(Ω).

(42)
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It is well known, see e.g. [15], that there exists a unique solution (u, r) to
the mixed problem and that the mixed formulation (42) is equivalent to (2)
with u ∈ H1

0 (Ω) and r = −D∇u. In addition, we have the following a priori
estimates:

‖u‖L2(Ω) ≤ C‖f‖L2(Ω)

‖r‖H(div,Ω) ≤ C‖f‖L2(Ω)

where constant C depends only on parameterD and domain Ω. We introduce
the finite element space:

Q0(Th) = {qh ∈ RT0(Th) : qh · n = 0 on E∂
h} (43)

The lowest-order Raviart-Thomas finite element method for the mixed for-
mulation (42) reads:

Find (uh, rh) ∈ P0 ×RT0(Th) such that
∫

Ω

D−1rh · qh −

∫

Ω

uh∇ · qh = 0 ∀qh ∈ Q0(Th)
∫

Ω

vh∇ · rh =

∫

Ω

fvh ∀vh ∈ P0.

(44)

Theorem 9. Let the Riesz representer q of the goal functional have oscilla-
tions of first-order in V1

h. Let (uh, rh) ∈ P0×RT0(Th) be the solution to (44)
and let ph ∈ V2

h be the second-order dual dG finite element solution to (27).
Then, there exists a constant C, depending only on the shape regularity of Th,
the data {D, f, q} in the primal and dual problems, and the exact solutions
{(u, r), p}, such that

|R((u, r), D, f, q; (uh, rh), ph)| ≤ Ch2. (45)

Proof: The remainder (22) is estimated as follows. First, we determined the
zeroth-order reconstructed flux rh with respect to uh. We then have

∣

∣

∣

∑

T∈Th

∫

T

(f − π0
h(f))(p− ph)

∣

∣

∣
≤ Ch2, (46)

owing to the (suboptimal) estimate

‖p− ph‖L2(Ω) ≤ Ch2. (47)
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Next, from the elliptic regularity, we have u ∈ H2(Ω) and r ∈ (H1(Ω))2 so
that the following a priori error estimates hold, see e.g. [15],

‖r− rh‖(L2(Ω))2 ≤ Ch‖∇r‖(L2(Ω))2 ,

‖u− uh‖L2(Ω) ≤ Ch
(

‖∇r‖(L2(Ω))2 + ‖∇u‖(L2(Ω))2
)

.

Therefore

‖rh +D∇uh‖(L2(Ω))2 = ‖rh‖(L2(Ω))2

≤ ‖r− rh‖(L2(Ω))2 + ‖r‖(L2(Ω))2

≤ C(1 + h)‖r‖(L2(Ω))2 ,

which yields

∣

∣

∣

∑

T∈Th

∫

T

(rh +D∇uh) · (∇p+D−1t1h(ph))
∣

∣

∣
≤ Ch2.

Noting that

∣

∣

∣

∑

E∈Eh

∫

E

nE · (D∇p+ t1h(ph))[[uh]]
∣

∣

∣

≤
∣

∣

∣

∑

T∈Th

∫

T

(D∇p+ t1h(ph)) · ∇u
∣

∣

∣
+
∣

∣

∣

∑

T∈Th

∫

T

(q − π1
h(q))(u− uh)

∣

∣

∣

≤ Ch2‖∇u‖(L2(Ω))2 + Ch‖u− uh‖L2(Ω) ≤ Ch2

allows us to conclude. �

Theorem 10. Let (uh, rh) ∈ P0×RT0(Th) be the solution to (44) and let the
error in the goal functional be assumed properly of first order. Then, under
the conditions of Theorem 9, the error estimator

η(uh, ph; rh, t
1
h(ph)) =

∑

T∈Th

∫

T

(f − π0
h(f)) ph

+
∑

T∈Th

∫

T

rh ·D
−1t1h(ph)−

∑

E∈Eh

∫

E

nE · t1h(ph)[[uh]]

(48)

is asymptotically exact.
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8. Numerical examples

We shall consider two classes of benchmark problems: one with large data
oscillations and one with no data oscillation. The first problem, following [19],
is the homogeneous boundary-value problem (1) with D = 1 in Ω = (0, 1)2,
for which the loading term f is given such that the exact solution reads

u(x, y) = 104x(1− x)y(1− y) exp
(

− 100
(

(x− 0.75)2 + (y − 0.75)2
))

. (49)

The goal functional is chosen for the first problem as:

Q(u) =
1

|ω|

∫

ω

u (50)

with
ω = {(x, y) ∈ Ω : 1.5 ≤ x+ y ≤ 1.75} . (51)

In other words, the goal is to calculate the average of the solution over the
strip ω, namely the region near the maximum of the solution, where the right-
hand side f , the solution u, and the gradient of u exhibit large oscillations.
The exact value of the quantity of interest was evaluated analytically to be
Q(u) = 43.28448988.

The second benchmark problem is given by the homogeneous boundary-
value problem (1) in Ω = (0, 1)2 with uniform load f = 103, for which the
oscillations vanish. The goal functional is given by (50) evaluated over the
subdomain

ω = [0.75, 1]× [0.75, 1], (52)

which corresponds to the averaged solution in the upper-right corner where
the solution exhibits large gradient. A representation of the exact solution
in terms of series was used to calculate the exact value of the functional.

The objective of the numerical experiments is to study the behavior of
the contributions to the error estimator η (21) in the case of three finite ele-
ment methods described above. For each problem, we describe the numerical
results that confirm the asymptotical exactness of the suggested error esti-
mator and demonstrate the potential of such an estimator in goal-oriented
mesh adaptation. In all examples presented below, meshes are adapted using
a refinement strategy based on the method proposed by Dörfler [23], whereby
the elements in a minimal set M ⊂ Th, such that

θ
∑

T∈M

η(T )2 ≤
∑

T∈Th

η(T )2,
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are refined. The refinement parameter θ = 0.75 was used in the first bench-
mark problem while θ = 0.5 was considered in the second problem. Elements
are refined using the longest edge bisection technique and additional refine-
ments of the mesh are considered in order to eliminate hanging nodes.

Finally, the quality of the error estimator η = η(uh, ph; th(uh), th(ph)) will
be assessed in terms of the effectivity index:

Iη =
η(uh, ph; th(uh), th(ph))

Q(u)−Q(uh)
(53)

evaluated on sequences of uniformly and adaptively refined meshes.

8.1. dG method

We consider here the first-order and second-order symmetric dG methods
for the discretization of the primal and dual problems and reconstruct the
equilibrated fluxes in RT0 and RT1, respectively.

We show in Figure 1(a) the effectivity index of estimator η for a sequence
of uniform and adaptive mesh refinements for the first test problem. For
uniform refinement, the effectivity index converges to unity as the mesh size
decreases, which confirms asymptotic exactness of the error estimator. In
Figure 1(b) the true error E in the goal functional approximation as well as
the error estimator and its different components, are shown for a sequence of
adaptive mesh refinements. To illustrate the effect of error cancelation when
summing up the three contributions, the positive and negative parts of each
component are shown in black and red, respectively. Moreover, given a quan-
tity f (i.e. e or η), we denote by f+ = max{f, 0} (resp. f− = max{−f, 0}) the
positive (resp. negative) part of f . We can see that the error estimate remains
very close to the true error offering accurate information for mesh adapta-
tion. For such a problem with large data oscillations, the error estimate is
essentially quantified by the difference between the oscillation contribution
ηO and the flux contribution η∇, which both dominate in absolute value but
with opposite sign, and is corrected by the relatively smaller ηH component.

In the case of the second test problem, the effectivity index is shown in
Figure (2)(a) for uniform and adapted sequences of meshes and the exact
error e, error estimator η and its components ηO, η∇, and ηH are shown
in Figure (2)(b). In the absence of oscillations in the problem data, the
component ηO ≃ 0 (within machine precision) as expected, and the flux
error estimate η∇ is the dominant contribution to the error estimator.
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Figure 1: First benchmark problem using the dG method for the solution of the primal
problem: (a) effectivity index Iη; (b) exact error e in quantity of interest, error estimator
η, and contributions ηO, η∇, and ηH to error estimate η on a sequence of adapted meshes
(negative values are shown in red, positive values in black).

8.2. Conforming finite element method

In the case of the first test problem, we consider the first-order conforming
finite element method for the primal problem and dG methods of various or-
ders for the dual problem. The equilibrated fluxes for the primal problem was
constructed using the hypercircle method presented in [11]. In Figure 3(a),
we present the effectivity index of estimator η for a sequence of uniform and
adaptive mesh refinements. In the case of uniform refinements, we use dG
methods of order first, second, and third for the calculation of the error es-
timates. As one can observe from the figure, the first-order dG method does
not provide an asymptotically exact error estimator (the effectivity index
tends to ≈ 1.9 on fine meshes), but asymptotic exactness is recovered in
accordance with Theorem 8 in the case of the second- and third-order dG
methods. We show in Figure 3(b) the exact error e in the goal functional
approximation as well as the error estimate η and the different contributions
(calculated using the second-order dG method) for a sequence of adaptive
mesh refinements. The component ηH vanishes here, so the difference be-
tween the oscillation estimate ηO and the flux estimate η∇, which are of the
same order but of opposite signs, accurately captures the goal functional
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Figure 2: Second benchmark problem using the dG method for the solution of the primal
problem: (a) effectivity index Iη; (b) exact error e in quantity of interest, error estimator
η, and contributions ηO, η∇, and ηH to error estimate η on a sequence of adapted meshes
(negative values are shown in red, positive values in black).

error.
In the case of the second benchmark problem, we use the same finite el-

ement method for the primal problem as before and restrict ourselves to the
second-order symmetric dG method for the dual problem. Flux reconstruc-
tion is performed as in the previous test problem. The numerical results,
shown in Figure (4), are as expected since in this case both ηO ≈ 0 and
ηH ≈ 0.

8.3. Raviart-Thomas mixed finite element

We solve the first benchmark problem using RT0 mixed finite elements,
calculate the error estimate (48) on a sequence of uniform meshes using the
first- and second-order symmetric dG methods, and reconstruct equilibrated
fluxes in RT0 and RT1, respectively. The results are shown in Figure 5(a).
Theorem 10 is not valid in the first case and we can see that the effectivity in-
dex fails to converge to unity as expected. When the approximation order of
both the dG method used for the solution of the dual problem and flux recon-
struction method increases, the error estimate becomes again asymptotically
exact. The exact error and the error indicator with its components, calcu-
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Figure 3: First benchmark problem using the conforming finite element method for the
solution of the primal problem: (a) effectivity index Iη; (b) exact error e in quantity of
interest, error estimator η, and contributions ηO, η∇, and ηH to error estimate η on a
sequence of adapted meshes (negative values are shown in red, positive values in black).

lated using the second-order symmetric dG method and equilibrated fluxes
reconstructed in RT1, are shown in Figure 5(b) on a sequence of adapted
meshes. The flux estimate η∇ and jump estimate ηH are in this case very
close to each other in absolute value (of the order O(1)) but are of opposite
signs. It is interesting to see that the error e is essentially driven here by the
oscillation error ηO.

The second problem is solved using RT0 mixed finite elements as be-
fore. Here, the error estimate (48) is also evaluated using the second-order
symmetric dG method and reconstructed fluxes in RT1. The results are pre-
sented in Figure 6. In absence of data oscillations, ηOO ≈ 0 (ηOO is actually
not shown in Figure 6(b)), and the error estimate η amounts to the the dif-
ference between the flux and the jump estimates. Even in this case, we can
observe that the error estimate η is asymptotically exact as demonstrated in
Figure 6(a).
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Figure 4: Second benchmark problem using the conforming finite element method for the
solution of the primal problem: (a) effectivity index Iη; (b) exact error e in quantity of
interest, error estimator η, and contributions ηO, η∇, and ηH to error estimate η on a
sequence of adapted meshes (negative values are shown in red, positive values in black).

9. Conclusions

We have presented a flexible approach for the computation of a posteriori
error estimates with respect to quantities of interest in the case of elliptic
problems. The main ingredients of the method are the calculation of higher-
order approximation of the dual problem by the discontinuous Galerkin
method and the construction of equilibrated fluxes in Raviart-Thomas finite
element spaces. The advantage of using a dG method for the dual problem
lies in its simplicity to consider high-order approximations and to reconstruct
equilibrated fluxes from its solution. The error estimator in the quantity of
interest is decomposed into three contributions: 1) an error estimate due to
the data oscillations in the primal problem, 2) an error estimate that mea-
sures the difference between the reconstructed fluxes and the finite element
fluxes, and 3) a contribution from the jump of the finite element solution at
the interface of the elements, all terms being weighted by the discontinuous
Galerkin solution to the dual problem. Within this framework, the primal
problem can be approximated by any finite element method as long as it sat-
isfies standard a priori error estimates and its solution can be subjected to
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Figure 5: First benchmark problem using the mixed RT0 method for the solution of the
primal problem and dG method for the dual problem: (a) effectivity index Iη; (b) exact
error e in quantity of interest, error estimator η, and contributions ηO, η∇, and ηH to error
estimate η on a sequence of adapted meshes (negative values are shown in red, positive
values in black).

the reconstruction of equilibrated fluxes. We have shown that, depending on
the convergence properties of the underlying method, the order of the dual
dG method can be chosen in such a way that the resulting error estimator be
asymptotically exact. Numerical experiments, using either the dG method,
the conforming finite element method, or the mixed Raviart-Thomas method
for the solution of the primal problem, clearly confirm that the proposed error
estimator has effectivity indices close to unity and is asymptotically exact.
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